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Skewness and non-Gaussian behavior are essential features of the distribution of short-
scale velocity increments in isotropic turbulent flows. Yet, although the skewness has
been generally linked to time-reversal symmetry breaking and vortex stretching, the form
of the asymmetric heavy tails remain elusive. Here we describe the emergence of both
properties through an exactly solvable stochastic model with a scale hierarchy of energy
transfer rates. From a statistical superposition of a local equilibrium distribution weighted
by a background density, the increments distribution is given by a novel class of skewed
heavy-tailed distributions, written as a generalization of the Meijer G-functions. Excellent
agreement in the multiscale scenario is found with numerical data of systems with
different sizes and Reynolds numbers. Remarkably, the single-scale limit provides poor
fits to the background density, highlighting the central role of the multiscale mechanism.
Our framework can be also applied to describe the challenging emergence of skewed
distributions in complex systems.
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I. INTRODUCTION

The phenomenon of turbulence has several challenging features that remain elusive after decades
of efforts [1,2]. In particular, the negative skewness and non-Gaussian behavior of the distribution
of velocity increments between close points in a homogeneous and isotropic turbulent flow have
long figured among the most intriguing ones. Though the negative asymmetry can be derived from
the Navier-Stokes equations and has been connected to the time-reversal symmetry breaking [3],
elucidating its physical origins and determining the form of the heavy tails persist as long-standing
open questions.

Indeed, understanding the statistical properties of velocity fluctuations remains an essential issue
in turbulence. A significant step in this direction was Kolmogorov’s theory of turbulence [1]. One
of its few exact results is the so-called 4/5-law: 〈(δvr )3〉 = − 4

5 〈ε〉r, where δvr = v(x + r) − v(x)
represents the longitudinal velocity increment and 〈ε〉 is the mean energy dissipation rate. For
homogeneous and isotropic turbulent flows, in which 〈δvr〉 = 0, Kolmogorov’s 4/5-law implies
negative skewness and non-Gaussian statistics of velocity increments. Considerable effort has been
also devoted to investigate the scaling properties of higher-order structure functions, 〈(δvr )n〉 ∼ rζn ,
n > 3, for which no exact results are known [1,4]. Moreover, a renewed interest has arisen as well in
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the study of the increments distribution itself, rather than its set of moments [5–11]. In particular, it
has long been known that velocity increments for large separations tend to be Gaussian distributed,
whereas non-Gaussian behavior is observed at short scales [1]. In this context, a more recent work
[12] found that short-scale non-Gaussian effects appear at Reynolds numbers much smaller than
initially thought.

Here we report on a statistical approach to the distribution of short-scale velocity increments in
isotropic turbulent flows that describes the emergence of both the negatively skewed asymmetry
and non-Gaussian heavy tails, with very nice agreement with numerical turbulence data of systems
featuring distinct sizes and Reynolds numbers. Our work is based on two central tenets of turbulence
theory [1,2], namely, the intermittency phenomenon and the concept of energy cascade, whereby
energy is transferred from large to small eddies until dissipation by viscous forces at the shortest
(Kolmogorov) scale.

Our intermittency model is built upon a hierarchy of multiple coupled scales of energy transfer
rates [13–15]. The marginal distribution of short-scale velocity increments P(δvr ) is related to the
energy transfer rate ε� at a larger scale � [see Eq. (3) for a formal definition of ε�] through a statistical
superposition of the conditional distribution P(δvr |ε�), weighted by a background distribution f (ε�)
obtained in exact closed form from our model. By considering P(δvr |ε�) as a Gaussian with nonzero
mean characterized by an asymmetry parameter μ, we obtain an exact P(δvr ) in the form of a novel
class of skewed functions with stretched exponential heavy tails. These newly defined functions
constitute a generalization of the Meijer-G functions and, to our knowledge, have never been
considered in the literature.

The theoretical predictions emerging from this multiscale scenario are found to be in excellent
agreement with turbulence data from two extensive and independent numerical simulations of the
Navier-Stokes equations. Remarkably, a poor agreement is found if only a single scale is considered.
Also, the origin of the stretched exponential heavy tails is shown to be directly related to the
multiscale behavior, since a simple exponential decay would result if only a single scale were
present. Therefore, our results highlight the crucial role of the interplay of multiple coupled scales
of energy transfer rates, advancing on the multiscale modeling of turbulent systems in an alternative
way to other approaches, such as multiplicative cascades [1], shell [16], and Lagrangian [17,18]
models. Moreover, our framework can be also applied to investigate the emergence of skewed
distributions in other complex systems, such as financial markets [19] and biological systems [20].

II. THEORETICAL BACKGROUND

We work under the formalism of a unified hierarchical approach to describe the statistics
of fluctuations in multiscale complex systems [13–15]. This framework, called H-theory, is an
extension to multiscale systems of the compounding [5,7] or superstatistics [21] approaches to
describe complex fluctuating phenomena. In this formalism, the probability distribution of the
relevant signal—say, the velocity increments—at short scales is given by a statistical superposition
of a large-scale conditional distribution weighted by the distribution of certain internal degrees of
freedom related to the slowly fluctuating environment,

P(δvr ) =
∫ ∞

0
P(δvr |ε�) f (ε�)dε�, (1)

where the variable ε� characterizes the local equilibrium at scale r. The large-scale conditional
distribution is assumed to be known, so that the complex statistical properties of the turbulent state
are entirely captured by the weighting density f (ε�), which incorporates the effect of the fluctuating
energy flux (intermittency). In turbulence modeling, the conditional distribution P(δvr |ε�) in Eq. (1)
is often chosen to be a Gaussian with zero mean, while several different weighting distributions have
been used, such as the gamma [5], lognormal [7,8,22–24], and inverse-gamma [21] distributions. A
distinctive feature of our formalism, however, is that the distribution f (ε�) in (1) is not prescribed
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a priori—as in these previous works—but rather is calculated from a hierarchical intermittency
model; see below.

One important physical assumption built into Eq. (1) is the separation of time and length scales:
the background variable ε� is supposed to vary more slowly (in time and space) than the signal δvr

[21], thus allowing it to reach a quasiequilibrium distribution P(δvr |ε�). In the statistical mechanics
language, structures of size � act as a “heat bath” for the fast fluctuating quantity δvr [25]. In the
turbulence context, ε� can be associated with the energy transfer rate from scale � toward smaller
scales, where � � r in view of the assumed scale separation.

Following Ref. [22], we consider the energy transfer rate ε� at scale � as defined by

ε�(x) = 15ν

[
1

�

∫ x+�

x

(
∂v

∂x′

)2

dx′ −
(

δv�

�

)2
]
, (2)

where ν is the viscosity. The first term in the right-hand side of Eq. (2) is the space average of the
dissipation rate over a volume of size �, which is Obukov’s proposal for estimating the rate of energy

transfer [1], whereas the term 15ν( δv�

�
)
2

takes into account the energy dissipation at the scale � itself
[22]. For large � (say, in the inertial range), the second term is negligible and so ε� agrees with
Obukov’s prescription for the energy transfer rate. In Ref. [22] it is argued that the energy transfer
rate ε� defined in Eq. (2) can be approximated by ε� ≈ 15νε�/r2, where ε� = 〈(δvr )2〉 − 〈δvr〉2 is
the variance of δvr at the scale �, meaning that the averages 〈(· · · )〉 are performed over windows
of size �. Here we shall make a similar assumption and take the variance, ε�, of δvr over a region
of size � as a proxy measure for the energy transfer rate ε�. We note, however, that in our approach
the scale � is not initially known and must be determined from the velocity data, as explained in
Sec. III.

Experimental and theoretical studies on homogeneous and isotropic turbulent flows indicate
[5,7,8,10,22,23,26] that the conditional distribution P(δvr |ε�) is given by a Gaussian with variance
ε�. For the sake of simplicity, a Gaussian with zero mean is often considered in theoretical turbulence
models [5,13,14,21,25], leading to symmetric (i.e., nonskewed) distributions P(δvr ).

Here we introduce a model for P(δvr |ε�) that yields an asymmetric (skewed) distribution P(δvr ),
which can be written in exact closed form in terms of certain special functions; see below. More
specifically, we consider

P(δvr ) =
∫ ∞

0
P(δvr |ε�) f (ε�)dε� =

∫ ∞

0

1√
2πε�

exp

[
− (δvr − 〈δvr |ε�〉)2

2ε�

]
f (ε�)dε�, (3)

where the conditional mean of velocity increments 〈δvr |ε�〉 is a function of ε� with the constraint of
null global average, i.e., 〈δvr〉 = 0, as required for homogeneous and isotropic turbulence. We thus
make the choice

〈δvr |ε�〉 = μ(ε� − 〈ε�〉), (4)

where μ is a flow-related asymmetry parameter so that 〈δvr〉 = 0 is ensured for any μ, with the
advantage that it renders possible a closed analytical form for P(δvr ). We shall see below that
the parameter μ controls the overall asymmetry of the resulting distribution P(δvr ). (We can also
introduce a dimensionless parameter b = |μ|√〈ε�〉, but for our purposes here it is more convenient
to work with μ itself; see below.) In Fig. 1 we show qualitatively how a weighted mixture of
Gaussians with nonzero mean (lower curves) can yield an asymmetric, heavy-tailed distribution
(uppermost curve).

The possibility of producing asymmetric distributions by compounding Gaussian distributions
with nonzero mean as indicated in Eq. (3) has been generally discussed, e.g., in Refs. [8,22,27,28],
but with no specific models for the resulting distribution. In Ref. [7] a particular non-Gaussian
model was also proposed, although it did not lead to a closed form solution and had the drawback
of producing a marginal distribution with nonzero mean. A model for non-Gaussian statistics and
intermittency based on an ensemble of Gaussian fields—albeit with zero mean—has been also
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FIG. 1. Schematic mixture of Gaussians with nonzero mean yielding a skewed heavy-tailed distribution
with zero mean. The uppermost black curve is the sum of the lower curves, which correspond to Gaussians
with variances in the interval [0.0002, 0.05] and means as in Eq. (4) with μ = −2, multiplied by weights
arbitrarily chosen for convenience of illustration.

considered in the literature [29]. To the best of our knowledge, the prescription given in Eq. (4)
for the conditional mean velocity 〈δvr |ε�〉 has not been used before. This is a crucial ingredient that
allows us to obtain an analytic solution for the skewed marginal distribution P(δvr ).

We now turn to the calculation of the background distribution f (ε�) in Eq. (3). The scale � is
assigned to the N th level of the turbulence hierarchy (ε� ↔ εN ), that is, � = L/2N , where L is the
integral scale and N is the number of levels in the cascade down from L to �. Our hierarchical
intermittency model is defined by the following set of N stochastic differential equations:

dεi = −γi(εi − εi−1)

(
1 + α2 εi−1

εi

)
dt + κi

√
εiεi−1dWi, (5)

for i = 1, . . . , N , where εi � 0 represents the energy transfer rate from the hierarchy level i to
smaller scales, γi > 0 is a relaxation rate, κi > 0 characterizes the strength of the multiplicative
noise (and hence of the intermittency) in the hierarchical level i, and Wi denotes a Wiener process.
The intermittency model Eq. (5) with α = 0 has been introduced in [14]. The generalization above
(with α �= 0) is important to consider because the parameter α > 0 can be associated with a residual
dissipation in the inertial range (see below), which is usually neglected in phenomenological cascade
models.

Physically, the deterministic term in Eq. (5) represents the coupling between adjacent scales,
whereas the stochastic term emerges from the complex interactions among all scales and is
necessary for intermittency [14]. We further observe that a rescaling of variables εi → ζ εi properly
leaves the model dynamics unchanged, which is a required property for a multiplicative cascade
model [30] in the sense that it implies f (εi|εi−1)dεi = g(x)dx, for x = εi/εi−1, where f (εi|εi−1)
is the conditional distribution for εi with εi−1 fixed and g(x) is some function of x. Moreover,
one can verify that if α = 0 then 〈εi〉 = ε0 for t → ∞, whereas for α �= 0 it can be shown [see
Appendix A, Eq. (A19)] that 〈εi〉/〈εi−1〉 = 1 − α2, as α → 0, thus showing that the energy flux
leaving the scale i is actually smaller than that entering it. In this sense, it is thus expected that
α becomes negligible for very large Reynolds number. The model above is perhaps the simplest
stochastic dynamical model of intermittency that allows for an analytic solution (see below) and
incorporates a small degree of dissipation in the cascade, so that it can describe intermittency even
at not so high Reynolds numbers where residual dissipation might be relevant. It is interesting
to notice that the nonlinear relaxation term in Eq. (5) is similar to the anomalous drift coefficient
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discussed in [31] to model friction in the context of the unusual transport of cold atoms in dissipative
optical lattices. (Higher-order terms could in principle be added in Eq. (5) but they should not
affect our findings significantly and, besides, destroy the exact solvability of the model. Other
not-exactly-solvable stochastic models of intermittency were considered, e.g., in Refs. [32,33].)

We assume that the timescales within the cascade are largely separated, with faster dynamics at
smaller scales, i.e., γN � γN−1 � · · · � γ1. We consider furthermore that κN � κN−1 � · · · � κ1,
which is reasonable since one expects stronger intermittency at smaller scales, in such a way that
the dimensionless ratio β ≡ 2γi/κ

2
i remains invariant across scales. Under these assumptions, the

stationary solution of the Fokker-Planck equation associated with Eq. (5) under Itô prescription is
given by

f (εi|εi−1) = (εi/εi−1)p−1

2εi−1αpKp(ω)
exp

(
− βεi

εi−1
− βα2εi−1

εi

)
, (6)

where p = β(1 − α2), ω = 2αβ and Kp(x) is the modified Bessel function of second kind. We
notice that the density function Eq. (6) has the form of a generalized inverse Gaussian (GIG)
distribution, which has been applied to describe diverse fluctuation phenomena [34].

By denoting f (εN ) ≡ f (ε�) in Eq. (1), we write

f (εN ) =
∫ ∞

0
...

∫ ∞

0
f (εN |εN−1)

N−1∏
i=1

[ f (εi|εi−1)dεi]. (7)

Notably, these integrals can be performed exactly to give

f (εN ) = 1

ε0[αKp(ω)]N
RN,0

0,N

( −
(p − 1,ω/2)

∣∣∣∣βN εN

ε0

)
, (8)

where p ≡ (p, ..., p), ω ≡ (ω, ..., ω), and Rm,n
p,q is a new special function defined in Appendix A. The

function Rm,n
p,q can be viewed as a generalization of the Meijer G-function Gm,n

p,q , in which the gamma
functions �(ν) are essentially replaced by the Bessel functions Kν (x) in the Mellin transform [35].

Finally, substituting Eq. (8) into Eq. (3) and using some properties of the R-functions (see
Appendices A and B), we obtain

PN (δvr ) = ceμyRN+1,0
0,N+1

( −[(
0, p − 1

2

)
,
[( |μy|

2 , ω
2

)]∣∣∣∣βN y2

2ε0

)
, (9)

with y = δvr + μ〈εN 〉 and c = (2/πε0α
N )1/2/[Kp(ω)]N . For a given N , the distribution above has

four parameters, namely: α, β, ε0, and μ. As discussed above, the parameter α is physically related
to a residual energy dissipation in the inertial range. The dimensionless constant β together with ε0

define a typical scale (2ε0/β
N )1/2 for the fluctuations of the velocity increments δvr , so that a larger

relative noise (intermittency) strength and/or a lower relaxation rate consistently yields a broader
distribution PN (δvr ). Last, the parameter μ controls the asymmetry of the distribution, as already
mentioned.

At this point, we emphasize that, although our model has four free parameters, they are deter-
mined in pairs—first ε0 and μ, then α and β—in a two-step procedure involving the background
distribution f (εN ), which is a more stringent constraint than a direct fit of PN (δvr ); see Sec. III.
Indeed, the fact that the background distribution f (εN ) is available to fit the empirical data in an
unambiguous way, as seen below, actually proves to be an important feature of our method, since
it is known that the distribution of velocity increments PN (δvr ) can be almost equally well fitted by
different theoretical expressions, thus making it difficult to select between competing models [14].

We note that the single-scale case, i.e., N = 1, in Eq. (9) corresponds to the generalized
hyperbolic distribution, as the distribution P1(δvr ) in this case reduces to a Gaussian variance-mean
mixture where the mixing distribution is the GIG distribution; see Eqs. (1)–(4) and (6). The
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generalized hyperbolic distribution has found many applications, including in the analysis of
turbulent velocity increments [36]. It appears, however, that the N > 1 multiscale scenario and the
corresponding R-distribution defined in Eq. (9) have not been considered before in the literature.
We anticipate here that the multiscale behavior (N > 1) is crucial to generate heavy tails, as the
case N = 1 yields only semiheavy tails; see below. We also highlight that PN (δvr ) given by Eq. (9)
is negatively (positively) skewed for μ < 0 (μ > 0), whereas for μ = 0 a symmetric (nonskewed)
distribution arises.

The large-|δvr | behavior of PN (δvr ) evidences the presence of non-Gaussian tails. Indeed, for
N > 1 and negative asymmetry, μ < 0, we obtain

PN (δvr ) ∼ |y|θ exp

[
−βN

(
y

ε0|μ|
)1/N

]
g(δvr ), (10)

where θ = p + 1/(2N ) − 3/2 and g(δvr ) = 1 for δvr → −∞ and g(δvr ) = e−2|μ|y for δvr → +∞.
The negatively skewed marginal distribution displays an asymptotic behavior to the right (δvr →
+∞) with exponential decay, while the left tail is heavier, in the form of a modified stretched
exponential. In contrast, for N = 1 modified exponential tails emerge on both sides: PN=1(δvr ) ∼
zp−1eμy−κz, where κ =

√
μ2 + 2β/ε0 and z =

√
y2 + 2α2βε0 for δvr → ±∞. Stretched exponen-

tials have for long been used to fit turbulence data [6] despite the lack of a theoretical basis for this.
Our model thus provides a reasonable physical framework for the emergence of such heavy tailed
distributions.

III. DATA ANALYSIS

We now describe how to apply the above formalism to the data analysis of turbulent flows.
Consider a large dataset {δvr ( j)} of longitudinal velocity increments, with j = 1, ..., Nv . As a

first step, we need to determine the optimal window size M over which the variance of δvr ( j)
is supposed to remain approximately constant. By dividing the original series into overlapping
intervals of size M, we define [14,37] an estimator of the local variance for each interval as
ε(k) = ∑M

j=1[δv(k − j) − δv(k)]2/M, where δv(k) = ∑M
j=1 δv(k − j)/M, with k = M, ..., Nv . As

discussed in Sec. II, we take the variance of δvr over a region of size � = Mr as a proxy measure for
the energy transfer rate from scale � to smaller scales [8,22]. For various choices of M and varying
the asymmetry parameter μ for each M, we numerically compound the empirical distribution of the
variance series {ε(k)} with the Gaussian as given in Eq. (3), and select the optimal parameters M
and μ for which the compounding integral Eq. (1) best fits the distribution of velocity increments
computed from the original data. (See, e.g., Refs. [38–40] for other methods to estimate the optimal
window size for the variance series in the case of superposition of Gaussians with zero mean,
therefore not corresponding to our context.) The knowledge of M then allows to express ε0 in terms
of the mean 〈εN 〉 of the variance series and the parameters α and β (see Appendix C), thus leaving
only α and β to be determined.

Once M is set, we estimate the number N of scales in the cascade by N = log2(L/�) =
log2(L/Mr), where L is the integral scale; see discussion preceding Eq. (5). After obtaining the
variance series {εN (k)}, we fit the empirical distribution f (εN ) to Eq. (8) to determine α and β.
Finally, the theoretical distribution of velocity increments PN (δvr ) is computed by inserting the
parameters in Eq. (9). Therefore, we remark that the setting of parameters is completed prior to the
calculation of PN (δvr ).

Let us now apply this procedure to the analysis of isotropic turbulence data [41] generated by
the extensive direct numerical simulation (DNS) of the Navier-Stokes equations for a system with
10243 lattice points in a periodic cube and Taylor-based Reynolds number Reλ ≈ 433. The dataset
was obtained from the Johns Hopkins University turbulence research group’s database [41]. The
simulation spans five large eddy turnover times, from which we considered ≈3 × 108 points for our
statistics. To test our intermittency model and show that it applies well to turbulence data, we shall
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FIG. 2. Conditional distribution of velocity increments for DNS turbulence data of a system of size 10243

and Reynolds number Reλ ≈ 433 [41]. Distinct distributions obtained for the optimal window size M = 19
have been rescaled and shifted to have the same mean (zero) and variance (unity). A nice agreement is observed
with a Gaussian of zero mean and unity variance (dashed line).

analyze here the velocity increments δvr computed at the smallest resolved scale r, which lies in the
near dissipation range as r ≈ 2.14η [41], where η denotes the Kolmogorov scale. A more complete
analysis including other scales r will be left for future studies.

We begin by analyzing the conditional distribution P(δvr |ε�), which requires computing first the
joint distribution P(δvr, ε�) [7,8,22,42]. To this end, we adopt here the following ad hoc prescription:
for each window of size M of the dataset {δvr ( j)} we compute the corresponding variance εN (k)
and associate it with the velocity increment δvr at the center of the respective window. The variance
series {εN (k)} thus generated is then “binarized” and for each bin we compute the respective
histogram P(δvr |εN ) of velocity increments. In Fig. 2 we show that the empirical conditional
distributions P(δvr |εN ) obtained for M = 19 are indeed well described by Gaussians, thus validating
the assumption Eq. (3), with the upper (lower) inset displaying the conditional mean (variance).
Although the observed behavior of 〈δvr |εN 〉 versus εN is only approximately linear, the important
point to note is that 〈δvr |εN 〉 decreases from a positive value to a negative one as εN increases,
thus implying μ < 0. (Models with a nonlinear mean-variance relationship could in principle be
introduced but the distributions may not be given in analytical form.) A similar trend as that seen
in the upper inset of Fig. 2 has been observed before, e.g., in Refs. [8,22,43], although there the
velocity increments δvr and the variance εr are computed over the same scale r, while in our case
ε� is defined over a larger scale � = Mr; see the discussion after Eq. (1).

Our analysis goes further, however, in that it shows mathematically that such “local behavior”
of the average velocity increment is linked to both the “global asymmetry” and the non-Gaussian
tails of the marginal distribution of the velocity increments; see the role of μ in Eqs. (9) and (10).
Physically, the change in 〈δvr |ε〉 from positive to negative values for increasing energy dissipation
rate ε, as inferred from Fig. 2, is clear evidence that the emergence of skewness is directly related to
intermittency: in regions of small (large) ε the fluid particle is more likely to accelerate (decelerate)
from one point to the next, resulting in a positive (negative) local average 〈δvr |ε〉, so that the
long-time statistics of δvr has zero mean but negative skewness. We remark that a link between
intermittency and skewness governed by a single parameter was also found in a recent stochastic
model for the turbulent velocity field [44], but no explicit distribution is obtained there.
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FIG. 3. (a) Distribution of velocity increments and (b) background density of local variances for the DNS
data of Fig. 2 (circles). Excellent fits to the theoretical results (red lines), Eqs. (8) and (9), respectively, are
shown for N = 4 scales. For comparison, the case with N = 1 (single scale) is also plotted (green lines),
displaying much poorer fits. Inset in (b): nice agreement of the empirical distribution of velocity increments
(circles) and the compounding integral (blue line), Eq. (3), of the Gaussian and the density f (εN ) obtained
from the DNS data.

We now proceed to further test the model. By applying the optimization procedure described
above to select M and μ we obtain μ = −1.82 and M = 19 (yielding 〈εN 〉 = 1.09 × 10−3), which
leads to the nice agreement in the inset of Fig. 3(b) between the numerical compounding (solid
line) of the Gaussian with the empirical f (εN ), see Eq. (3), and the velocity increments distribution
from the DNS data (circles). We note furthermore that the scale � = Mr belongs to the inertial
range, since � ≈ 40.7η nearly coincides with the Taylor scale λ ≈ 41.1η [41], thus confirming the
separation of scales anticipated in the discussion of Eq. (1). Using that the integral scale in this
case [41] is L = 104.7η = 224r, we estimate the number of scales in the model hierarchy: N =
log2(L/�) = log2(224r/19r) ≈ 4.

Figure 3(a) and the main panel of Fig. 3(b) display, respectively, the marginal distribution PN (δvr )
and background density f (εN ) for N = 4. The theoretical results are shown in solid lines and
the empirical data are depicted in circles, with excellent agreement observed in both PN (δvr ) and
f (εN ). The best fit parameters are α = 0.17 and β = 2.72. For comparison, we also plot the best
fit using N = 1 (single scale), which clearly does not perform so well as the one with N = 4. This
result evidences that this DNS dataset cannot be properly described with only a single scale. We
also confirmed that the N = 4 case indeed produces a better fit than N = 2, 3, 5. This is depicted
in Fig. 4, in which we show the relative squared error (solid circles) of the fitted background
distribution f (εN ) for different hierarchy levels N .

We stress that no curve fitting was performed in Fig. 3(a); the fit was done only in the main panel
of Fig. 3(b) to obtain the parameters α and β entering the density f (εN ). Once these parameters were
known, we simply plotted PN (δvr ) using Eq. (9) and superimposed it with the empirical histogram
for the velocity increments δvr . Thus, the nice agreement exhibited for N = 4 in Fig. 3(a) using the
parameters determined from Fig. 3(b) attests to the method’s self-consistency.

We now turn to analyze more recent turbulence data [45] from the DNS of the Navier-Stokes
equations for a larger system with 40963 points and higher Reλ ≈ 600. The dataset consists of only
one snapshot in time from which we took ≈3 × 108 points, with the smallest resolved scale being
r ≈ 1.11η and the integral scale L = 907r [45]. (Here again, the analysis of other scales lies out of
the scope of this work.)

The theoretical results (solid lines) and DNS data (circles) for PN (δvr ) (main panel) and f (εN )
(inset) are shown in Fig. 5. Here we find μ = −1.50 and M = 27 (yielding 〈εN 〉 = 9.06 × 10−4),
whereas α ≈ 0 and β = 2.55. From the data in Ref. [45] we obtain a larger number of scales N =
log2(907r/27r) ≈ 5. Indeed, for N = 5 a remarkable agreement with the empirical data is observed
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FIG. 4. Relative error for the background distributions f (εN ) obtained from fits with different hierarchy
levels N . The optimal values of N for both DNS datasets, i.e., N = 4 for Reλ ≈ 433 (solid circles) and N = 5
for Reλ ≈ 600 (crosses), correspond to the estimates provided by comparing the respective integral length
scales to the scale � = Mr over which εN is computed (see text).

for both PN (δvr ) and f (εN ), as seen in Fig. 5(a) and the the main panel of Fig. 5(b), respectively
(red curves). As in the previous analysis, the fit (green curve) using only a single scale (N = 1) is
not as accurate as that with N = 5. Accordingly, we found that the cases N = 2, 3, 4, 6 also led to
poorer fits when compared to N = 5 (see Fig. 4).

Let us now briefly examine the behavior of the model parameters with Reynolds number. First,
note that the larger N obtained for the second dataset, which has a higher Reλ, is consistent with
the fact that L/η increases with Reλ, and so we expect more steps in the cascade (hence a larger
N) as Reλ enhances. Furthermore, the fact that α ≈ 0 for N = 5 also agrees with the suggested
interpretation that the α-term in Eq. (5) represents a residual dissipation in the inertial range,
which is expected to become negligible for very large Reλ, as commented above. Note also that
the asymmetry parameter μ is smaller in magnitude for the second dataset, as expected, since this
case corresponds to higher Reλ and smaller r. (Recall that in the second dataset r/L decreases by a
factor of four and r/η, by a factor of 2.)
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FIG. 5. (a) Distribution of velocity increments and (b) background density for a system with 40963 points
and Reynolds number Reλ ≈ 600 [45]. The nice fit of the DNS data (circles) to the theoretical model (red
lines) occurs for N = 5 scales. A poor fit is noticed in green lines for N = 1. Inset: description as in the inset
of Fig. 3(b).
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Moreover, the parameter β, which controls the shape of the background distribution f (ε�), was
found to decrease slightly in the second dataset, implying that f (ε�) is broader in this case; compare
the main plots of Figs. 3(b) and 5(b). This behavior is consistent with the expected “amplification
of intermittency” [10] as r decreases. If this trend persists for higher Reλ and smaller r, then
the normalized moments of the velocity derivative distribution should diverge for Reλ → ∞ (see
below). At present, however, one cannot rule out the possibility that β eventually becomes an
increasing function of N as r gets smaller and Reλ larger, which would lead to constant normalized
moments. It thus follows from this discussion that how β varies with N is crucial to determine the
statistical properties of velocity increments at small scales. To see this more explicitly, we recall that
for α → 0 the intermittency model given in Eq. (2) recovers that described in Ref. [14] for which
the normalized moments of the background variable ε� are〈

ε
q
�

〉
ε

q
0

=
q−1∏
j=1

(
1 + j

β

)N

. (11)

If we assume that our hierarchical model remains valid at very small scales, then it follows from
Eq. (3) [in the limit that μ → 0] that

S2q = 〈(∂xv)2q〉
〈∂xv2〉q

∼
〈
ε

q
�

〉
ε

q
0

. (12)

One then sees from Eqs. (11) and (12) that as N → ∞ two quite distinct scenarios arise: if N/β →
∞, then the normalized derivative moments S2q diverge, as in Kolmogorov’s 1962 theory (K62)
[46], whereas if N/β → 0 then S2q = constant, as predicted by Kolmogorov’s original 1941 theory
(K41) [47,48].

In this context, it is interesting to point out that it has recently been suggested [4] that one should
observe an approach toward the predictions of K41 (rather than K62) as Reλ continues to increase.
Our hierarchical theory described above thus suggests an alternative way to assess this claim through
a careful analysis of the behavior of β for increasing Reλ. If K41 is indeed to be obtained in such
limit, then one should observe a faster growth of β in comparison to N , whereas if β continues to
decrease (or eventually increases but slower than N), then K62 is favored. This interesting possibility
certainly deserves further investigation.

In summary, we have seen from the preceding discussion that our model is rather versatile in
that the changing behavior of the distribution of velocity increments with varying r can be well
accommodated in the background distribution f (εN ). Further investigation of the model at more
scales, as well as of the dependence of the model parameters with the Reynolds number, will be left
for future studies.

IV. CONCLUSIONS

We have developed a hierarchical model to investigate the emergence of the negative skewness
and non-Gaussian behavior of the distribution of short-scale velocity increments in isotropic
turbulence. The fine agreement between the theoretical distributions, given in terms of a newly-
defined transcendental function, and the empirical histograms from two independent numerical
datasets highlights the crucial role of the multiple scales of the intermittent energy cascade.

The general character and plasticity of our formalism make it readily adaptable to investigate
the emergence of skewed (non-Gaussian) statistics in other complex systems. For example, the
symmetric version of our theory has been successfully applied to explain the emergence of
turbulence in a photonic random laser, as recently reported in Ref. [37], and so we expect that the
asymmetric model introduced here should also have great applicability. Indeed, the compounding of
an asymmetric conditional Gaussian distribution with a background density built from a hierarchical
stochastic model might be a common feature in contexts as diverse as financial markets [19] and
biological systems [20].
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In conclusion, we emphasize that the formalism presented here not only advances on the
statistical description of turbulent phenomena but can also be applied to investigate the origin of
skewed non-Gaussian distributions in other complex systems.
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APPENDIX A: DERIVATION OF THE BACKGROUND DISTRIBUTION

We start by providing additional details on the exact calculation of the background probability
density, f (εN ) ≡ f (ε�), which incorporates the crucial effect of the fluctuating energy flux (intermit-
tency) on the turbulence properties. As indicated in Eq. (1), in this scenario the marginal distribution
of short-scale velocity increments, PN (δvr ) ≡ P(δvr ), is obtained by compounding f (ε�) with the
Gaussian conditional distribution P(δvr |ε�).

Our starting point is the multiple integral representation of the background density, Eq. (7),

f (εN ) =
∫ ∞

0
...

∫ ∞

0
f (εN |εN−1)

N−1∏
i=1

[ f (εi|εi−1)dεi], (A1)

in which the generalized inverse Gaussian (GIG) distribution,

f (εi|εi−1) = (εi/εi−1)p−1

2εi−1αpKp(ω)
exp

(
− βεi

εi−1
− βα2εi−1

εi

)
, (A2)

arises as the solution of the system of stochastic differential equations, Eq. (5), with κi = √
2γi/β,

p = β(1 − α2), ω = 2αβ, and Kν (x) as the modified Bessel function of second kind. Introducing
the new variable xi = εi/εi−1, we write

f (εi|εi−1) dεi = gi(xi ) dxi, (A3)

where

gi(xi ) = xp−1
i

2αpKp(ω)
exp

(
−βxi − βα2

xi

)
. (A4)

We proceed by observing that

εN = εN

εN−1

εN−1

εN−2
. . .

ε1

ε0
ε0 = ε0

N∏
j=1

x j . (A5)

Next, we recall that the Mellin transform [49] of a function f (x) is defined by

f̃ (s) ≡
∫ ∞

0
εs−1 f (x) dx, (A6)
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which implies the following relation between the Mellin transforms of f (εN ) and gi(x):

f̃ (s) ≡
∫ ∞

0
εs−1

N f (εN ) dεN

=
∫ ∞

0
...

∫ ∞

0
εs−1

N

N∏
i=1

[ f (εi|εi−1)] dεN . . . dε1

= εs−1
0

N∏
i=1

[∫ ∞

0
xs−1

i gi(xi )dxi

]

= εs−1
0

N∏
i=1

g̃i(s).

(A7)

The Mellin transform of Eq. (A4) is [49]

g̃i(s) = αs−1 Ks+p−1(ω)

Kp(ω)
. (A8)

Inserting Eq. (A8) into Eq. (A7), we see that the Mellin transform of f (εN ) is

f̃ (s) = εs−1
0

[
αs−1 Ks+p−1(ω)

Kp(ω)

]N

= (ε0 αN )s−1

[
Ks+p−1(ω)

Kp(ω)

]N

. (A9)

Now, using Eq. (A9) and the formula of the inverse Mellin transform, we can write f (εN ) as the
contour integral

f (εN ) = 1

ε0[αKp(ω)]N

1

2π i

∫
�

(
εN

ε0αN

)−s

[Ks+p−1(ω)]N ds. (A10)

Further progress can be made by introducing a generalization of the Meijer-G function [35],
which we shall refer to as the R-function, in terms of the following Mellin-Barnes integral,

Rm,n
p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣x) = 1

2π i

∫
�

x−sR̃m,n
p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣s)ds, (A11)

where

R̃m,n
p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣s) =
∏m

j=1 Bs
jKbj+s(2Bj )

∏n
k=1 A−s

k K1−ak−s(2Ak )∏p
k=n+1 As

kKak+s(2Ak )
∏q

j=m+1 B−s
j K1−b j−s(2Bj )

, (A12)

and aaa = (a1, . . . , an, an+1, . . . , ap), AAA = (A1, . . . , An, An+1, . . . , Ap), bbb = (b1, . . . ,

bm, bm+1, . . . , bq ), BBB = (B1, . . . , Bm, Bm+1, . . . , Bq ). The contour path � is chosen so that the
conditions for the existence of the inverse Mellin transform are satisfied [49], since R and R̃ are
Mellin pairs (see also below). From Eq. (A12) we see that

RN,0
0,N

( −
bbb,BBB

∣∣∣∣x) = 1

2π i

∫
�

x−s
N∏

j=1

Bs
jKbj+s(2Bj )ds, (A13)

where bbb = (b1, . . . , bN ) and BBB = (B1, . . . , BN ).
The newly defined special function Rm,n

p,q can be viewed as a generalization of the Meijer-G
function Gm,n

p,q , in which the gamma functions �(ν) are essentially replaced by Kν (x) Bessel functions
in the Mellin-Barnes integral above, Eqs. (A12) and (A13). Indeed, by using the limit form
Kν (x) → �(ν)2ν−1x−ν , ν > 0, x → 0, we observe that Rm,n

p,q → aGm,n
p,q , where a is a constant, when

the argument of the Bessel functions tends to zero.
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Finally, by comparing Eq. (A10) with Eq. (A13), we obtain the expression for the background
density, Eq. (8):

f (εN ) = 1

ε0[αKp(ω)]N
RN,0

0,N

( −
(p − 1,ω/2)

∣∣∣∣βN εN

ε0

)
, (A14)

where p ≡ (p, ..., p) and ω ≡ (ω, ..., ω).
The last step consists in compounding Eq. (A14) with the Gaussian conditional distribution

via Eq. (3) to obtain exactly the marginal distribution of short-scale velocity increments, PN (δvr ),
Eq. (9), which is also given in terms of an R-function. To see this, note that the Gaussian distribution
in Eq. (3) can be written as

P(δvr |ε�) = eμ y

√
π

(
2 μ

y

) 1
2

R0,1
1,0

(
1
2 ,

|μ y|
2

−

∣∣∣∣2 ε�

y2

)
, (A15)

with y = δvr + μ〈ε�〉. Thus, the statistical composition of Eqs. (A14) and (A15) is performed using
the integral involving the product of two R-functions (see Eq. (B4)). We thus find

PN (δvr ) = ceμyRN+1,0
0,N+1

( −[(
0, p − 1

2

)
,
[( |μy|

2 , ω
2

)]∣∣∣∣βN y2

2ε0

)
, (A16)

with c = (2/πε0α
N )1/2/[Kp(ω)]N .

It follows from Eq. (A7) that the mean of fN (εN ) is obtained by setting s = 2 in Eq. (A9):

〈εN 〉 = ε0

[
αKp+1(ω)

Kp(ω)

]N

, (A17)

which implies

〈εN 〉
〈εN−1〉 = α

Kp+1(ω)

Kp(ω)
. (A18)

Now, using Kν (z) ≈ �(ν)2ν−1z−ν , for z → 0, ν > 0, it then leads to

〈εN 〉
〈εN−1〉 ≈ 2α�(p + 1)

ω�(p)
= 2αp

ω
= 1 − α2, α → 0. (A19)

Recursive application of this relation yields

〈εN 〉 ≈ (1 − α2)Nε0 ≈ (1 − Nα2)ε0. (A20)

We last remark that the novel transcendent R-function, which emerges from our N-scale
intermittency model, seems to have never been previously considered in the literature.

APPENDIX B: PROPERTIES OF THE R-FUNCTION

The general usefulness of the R-function representation arises from a number of identities that
can be derived from extensions of related identities of the Meijer-G function. Therefore, we give
below a short list of some general properties of the R-function.

(i) Mellin transform:∫ ∞

0
dx xs−1Rm,n

p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣α x

)
= α−sR̃m,n

p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣s). (B1)

(ii) Argument inversion:

Rm,n
p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣x) = Rn,m
q,p

(
111 − bbb,BBB
111 − aaa,AAA

∣∣∣∣1

x

)
. (B2)
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(iii) Power absorption:

xσ Rm,n
p,q

(
aaa,AAA
bbb,BBB

∣∣∣∣x) =
∏q

j=1 Bσ
j∏p

k=1 Aσ
k

Rm,n
p,q

(
σ111 + aaa,AAA
σ111 + bbb,BBB

∣∣∣∣x). (B3)

(iv) Integral involving the product of two R-functions:∫ ∞

0
Rm,n

n,m

(
aaa,AAA
bbb,BBB

∣∣∣∣ξ x

)
Rr,t

t,r

(
ccc,CCC
ddd,DDD

∣∣∣∣η x

)
dx = 1

η

∏r
j=1 Dj∏t
j=1 Cj

Rm+t,n+r
n+r,m+t

(
(aaa,−ddd ), (AAA,DDD)
(bbb,−ccc), (BBB,CCC)

∣∣∣∣ξη
)

. (B4)

APPENDIX C: NUMERICAL PROCEDURE

We now provide further details on the numerical procedure to apply our theoretical formalism to
the analysis of general (i.e., either numerical or experimental) turbulence data.

The first step is to determine the optimal window size M to compute the background series of
variance estimators {ε(k)} built from the dataset as described in Sec. III. This is done simultaneously
to the fitting of the asymmetry parameter μ.

The general idea is to search for the optimal pair (M, μ) that yields the best agreement between
the distribution computed numerically from Eq. (3), using the empirical density f (ε), and the
empirical distribution of velocity increments. In practice, we compute the integral in Eq. (3) as
a Monte Carlo sum,

P(δvr ) =
∫ ∞

0
P(δvr |ε) f (ε)dε ≈ 1

NM

NM∑
i=1

1√
2πεi

exp

{
− [δvr − μ(εi − 〈ε〉)]2

2εi

}
, (C1)

where 〈ε〉 = ∑
i εi/NM and NM = Nv − M is the number of windows of size M. If this step is

successful, then one guarantees that a proper modeling of the background density will lead to a
good theoretical description of the increments distribution, as described below.

We therefore note that the window size M is not a free parameter in the usual sense, but it rather
represents an internal length scale that needs to be obtained from the data. Other methods to estimate
M for Gaussians with zero mean have been proposed, e.g., in Refs. [30–32], but they do not apply
to our case since our conditional Gaussians have nonzero mean, and so it was necessary to find both
M and μ simultaneously.

The next step is to compute the background distribution of the variance series for the optimal
value of M and proceed to the fitting of the theoretical prediction, Eq. (8). Through the Mellin
transform Eq. (A7) with s = 2, yielding Eq. (A17), we can relate the ε0 parameter to the first
statistical moment of the distribution Eq. (A14), which is measured from the variance series, and the
parameters α and β. This means that ε0 is not a free parameter, so that the only two free parameters
in Eq. (A14) are α and β. These two parameters are then fitted using the value of N estimated
according to the description in Sec. III. (For comparison, we also analyze fits for other values of N ;
see main text.)

To perform the fit to Eq. (A14), we must calculate the R-function. We note that for N from 1 up
to 6 the multiple integral Eq. (A1) may be the most efficient way. As mentioned in Sec. II, the N = 1
case is a generalized hyperbolic distribution. Interestingly, the case N = 2 also allows for an exact
integration, and, in fact, for every two new hierarchy levels—and hence two additional integrals in
Eq. (A1)—one integral can be executed exactly, reducing at least by half the number of integrals to
be computed numerically.

It is also possible to compute numerically the complex integral Eq. (A13). In this sense, a striking
fact is that the aforementioned generalization of the Meijer-G function through the substitution of
the gamma functions �(ν) by the Bessel functions Kν (x) in the Mellin-Barnes integral, Eqs. (A11)
and (A12), greatly simplifies the structure of poles of the integrand. Regarding the index ν, the
Bessel function for a fixed x > 0 has a pole only at infinity, and decays to zero for ν = c ± i∞.
Thus, any vertical contour in the complex plane satisfies the conditions of the Mellin inversion
theorem and is suitable for the computation. The function grows very rapidly away from ν = 0,
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developing strong oscillations in the real and imaginary parts, which led us to choose a contour that
passes through ν = 0 in the real line to attain fast numerical convergence. For a purely imaginary
ν the function Kν (x) is real for x > 0, so that for a single K-function the integral in Eq. (A11) is
real. For a product of K-functions with different indexes, which happens for any N > 1, the contour
should pass as close as possible to the zeros of these indexes to provide convergence and stability.

Last, with all parameters in hand, we plot the model prediction for the distribution of velocity
increments, which depends on another R-function, as given by Eq. (9), and compare with the one
from the original empirical turbulence data.
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