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Lagrangian acceleration timescales in anisotropic turbulence
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We present experimental Lagrangian measurements of tracer particle acceleration au-
tocorrelation functions in an anisotropic and inhomogeneous flow spanning the typical
range of experimentally accessible Reynolds numbers. The large-scale forcing of the
flow creates a stagnation point topology where straining motion governs the anisotropic
velocity and acceleration fluctuations. We show that the timescales of the acceleration
components remain anisotropic at high Reynolds numbers and that they are related to
the dissipative timescale by the Lagrangian structure function scaling constants C0 and
a0, as well as C

�

0 , which is shown to be kinematically related to the velocity increments.
The proposed scaling relation is supported by observations using experimental Lagrangian
trajectory data sets and analytical calculations using a jointly Gaussian two-time stochastic
model. Examination of acceleration power spectra show that acceleration fluctuations
become isotropic in the dissipative range, which suggests that the acceleration timescale
is determined not only by small scales, but also by large and anisotropic scales whose
contributions are substantial, even in the high Reynolds number limit.
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I. INTRODUCTION

Anisotropy is an inescapable aspect of nearly all canonical turbulent configurations and may
arise by different mechanisms coupled to the presence of rotation, shear, or strain [1]. In particular, a
strong fundamental interest exists for straining flows where an initially isotropic turbulence is driven
to anisotropy. The application of steady strain in a wind-tunnel flow by means of an axisymmetric
converging duct in order to attenuate longitudinal velocity fluctuations [2] was originally theorized
by Prandtl as the spanwise contraction of cylindrical vortices which diminish streamwise velocity
fluctuations by conservation of angular momentum. From subsequent theoretical analyses [3,4] as
well as experimental and direct numerical simulations (DNSs) the role of strain may be summarized
by two essential points [5–11]. First, the large energy-containing scales experience an amplification
of velocity fluctuations in the contracting direction and an attenuation in the elongating direction.
Second, distortion at large scales leads to deviation from local isotropy in the rate of strain tensor.

Particle tracking velocimetry (PTV) [12–14] and DNSs [15–17] permit the investigation of
Lagrangian statistics and the attendant influence of shear and strain. The latter was addressed,
for instance, in the von Kármán configuration, where two counter-rotating disks act as centrifugal
pumps to impose a stagnation point [18,19] and turbulence production that is governed by the
accompanying straining motion [20] in the central region. Velocity fluctuations display a strong,
Reynolds-number-dependent, anisotropy with the dominant component aligned with the contracting
direction [20–22]. Based on energy flux arguments in Kolmogorov similarity theory (K41), velocity
increments follow a diffusive scaling DL

2 (τ ) = 〈[v(t + τ ) − v(t )]2〉 � C0ετ for time lags τ in the
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Lagrangian inertial range where ε is the turbulent dissipation rate [23]. Single component values of
the nondimensional constant C0 have been reported in a review of published results [24].

Measurements of C0 performed in anisotropic turbulence were also found to be strongly
anisotropic, reflecting the large-scale straining structure of the flow [21], and were observed to
slowly increase with Reynolds number. An asymptotic extrapolation of the data [21] based on
results from stochastic modeling [25] suggests that anisotropy persists for arbitrarily large Reynolds
numbers. In particular, the components corresponding to the axisymmetrically contracting direction
were larger than in the extensional direction, in broad agreement with the tendencies of the large,
energy-containing scales of strained wind tunnel turbulence. Flow anisotropy was found to be
smaller in the dissipative scale range [22,26], studied by investigating the acceleration variance of
Lagrangian tracers 〈a2〉, which follows the Heisenberg-Yaglom [27,28] scaling 〈a2〉 � a0ε

3/2ν−1/2

where ν is the kinematic viscosity of the fluid and a0 an increasing function of the Reynolds
number. As opposed to observations in the inertial range, anisotropy in the component values of a0

[22,29] has been reported to be a decreasing function of Reynolds numbers with some experiments
displaying nearly isotropic values [30].

Two-time statistics of acceleration measured using the acceleration autocorrelation function,
Ra(τ ) = 〈a(t )a(t + τ )〉/〈a2〉, have received less attention than one-time acceleration statistics such
as acceleration variance. It is known that acceleration is correlated over short timescales, with a
zero crossing t0 ≈ 2 τη = 2

√
ν/ε such that Ra(t0) = 0, as observed in both numerical simulations

[31] and experiments [22,32–34], but little information has been reported on its anisotropy. In the
strain-dominated region of the von Kármán flow, it was observed that the zero-crossing time t0 ≈ 3 τη

was larger in the strongly fluctuating, contracting direction than t0 ≈ 2.2τη measured along the
elongating direction, similar to the observations in DNSs of homogeneous and isotropic turbulence
(HIT) [31,35,36]. It is of note that the tendency of the strongest fluctuating acceleration component
to have the most prolonged correlation has also been reported experimentally in a turbulent channel
flow [37] and in rotating turbulence [38].

To the authors’ knowledge, no explanation has been given for the observed anisotropy of
acceleration timescales, and no information on its evolution with the Reynolds number is available.
In this article we address dissipative timescale anisotropy in a turbulent flow where a mean straining
motion strongly influences the turbulence. We show that the timescales of acceleration components,
measured as τa = ∫ t0

0 Ra(τ ) dτ , remain anisotropic at high Reynolds numbers and are well predicted
by the relation τa = C

�

0τη/2a0 where C
�

0 is a new scaling constant analogous to C0. This scaling
relation is supported both by observations using data sets of Lagrangian trajectories obtained in
two different von Kármán flows spanning a wide range of Reynolds numbers and by analytical
calculation using the jointly Gaussian two-time stochastic model of Sawford [25]. Although
this relation implies that acceleration timescales will remain anisotropic in the high Reynolds
number limit, examination of acceleration power spectra show that acceleration fluctuations become
isotropic in the dissipative range. This indicates that statistical quantities such as the acceleration
variance and correlation timescale not only depend on small scales but are influenced by larger
scales which are anisotropic.

II. EXPERIMENTAL SETUP

The Lagrangian turbulence data presented here combine the results of two measurement
techniques: extended laser Doppler velocimetry (eLDV) [33,34] and shadow particle tracking
velocimetry (SPTV) [20,39,40]. In both cases the experiments were performed in a von Kármán flow
[Figs. 1(a) and 1(b)] where an intense turbulence is created between two counter-rotating disks of
diameter D = 14.2 cm, with straight blades separated by a distance H = 20 cm. The flow is bounded
by a cylindrical vessel whose length is L = 25 cm and width is W = 15 cm. In the case of the eLDV
experiments the cylinder has a round cross section [Fig. 1(a)], while the SPTV experiments were
carried out in a square cross section [Fig. 1(b)]. Both configurations share properties in that the
differential rotation of the disks establishes the large-scale flow and also acts as a centrifugal pump
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FIG. 1. Experimental setup. (a) Round geometry of the von Kármán flow measured with extended laser
Doppler velocimetry (eLDV). (b) Square geometry of the von Kármán flow measured with shadow particle
tracking velocimetry (SPTV).

whose recirculation pattern creates a stagnation point topology in the central region (Fig. 1) where
the straining motion is responsible for the high degree of anisotropy observed [20]. Due to the
geometry of the vessel and its forcing, each configuration is nearly axisymmetric in the stagnation
point region, and the use of eLDV and SPTV gives complementary measurements of the axial (z)
and radial (x) components of two similar flows over a broad range of Reynolds numbers.

Due to the geometry of the vessel and its forcing, each configuration is nearly axisymmetric in the
stagnation point region, and the use of eLDV and SPTV gives complementary measurements of the
axial (z) and radial (x) components of two similar flows over a broad range of Reynolds numbers. All
experiments were performed in the fully turbulent regime. The Taylor-scale-based Reynolds number
Reλ = [15v4

rms/(νε)]1/2 was varied over the typically accessible range of laboratory Lagrangian
experiments [41], where vrms is the root mean square (rms) velocity, ν is the kinematic viscosity of
the fluid, and ε the turbulent dissipation rate (Table I) .

In the round cross-sectional geometry, which corresponds to the highest values of the Reynolds
number (Table I), the fluid is pure water, and the trajectories were obtained by means of eLDV.
Lagrangian tracer trajectories for particles with diameters of 30 μm (two times the dissipation scale
η = (ν3/ε)1/4. Such neutrally buoyant particles can be considered tracers as shown in previous
work [33,42]. Temporal sampling increments (dt = 1/167 ms for Reλ = 810) were sufficient
to ensure that temporal resolution and the ratio of the dissipation timescale (τη = (ν/ε)1/2) to
temporal increment were high: τη/dt = 33. The measurements were performed in the vicinity of
the geometrical center over a volume of 5 × 5 × 10 mm3 where the mean flow is small and the
Lagrangian tracks are long enough to compute acceleration statistics. In this setup, the dissipation
rate ε is estimated based on the power consumption of the motors [33], which was found to be in
agreement with hot-wire anemometry measurements in flows with similar geometries [43].

In the square cross-sectional geometry, corresponding to the lowest values of the Reynolds
number (Table I), the fluid is a water-Ucon mixture with a viscosity of ν = 8.2 × 10−6 m2 s−1,
and tracers with diameters of 251 μm (2.3 times the dissipation scale) are tracked using SPTV
with a temporal resolution of dt = 1/13 ms and τη/dt = 18 for Reλ = 200. Although the temporal
increment in SPTV is an order of magnitude larger than in eLDV, it is sufficient to measure the
acceleration dynamics using the denoising technique from Machicoane et al. [44] (see discussion
below). SPTV uses a small LED located at the focal point of a large parabolic mirror (15 cm in
diameter) creating a collimated light beam that illuminates particles which appear as shadows when
projected onto a high-speed camera [20,39,40]. A second, orthogonal beam creates a redundant
axis which permits reconstruction of trajectories in a large volume 6 × 6 × 5 cm3. As the SPTV
measurement volume is much larger than in the eLDV case, we use a subset of particle trajectories
which pass through a 1 cm diameter sphere near the stagnation point. As opposed to the round
cross-sectional case, SPTV provided the velocity and acceleration at known positions so that the
mean flow could be reconstructed. This permits the estimation of the turbulent dissipation rate as
〈�v · �a〉 − 〈�v〉 · 〈�a〉 � −ε [20].
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TABLE I. Experimental parameters. � is the disk frequency of rotation, Reλ = (15v4
rms/νε)1/2, where vrms

is the root-mean-square velocity defined as vrms = √
(v′

x
2 + v′

y
2 + v′

z
2)/3 (respectively,

√
(v′

x
2 + 2v′

z
2)/3) in

the square (resp. round) geometry, νs = 8.2 × 10−6 m2 s−1 and νr = 1.15 × 10−6 m2 s−1 are the kinematic vis-
cosities for the square and round geometries, and the dissipation rate ε is estimated according to Refs. [20,33]
for the square and round configurations, respectively. The Kolmogorov timescale is τη = (ν/ε)1/2 and t0z is
the zero-crossing time of the acceleration autocorrelation function [Raz (t0,z ) = 0)]. τai are the acceleration
component timescales measured from the integration of Rai (τ ) up to the zero-crossing time (1) and Fig. 3(a),
and their surrogates are defined: τ �

ai,s = C
�

0iτη/2a0i (4) where C0
� and C0 are distinguished by peak values in

dDL
2/dτ ε−1 and DL

2 (ετ )−1, respectively.

� Reλ Geometry vrms ε τη t0z/τη (τax/τaz )/ C
�

0z C
�

0x/C
�

0z C0z C0x/C0z a0z a0x/a0z

Hz (m s−1) (m2 s−3) (ms) (τ �
ax,z/τ

�
az,s )

4.2 140 Square 0.34 1.2 2.6 2.5 1.03 3.1 1.8 2.5 1.9 1.3 1.6
5.5 180 Square 0.45 2.3 1.9 2.3 1.02 3.2 1.8 2.6 1.9 1.5 1.6
6.9 200 Square 0.56 4.4 1.4 2.3 1.07 3.4 1.7 2.8 1.8 1.6 1.6
4.1 450 Round 0.50 4.0 0.5 2.6 1.04 3.6 1.5 3.0 1.5 1.9 1.4
6.4 630 Round 0.74 10.2 0.4 2.0 0.99 5.1 1.5 4.3 1.5 3.3 1.4
7.2 730 Round 0.87 13.9 0.3 2.0 1.01 5.8 1.4 4.9 1.5 4.2 1.1
8.5 810 Round 1.02 21.8 0.2 2.5 1.01 6.2 1.3 5.3 1.4 4.4 1.1

III. ANISOTROPY IN THE ACCELERATION COMPONENT TIMESCALES

The experimental techniques introduced in the previous section yield separate ensembles of
trajectories: velocity tracks with unknown positions in the case of eLDV and differentiable position
tracks in the case of SPTV. In all cases, acceleration signals are then obtained by finite difference
schemes which lead to an amplification of experimental noise. Typically this noise is removed by
convolution with Gaussian filters [45], which requires a subjective choice of the filter width. This
choice poses a problem as a portion of the true signal may be removed when the filter width is
chosen to be too wide, or too much noise may be retained when the filter width is chosen to be too
narrow. To avoid such complications, we used a variable time step method [44] which permits an
objective estimate of the acceleration components’ covariance (〈ai(t )ai(t + τ )〉) and variance (〈a2

i 〉)
from which we compute a0i using the Heisenberg-Yaglom relation: 〈a2

i 〉 = a0iε
3/2ν−1/2. The values

of this nondimensional function are given in Table I and are similar to those obtained in previous
works [22].

The Lagrangian velocity structure function 〈[v(t + τ ) − v(t )]2〉, which we will refer to as DL
2 (τ )

in what follows, is normalized by v2
rms in Fig. 2 (a) and presents three regimes. First is a ballistic

regime which extends up to times of the order of τη for which DL
2 (τ ) � 〈a2〉τ 2. As such, the

anisotropy in this regime is accurately predicted by the ratio of the acceleration variances given in
Fig. 2(b). An asymptotic regime also exists when τ/τη > 20 and the velocities at two times separated
by τ become uncorrelated such that DL

2 (τ ) � 〈v2〉. The curves in Fig. 2(a) do not resolve this regime
as trajectories are restricted to a small homogeneous region of the flow, but we expect the velocity
variance anisotropy in Fig. 2(b) to be a satisfactory estimate of this asymptotic state. Finally, an
intermediate regime exists for which DL

2 (τ ) � C0ετ . The structure function compensated by ετ as
well as a dimensionally similar, though kinematically distinct, normalization are plotted in Fig. 2(c);
the latter is discussed comprehensively in the discussion pertaining to Eq. (3) below. Differing
component-wise peak values in DL

2 (τ )/(ετ ) = C0 are indicative of the large-scale anisotropy which
strongly affects the Lagrangian velocity increment statistics in the inertial range. The values and
trends measured here (Table I) for C0 and a0 are similar to those reported elsewhere [21] and are
briefly summarized below.

Both values of a0i and C0i depend on the component and are increasing functions of the Reynolds
number but with different dependencies. The ratio C0x/C0z is always found to be larger than one,
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FIG. 2. Investigation of Lagrangian structure functions. (a) Second-order structure functions for the x
(◦) and z (
) components are normalized by v2

rms for Reλ = 140. Dashed lines refer to the acceleration
integral scale. (b) Ratios of anisotropy versus Reynolds number for velocity and acceleration variances.
(c) Compensated structure functions where (•, �) are the (x, y) components of DL

2 (τε)−1 and (◦, 
) correspond
to dDL

2/dτε−1 at Reλ. Dashed lines correspond to the zero-crossing timescales.

while a0x/a0z is closer to one in the high Reynolds number limit. This observation is related to the
velocity fluctuations in the inertial scale range, which remain anisotropic [21], while small-scale
quantities, such as the acceleration, are expected to be more isotropic as energy is redistributed
between the different directions in the dissipative scale range. DNS results have demonstrated that
the anisotropy in velocity and acceleration magnitude is due to the stagnation point topology of
a strain-dominated flow so that acceleration (resp. velocity) is always slightly (resp. much) larger
along the contracting direction (x) when compared to the same quantity measured along the dilating
direction (z) [26]. We confirm that these trends are also present in the velocity and acceleration
variances; Fig. 2(b) demonstrates that the acceleration anisotropy tends towards unity while the
velocity remains strongly anisotropic, even at high Reynolds numbers as observed in Ref. [22].
Given the hierarchy of velocity and acceleration magnitudes and assuming the sole presence of
dissipative contributions, it could be expected that the timescale of the acceleration component with
the most active component would have the smallest correlation time. However, the opposite is true
due to the presence of large-scale contributions, as we demonstrate below.

To investigate the temporal dynamics at small scale, we calculate the component-wise acceler-
ation autocorrelation function, Rai (τ ) = 〈ai(t )ai(t + τ )〉/〈a2

i 〉, in Fig. 3(a). An anisotropy between
the axial (z) and radial (x) components is apparent, with the latter decorrelating more slowly than
the former. This anisotropy, characterized by a longer timescale for the most active component,
was observed at all Reynolds numbers and is consistent with measurements in a similar apparatus
with a round cross section at Reλ = 690 [46] where the zero crossing of Rai (τ ) yields t0x/t0z = 1.4
and t0z � 2.2τη. As can be seen in Fig. 3(a, inset) the zero-crossing anisotropy occurring in the
present measurements is close to these values, t0x/t0z = 1.3 ± 0.1 and t0z/τη = 2.3 ± 0.2 on average
(Table I). An alternative estimate of the acceleration timescales, which will be of interest below, is
obtained by integrating the positive part of the autocorrelation functions:

τai =
∫ t0i

0
Rai (τ ) dτ. (1)

We note that the upper bound of Eq. (1) is not taken asymptotically as the integral of Rai(τ ) is the
sum of the positive and negative lobes of Fig. 3(a) and is zero for homogogeneous and stationary
turbulence [47]. The anisotropy, as measured using this integral timescale, is plotted in the inset
of Fig. 3(a). Similar to the ratio of the zero crossings, we find τax/τaz = 1.2 ± 0.1 with no evident
Reynolds number dependence, which shows that all timescales evolve in the same manner with
Reλ irrespective of the acceleration component. To investigate the Reynolds number dependence
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FIG. 3. (a) Acceleration autocorrelation functions Rai (τ ) = 〈ai(t )ai(t + τ )〉/〈a2
i 〉 of acceleration compo-

nents ax (◦) and az (
) for Reλ = 180 where one in five symbols has been plotted for clarity. (Inset)
Ratio of acceleration timescales: τax /τaz (�), t0,x/t0,z (�). (b) Ratios of the integral timescales TE = u′2/ε
to the acceleration timescales as a function of the Reynolds number Reλ: TE/τax (◦), TE/τaz (
), TE/t0,x (•),
TE/t0,z (�), and TE/τη (×). Dashed line is the HIT prediction TE/τη = Reλ/

√
15. (c) Ratios of the measured

acceleration timescales τai to their surrogates τ s
ai = C

�

0iτη/2a0i as a function of the Taylor-scale Reynolds
number, i = x (◦), and i = z (
); the Sawford jointly Gaussian two-time prediction of the acceleration integral
timescale in the large Reynolds number limit (see the Appendix for details) is given by i = x (•) and i = z (�).

of t0 and τa, their behavior is compared with that predicted by K41, which gives the ratio of
the energy containing to the dissipative scales: TE/τη = Reλ/

√
15 [48] where TE = v2

rms/ε. As
displayed in Fig. 3(b), we observe that the experimental measurement of TE/τη is in agreement
with the theoretical prediction even though the flow is neither isotropic nor homogeneous near the
stagnation point of the central region. We observe that the ratio TE/τai is not proportional to Reλ

although the proportionality holds to within a numerical factor for the case of zero-crossing times
t0i, which may be expected as empirical evidence suggests that t0z � 2.2 τη and that the anisotropy
in t0x/t0z is roughly constant with Reynolds number.

A jointly Gaussian two-time stochastic model introduced by Sawford [25] is known to reproduce
the general shape of the acceleration autocorrelation curve. In this particular case for which the
autocorrelation function may be calculated analytically it can be shown that the acceleration integral
timescale can be expressed as the surrogate relation:

τa,s = C0

2a0
τη, (2)

which is expected to hold to within 5% error for the Reynolds numbers considered (see the
discussion in the Appendix). This expression is tested experimentally in Fig. 3(c), and it is found
for both axial and radial components that (C0iτη/2a0i )/τai = 0.8 holds to within a few percent.
However, the coefficient 0.8 indicates C0 may not be the proper nondimensional constant.

The mismatch of nearly 20% found in the prediction of the acceleration integral scale can
be accounted for by studying the kinematic relationship relating the acceleration autocorrelation
function to the velocity increments. Dropping the index i for clarity, this reads

d

dτ
〈[v(t + τ ) − v(t )]2〉 = 2〈a2〉

∫ τ

0
Ra(τ ′) dτ ′. (3)

If a Lagrangian inertial range-type scaling is assumed to hold, we obtain dDL
2/dτ = C

�

0ε for the left-
hand side of Eq. (3). This constraint is verified only when the integral on the right-hand side obtains
a maximum, which occurs for τ = t0, the time which separates the positive part (τ � t0) and the
negative part (τ � t0) of Ra(τ ). We verify Eq. (3) in Fig. 2(c) where each vertical line corresponds
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to a component’s zero crossing and passes through the corresponding peaks of ε−1 dDL
2 (τ )/dτ .

The location of t0 gives the time of the maximum rate of increase in the structure function, which
corresponds to the end of the ballistic regime: DL

2 (τ ) � 〈a2〉τ 2. The integral scale τa, the second
term on the right-hand-side of Eq. (3), is found to be at smaller timescales in the ballistic region
than t0 as seen in the vertical lines of Fig. 2(a). Interestingly, the solid symbols of Fig. 2(c) which
correspond to DL

2 (τ )/(ετ ) do not coincide with the zero crossings and their peaks are lower than
those corresponding to ε−1 dDL

2 (τ )/dτ . We thus distinguish between the Kolmogorov coefficient
calculated with the former (C0) and the latter (C

�

0) which is roughly 20% larger.
Combining the inertial range relation and Eq. (3), we define a second surrogate of the integral

scale τa, notated τ �
a,s, from the relation C

�

0ε = 2〈a2〉τ s
a . Using the Heisenberg-Yaglom relation 〈a2〉 =

a0ε
3/2ν−1/2, the surrogate τ �

a,s follows the scaling relation

τ �
a,s = C

�

0

2a0
τη, (4)

where C
�

0 follows similar trends to C0 and we recall that both C0 and a0 are increasing functions
of Reλ with different scalings. This surrogate expression for the acceleration integral scale is
plotted in Fig. 3(c), and it accurately predicts τa to within a few percent without any numerical
prefactor. In comparing the relationships in Fig. 3(c) it was found that (C0iτη/2a0i )/τai = 0.8 while
(C

�

0iτη/2a0i )/τai = 1. The surrogate relationships calculated with C
�

0 as opposed to C0 gives different
coefficients which correspond to the nearly 20% increase in peak values observed in Fig. 2(c) when
calculating dDL

2/dτ ε−1 as opposed to DL
2 (τ )(ετ )−1.

It appears that the two methods for calculating constants related to the inertial range are not the
same, and the former is preferable as it is directly related to the velocity increments by the kinematic
relationship (3) and leads to an accurate prediction of the acceleration integral scale. In the context
of the Sawford model, asymptotically large Reynolds numbers lead the acceleration to behave as a
delta-correlated white noise, and the second-order model reduces to a first-order Langevin equation
[25,41]. The velocity autocorrelation in this case is an exponential function that is coherent with the
inertial range scaling of the second-order structure function. In this regime we obtain C

�

0 = C0 from
Eq. (3) by replacing the acceleration covariance by the delta-correlated white noise of magnitude
C0ε.

Interestingly, for each Reynolds number experiment the transverse and axial directions give near
equal values even though the shapes of the autocorrelation curves are different. Furthermore, the
scaling τax/τaz = (C

�

0x/a0x )/(C
�

0z/a0z ) reproduces the small timescale anisotropy to within at most
7% (Table I). These observations suggest that the changing shape of the autocorrelation curves,
evident in Fig. 3(a), depends on the constants C

�

0 and a0. Finally, we note that the relation τa =
C

�

0τη/(2a0) leads to an interesting prediction concerning the anisotropy of acceleration timescales in
the limit of asymptotically high Reynolds numbers. As both C

�

0 and a0 converge toward finite values
with (C

�

0,x/a0,x )/(C
�

0,z/a0,z ) � 1.2–1.4 in this limit (see Ref. [21] and Table I), the acceleration
timescale is expected to remain anisotropic, even at high Reynolds numbers.

The apparent contradiction between the observed anisotropic small-scale fluctuations and the
K41 hypothesis of local isotropy in fully turbulent flow [23] is addressed by investigating the scale-
by-scale distribution of energy for Lagrangian acceleration. Indeed, it was shown above that the
acceleration timescale has two main contributions: first, from inertial range motions determined by
C0 and, second, from dissipative range motions characterized by a0. To compare these contributions
we investigated the power spectrum of acceleration components, φai, computed from the collection
of twice differentiated position tracks from the SPTV data set using Welch’s method [49]. The
spectrum depends on angular frequency ω and is formally related to the acceleration autocorrelation
function by the Wiener-Khinchin theorem [50,51]:

φai (ω) = 2
∫ ∞

0
Rai (τ )e−iωτ dτ. (5)
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FIG. 4. Normalized power spectra of acceleration components, πφax (ω/ωη )/ε (◦) and πφaz(ω/ωη )/ε (
),
where the angular frequency is normalized by ωη = π/τη for Reλ = 180. Each spectrum is the ensemble
average of raw spectra computed with unfiltered position tracks which are differentiated twice, leading to
noise amplification in the high-frequency range. (Inset) Modified scaling in semilog coordinates, with same
symbols.

The acceleration spectra are plotted in Fig. 4 as a function of ω/ωη where ωη = π/τη is the
Kolmogorov angular frequency. They have been normalized by επ−1, which has been used in
the literature to account for Reynolds number dependence [21,23,52]. Each spectrum is mainly
composed of three regions:

(1) A horizontal plateau in the low-frequency region ω � 0.3ωη, corresponding to uncorrelated
fluctuations. The plateau values obtained here are in good agreement with those found in the
literature, and in Fig. 4 (inset) the spectra are given in log-linear coordinates using the modified
scaling ε−1 preferred by some authors [21,24,53].

(2) A cutoff region situated in the near-dissipative range ω ≈ ωη where the spectrum decreases
rapidly.

(3) A high-frequency region ω � ωη where the spectrum flattens out due to double derivation
of the small white noise contained in the position tracks. This region is visible because the spectra
presented here are raw spectra obtained with unfiltered data. Note that spectra extend only down to
0.06 ωη as we restrict the trajectories to a small homogeneous region with a volume of 1 cm3 near
the stagnation point to avoid any effect due to the spatial nonhomogeneity of the flow.

Figure 4 shows that anisotropy is contained in the low frequencies below ω � 0.3ωη and
decreases as frequency increases such that the acceleration spectra are almost identical in the
dissipative region (ω � 0.6 ωη). It is seen from this figure that there is no real contradiction
between isotropy at small scale and the anisotropy of small-scale statistical quantities such as
acceleration variance or acceleration timescale τa. Both integral quantities have a contribution from
low frequencies, i.e., from scales larger than the dissipative scales, which are anisotropic, and these
contributions do not become negligible in the limit of high Reynolds numbers.

IV. CONCLUSION

We have investigated the anisotropy of turbulent acceleration signals in a flow subject to
large-scale straining and presented scalings that accurately predict the results based on K41 phe-
nomenology and a jointly Gaussian two-time stochastic model. Our observation that the strongest
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acceleration component decorrelates more slowly than the weakest component is in agreement with
other experiments and simulations in the literature. These results complement early work measuring
the anisotropy in the Lagrangian constants C0 [21] and a0 [22,29] in that both constants contribute
to the acceleration timescale τa = ∫ t0

0 Ra(τ ) dτ , which is well estimated by τa,s = 0.8C0τη/2a0, a
result derived from the jointly Gaussian two-time stochastic model introduced by Sawford [25].
A second, complementary timescale results from a kinematic relationship directly relating the
velocity increments to the acceleration integral scale as τ �

a,s = C
�

0τη/2a0 where the constant C
�

0 is
preferable to C0 as it is explicitly related to the velocity increments. This relationship predicts the
anisotropy of the integral timescales to within at most 7% over nearly a decade of variation in the
Taylor-scale Reynolds numbers Reλ. As both Lagrangian second-order structure function scaling
constants C0 and C0

� are expected to remain anisotropic while a0 tends toward isotropy, both τa,s

and τ �
a,s predict that acceleration timescales will remain anisotropic in the high-Reynolds limit.

However, this prediction does not contradict common intuition that small-scale motions should
become isotropic as is confirmed by investigating dissipative-scale fluctuations in the acceleration
power spectra, which are indeed isotropic. We note that the expressions for the integral scale were
not derived solely on the grounds of a proposed turbulence phenomenology, but are more likely due
to the nature of Lagrangian trajectories, which have two characteristic, well-separated, timescales.
The surrogate acceleration integral scale τ �

a,s is expected to hold for other turbulent flows in the fully
developed regime and should be tested both experimentally and numerically.
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APPENDIX: ACCELERATION TIMESCALE IN THE CASE OF A JOINTLY
GAUSSIAN TWO-TIME MODEL

Below we derive the relation τa � C0τη/2a0 from Sawford’s jointly Gaussian two-time model of
the Lagrangian turbulent velocity [25]. This model has been shown to qualitatively reproduce the
shape of velocity and acceleration correlation functions [25,32,52], and we recall below the main
results of the model before establishing the result. A reader familiar with the notations introduced
of Sawford’s article may start directly with expression (A4) for the acceleration correlation function
Ra(τ ).

In Sawford’s jointly Gaussian two-time model, the Lagrangian velocity u and its forcing f are
defined as jointly Gaussian stochastic processes. Using the formulation given in the Appendix of
Ref. [25], equivalent to that of Krasnoff [54], u and f are solutions of the stochastic differential
equations:

du = β1u dt + f dt, (A1)

df = β2 f dt +
√

−2β2〈 f 2〉 dW , (A2)

where −1/β1 is a long timescale (of the order of the Lagrangian integral time TL), −1/β2 a short
timescale (further proved to be close to τa), and dW a delta-correlated Gaussian noise satisfying the
relation 〈dW (t ) dW (t ′)〉 = δ(t − t ′). In this model, velocity is differentiable so that acceleration
a = du/dt exists, and the velocity variance is linked to the forcing variance by the relation
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〈 f 2〉 = (β1 + β2)β1〈u2〉. All flow properties are set by the triplet (〈u2〉, −1/β1, −1/β2), and velocity
and acceleration correlation functions read

Ru(τ ) = 1

β2 − β1
[β2 exp(β1|τ |) − β1 exp(β2|τ )|], (A3)

Ra(τ ) = 1

β2 − β1
[β2 exp(β2|τ |) − β1 exp(β1|τ |)]. (A4)

Matching the inertial and dissipation subrange as given by Kolmogorov’s similarity theory gives
−1/β1 = 2〈u2〉/(C0ε) = TL and −1/β2 = C0τη/2a0.

Defining t0 so that Ra(t0) = 0 and integrating Ra(τ ) up to t0, we obtain the acceleration integral
timescale τa:

τa =
∫ t0

0
Ra(τ ) dτ = −exp(β1t0)

β2
. (A5)

In a high Reynolds number flow, it is expected that |β1t0| = t0/TL � 1 so that τa � −1/β2 =
C0τη/2a0. More precisely, for a flow with Reλ = 500 (corresponding to TL/τη � 60 [41]), one can
then estimate exp(β1t0) � 0.96 so that τa � C0τη/2a0 within 5% error. In the context of this model,
the correlation time of the acceleration is equal to the characteristic timescale of the stochastic
forcing.
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