
PHYSICAL REVIEW FLUIDS 4, 064603 (2019)

Synthetic turbulent inflow generator using machine learning

Kai Fukami,* Yusuke Nabae, Ken Kawai, and Koji Fukagata†

Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan

(Received 13 July 2018; published 4 June 2019)

We propose a methodology for generating time-dependent turbulent inflow data with
the aid of machine learning (ML), which has the possibility to replace conventional driver
simulations or synthetic turbulent inflow generators. As for the ML model, we use an
autoencoder-type convolutional neural network with a multilayer perceptron. For the test
case, we study a fully developed turbulent channel flow at the friction Reynolds number of
Reτ = 180 for easiness of assessment. The ML models are trained using a time series
of instantaneous velocity fields in a single cross section obtained by direct numerical
simulation (DNS) so as to output the cross-sectional velocity field at a specified future
time instant. From the a priori test in which the output from the trained ML model are
recycled to the input, the spatiotemporal evolution of cross-sectional structure is found to
be reasonably well reproduced by the proposed method. The turbulence statistics obtained
in the a priori test are also, in general, in reasonable agreement with the DNS data, although
some deviation in the flow rate was found. It is also found that the present machine-learned
inflow generator is free from the spurious periodicity, unlike the conventional driver DNS
in a periodic domain. As an a posteriori test, we perform DNS of inflow-outflow turbulent
channel flow with the trained ML model used as a machine-learned turbulent inflow
generator (MLTG) at the inlet. It is shown that the present MLTG can maintain the turbulent
channel flow for a long time period sufficient to accumulate turbulent statistics, with much
lower computational cost than the corresponding driver simulation. It is also demonstrated
that we can obtain accurate turbulent statistics by properly correcting the deviation in the
flow rate.

DOI: 10.1103/PhysRevFluids.4.064603

I. INTRODUCTION

To date, various types of inflow generators have been proposed for inflow-outflow simulations
of turbulence. Physically speaking, the most straightforward method is to simulate the natural
transition, starting from the laminar velocity profile with superimposed random fluctuations, as
was examined by Rai and Moin [1] and also used in a recent direct numerical simulation (DNS)
of a turbulent boundary layer by Wu and Moin [2]. Although this method is ideal, it requires
high computational cost because of the necessity of a sufficiently long computational domain for
laminar-turbulent transition. Adding relevant fluctuations to the mean velocity profile of already
turbulent flow [3] is another option, often called a synthetic turbulent inflow generator. As discussed
by Keating et al. [4], the synthesized velocity fluctuations should have spectral contents similar to
those of actual turbulent flows; otherwise the added fluctuations dissipate quickly. For this purpose,
several attempts have been made to generate random fluctuations having proper spatiotemporal

*Present Address: Department of Mechanical and Aerospace Engineering, University of California, Los
Angeles, California 90095, USA.

†fukagata@mech.keio.ac.jp

2469-990X/2019/4(6)/064603(18) 064603-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.064603&domain=pdf&date_stamp=2019-06-04
https://doi.org/10.1103/PhysRevFluids.4.064603


FUKAMI, NABAE, KAWAI, AND FUKAGATA

correlations. Druault et al. [5] and Perret et al. [6] reconstructed inflow turbulence from measured
experimental data using proper orthogonal decomposition and linear stochastic estimation. Klein
et al. [7], di Mare et al. [8], and Hœpffner et al. [9] used digital filtering techniques to generate a
correlated field out of random noise. Yet another, but seemingly most popular, method nowadays
is to use an auxiliary (i.e., driver) turbulence simulation with a periodic computational domain. In
order to take into account the spatial development in the periodic driver domain, Lund et al. [10]
proposed a rescaling and recycling of velocity profiles and velocity fluctuations based on the law
of the wall, which can be considered as a modified Spalart method [11]. As a result, they could
successfully reproduce the development of turbulent boundary layer. Although such a driver-type
inflow generator is more straightforward than the sophisticated synthetic turbulence generators
introduced above, one of its major drawbacks is its additional computational cost. Another, and
more crucial, drawback is the spurious periodicity issue arising from the streamwise periodicity in
the driver simulation, as extensively discussed by Wu [12].

In recent years, machine learning has gathered increasing attention as a part of the boom in
big data and artificial intelligence. Application of machine learning to fluid mechanics problems
has a relatively long history. For instance, Lee et al. [13] devised a single-layer perceptron, which
is a simplest type of neural network (NN), to learn the control input of opposition control [14]
for turbulent friction drag reduction. Milano and Koumoutsakos [15] used a multilayer perceptron
(MLP) [16] to estimate the flow field above the wall from the information on the wall; it is a
surprising fact that they treated more than 26 000 inputs for a NN already about 20 years ago. Owing
to the recent active development of machine learning libraries such as TensorFlow and Chainer,
machine learning has now become a handier tool for fluid mechanics as well. Recently, Gamahara
and Hattori [17] attempted regression of the subgrid scale (SGS) stress in large-eddy simulation
using a three-layer perceptron and succeeded in reproducing SGS stresses similarly to those of the
conventional Smagorinsky model [18,19]. Ling et al. [20] performed regression of the anisotropy
tensor in Reynolds-averaged Navier-Stokes (RANS) simulations using a specially designed NN
with an additional tensor input layer so as to account for the Galilean invariance and demonstrated a
better prediction performance than a simple MLP. Huang et al. [21] attempted to predict using NN
the difference between Reynolds stresses computed by DNS and RANS in a high Mach number flow.

Among different NN architectures, a convolutional neural network (CNN) [22] has been widely
used in the field of image recognition. One of the features of a CNN is that it can naturally take
into account the spatial structure of input data, in contrast to the traditional MLP having a fully
connected NN architecture. This feature of a CNN is also advantageous when fluid mechanics
problems are considered. Guo et al. [23] proposed a CNN implementation for real-time prediction
of a nonuniform steady laminar flow. Although the result shows lower fidelity than the traditional
computational fluid dynamics (CFD), a CNN is shown to be able to predict the velocity field
faster than the CFD solver. Yilmaz and German [24] applied a CNN for prediction of the pressure
coefficient on airfoils (note that this is originally a regression problem, but they converted it into a
classification problem by making groups of pressure coefficients) and achieved more than 80% test
accuracy. In addition, they mentioned that use of hybrid experimental and computational data as
the training data sets has a possibility for better regression performance. Zhang et al. [25] proposed
multiple CNN structures to predict the lift coefficient of airfoils with different shapes at different
Mach numbers, Reynolds numbers, and angles of attack. One of the useful suggestions from their
study is that using an artificial image as the input, which is a colored image corresponding to the
input parameters, also improves the test accuracy.

From these contexts, it would be natural to consider utilizing machine learning to develop a
turbulent inflow generator that may replace conventional driver simulations or synthetic turbulent
inflow generators. In the present study, we propose such a turbulent inflow generator based on
machine learning.

We propose an autoencoder [26] -type CNN combined with a MLP as a present machine-learning
(ML) model. As schematically shown in Fig. 1, the CNN part of the present model works
to compress the high-dimensional data of the cross-sectional velocity and pressure field into a

064603-2



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

FIG. 1. Schematic diagram of the present machine learning and its use as an inflow generator. (a) Training
stage; (b) a priori and a posteriori tests.

lower-dimensional latent space so that important spatial features of the flow are extracted, while
the MLP part is used to regress their temporal relationship. In Sec. II the present ML model will be
explained in greater detail.

The main idea of the present work is illustrated in Fig. 1(a). First, the ML model is trained using
the velocity and pressure data in a cross section obtained by direct numerical simulation (DNS)
so that the mean-squared error (MSE) between the cross-sectional velocity and pressure field at
the next time step (i.e., output, qn+1

ML ), which is obtained as a response to that at the present time
step (i.e., input, qn

DNS), and that of DNS (i.e., the answer, qn+1
DNS) is minimized. After the ML model

is trained, we perform an a priori test by recycling the output of the ML model to the input, as
indicated by the black arrows with a label “Recursive input” in Fig. 1(b), to investigate whether the
spatiotemporal structure similar to turbulence is properly maintained within the ML model. Note
that, at this stage, the DNS data are fed into the ML model only once for the initialization [i.e., q0

DNS
in Fig. 1(b)]. Finally, an a posteriori test is conducted by inflow-outflow DNS with time-dependent
inflow conditions computed using this machine-learned turbulent inflow generator (MLTG).

II. PROBLEM FORMULATION AND TRAINING METHODS

A. Training procedure

The training datasets are generated using DNS. For ease of assessment, we consider a fully
developed incompressible turbulent channel flow as the test case to examine the feasibility of the
present approach, although an efficient inflow generator may be appreciated more in simulations of
external flows such as spatially developing boundary layers and flows around a body.

The governing equations are the incompressible Navier-Stokes equations,

∇ · u = 0, (1)

∂u
∂t

= −∇ · (uu) − ∇p + 1

Reτ

∇2u, (2)

where u = [u v w]T represents the velocity with u, v, and w being the streamwise (x), wall-normal
(y), and spanwise (z) components; p is the pressure, t is the time, and Reτ = uτ δ/ν is the friction

064603-3



FUKAMI, NABAE, KAWAI, AND FUKAGATA

FIG. 2. Schematic structure of the ML model using the autoencoder-type convolutional neural network
with multilayer perceptron (e.g., Case 1).

Reynolds number. The quantities are made dimensionless using the channel half-width δ and the
friction velocity uτ .

The DNS is performed using the finite difference code of Fukagata et al. [27], which has been
validated by comparison with spectral DNS data of Moser et al. [28]. The size of the computa-
tional domain and the number of grid points are (Lx, Ly, Lz ) = (4πδ, 2δ, 2πδ) and (Nx, Ny, Nz ) =
(256, 96, 256), respectively. The grid is uniform in the x and z directions, while nonuniform in
the y direction. A no-slip boundary condition is imposed on the walls, and the periodic boundary
condition is applied in the x and z directions. The DNS is performed under a constant pressure
condition at Reτ = 180.

Time series of velocity and pressure field in a single y-z cross section computed by this DNS are
used as the training data for the ML model. Since the raw streamwise velocity, u, has a strongly
skewed distribution due to its mean velocity component, and such an ill-formed distribution of
training data is known to deteriorate prediction using a neural network [29], we use the fluctuations,
u′ = [u′ v′ w′]T and p′ as the input and output vector, q = [u′ v′ w′ p′]. The regression using the ML
model can be expressed as

qn+1
ML = F

(
qn

DNS;W
) ≈ qn+1

DNS, (3)

where qn+1
ML denotes the cross-sectional field at the next time step computed by the ML model, qn

DNS

represents the DNS data at the present time step that are fed as the input to the ML model, and qn+1
DNS

is the answer that should be reproduced by the ML model. The nonlinear mapping by the ML model
is denoted by F (·), and W denotes the weights in the ML model that are optimized by learning so as
to minimize the loss function, i.e., the MSE between qn+1

ML and qn+1
DNS. The time interval between time

steps n and n + 1 in ML is �t+ = 1.26, which corresponds to 10 time steps in the present DNS.
The code for machine learning has been written in-house by utilizing TENSORFLOW 1.2.0 and

KERAS 2.0.5 libraries on PYTHON 3.6.

B. Machine-learned turbulence generator

As shown in Fig. 2, the basic network structure of the present ML model is similar to the standard
CNN autoencoder used for image recognition, as can be found, e.g., in Keras tutorial [30]. First,
instantaneous y-z cross-sectional data, qn

DNS, are fed into the network. All input data are standardized

064603-4



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

TABLE I. Detailed structure of the machine-learned turbulence generator (e.g., Case 1)

Network Data size Activation function

Input (96,256,4) -
First Conv2D (96,256,16) tanh
Second Conv2D (96,256,16) tanh
First AveragePooling 2D (48,128,16) -
Third Conv2D (48,128,8) tanh
Fourth Conv2D (48,128,8) tanh
Second AveragePooling 2D (24,64,8) -
Fifth Conv2D (24,64,8) tanh
Sixth Conv2D (24,64,8) tanh
Third AveragePooling 2D (12,32,8) -
First Reshape (1,3072) -
First MLP (3072) tanh
Second MLP (3072) tanh
Second Reshape (12,32,8) -
Seventh Conv2D (12,32,8) tanh
Eighth Conv2D (12,32,8) tanh
First Upsampling 2D (24,64,8) -
Ninth Conv2D (24,64,8) tanh
10th Conv2D (24,64,8) tanh
Second Upsampling 2D (24,64,8) -
11th Conv2D (48,128,16) tanh
12th Conv2D (48,128,16) tanh
Third Upsampling 2D (96,256,16) -
Output/13th Conv2D (96,256,4) -

so that the mean value is zero and the standard deviation is unity, because it is generally known
that if the mean value of input data deviates from zero, the weight update will be affected and the
learning speed becomes slower [31]. Since the input data consist of four primitive variables (u′ and
p′) in a single y-z cross section, the total number of inputs in the present study is 96 × 256 × 4 =
98 304 per instant, i.e., the product of the number of computational points in a y-z section and the
number of variables. This high-dimensionalized input data are first compressed by a sequence of
convolution layers. Then low-dimensionalized data are passed to fully connected MLP layers, in
which the relationship between the low-dimensionalized features at two consecutive time instants
are regressed. Finally, the data corresponding to the low-dimensionalized field at the next time step
are expanded to their original dimension by the deconvolution layers. The function F in Eq. (3) is
expressed as

F
(
qn

DNS

) = Fdec
(
FMLP

(
Fenc

(
qn

DNS

)))
, (4)

where Fenc, FMLP, and Fdec denote the CNN encoder, MLP layer, and CNN decoder, respectively.
More detailed structure is shown in Table I. Conv2D is a convolution layer, in which the data

are convolved with filters. Pooling has the role to compress the data. Two widely used pooling
techniques are MaxPooling and AveragePooling: the former selects the maximum value, while
the latter selects the average value. We have attempted both pooling models and confirmed that
AveragePooling model shows better accuracy than the MaxPooling model in both training and test
processes; therefore, we adopt AveragePooling in the present study. Upsampling is an operation for
a dimension extension, in which the value is copied to the extended dimensions. In all layers, the
filter size is set at 3 × 3, and the pooling size is 2 × 2 for both compression and extension. As for
the activation function, we have tested three different activation functions: the hyperbolic tangent

064603-5



FUKAMI, NABAE, KAWAI, AND FUKAGATA

TABLE II. Parameters of the ML models, the number of epochs before early stopping, and the resultant
MSEs.

Case No. of MLP layers Structure of MLP layers No. of epochs MSE

Case 1 2 3072–3072 148 0.0289
Case 2 2 192–192 104 0.6981
Case 3 3 3072–3072–3072 43 0.6066
Case 4 3 3072–768–3072 73 0.1259

(tanh), the rectified linear unit (ReLU), and the sigmoid function. From this preliminary test, it has
turned out that the hyperbolic tangent (tanh) gives the best result in both training and test processes
in the present study. The Adam (adaptive moment estimation) optimizer [32] is used to optimize the
weighting of the ML model.

In terms of the computational cost, it is preferable to use as small a number of MLP layers and
latent data size as possible. Simplifying the MLP layer is preferable also for a physical interpretation
of the latent space, if possible. However, oversimplification of the network structure may lead to an
insufficient ability to express the essential dynamics. Therefore, we have examined four cases of
ML models by varying the numbers of MLP layers and the latent data size fed to the MLP layer, as
shown in Table II, to see their influence on the results. Case 1 is the base case with two MLP layers
whose latent data size is 3072; in fact, this was the largest size we could handle under our computer
environment. In Case 2, a smaller latent data size (i.e., a higher compression ratio) is considered by
adding a pair of convolution and deconvolution layers around the MLP layers to the network shown
in Fig. 2 and Table I. Case 3 and Case 4 include an additional hidden layer with the size of 3072 and
768, respectively.

In all cases, 10 000 pairs of snapshots spanning 12 600 wall unit time computed by DNS are used.
Among them, 70% is used as the training data, and 30% is used as the validation data. Note that the
pairs of DNS data at two consecutive time instants are fed into the network in a ramdom sequence.
Namely, what the present ML model learns is not the long time series of DNS data themselves
but the Navier-Stokes equation distretized with a relatively large time step of �t+∼1. Overfitting,
where the error for the training data set is lower than that for the validation data set, is avoided by
employing the early stopping criterion [33] in this study. A series of continuous 20 epochs is used
for the criterion of early stopping. The number of epochs trained until this early stopping and the
resultant MSE values are shown in Table I.

As can be noticed from the learning curves presented in Fig. 3 and the resultant MSE in Table I,
the learning is most successful in Case 1. In Case 2 with higher compression ratio, the resultant
MSE is much larger than that in Case 1. When an extra hidden layer is added (i.e., Cases 3 and 4),
the network seems to suffer from overfitting at smaller number of epochs due to the higher degree
of freedom (i.e., many parameters) in the latent space.

III. RESULTS AND DISCUSSION

A. A priori test: Recycling within ML model

As an a priori test, we recycle the output of the trained ML model to its input for multiple times,
with an initial condition taken from a single snapshot of DNS data, namely,

qn+1
ML = F

(
qn

ML;W
)
, (5)

with the initial condition,

q0
ML = q0

DNS. (6)

064603-6



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

FIG. 3. Learning curve: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

The statistics presented below are those accumulated for 10 000 time steps (i.e., 12 600 wall
unit time) of this recycling. Note that we intend to reduce the computation time as compared to
traditional driver-type turbulent inflow generators. Therefore, the primary purpose of this a priori
test is to see whether the MLTG can generate self-sustaining inflow turbulence without feeding
additional DNS data.

Figure 4 shows the “Reynolds stress” components computed using the output “velocity fluc-
tuations,” Ri j = u′+

i u′+
j . We express here the “Reynolds stress” and “velocity fluctuations” with

quotations because the zero-mean properties of u′
i are lost in the present ML model, as discussed

later. Case 1 shows reasonable agreement with the DNS data for all “Reynolds stress” components.
Case 2 underestimates the turbulence statistics, especially regarding the components concerning u
and w, due to overcompression of the latent vector fed to the MLP layer. These observations suggest
that the data size of the latent space is an important parameter to maintain the physical features. In
Cases 3 and 4, the computed statistics are qualitatively similar to the reference DNS data; however,
the accuracy is poor for R11 and R33 in Case 3 and R22 in Case 4.

Figure 5 shows the mean profiles of “velocity fluctuations,” u′+, v′+, and w′+, where the overbar
denotes the average in the spanwise direction and in time. Ideally, these quantities should be zero,
as indicated by the DNS data shown together. However, the distributions obtained by the ML model
show substantial nonzero values due to the lack of zero-mean constraint in the learning process.

The bulk-mean velocities computed from these profiles, 〈u′+〉, 〈v′+〉, and 〈w′+〉, where the
brackets denotes the average in wall-normal direction, presented in Table III reveal that the error
amounts to 0.5% of the bulk-mean velocity of the original flow. In order to fix this problem, we
define the corrected fluctuations as

u′′
i = u′

i − u′
i (7)

and

p′′ = p′ − p′. (8)

064603-7



FUKAMI, NABAE, KAWAI, AND FUKAGATA

FIG. 4. “Reynolds stresses” computed based on the raw output, Ri j = u′+
i u′+

j : (a) Case 1, (b) Case 2,
(c) Case 3, (d) Case 4.

The turbulence statistics based on these corrected velocity fluctuations are shown in Fig. 6. Case 1
shows reasonable agreement with the DNS data, while Cases 2–4 show poorer results, especially
for v and w components.

FIG. 5. Mean profiles of “velocity fluctuations”: (a) u′, (b) v′, (c) w′.

064603-8



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

TABLE III. Bulk-mean value of “velocity fluctuations.”

〈u′+〉 〈v′+〉 〈w′+〉
DNS −9.67×10−17 3.63 × 10−19 1.51×10−19

Case 1 −6.59×10−3 3.32 × 10−2 5.10×10−3

Case 2 5.80×10−2 2.02 × 10−2 −3.45×10−2

Case 3 1.29×10−2 2.41 × 10−2 −7.25×10−2

Case 4 2.40×10−2 8.27 × 10−2 −9.03×10−3

To examine the accuracy in the spatial structure reproduced by the MLTG in greater detail, the
spanwise energy spectrum of the streamwise velocity at y+ = 13.2 is compared in Fig. 7. The ML
models show reasonable agreement with the DNS data, although some attenuations are observed in
higher wave-number range. With a higher compression ratio (i.e., Case 2), the higher wave-number
components are damped more, as observed in Fig. 7(b).

The cross-sectional structure of the streamwise velocity fluctuations (u′) after 200 time
steps (i.e., about 250 wall unit time) of recycling within MLTG are shown in Fig. 8. The

FIG. 6. Statistics based on the corrected fluctuations: (a) u+
rms, (b) v+

rms, (c) w+
rms, (d) p+

rms, (e) −u′′+v′′+,
(f) ω+

x rms.

064603-9



FUKAMI, NABAE, KAWAI, AND FUKAGATA

FIG. 7. Spanwise energy spectrum: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

temporal evolution is best illustrated by an animation [34]. We can confirm the self-sustaining
spatiotemporal evolution similar to that of DNS. Consistent with the statistics presented above,
the structure in Case 1 is observed to be most similar to that of DNS among the present four
cases.

064603-10



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

FIG. 8. Cross-sectional contour of streamwise velocity fluctuations u′ after recycling for 200 time steps
(i.e., about 250 wall unit time): (a) DNS, (b) Case 1, (c) Case 2, (d) Case 3, (e) Case 4. Animations are
available at Ref. [34].

To see whether or not the present MLTG also suffers from a spurious periodicity issue, we have
computed the temporal spectra and two-point correlations of the streamwise velocity component at
two different wall-normal locations: near the wall (y+ = 13.2) and the channel center (y+ = 177.0),
as shown in Fig. 9. In the case of the driver DNS with a periodic computational domain, we can
clearly observe a spurious periodicity with a period corresponding to the length of the computational
domain divided by the advection velocity. In contrast, with the present MLTG, such a spurious
periodicity is not observed. This is probably because what the present ML model has learned is
not the time sequence of the input data themselves but the most probable nonlinear spatiotemporal
relationship between two consecutive time instants. In other words, the present MLTG is considered
to work as a surrogate for the time-discretized nonlinear Navier–Stokes system.

064603-11



FUKAMI, NABAE, KAWAI, AND FUKAGATA

FIG. 9. Temporal statistics in the a priori test: (a) temporal spectrum at y+ = 13.2; (b) temporal two-point
correlation coefficient at y+ = 13.2; (c) temporal spectrum at y+ = 177.0; (d) temporal two-point correlation
coefficient at y+ = 177.0.

The integral timescales, T +
u , computed from these temporal two-point correlations,

T +
u =

∫ T +

0

Ruu(t+)

Ruu(0)
dt+, (9)

are presented in Table IV. The integration time, T +, which should be infinity by definition, is
T + = 25 200 in the present calculation. It can be noticed that the integral timescale in Case 1
is substantially underestimated as compared to that of DNS. This suggests that, although the
spatiotemporal structure is qualitatively well reproduced by the present ML models, the network
structure and the parameters need further improvement for more quantitative agreement. Note that
the value near the wall (y+ = 13.2) in the present DNS, T +

u � 24, is also overestimated as compared
to that reported in the literature, T +

u � 20 at y+ = 10 [35]; this is obviously due to the insufficient
steamwise length and the spurious periodicity thereby.

064603-12



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

TABLE IV. The integral timescale, T +
u .

Location y+ = 13.2 y+ = 177.0

Periodic DNS (Lx = 4πδ) 24.1 15.9
MLTG Case 1 16.7 12.3
MLTG Case 2 19.7 23.3
MLTG Case 3 19.0 13.1
MLTG Case 4 17.8 11.8

B. A posteriori test: Inflow-outflow DNS using machine-learned inflow generators

As an a posteriori test, we assess whether the MLTGs can actually be used in turbulent
flow simulations with an inflow condition. Following the results of the a priori test, we use
the uncorrected data obtained in Case 1, u′

i (termed Case 1), and the corrected data, u′′
i (Case

1′), to provide the time-dependent inflow condition for DNS of turbulent channel flow with an
inflow-outflow condition and compare with the results computed using the traditional driver DNS
(i.e., an additional periodic DNS as a driver). The streamwise length of the computational domain for
the inflow-outflow DNS is Lx = 4πδ. The convective outflow condition is imposed at the outlet. The
cross-sectional velocity field data by MLTG is generated every 10 time step of DNS, �t+ = 1.26.
The inflow data at intermediate time instants are given by using a linear interpolation.

The spatiotemporal development of the peak value in the RMS velocity fluctuations normalized
by the value of DNS, u′

i,MLTG/u′
i,DNS, and the spatiotemporal development of local friction Reynolds

number, Reτ , computed by DNS with MLTG are shown in Fig. 10. Hereafter, the velocity
fluctuations in Case 1′ are also denoted by a single prime for notational simplicity. The horizontal
axis is the wall unit time t+, and the vertical axis represents the streamwise length from the
inlet. Note that the peak values of RMS velocities are computed in 16 subsections divided in
the streamwise direction. The computations used the present MLTG are continued at t+ = 10 000,

which is considered long enough to accumulate turbulent statistics, and u′
i,MLTG/u′

i,DNS and Reτ are
maintained nearly constant. Although the velocity fluctuations are slightly damped near the inlet
due the errors of the MLTG, the flow recovers to have the correct statistics after x/δ � 2.

Turbulence statistics computed in the inflow-outflow DNS with the MLTG are shown in Fig. 11.
The turbulence statistics here are accumulated in the entire computational domain of Lx = 4πδ

and normalized in the wall unit of the original flow, Reτ = 180. The statistics obtained in the
DNS in a periodic domain of Lx = 4πδ are also shown for comparison. Mean velocity profile,
RMS velocity fluctuations, RMS vorticity fluctuations, Reynolds shear stress, and streamwise and
spanwise spectra of streamwise velocity are all in reasonable agreement with the periodic DNS,
which confirms that the present ML model properly works as the inflow generator. In particular,
Case 1′ based on the corrected fluctuations outperforms Case 1. The deviation in Case 1 is attributed
to the increased flow rate due to the nonzero mean component as observed in the a priori test.

The present result demonstrates that the turbulence statistics can be reproduced in an inflow-
outflow DNS with an MLTG as far as the MLTG reproduces the spatiotemporal characteristics of
inflow turbulence reasonably well, although not perfect. Even if a small amount of error is contained
at the inlet, the flow recovers in the DNS domain to have the correct statistics. More extensive work,
however, is needed to clarify how much and what kinds of errors are allowed at the inlet.

At last, the computational time required for generating the turbulent inflow data for one time
step is compared shown in Table V. When we use a periodic DNS as a driver simulation, at least
Lx = 2πδ should be required to obtain reasonable statistics. Therefore, comparison is made between
the present model and a periodic DNS with Lx = 2πδ. Although the concrete value of computational
time highly depends on the environment such as the machine, complier, and library used and the
way of coding, the MLTG is apparently faster than the driver-type turbulence generator. Under our
environment, the computational speed of the ML model for generating one cross-sectional velocity

064603-13



FUKAMI, NABAE, KAWAI, AND FUKAGATA

FIG. 10. Spatiotemporal development of peak RMS velocity: (a) u′
MLTG/u′

DNS; (b) v′
MLTG/v′

DNS;
(c) w′

MLTG/w′
DNS; (d) Reτ .

field is about 180 times faster on CPU (single core Intel Xeon E5-2680v4, 2.4 GHz) and about
580 times faster when a GPU (NVIDIA Tesla K40) is used than the driver DNS run on the same
CPU. In addition, considering the fact that in the present ML case computes a cross-sectional
velocity field every 10 time steps of DNS (since MLTG is not restricted by the Courant number), the
actual speed-up rate is 10 times the values above, namely, 1800 times and 5800 times faster when
CPU and GPU are used, respectively.

064603-14



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

FIG. 11. Turbulence statistics in a posteriori test using MLTG: (a) mean velocity profile; (b) RMS of u′
i;

(c) RMS of ω′
i; (d) shear stress balance; (e) streamwise energy spectrum of u′; (f) spanwise energy spectrum

of u′.

064603-15



FUKAMI, NABAE, KAWAI, AND FUKAGATA

TABLE V. Comparison of computation time in a posteriori test

Generator type Time (s) Ratio versus Ratio versus
MLTG, Case 1 (CPU) MLTG, Case 1 (GPU)

Driver DNS (Lx = 2πδ) 2.39 181 582
MLTG, Case 1 (CPU) 1.32 × 10−2 1.00 3.21
MLTG, Case 1 (GPU) 4.11 × 10−3 0.311 1.00

In sum, it can be concluded that the present type of MLTG can be used also in practical
simulations in terms of self-sustainability of turbulent structure, accuracy in reproduced turbulent
statistics, and low computational cost.

IV. CONCLUSIONS

In this paper, we proposed a machine-learned turbulence generator (MLTG) using an
autoencoder-type convolutional neural network (CNN) combined with a multilayer perceptron
(MLP). For the test case, a turbulent channel flow at the friction Reynolds number of Reτ = 180 is
considered as a first step.

The machine-learning (ML) models were trained using a series of instantaneous velocity fields
in a single cross section obtained by direct numerical simulation (DNS) so as to output the
cross-sectional velocity field at a specified future time instant. In the a priori test, the present MLTG
was found to accurately reproduce not only the turbulence statistics but also the spatiotemporal
development of cross-sectional structure, although some deviation in the flow rate was found.
Moreover, unlike the conventional driver DNS using a periodic domain, the present MLTG is found
to be free from the spurious periodicity. As an a posteriori test, we performed DNS of inflow-outflow
turbulent channel flow with the trained MLTG as the time-dependent inflow condition. The MLTG
was able to maintain the turbulent channel flow in a long time period up to 10 000 wall unit time,
which is sufficient to accumulate turbulent statistics, with much lower computational cost than the
conventional driver simulation.

The present results suggest that MLTG is an attractive alternative to the conventional methods.
Although there is a computational overhead for training, MLTG should be useful in the cases
where many simulations are performed under statistically the same inflow condition but different
downstream conditions due to, e.g., control, roughness, and obstacles. Extension of the proposed
methodology to other types of flows, such as a spatially developing boundary layer and flows around
a body, is straightforward, but the accuracy should be assessed for each problem.

From the observation of the a priori test, the results are found to be sensitive against the
parameters of machine learning, including the number of layers, units, and so on. Although we have
obtained reasonable results in the present study, more extensive study should be made to find better
network structures giving higher accuracy. For instance, the long short-term memory (LSTM) [36]
proposed to deal with the complicated time series of data can be considered to increase the accuracy
in temporal characteristics; in fact, the usefulness of LSTM has recently been demonstrated by
Vlachas et al. [37] for a number of dynamical systems. In addition, an architecture independent of
the shape and size of input data will also be needed. Also, the structure of a CNN can be modified
so as to learn the different spatial scales more accurately, which is one of the ongoing studies in our
group [38].

Despite the merits mentioned above, the major drawback of the present method in contrast to the
conventional synthetic turbulence generators is that not only the statistics but also spatiotemporal
data of the target flow are still required to train the network. The ultimate goal may be to construct
a similar network which requires lower order information such as spatiotemporal correlations only.
However, we believe that the present study will serve as a good starting point toward this direction;
the remaining issues will be tackled in the future.

064603-16



SYNTHETIC TURBULENT INFLOW GENERATOR USING …

ACKNOWLEDGMENTS

The authors are grateful to Dr. S. Obi, Dr. K. Ando, Dr. Y. Aoki, and K. Endo (Keio
University), Dr. M. Yamamoto and Dr. T. Tsukahara (Tokyo University of Science), Dr. K. Iwamoto
(Tokyo University of Agriculture and Technology), Dr. Y. Hasegawa (University of Tokyo),
Dr. N. Fukushima (Tokai University), Dr. H. Mamori (University of Electro-Communications),
and Dr. P. Koumoutsakos (ETH Zurich) for fruitful discussions, for which K.F. and K.F. also thank
Dr. K. Taira (UCLA). This work was supported through JSPS KAKENHI Grant No. 18H03758 by
the Japan Society for the Promotion of Science.

[1] M. M. Rai and P. Moin, Direct numerical simulation of transition and turbulence in an spatially evolving
boundary layer, J. Comput Phys. 109, 169 (1993).

[2] X. Wu and P. Moin, Direct numerical simulation of turbulence in a nominally zero-pressure-gradient
flat-plate boundary layer, J. Fluid Mech. 630, 5 (2009).

[3] A. Smirnov, S. Shi, and I. Celik, Random flow generation technique for large eddy simulations and particle
dynamics modeling, J. Fluids Eng. 123, 359 (2001).

[4] A. Keating, U. Piomelli, E. Balaras, and H.-J. Kaltenbach, A priori and a posteriori tests of inflow
conditions for large-eddy simulation, Phys. Fluids 16, 4696 (2001).

[5] P. Druault, S. Lardeau, J. P. Bonnet, F. Coiffet, J. Delville, E. Lamballais, J. F. Largeau, and L. Perret,
Generation of three-dimensional turbulent inlet conditions for large-eddy simulation, AIAA J. 42, 447
(2004).

[6] L. Perret, J. Delville, R. Manceau, and J.-P. Bonnet, Turbulent inflow conditions for large-eddy simulation
based on low-order empirical model, Phys. Fluids 20, 075107 (2008).

[7] M. Klein, A. Sadiki, R. Manceau, and J. Janicka, A digital filter based generation of inflow data for
spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186, 652 (2003).

[8] L. di Mare, M. Klein, W. P. Jones, and J. Janicka, Synthetic turbulence inflow conditions for large-eddy
simulation, Phys. Fluids 18, 055102 (2006).

[9] J. Hœpffner, Y. Naka, and K. Fukagata, Realizing turbulent statistics, J. Fluid Mech. 676, 54 (2006).
[10] S. T. Lund, X. Wu, and D. K. Squires, Generation of turbulent inflow data for spatially-developing

boundary layer simulations, J. Comput. Phys. 140, 233 (1996).
[11] P. R. Spalart, Direct simulation of a turbulent boundary layer up to Rθ = 1410, J. Fluid Mech. 187, 61

(1988).
[12] X. Wu, Inflow turbulence generation methods, Annu. Rev. Fluid Mech. 49, 23 (2017).
[13] C. Lee, J. Kim, D. Babcock, and R. Goodman, Application of neural networks to turbulence control for

drag reduction, Phys. Fluids 9, 1740 (1997).
[14] C. Choi, P. Moin, and J. Kim, Active turbulence control for drag reduction in wall-bounded flows, J. Fluid

Mech. 262, 75 (1994).
[15] M. Milano and P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput. Phys.

182, 1 (2002).
[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagation errors,

Nature (London) 323, 533 (1986).
[17] M. Gamahara and Y. Hattori, Searching for turbulence models by artificial neural network, Phys. Rev.

Fluids 2, 054604 (2017).
[18] J. Smagorinsky, General circulation experiments with the primitive equations: I. Basic experiment,

Mon. Weather Rev. 91, 99 (1963).
[19] J. W. Deadorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,

J. Fluid Mech. 41, 453 (1963).
[20] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modeling using deep neural

networks with embedded invariance, J. Fluid Mech. 807, 155 (2016).

064603-17

https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1006/jcph.1993.1210
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1017/S0022112009006624
https://doi.org/10.1115/1.1369598
https://doi.org/10.1115/1.1369598
https://doi.org/10.1115/1.1369598
https://doi.org/10.1115/1.1369598
https://doi.org/10.1063/1.1811672
https://doi.org/10.1063/1.1811672
https://doi.org/10.1063/1.1811672
https://doi.org/10.1063/1.1811672
https://doi.org/10.2514/1.3946
https://doi.org/10.2514/1.3946
https://doi.org/10.2514/1.3946
https://doi.org/10.2514/1.3946
https://doi.org/10.1063/1.2957019
https://doi.org/10.1063/1.2957019
https://doi.org/10.1063/1.2957019
https://doi.org/10.1063/1.2957019
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1063/1.2196092
https://doi.org/10.1063/1.2196092
https://doi.org/10.1063/1.2196092
https://doi.org/10.1063/1.2196092
https://doi.org/10.1017/jfm.2011.32
https://doi.org/10.1017/jfm.2011.32
https://doi.org/10.1017/jfm.2011.32
https://doi.org/10.1017/jfm.2011.32
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1063/1.869290
https://doi.org/10.1063/1.869290
https://doi.org/10.1063/1.869290
https://doi.org/10.1063/1.869290
https://doi.org/10.1017/S0022112094000431
https://doi.org/10.1017/S0022112094000431
https://doi.org/10.1017/S0022112094000431
https://doi.org/10.1017/S0022112094000431
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615


FUKAMI, NABAE, KAWAI, AND FUKAGATA

[21] J. Huang, L. Duan, J. Wang, R. Sun, and H. Xiao, High-Mach-number turbulence modeling using machine
learning and direct numerical simulation database, in 55th AIAA Aerospace Sciences Meeting, AIAA Paper
2017-0315 (2017).

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86, 2278 (1998).

[23] X. Guo, L. Wei, and E. Iorio, Convolutional neural networks for steady flow approximation, in KDD’
16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM (ACM, New York, 2016), p. 481.

[24] E. Yilmaz and B. J. German, A convolutional neural network approach to training predictors for airfoil
performance, in 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper
2017-3660 (2017).

[25] Y. Zhang, W. Sung, and D. Mavris, Application of convolutional neural network to predict airfoil lift
coefficient, AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
Paper 2018-1903 (2018).

[26] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science
313, 504 (2006).

[27] K. Fukagata, N. Kasagi, and P. Koumoutsakos, A theoretical prediction of friction drag reduction in
turbulent flow by superhydrophobic surfaces, Phys. Fluids 18, 051703 (2006).

[28] R. D. Moser, J. Kim, and N. N. Mansour, Direct numerical simulation of turbulent channel flow up to
Reτ = 590, Phys. Fluids 11, 943 (1999).

[29] M. S. Shanker, M. Y. Hu, and M. S. Hung, Effect of data standardization on neural network training,
Omega 24, 385 (1996).

[30] Keras, Keras Documentation, https://keras.io/.
[31] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Muller, Efficient backprop, in Neural Networks: Tricks of the

Trade, 2nd ed. (Springer, Berlin, 2012), pp. 9–48.
[32] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 [cs.LG] (2014).
[33] L. Prechelt, Automatic early stopping using cross validation: Quantifying the criteria, Neural Netw. 11,

761 (1998).
[34] Fukagata Lab. Keio University, Machine-learned turbulence generator, Ver. 2, http://kflab.jp/en/index.

php?MLTG2.
[35] M. Quadrio and P. Luchini, Integral space-time scales in turbulent wall flows, Phys. Fluids 15, 2219

(2003).
[36] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9, 1735 (1997).
[37] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos, Data-driven forecasting of

high-dimensional chaotic systems with long short-term memory networks, Proc. R. Soc. London A 474,
20170844 (2018).

[38] K. Fukami, K. Fukagata, and K. Taira, Super-resolution reconstruction of turbulent flows with machine
learning, J. Fluid Mech. 870, 106 (2019).

064603-18

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1063/1.2205307
https://doi.org/10.1063/1.2205307
https://doi.org/10.1063/1.2205307
https://doi.org/10.1063/1.2205307
https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1016/0305-0483(96)00010-2
https://keras.io/
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1016/S0893-6080(98)00010-0
http://kflab.jp/en/index.php?MLTG2
https://doi.org/10.1063/1.1586273
https://doi.org/10.1063/1.1586273
https://doi.org/10.1063/1.1586273
https://doi.org/10.1063/1.1586273
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238

