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We investigate through direct numerical simulations (DNSs) the statistical properties of
turbulent flows in the inertial subrange for non-Newtonian power-law fluids. The structural
invariance found for the vortex size distribution is achieved through a self-organized
mechanism at the microscopic scale of the turbulent motion that adjusts, according to
the rheological properties of the fluid, the ratio between the viscous dissipations inside
and outside the vortices. Moreover, the deviations from the K41 theory of the structure
functions’ exponents reveal that the anomalous scaling exhibits a systematic nonuniversal
behavior with respect to the rheological properties of the fluids.
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I. INTRODUCTION

In many situations ranging from blood flow [1,2] to atomization of slurries in industrial
processing [3], one encounters non-Newtonian fluids in turbulent conditions. The first experiments
on turbulence in non-Newtonian fluids were already performed in 1931 by Forrest and Grierson
[4]. Later, Toms [5] reported experimental results on turbulent flow of linear polymers, and Dogde
[6] investigated, both theoretically and experimentally, polymeric gels and solid-liquid suspensions
under turbulent-flow conditions. Since then, most theoretical studies have focused on drag reduction
[7,8], and the mathematical modeling of wall stresses and boundary layers [9—11]. For isotropic
turbulence in dilute polymer solutions, De Angelis ef al. [12] found through DNS that relaxation
connecting different scales significantly alters the energy cascade.

Intuitively, in the inertial subrange, molecular stresses should have a negligible influence on the
motion and size of the eddies, regardless of the rheological nature of the fluid [13]. More precisely,
even if a more complex constitutive law than a linear one is necessary to describe the stress-strain
relation of a moving fluid, one should expect the statistical results obtained for the structure of
Newtonian turbulence at the inertial subrange to remain valid. A relevant question that naturally
arises is how the local rheological properties of the fluid must rearrange in space and time to comply
with this alleged structural invariance. Here we provide an answer for this question by investigating
through DNS the statistical properties of coherent structures of Newtonian and non-Newtonian
turbulent flows in terms of distributions of vortices sizes. The deviations from the K41 theory in
the behavior of these turbulent systems are also studied through the anomalous scaling of their
structure functions [14].
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II. NUMERICAL SIMULATIONS

For our numerical analysis, we consider a cubic box containing a non-Newtonian fluid and
subjected to periodic boundary conditions in all three directions. The mathematical formulation
of the fluid mechanics is based on the assumptions that we have an incompressible fluid flowing
under isothermal conditions, for which the momentum and mass conservation equations reduce to

ou

8t—i—,Ou~Vu:—Vp—I-V~T—i—I', (D

0

and
V-u=0, 2)

where u and p are the velocity and pressure fields, respectively, I is a forcing term and T is the
deviatoric stress tensor given by

T =2u(y)E, 3)

where E = (Vu + Vu')/2 is the strain rate tensor and = +/2E : E its second principal invariant.
The function u(y ) defines the constitutive relation, which for a cross-power-law fluid is given by

(n=1)

w(y) =Ky < p < . )

The constants @) and u, are the lower and upper cutoffs, respectively, K is called the consistency
index, and n is the rheological exponent. The cutoff values, w,/uy = 10~% and o/ un = 10°,
where uy is the viscosity of the Newtonian fluid, have been chosen to be sufficiently low in
the case of u; and sufficiently high in the case of u, to guarantee that the power-law behavior
prevails all over the system, at any time, and for all values of the rheological exponent n. Moreover,
the minimum value obtained for the local strain rate in all cases, Ymi, = 0.5/t for n = 0.33, is
comparable to the minimum found for the Newtonian fluid (n = 1); namely, Ymin = 0.6/7, which
are both sufficiently higher than the physical limit that characterizes a slow flow regime. Fluids with
n>1 are shear-thickening, while shear-thinning behavior corresponds to n<1. For n = 1, we recover
a Newtonian fluid.

A central assumption involved in the theoretical construct of the K41 theory [15-17] is that the
fluid flow at a sufficiently large Reynolds is in a homogeneous and locally isotropic state—the so-
called fully developed turbulence—that can be described in terms of universal statistical properties
[14]. To attain a fully developed turbulent regime, here the fluid is driven by a linear force [18,19]

I'=p—(u)/r, o)

where (u) is the spatial average of the velocity field and the parameter 7 corresponds to a prescribed
turnover timescale [19]. Differently from typical schemes, where low-wave-number forcing is
numerically applied in Fourier space, the linear forcing method is directly formulated in physical
space and can therefore be readily integrated into physical-space numerical solvers [19].

For a given set of turbulent-flow conditions and constitutive parameters of the non-Newtonian
fluid, the numerical solution of Egs. (1) and (2) for the time evolution of the local velocity and
pressure fields is obtained through the open source DNS code GERRIS [20]. This code is based
on a second-order finite-volume scheme applied to an adaptively refined octree mesh. The maximal
refinement level was set to eight subdivision steps, corresponding to a 256-cube discretization of our
triple periodic box. This grid refinement technique has been successfully tested and validated for
isotropic Newtonian turbulence. More specifically, a test case in which the adaptively refined results
are extensively compared with a standard spectral DNS code for the Newtonian case is available
in Ref. [21]. Finally, all simulations have been performed by using an unstable Arnold— Beltrami—
Childress (ABC) flow as initial configuration [22].
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FIG. 1. Normalized dissipated energy as a function of time for different values of n. In all cases, after
shooting up, the dissipated energies for distinct values of n drop quickly to eventually reach approximately
the same stationary state. The normalization factor, (¢;), corresponds to the average in space and time of the
local dissipated energy for the Newtonian fluid (n = 1). The average in time is computed at the stationary state,
precisely, for #/7>1000 (region colored in cream).

III. RESULTS AND DISCUSSION

In Fig. 1 we show the variation in time of the normalized dissipated energy (€,)/(€1) in the
turbulent system for different values of n, where (¢,) is the average in space of the local rate of
dissipated energy per unit of mass €,(y) = v(y)y? [23,24], with v(y) = u(y)/p, for a given value
of n, and (€7) is the average in space and time of the local rate of dissipated energy per unit of mass
for the Newtonian fluid (n = 1) and for values of time taken over the stationary state. As can be
seen, this last condition is ensured here by averaging in time only when ¢ /T >1000 for any value of n
(region colored in cream in Fig. 1). Throughout this paper the brackets ( ) indicate spatial averaging,
and temporal averages are denoted with an overbar. Here, we define the Taylor Reynolds number as
Re; = (V)imsA/(v), where (v)ms is the root mean square velocity, A = +/15{v)/{€,) (V" )ms is the
Taylor microscale. For the Newtonian case, Re;, = 75, and the results of our numerical simulations
are quantitatively compatible with those reported by Rosales and Meneveau [19], obtained under
the same set of conditions. For non-Newtonian fluid flows, we obtained similar values; namely,
Re;, = 78,79, 77,72, 78, and 80, for n = 0.33, 0.5, 0.75, 1.25, 1.5, and 1.75, respectively.

For comparison, we have performed simulations at higher Reynolds number; namely, Re, = 171
for the shear-thinning fluid with n = 0.5, Re; = 160 for the Newtonian fluid (n = 1.0), and Re; =
151 for the shear-thickening fluid with n = 1.5. The energy spectra for the lower and higher values
of Re;, cases, for the shear-thinning, n = 0.5, Newtonian, n = 1.0, and shear-thickening, n = 1.5,
fluids are portrayed in Fig. 2. The spectra (multiplied by k>/3) display the same behavior over a large
range of wave numbers. Expectedly, we observe the presence of an extended plateau at lower wave
numbers for higher Reynolds numbers.

At each time step, the geometric structure of turbulent eddies is characterized in terms of the
Ay-vortex-criterion [25], which identifies vortices by the existence of a local pressure minimum,
removing the effects of unsteady straining and viscosity. More precisely, the A, criterion delimits
a vortex boundary based on the value of the second eigenvalue of the tensor, M = E 24 QZ, where
Q = (Vu — Vu™)/2. Since M is symmetric, it has only real eigenvalues which can be ordered, A; <
Ay < A3. Accordingly, a vortex is defined as a connected region in space with at least two negative
eigenvalues of M, thus leading to the criterion [25] 1, <0. In practical terms, considering a turbulent
system with multiple vortices, we use this definition to identify them as clusters of cells in the
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FIG. 2. Energy spectra, multiplied by k>3, each obtained for two values of Re;, for (a)n = 0.5, (b)n = 1.0,
and (c) n = 1.5. Each spectra is computed by averaging over 20 different snapshots, each separated by 150
turnover times.

numerical mesh of the cubic box for which 1, < A3, where A < 0 is a given threshold value. The
smaller the prescribed parameter A3, the smaller is the average volume which encloses the vortex
cores in the system. Here only clusters with volume larger than * have been considered as vortices,
where n = (v3/ (e‘l))% is the Kolmogorov dissipation scale [17] calculated for the Newtonian case
(n = 1). For all practical purposes, our results show that, by redefining the Kolmogorov scale in
a more general way, 1, = ((v)3/(&,))"/*, the minimum and maximum values obtained among the
results for all n were 0.077 for n = 0.5 and 0.080 for n = 1.5, which are very close to the value
obtained for the Newtonian case, n; = 0.078.

Figure 3(a) shows a typical snapshot of the vortex structure at the stationary state of the turbulent
flow of a shear-thickening fluid with n = 1.5, and calculated for A} = —1073. The contours of A5
(white lines) together with the color maps of the local vorticity and stress computed at the cross
section, as highlighted in Fig. 3(a), are shown in Figs. 3(b) and 3(c), respectively. These plots clearly
confirm that the A, criterion captures both the intense local vortical motion inside and the high stress
outside the vortices.

Despite their chaotic and disordered nature, fully developed turbulent flows can be characterized
in terms of certain statistical properties. Here, by identifying distinct vortices over a large number
of snapshots of the system, the distribution of vortex sizes, P(s), is computed for a given threshold
A3, where s denotes the volume fraction of a vortex in the system. The results shown in Figs. 4
indicate that, for a fixed value of A3, the distribution of vortex sizes remains invariant, regardless
of the rheological exponent n (within numerical accuracy), which ranges from power-law shear-
thinning, n = 0.25, to shear-thickening behavior, n = 1.75. This is confirmed here by applying the
Kolmogorov—Smirnov test [26] to verify if each pair of distributions, for two different values of
the rheological exponent 7, can be considered as two particular statistical realizations of the same
random variable (the null hypothesis). Our results show that the significance levels are smaller than
0.05 in all cases. Consequently, the null hypothesis cannot be rejected, leading to the conclusion
that the vortex sizes are indeed likely to be drawn from the same distribution. The fact that rheology
has negligible impact on the statistical signature of this turbulent-flow property gives support
to the prediction that the structure of Newtonian turbulence at the inertial subrange is robust,
meaning that the distribution of vortex sizes is not influenced by the details of the constitutive
relation at the microscopic level [13]. We have performed additional simulations at higher values
of Reynolds number; namely, Re; = 171 for a shear-thinning fluid with n = 0.5, Re; = 160 for the
Newtonian fluid (n = 1.0), and Re; = 151 for the shear-thickening fluid with n = 1.5. The vortex
size distributions computed for these cases are shown in the insets of Fig. 4, confirming that the
behavior is also valid for higher values of Re; .

At this point, we show how fluids possessing very distinct rheological features adapt to display
the same vortex size distribution in the fully developed turbulent regime. Energy dissipation is a
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FIG. 3. Vortex identification using the X,-vortex-criterion [25]. A typical snapshot of the vortex structure
at the stationary state of the turbulent flow of a shear-thickening fluid with » = 1.5 is shown in panel (a).
The isosurfaces are calculated for a threshold value A% = —10~> and the colors correspond to the vorticity
amplitude. The highlighted plane in panel (a) indicates the cross section for the color maps in panels (b) and
(c) for the vorticity amplitude and stress intensity, respectively. The white lines in panels (b) and (c) are the
contours A, = Aj.

key fluctuating quantity in turbulent flows [27] and compared with a purely Newtonian fluid, the
non-Newtonian constitutive relation (4) provides an additional degree of freedom, which allows the
system to operate with a different characteristic viscosity in the dissipative range, depending on the
value of the exponent n. Using again the A,-vortex-criterion [25] to distinguish regions in space
that are inside and outside turbulent eddies, our results show that the energy dissipated per unit
mass €, calculated for each cell of the numerical domain, is typically smaller inside the vortices
than outside them, regardless of rheology. This general behavior is well exemplified by visualizing
a snapshot of the turbulent flow calculated for a shear-thickening fluid, n = 1.5, as depicted in the
color map of Fig. 5(a). Figure 5(b) shows how the ratio € /¢y changes with X, for different values of
n, where € is rate of energy dissipation per unit of mass for n = 1 at A, = 0. Although all curves
display the same qualitative pattern; namely, a slow decrease followed by a minimum at A,~0, and
a comparatively rapid increase for positive values of A,, the relative amounts of energy dissipated
are strongly dependent on the rheological exponent 7.

The global effect of rheology is better visualized when we calculate the ratio ¢,, between the total
energies dissipated outside and inside the vortices,

1 e(a)dhs
o= "), (6)
/; g €(A2)d 22

where AJI" and A7 are the minimum and maximum values of A, observed during the dynamics,
respectively. The integrals are calculated over the entire simulation box, and the average is
performed over several snapshots of the turbulent system. In Fig. 5(c) we show the dependence
of the ratio ¢,/¢; on n for different values of the threshold A}. These results reveal that, relative
to Newtonian fluids (n = 1), shear-thinning fluids (n<1) adjust to have an augmented dissipation
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FIG. 4. Vortex size distributions computed for lower Re;, for different values of the rheological exponent #,
ranging from 0.25 to 1.75, and for two values of the threshold, namely, A5 = —107* (a), and —5 x 1073 (b). For
a given pair of distributions, we applied the Kolmogorov—Smirnov test [26] to verify if they can be considered
as two particular statistical realizations of the same random variable (the null hypothesis). For all pairs, the
obtained significance levels are smaller than 0.05. Consequently, the null hypothesis cannot be rejected, and
we conclude that the vortex sizes are likely to be drawn from the same distribution. The insets show that this
behavior is also observed at higher values of Re,.

inside the vortices, ¢, < ¢;, while shear-thickening fluids (n>1) show exactly the opposite
behavior, ¢, > ¢;; namely, they dissipate relatively more outside the vortices. We can therefore
argue that non-Newtonian fluids undergoing fully developed turbulence self-organize in distinctive
dissipative regimes at the microscopic level so as to display vortex distributions that are statistically
identical to that of Newtonian turbulence.

An insightful statistical measure to describe the scaling behavior of fluid turbulence over different
spatial scales of the system is the longitudinal structure function [14,28], S} (r) = ({[u(x +r) —
u(x)] - r/r}™), where u(x) is the velocity at position x, r is the separation vector, r/r its direction
unit vector, r = |r|, and m is the order. This type of average measure has been extensively used
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FIG. 5. (a) Energy dissipation rate per unit of mass for the same snapshot and plane highlighted in
Fig. 3(a). The white lines correspond to isosurfaces at the threshold value A} = —107°. On average there is
more dissipation outside the connected regions with A, < A3. (b) Spatial and temporal average of the energy
dissipation ratio € /€ as a function of X, for different values of n, averaged over several eddy-turnover times.
(c) The change of the ratio ¢, /¢, as a function of the rheology exponent n for different values of the threshold
A3

064604-6



SELF-ORGANIZATION IN PURELY VISCOUS ...

10'1 Ll * n=0.25 Sﬁﬁ
2 n=0.5
j02L| ¢ =075 ﬂé ]
% n=1.25
3 A n=1.5
£n» 10| v n=1.75
1074 ¢ ﬁ
1075 ¢ ‘,3$

10° 10 10° 102 10!
1
S3

FIG. 6. The scaling relation between S;, and S3 is approximately linear independent of the rheological
exponent 7, thus rendering the application of ESS for non-Newtonian turbulent flows suitable. The black dashed
line represents the 1 : 1 line.

for Newtonian fluids to quantify turbulence from experimental data as well as from numerical
simulations across a given inertial-range scale r [29]. The so-called 4/5 law, which has been derived
exactly by Kolmogorov [16] from the Navier—Stokes equations, determines the third-order structure
function, S5 = 4/5(¢)r, where (€) is the average rate of energy dissipation per unit mass. Although
closed-form expressions for moments of other orders remain unknown, the seminal conceptual
framework developed for the K41 theory [15,16] led Kolmogorov to propose a generalized scaling
relation for the structure functions; namely, S (r) o r*», with the scaling exponents given by
» =m/3. The fact that the scaling exponents obtained from experiments as well as simulations
for Newtonian fluids systematically deviate from this result is broadly accepted nowadays [29] and
represents an open and important theoretical challenge in modern turbulence research [30].
In particular, when dealing with fractional and negative moments, it is convenient to use structure
functions based on the absolute values of velocity differences rather than of velocity differences
(291,

Su(r) = (|lu@x +r) —u@)]-r/r|"). (7

As in the case of S}, it is known from numerical simulations [29] that these structure functions also
obey a scaling relation of the form

Sp(r) oc 1o, (8)

although the exponents &, and £ may be slightly different [29]. Moreover, we opted to analyze
our results by using the extended self-similarity method [31] (ESS), which is known [29] to exhibit
larger scaling ranges for Newtonian turbulence than direct logarithmic plots of structure functions
versus r. Precisely, the rationale behind the ESS [29] is to obtain the ratio of scaling exponents &,,/&3
by plotting the corresponding structure function S, (r) against S3(r), assuming that §3 = £ = 1. To
extend this technique to non-Newtonian turbulence, we first confirm that all third-order structure
functions computed from our simulations correlate linearly with the values of S} (r) for a Newtonian
fluid, thus S% ~ Si (see Fig. 6), where the superscript n characterizes the rheology of the fluid.
Considering this linear relation and following the ESS approach, the results of our simulations
unequivocally show that the power-law relation, S, ~ Si’n”, holds for turbulent flows of cross-power-
law fluids over more than five orders of magnitude, notwithstanding the order m of the structure
function as well as the rheological exponent n. Examples are shown in Fig. 7 for m = 0.5, 1.0, and
2.0, and n = 0.5, 1.0, and 1.5 and lower and higher values of Re;,, it is clear from this figure that
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FIG. 7. Extended-self-similarity (ESS) plots for three values of the rheological exponent, n = 0.5, 1.0, and
1.5, each showing the respective dependence of the structure functions S, on S5 for three different values of
the order m and two different values of Re;. The black solid lines are the least-squares fits to the simulation
data of the power law, S ~ Siﬂ", where & is the scaling exponent.

> m

the structure functions computed at higher Reynolds numbers have the same scaling exponents &;;.
Figure 8(a) shows the scaling exponents &,, obtained from our numerical simulations as a function
of the order m for different rheological exponents 7.

As already mentioned, it is indisputable from experimental data as well as from extensive
numerical simulations that these deviations are indeed present in Newtonian turbulence [29,32-34].
Moreover, taken as a limitation of the scaling result of the K41 theory, which is substantially more
evident for higher-order moments, the so-called anomalous scaling phenomenon has been often
associated with the need for considering statistical conservation laws in the theoretical framework of
hydrodynamic turbulence [30]. Figure 8(b) shows the deviations of the structure function exponents
from the K41 theory, &), = (&, —m/3)/(m/3), as a function of m and for different rheological
exponents n. Besides being compatible with the departure from the scaling exponents predicted
by the K41 theory for the case of Newtonian turbulence, our results also reveal evidence for a
nonuniversal behavior in the deviations of structure functions of non-Newtonian turbulence. More

1.4
1.2 01r (c)
1
508 .= 0051 L
0.6 © 0 a
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0 -0.05 \ , \
0 1 2 3 4 0 05 1 15

FIG. 8. (a) Dependence of the scaling exponents &, of the structure functions on their corresponding order
m for different values of the rheological exponent n. The black solid line is the prediction of the K41 theory,
m/3. (b) Relative deviations of the exponents & from the K41 theory, 8, = (§, —m/3)/(m/3), as a function
of the order m, calculated for different rheological exponents n. The solid lines are the linear fits to the data
sets, &), = a,m + b,. (c) Dependence of the estimated values of the parameters a, and b, on the exponent n.
The least-squares fits to these data sets of the functions a, = o Inn + «, and b, = By Inn + B,, dashed lines,
gives oy = 0.018 £0.001, @, = —0.018 = 0.001, B; = —0.054 £ 0.004, and B, = 0.055 £ 0.003.
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precisely, all deviations &, decrease monotonically with m, being practically zero for m = 3,
positive for m<3, and negative for m>3. Moreover, for any fixed value of m # 0, the absolute
values of 8, decrease systematically with the rheological exponent n. As also shown in Fig. 8(b),
the linear fits performed to all data sets show that the exponent deviations &, follow closely the
relation 8" = a,m + b,, with r>>0.994 for any value of the rheological exponent n. The estimated
values of the parameters a, and b, are shown as functions of n in Fig. 8(c). The least-squares fits to
these data sets of the functions a, = oy Inn + «p and b, = By Inn + B, gives ; = 0.018 £ 0.001,
ar = —0.018 £ 0.001, B; = —0.054 £ 0.004, and B, = 0.055 &£ 0.003. As depicted, the agreement
between numerical data and fitting relations is excellent in both cases.

IV. CONCLUSIONS

In conclusion, we disclosed a self-organized mechanism of non-Newtonian turbulence through
which the particular rheology of the fluid adjusts to comply with the statistical invariance found
for the vortex size distribution. We also revealed a systematic dependence on the rheology of the
anomalous scaling observed in the deviations from the K41 theory.
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