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Statistical properties of an incompressible passive vector convected by homogeneous
isotropic turbulence are studied by comparing to the velocity and passive scalar, in order
to explore the physics behind the differences and similarities in the statistical properties
between the velocity vector and passive scalar. The passive vector obeys an equation sim-
ilar to the Navier-Stokes equation, with a pseudopressure to ensure the incompressibility
of the vector. The von Kármán–Howarth equation for the passive vector is derived and the
average of the velocity increment times the square of the passive vector increments obeys
a 4/3 law in the inertial-convective range. We carried out direct numerical simulations
(DNSs) of up to 10243 grid points. The spectra of the kinetic and pseudokinetic energies
and the scalar variance obey a k−5/3 power law. The Kolmogorov constants are CK = 1.57
for the velocity and Cw

K = 0.99 for the passive vector, and the Obukhov-Corrsin constant
of the passive scalar is COC = 0.67. The spectral bump of the compensated spectrum of the
passive vector is slightly larger than that of the velocity, but smaller than the passive scalar.
It is found that the behavior of the passive vector fluctuations at large scales is close to that
of the velocity due to the nonlocal effects of the pseudo-pressure, while the small-scale
fluctuations resemble those of the passive scalar. The nonlinearity of the convective term
is key to the differences between the velocity and passive fields at small scales.
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I. INTRODUCTION

In addition to turbulence itself, problems of scalar mixing by turbulent flow are one of the central
issues in the fundamental physics of turbulence [1]. Scalars that do not react to a fluid are called
passive scalars, and their behavior is considered to be a canonical problem in turbulence research [2].
The Kolmogorov theory of turbulence [3] has been used to derive the Obukhov-Corrsin spectrum of
the scalar variance [4,5] and the Yaglom 4/3 law for the cubic moments of the velocity increment
times the squared scalar increment [6]. The scalar spectra of the various Schmidt numbers have
been determined in the inertial-diffusive and viscous-convective ranges at low and high Schmidt
numbers, respectively [7,8].

Although the statistics of the scalar at low order moments are similar to those of the velocity,
it is widely recognized that in the inertial-convective range the scaling exponents of the moments
of the passive scalar increment at high order are smaller than those of the velocity and tend to
saturate, meaning that the passive scalar is more intermittent than the velocity field [9–12], and
that the spatial structure of large scalar gradients is sheet-like, in contrast to the vortex tubes of the
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velocity [11,13–15]. Kraichnan proposed a model for the passive scalar known as the Kraichnan
model [16,17]. In the model, the velocity field is assumed to follow a Gaussian distribution with a
delta correlation in time (Kraichnan velocity ensemble [18]). The most novel aspect of the model is
that the scaling exponents of the moments of the scalar increments can be derived analytically. Since
then, there have been extensive studies regarding the scaling exponents. The scaling exponents of
the moments in the model are determined by the zero mode of the linear operator for the scalar
moments and are thus universal [19,20].

Celani et al. [21] studied the passive scalar and active scalar in two-dimensional convective
turbulence and argued that the statistical nature of the velocity increments is close to Gaussian, self
similar, and universal with respect to the forcing mechanisms in the inverse cascading range, and
also found that the statistical properties of the active (temperature) and passive scalars are the same
and thus universal with respect to the scalar injection mechanisms [9,21–24]. The above facts seem
to suggest that a mechanism analogous to the zero mode of some operator could be applied to the the
passive scalar fluctuations convected by the Navier-Stokes turbulent flow in the forward cascading
range, and thus the passive scalar statistics is universal. However, the turbulent velocity field in three
dimensions obeying the Navier-Stokes equation differs significantly from the Kraichnan velocity
ensemble, being neither Gaussian nor white noise, and the energy is forward cascading. Indeed,
Gotoh and Watanabe [25] studied the intermittency of two passive scalars in three dimensions that
are convected by the same turbulent velocity field of the Navier-Stokes equation, but are excited
by different mechanisms, one being the uniform mean gradient and the other being Gaussian white
random injection. Remarkably, it was found that the scaling exponents of the moments of the scalar
increments differ at large scales, and are thus not universal [25].

The above observations and various data from experiments and numerical simulations suggest
that the passive scalar fluctuations are not as universal as in the velocity, and that our understanding
of the universality of the passive scalar fluctuations is still not enough. Then it is natural to explore
the physics which generates the differences in the statistical properties between the velocity and
the passive scalar, instead of studying the intrinsic behavior of the passive scalar fluctuations,
such as scaling exponents, probability distribution functions (PDFs) and so on. This is our starting
motivation.

One may think that the differences arise from the existence of the pressure term. The pressure
prevents a fluid blob from being indefinitely compressed in the absence of viscosity, while there
is no restriction on the passive scalar, and the scalar gradient can grow indefinitely until it
balances the diffusive action. It is, therefore, reasonable to consider that the pressure suppresses
the intermittency; as Kraichnan pointed out, pressure is an intermittency killer [26,27]. However,
we do not know the extent to which the pressure suppresses the buildup of the intermittency as the
scale decreases. There is another point to consider: whether the equation is linear or nonlinear. Since
the pressure and nonlinearity are complexly interwoven through the nonlocal kernel, it is not certain
whether or not two factors could be separately examined.

One way to get insight into the problem is to introduce an artificial vector field, i.e., an
incompressible passive vector convected by turbulence, say w, that has an intermediate property
between the velocity and the passive scalar, and to investigate its properties by comparing them to
those of the velocity and passive scalar. Our hope is that the introduction of w may make comparison
easier and provide hints toward obtaining deeper understanding of the roles of incompressibility and
pressure in turbulent flow, and their differences and similarities.

This is not the first time that passive vectors have been investigated. Yoshida and Kaneda [28]
considered an incompressible passive vector given by

(
∂

∂t
+ u · ∇

)
w = −γ1∇q + γ2w · ∇u + α∇2u, (1)

∇ · w = 0, (2)
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where γ1 and γ2 are nondimensional constants. When (γ1, γ2) = (0, 1), the equation describes the
evolution of the passive magnetic field, in which case the magnetic field w is excited through
the second term of the right-hand side of Eq. (1). The equation for (γ1, γ2) = (1,−1) becomes
the linearized equation for small disturbances to the basic flow u, and the disturbance w is excited
by the basic flow. The equation for (γ1, γ2) = (1, 0) is of peculiar importance in the present study
because of physical properties described later.

Yoshida and Kaneda [28] studied the anomalous scaling of the anisotropy of second-order
moments of the passive vector for the Kraichnan velocity ensemble in two dimensions. They showed
analytically that the exponent of the isotropic sector is independent of the existence of a pressure-like
term, while the anisotropic sector depends on whether the pressure-like term is present. Adzhemyan
et al. [18] studied the case of (γ1, γ2) = (1, γ2) for the Kraichnan velocity ensemble in d dimensions
through renormalization group (RG) analysis. When γ2 = 0 the normal scaling is present. Ohki-
tani [29] used direct numerical simulation (DNS) to investigate the passive magnetic vector and
investigated the effects of the Biot-Savart law and the reduction of the nonlinearity. They found that
the magnetohydrodynamics (MHD) type passive vector tends to be more stretched than the velocity
over short timescales. Benzi, Biferale, and Toschi [30] studied the statistical properties of the fluxes
of solenoidal passive vectors and found that they are the same as those of the turbulent velocity. They
also investigated scaling exponents by integrating the shell model of the passive scalar, and found
that they are equal to those of the velocity shell model. Ching, Cohen, Gilbert, and Procaccia [31]
carried out simulations with shell models for passive vectors and active vectors, and found that the
scaling exponents of the structure functions are dominated by the zero modes, regardless of whether
or not they are passive. Antonov and his coworkers studied anomalous scaling of solenoidal passive
vectors convected by Gaussian random velocity with finite correlations in time using the renormal-
ization group theory [32–34]. They investigated the universality of the exponents, their dependence
on or independence of forcing, and effects of large-scale anisotropy, compressibility, and pressure.

The equation for (γ1, γ2) = (1, 0) has features in common with the Navier-Stokes equation,
such as

(1) three components in w,
(2) the convection by the velocity u,
(3) the pseudopressure q and incompressibility of w,
(4) the pseudoviscosity α,
(5) when α is absent, the total pseudoenergy (1/2)

∫
w2dx is conserved;

the difference is the fact that the convective term is linear.
When compared to the passive scalar, the common properties of the equation of w are
(1) the linearity of the convective term,
(2) the molecular dissipation.
The difference is the fact that three components of w are constrained through the incompressibil-

ity while the passive scaler is free from constraints.
Since our purpose is to explore the physics behind the differences and similarities between the

velocity and passive scalar, the above properties of the passive vector w with (γ1, γ2) = (1, 0)
provide a convenient basis for comparing the passive vector to the velocity and passive scalar.
Although there are some studies about this type of passive vector, comprehensive data ares not
available. In order to obtain an overall picture of the incompressible passive vector, it is important
to obtain detailed data from low to high order statistics. In the present paper, we compare the
fundamental data of the second and third order statistics of the velocity, passive vector, and passive
scalar, and examine them from the viewpoints of similarity and difference. The high order statistics
and intermittency of three fields will be examined in a separate paper [35].

The paper is organized as follows. The governing equations are described in Sec. II. The theory
of passive vector fluctuations is described under the assumptions of statistical homogeneity and
isotropy in Sec. III. The settings and parameters used in the DNSs of the passive scalar are defined
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in Sec. IV. The results of the DNS are presented in Sec. V and discussed in Sec. VI. We summarize
the paper in Sec. VII.

II. GOVERNING EQUATIONS

We consider a passive scalar θ (x, t ) and a solenoidal passive vector w(x, t ), which are convected
by the turbulent velocity u(x, t ) of an incompressible fluid with unit density under periodic boundary
conditions. These are assumed to be governed by the following equations:(

∂

∂t
+ u · ∇

)
u = −∇p + ν∇2u, (3)

∇ · u = 0, (4)(
∂

∂t
+ u · ∇

)
w = −∇q + α∇2w, (5)

∇ · w = 0, (6)(
∂

∂t
+ u · ∇

)
θ = κ∇2θ, (7)

where p(x, t ) is the pressure, q(x, t ) is called the pseudopressure in this paper, ν denotes the kinetic
viscosity, α the pseudoviscosity of w, and κ the diffusive coefficient for θ .

Under the incompressibility and periodic boundary conditions, the convective pressure and
pseudopressure terms conserve the kinetic energy:∫

ui∂ j (uiu j + pδi j ) dV =
∫ (

1

2
|u|2 + p

)
u jn jdS = 0, (8)∫

wi∂ j (wiu j + qδi j ) dV =
∫ (

1

2
|w|2 + q

)
u jn jdS = 0, (9)∫

θ∂ j (θu j ) dV =
∫

1

2
θ2u jn jdS = 0, (10)

where n is the unit normal vector on the surface and we assume the summation convention for
repeated indices. Therefore, in the absence of external forces and sources, we obtain the following
equations:

d

dt

∫
1

2
u2dV = − ν

∫
(∇u)2dV = −εtotal (11)

d

dt

∫
1

2
w2dV = − α

∫
(∇w)2dV = −εw

total, (12)

d

dt

∫
1

2
θ2dV = − κ

∫
(∇θ )2dV = −χtotal, (13)

where εtotal, εw
total, and χtotal denote the dissipation rates of the total kinetic energy, total pseudokinetic

energy, and total passive scalar variance per unit mass, respectively.

III. THEORY

We first consider the exact and fundamental statistical properties derived from the above
equations. Under the homogeneous and isotropic assumptions, we define the following correlation
functions:

u2
0 f u(r) = 〈uL(x)uL(x + r)〉, (14)
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w2
0 f w(r) = 〈wL(x)wL(x + r)〉, (15)

θ2
0 f θ (r) = 〈θ (x)θ (x + r)〉, (16)

u3
0huuu(r) = 〈uL(x)uL(x)uL(x + r)〉, (17)

u0w
2
0huww(r) = 〈uL(x)wL(x)wL(x + r)〉, (18)

u0w
2
0quww(r) = 〈uL(x)wT (x)wT (x + r)〉, (19)

u0θ
2
0 huθθ (r) = 〈uL(x)θ (x)θ (x + r)〉, (20)

where 〈 〉 denotes the ensemble average, u0, w0, and θ0 are the root-mean-square values of u, w, and
θ , respectively, uL and wL are the longitudinal components of u and w along the separation vector
r, respectively, and wT denotes the transverse component of w. Then, by using standard algebra we
can obtain the von Kármán–Howarth equations

∂

∂t
u2

0 f u(r) =
(

∂

∂r
+ 4

r

)
u3

0huuu(r) + 2ν

(
∂2

∂r2
+ 4

r

∂

∂r

)
u2

0 f u(r) (21)

for the velocity,

∂

∂t
w2

0 f w(r) = 2

r
u0w

2
0[huww(r) + 2quww(r)] + 2α

(
∂2

∂r2
+ 4

r

∂

∂r

)
w2

0 f w(r) (22)

for the passive vector, and

∂

∂t
θ2

0 f θ (r) = 2u0θ
2
0

(
∂

∂r
+ 2

r

)
huθθ (r) + 2κ

(
∂2

∂r2
+ 2

r

∂

∂r

)
θ2

0 f θ (r), (23)

for the passive scalar.
Equations (21), (22), and (23) can be rewritten in terms of the increments of the velocity, passive

vector, and passive scalar, as follows:

δuL(x, r) = uL(x + r) − uL(x), (24)

δθ (x, r) = θ (x + r) − θ (x), (25)

δw(x, r) = w(x + r) − w(x), (26)

When the Reynolds and Péclet numbers are large, we expect there to be inertial and inertial
convective ranges in which neither external excitations at large scales nor molecular dissipation
are relevant to the dynamics. Thus, we can obtain Kolmogorov’s 4/5 law

− 4
5 ε̄r = 〈(δuL )3〉 (27)

for the velocity, Yaglom’s 4/3 law

− 4
3 χ̄r = 〈(δuL )(δθ )2〉 (28)

for the passive scalar, and a new 4/3 law

− 4
3 ε̄wr = 〈(δuL )|δw|2〉 (29)

for the passive vector, where ε, εw, and χ are defined as

ε = ν〈(∇u)2〉, εw = α〈(∇w)2〉, χ = κ〈(∇θ )2〉. (30)

It should be noted that when Scα ≡ ν/α is large the 4/3 law for the passive vector Eq. (29) holds
also in the viscous-convective range [1].
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A. Spectral analysis and Kolmogorov-Obukhov-Corrsin scaling

In a periodic cubic box with volume V = L3
Box, any fields A(x, t ) can be expanded in terms of the

Fourier series, as follows:

A(x, t ) =
∑
k

A(k, t )eik·x, (31)

A(k, t ) = 1

V

∫
A(x, t )e−ik·xdx ≡ F[A(x, t )], (32)

where k are the wave vectors of integers. The time-evolution equations of ui(k, t ), wi(k, t ), θ (k, t )
in the wave vector space are

(∂t + 2νk2)ui(k, t ) = − Pi j (k)F[(u · ∇ )u] j = Nu
i (k, t ), (33)

(∂t + 2αk2)wi(k, t ) = − Pi j (k)F[(u · ∇ )w] j = Nw
i (k, t ), (34)

(∂t + 2κk2)θ (k, t ) = − F[(u · ∇ )θ ] = Nθ (k, t ), (35)

respectively, where Pi j (k) = δi j − kik j/k2 is the projection operator. Hereafter, for the sake of
simplicity of expression, the box size Lbox is assumed to be infinitely large, so that the sum over the
wave vector is understood to be equal to the integral over the wave vector. Under the assumptions of
statistical homogeneity and isotropy, the isotropic spectra of the kinetic energy of the fluid per unit
mass, the pseudokinetic energy of the passive vector per unit mass, and the variance of the passive
scalar are defined by

Eu(t ) = 1

2
〈u2(x, t )〉 = 3

2
u2

0 =
∫ ∞

0
Eu(k, t )dk, (36)

Ew(t ) = 1

2
〈w2(x, t )〉 = 3

2
w2

0 =
∫ ∞

0
Ew(k, t )dk, (37)

Eθ (t ) = 1

2
〈θ2(x, t )〉 = 1

2
θ2

0 =
∫ ∞

0
Eθ (k, t )dk, (38)

respectively. Then the evolution equations for the spectra are written

(∂t + 2νAk2)EA(k) =TA(k), (39)

where A represents u, w, and θ , νu denotes the kinematic viscosity ν, νw represents α, and νθ

represents κ; and

Tu(k) =
∫

|k|=k
R〈[u∗(k) · Nu(k)]〉 d�(k), (40)

Tw(k) =
∫

|k|=k
R〈[w∗(k) · Nw(k)]〉 d�(k), (41)

Tθ (k) =
∫

|k|=k
R〈[θ∗(k)Nθ (k)]〉 d�(k), (42)

where R denotes the real part and d�(k) is the solid angle. The functions TA(k) are called the
transfer functions, arising from the convective term of the original equation under the assumption
of incompressibility. From Eqs. (8) to (10), it follows that∫ ∞

0
TA(k)dk = 0. (43)
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Then, the transfer fluxes across the wave number k are defined by

�A(k) =
∫ ∞

k
TA(k′)dk′. (44)

The mean rates of dissipation of the kinetic energy, pseudokinetic energy and variance per unit mass
are defined by

ε = ν〈(∇u)2〉 = ν〈ω2〉 = 2ν

∫ ∞

0
k2Eu(k)dk, (45)

εw = α〈(∇w)2〉 = α〈(∇ × w)2〉 = 2α

∫ ∞

0
k2Ew(k)dk, (46)

χ = κ〈(∇θ )2〉 = 2κ

∫ ∞

0
k2Eθ (k)dk. (47)

As the pseudokinetic energy of the passive scalar is conserved by the convective term and the 4/3
law for Eq.(29) holds, it is reasonable to expect that the pseudokinetic energy is transferred towards
high wave numbers by the turbulent flow through the inertial (convective) range, and dissipated
(smeared) by the pseudoviscosity. In this case, the dimensional argument yields the Kolmogorov
microscales in space, time and velocity as

τ = (ν/ε̄)1/2, η = (ν3/ε̄)1/4, uη = (νε̄)1/4, (48)

τw = Sc−1
α τη, ηw = Sc−1

α η, wη = ε̄1/2
w τ 1/2

w , (49)

τθ = Sc−1τη, ηθ = Sc−1η, θη = χ̄1/2τ
1/2
θ , (50)

respectively, where Scα = ν/α and Sc = ν/κ . In this study, we consider only the case such that
Scα = Sc = 1, so that η = ηw = ηθ .

In the inertial-convective range (kd 	 k 	 kL), where kd = 1/η and kL is a wave number
corresponding to the integral scale, Kolmogorov’s arguments yield

Eu(k) = CK ε̄2/3k−5/3, (51)

Ew(k) = Cw
K ε̄−1/3ε̄wk−5/3, (52)

Eθ (k) = COCε̄−1/3χ̄k−5/3, (53)

where CK and COC are the Kolmogorov and Obukhov-Corrsin constants and Cw
K is a nondimensional

constant.

B. Equations of vorticity, pseudo vorticity and scalar gradient

The vorticity, pseudovorticity and scalar gradient are defined as

ω = ∇ × u, ζ = ∇ × w, g = ∇θ, (54)

respectively. Then the evolution equations of ω, ζ, and g can be derived as

∂

∂t
ωi + (u · ∇ )ωi = (ω · ∇ )ui + ν∇2ωi, (55)

∂

∂t
ζi + (u · ∇ )ζi = (ζ · ∇ )ui + εi jk (∂ jwn)(∂kun) + α∇2ζi, (56)

∂

∂t
gi + (u · ∇ )gi = −(g · ∇ )ui + κ∇2gi, (57)
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where εi jk is the alternating unit tensor. The first terms of the right-hand side of the above equations
represent the amplification of the gradient fields due to the stretching action of the turbulence.
The second term of the right-hand side of Eq. (56) includes the effect of the rotation of the
pseudovorticity with respect to the eigenvector of the rate of strain tensor of the turbulence. 〈ω2〉 is
the enstrophy, and we call 〈ζ2〉 the pseudoenstrophy. We define the normalized skewnesses as [36]

Su
K =

〈(
∂u1
∂x1

)3
〉

〈(
∂u1
∂x1

)2
〉3/2 , (58)

Sw
K =

〈(
∂u1
∂x1

)[(
∂w1
∂x1

)2
+

(
∂w2
∂x1

)2
+

(
∂w3
∂x1

)2
]〉

〈(
∂u1
∂x1

)2
〉1/2〈(

∂w1
∂x1

)2
+

(
∂w2
∂x1

)2
+

(
∂w3
∂x1

)2
〉 , (59)

Sθ
K =

〈(
∂u1
∂x1

)(
∂θ
∂x1

)2
〉

〈(
∂u1
∂x1

)2
〉1/2〈(

∂θ
∂x1

)2
〉 . (60)

IV. NUMERICAL SIMULATIONS

We carried out DNSs of Eqs. (3), (5), and (7) using the pseudospectral method and fourth-order
Runge-Kutta-Gill method [37]. To avoid aliasing errors, we selected a cutoff wave number of
kc = 2

√
2/3kmax. To achieve a statistically steady state, we added an external random forces

f u(x, t ), f w(x, t ) and a source f θ (x, t ), which are mutually independent and act only at large scales
to the right-hand side of the relevant equations. These are Gaussian white noise variables with means
of zero and variances defined by

〈
f u
i (k, t ) f u

j (−k, s)
〉 = 1

2
Pi j (k)

Fu(k)

2πk2
δ(t − s), (61)

〈
f w
i (k, t ) f w

j (−k, s)
〉 = 1

2
Pi j (k)

Fw(k)

2πk2
δ(t − s), (62)

〈 f θ (k, t ) f θ (−k, s)〉 = Fθ (k)

2πk2
δ(t − s), (63)

respectively. The spectra are set to

FA(k) =
{

εA
in

khigh−klow
for klow � k � khigh,

0 otherwise.
(64)

The injection rate for εθ
in is selected to be equal to one component of u and w, as follows:

εu,w
in =

∫ ∞

0
Fu,w(k) dk, (65)

εθ
in =

∫ ∞

0
Fθ (k) dk = 1

3
εu,w

in . (66)
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TABLE I. DNS parameters and time-averaged turbulent statistics.

Run A Run B Run C

2kmax 512 512 1024
[klow, khigh] [2, 3] [2, 3] [2, 3]
εu

in 0.45 2.7 0.3
εw

in 0.45 2.7 0.3
εθ

in 0.15 0.9 0.1
�T 5 × 10−4 2 × 10−4 10−4

ν 0.001 0.001 2 × 10−4

NT �T/T E 24.3 6.53 2.75
Rλ 144.8 196.2 315.0
kmaxη 1.72 1.12 1.16
Ēu 1.19 3.89 0.99
Ēw 0.75 2.74 0.62
Ēθ 0.19 0.72 0.16
ε̄ 0.46 2.64 0.33
ε̄w 0.44 2.85 0.31
χ̄ 0.14 1.00 0.10
Lint

u 0.73 0.74 0.72
Lint

w 0.75 0.75 0.75
Lint

θ 0.50 0.48 0.51
λu 0.16 0.12 7.7 × 10−2

λw 0.13 9.8 × 10−2 6.3 × 10−2

λθ 0.09 6.6 × 10−2 4.3 × 10−2

TE 0.82 0.45 0.86
Su

K −0.54 −0.51 −0.54
Sw

K −0.47 −0.40 −0.42
Sθ

K −0.50 −0.44 −0.45

The Taylor microscale, the integral scale, and the Taylor microscale Reynolds number Rλ are defined
as

λ2
u =

〈
u2

1

〉
〈(∂u1/∂x1)2〉 = 15u2

0

(ν

ε̄

)
, (67)

Lint
u =3π

4

∫ ∞
0 k−1Eu(k) dk∫ ∞

0 Eu(k)dk
, (68)

Rλ = u0λ/ν, (69)

respectively, and the corresponding micro- and integral scales are defined similarly.
The large eddy turnover time is defined as TE = Lint

u /u0.

The simulation code was parallelized with MPI and OPENMP, and the computations were mostly
carried out on the Plasma Simulator at the National Institute of Fusion Science (NIFS), Toki, Japan.
Three runs were carried out. The largest number of grid points is 10243, and various statistical
values from the runs are summarized in Table I. As the results for Runs A and B are qualitatively
similar to those of Run C, we focus on the results of Run C in the following discussion.

V. RESULTS

A. Time histories of simulations

The time variation of the dissipation rates and the skewness for Run C after the transient time
are shown in Figs. 1 and 2. They vary slowly over time, which confirms that the statistical steady

064601-9



YANG, GOTOH, MIURA, AND WATANABE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5
t/TE

εu εw χ

FIG. 1. Time evolution of dissipation rates of the kinetic energy, pseudokinetic energy, and scalar variance.

state was achieved. In the steady state, the external input rates of the (pseudo)kinetic energy and
scalar variance balance the dissipations, ε̄A = εA

in. It then follows from the statistical isotropy and
Eqs. (45), (46), and (47) that, in the context of the present problem with Scα = 1,

ε̄

ν
= 〈ω2〉 = 〈ζ2〉 = 3〈g2〉 = εA

in, (70)

which is approximately satisfied by the computation. All of the statistical quantities were calculated
as time averages over the period of the simulation for approximately three large eddy turnover
times.

B. Energy spectra and fluxes

Using the Kolmogorov variables, we normalize the spectra as

E∗
u (kη) = ε̄−1/4ν−5/4Eu(k), (71)

E∗
w(kη) = ε̄−1

w ε̄3/4α−2ν3/4Ew(k), (72)

E∗
θ (kη) = χ−1ε̄3/4κ−2ν3/4Eθ (k). (73)
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FIG. 2. Time evolution of the skewnesses of the spatial derivatives.
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FIG. 3. Normalized energy spectra over three runs. The straight line indicates a gradient of −5/3. For ease
of visibility, the curves of E∗

u (k) and E∗
w (k) are shifted by 100 and 10, respectively.

The normalized spectra are plotted in Fig. 3. For ease of visibility, the curves of E∗
u (k) and E∗

w(k) are
shifted by 100 and 10, respectively. All curves, including E∗

w(k), collapse excellently onto a single
curve for kη ∈ [0.01, 1], which indicates that an approximate −5/3 power law holds, as expected
based on Kolmogorov-Obukhov-Corrsin theory. For kη > 0.3, E∗

w and E∗
θ decay slower than E∗

u ,
meaning that Ew and Eθ are excited more strongly than Eu at large wave numbers in the dissipative
range.

To compute the constants CK , Cw
K , and COC, the compensated spectra for Run C,

�u(kη) = ε̄−2/3k5/3Eu(k), (74)

�w(kη) = ε̄−1
w ε̄1/3k5/3Ew(k), (75)

�θ (kη) = χ̄−1ε̄1/3k5/3Eθ (k), (76)

are plotted in Fig. 4. We obtained the mean values at wave numbers kη ∈ [0.025, 0.035] in the
valley [38] as

CK = 1.57, Cw
K = 0.99, COC = 0.67. (77)
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FIG. 4. Compensated energy spectra for Run C.
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FIG. 5. Normalized energy flux spectra for Run C. The red line is for �u/ε̄, blue is for �w/ε̄w , and green
is for �θ/χ̄ .

The Kolmogorov and Obukhov-Corrsin constants, CK = 1.57 and COC = 0.67, respectively, are
consistent with those quoted in the literature [2,11,25,37–39]. In agreement with previous studies,
we observed that the spectral bump of the passive scalar was strongest and attains higher wave
numbers than the kinetic energy. The compensated spectrum of Ew(k) shows a similar trend, but is
between those of the kinetic energy and the passive scalar. We examine the spectral bump in more
detail below.

The normalized spectra of the energy transfer fluxes are plotted in Fig. 5. All of the curves are
close to unity for 0.005 < kη < 0.03, but the curve of �θ decays more slowly than �u, followed by
�w in the far dissipation range. These results are consistent with strong excitations of Ew and Eθ at
high wave numbers.

C. Structure functions: 4/5 Law and 4/3 Laws

The normalized structure functions S∗
u (r), S∗

w(r), and S∗
θ (r) are defined as

S∗
u (r) = − 〈(δuL )3〉

4
5 ε̄r

, (78)

S∗
w(r) = − 〈(δuL )|δw|2〉

4
3 ε̄wr

, (79)

S∗
θ (r) = − 〈(δuL )(δθ )2〉

4
3 χ̄r

, (80)

and shown in Fig. 6. The plateaus of the three curves approach unity from below in the range
r ∼ 100η, indicating that the Kolmogorov 4/5 and 4/3 laws hold for S∗

u and S∗
w, and the Yaglom

4/3 law holds for S∗
θ . The fact that all of the S∗

A curves are smaller than unity is consistent with
previous studies [1,2]. Careful examination reveals that the plateau of S∗

θ appears roughly in the
range of 20 < rη < 80 and that of S∗

u occurs at larger scales, 60 < rη < 200, while the plateau of
S∗

w is 40 < rη < 200, which is wider than that of the two curves. Moreover, the S∗
w curve collapses

to S∗
θ in the dissipation range r/η < 10. These trends are consistent with the high excitations of

Ew(k) and Eθ (k) shown in Fig. 4, and the collapse of �w(k) and �θ (k) at high wave numbers in
Fig. 5.
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FIG. 6. Normalized third-order structure functions of Run C.

D. Spectra of pressure and pseudopressure

The spectra of the pressure and pseudopressure are defined as

〈p2〉 =
∫ ∞

0
Ep(k)dk, 〈q2〉 =

∫ ∞

0
Eq(k)dk, (81)

and normalized in terms of the Kolmogorov microscales as

E∗
p (kη) = u−4

η η−1Ep(k), E∗
q (kη) = (uηwη )−2η−1

w Eq(k), (82)

respectively. These are shown in Fig. 7 for Run C. We observed that the spectrum Eq(k) is smaller
than that of Ep(k) at all wave numbers, but the overall functional forms are very similar. We
examined the two spectra in further detail by normalizing them as Ep(kη)/Ep(k∗η) (red) and
Eq(kη)/Eq(k∗η) (blue), where k∗η = 0.03 is selected such that the nearly straight portions collapse
well. The resulting curves are plotted in Fig. 8. We can clearly see that the two shifted spectra
collapsed excellently for kη > 0.02.

To investigate these spectra in more detail, we plotted the ratio Ep(k)/Eq(k) in the inset of
Fig. 8. The ratio increases quickly, from 2 to 4, as the wave number increases, then remains at
approximately 4.5 in the power law range, which means that both spectra Ep(k) and Eq(k) obey
the same power law as k−β with an exponent of β ≈ 2, which is slightly shallower than the
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FIG. 7. Spectra of pressure and pseudopressure for Run C.
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FIG. 8. Comparison of shifted spectra Ep(kη)/Ep(k∗η) (red) and Eq(kη)/Eq(k∗η) (blue) of the pressure
and pseudopressure for Run C, respectively. k∗η = 30 is chosen such that the portions that are almost straight
collapse well. The inset shows the ratio Ep(kη)/Eq(kη) for Run C.

k−7/3 Kolmogorov scaling. This is due to the relatively lower Reynolds numbers, which have been
studied recently using DNSs [40,41]. In the case of wave numbers in the dissipation range, the ratio
increases then quickly falls off.

The two-point correlation functions of the Laplacians of the pressure and pseudopressure are
written as

〈�p(x + r)�p(x)〉 = 〈Suu(x + r)Suu(x)〉, (83)

〈�q(x + r)�q(x)〉 = 〈Suw(x + r)Suw(x)〉, (84)

where

Suu(x) = −∇u(x) : ∇u(x), (85)

Suw(x) = −∇u(x) : ∇w(x). (86)

The Fourier transform of Eqs. (83) and (84) leads to

Ep(k) = k−44πk2〈|Suu(k)|2〉, (87)

Eq(k) = k−44πk2〈|Suw(k)|2〉, (88)

under the assumption of statistical isotropy. As Eq(k) < Ep(k) for all wave numbers, as shown in
Fig. 7, we have

〈|Suw(k)|2〉 < 〈|Suu(k)|2〉. (89)

Using Parseval’s equality, we obtain

〈[Suw(x)]2〉 =
∫

〈|Suw(k)|2〉 dk <

∫
〈|Suu(k)|2〉 dk = 〈[Suu(x)]2〉. (90)

It follows from the Schwartz inequality that the two-point correlation functions satisfy

〈Suu(x + r)Suu(x)〉 � 〈[Suu(x)]2〉, (91)

〈Suw(x + r)Suw(x)〉 � 〈[Suw(x)]2〉. (92)
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The source terms Eqs. (83) and (84) are written as

[Suu]i j = 1
4 (eik + aik )(ek j + ak j ), (93)

[Suw]i j = 1
4 (eik + aik )

(
ew

k j + aw
k j

)
, (94)

where e and a are the symmetric and antisymmetric parts of the gradient tensor. We consider a
small domain in which both a and aw are zero for simplicity. For Suu, the alignment between
the eigenvectors of e and e is perfect and unchanged, but in the case of Suw the eigenvectors of
e and ew are imperfectly aligned, and the alignment depends on the position and time due to the
misalignment effects included in the second term of the right-hand side of Eq. (56). This means
that the geometrical coherency of ∇u : ∇w is weaker than that of ∇u : ∇u. Furthermore, as we will
see in the next subsection, the pseudovorticity production is weaker than the vorticity production.
Hence, we expect the amplitudes of ∇w to be smaller than those of ∇u. Therefore it is physically
reasonable to observe that 〈[Suw(x)]2〉 < 〈[Suu(x)]2〉.

E. Spectra of production of gradients of velocity, passive vector, and scalar

The vorticity is enhanced by the stretching action due to the straining motion, as shown by
Eq. (55). However, the pseudovorticity is excited by the stretching action and the second term of the
right-hand side of Eq. (56). It is interesting to observe the wave number ranges that contribute to the
production of vorticity, pseudovorticity, and the scalar gradient. For this purpose, we investigated
the spectra

σ ∗
ω (k) = 1

〈ω2〉3/2
η

∫
|k|=k

〈ω(−k) · F[S : ω]〉 d�(k), (95)

σ ∗
ζ (k) = σ ∗

ζ ,str (k) + σ ∗
ζ ,crs(k), (96)

σ ∗
ζ ,str (k) = 1

〈ζ2〉〈ω2〉1/2
η

∫
|k|=k

〈ζ(−k) · F[S : ζ]〉 d�(k), (97)

σ ∗
ζ ,crs(k) = 1

〈ζ2〉〈ω2〉1/2
η

∫
|k|=k

〈ζ(−k) · F[(∇u)T × (∇w)T ]〉 d�(k), (98)

σ ∗
g (k) = − 1

〈g2〉〈ω2〉1/2
η

∫
|k|=k

〈g(−k) · F[S : g]〉 d�(k), (99)

and plotted them in Fig. 9. Note that, as the variances in front of the integrals satisfy Eq. (70), the
curves of σ ∗

ω and σ ∗
ζ can be directly compared in terms of actual amplitudes. If we multiplied the

curve of σ ∗
g by 1/3, we could compare it with the other two curves. The terms σζ,str and σζ,crs are

contributions arising from the first and second terms of the right-hand side of Eq. (56), respectively.
σζ,str is positive, meaning that the production of pseudovorticity is due to the stretching effects of
the turbulence, while σζ,crs is negative and diminishes the production by destroying the geometrical
coherency between ∇u and ∇w. Therefore, the total production of the pseudovorticity is positive,
but less intensive than the vorticity production, which in turn leads to the fact that 〈[Suw(x)]2〉 <

〈[Suu(x)]2〉 as seen in Eq. (90). As indicated in Eq. (70), it is the case that ν〈ω2〉 = ε̄ = ε̄w = α〈ζ2〉
and σζ,str < σω,str . At first glance, these two facts appear contradictory. The resolution of this
contradiction can be obtained from the spectra. As Ew(k) decays more slowly than Eu(k) in the
dissipation range, the longer tail of Ew(k) leads to the same dissipation rate as ε̄, due to Eqs. (45)
and (46).

σ ∗
ω , σ ∗

ζ , and σ ∗
g are positive at all wave numbers and have peaks at kη ∼ 0.2. When the wave

number decreases, σ ∗
ω and σ ∗

ζ decrease but, surprisingly, σ ∗
g remains finite even at very low wave

numbers, kη < 0.1. Although we cannot explain why σ ∗
g is finite, we note that the ramp-cliff or
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FIG. 9. Spectra of production terms of enstrophy, pseudoenstrophy and scalar gradient variance. Red: σ ∗
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mesa-canyon structure of the scalar field characterized by a large scalar gradient in the DNSs and
experiments has very long-range coherency, of integral length order or larger [11,15,22,42–46].

F. Bottleneck effects and band-to-band energy transfer

One way to compare the amplitudes of the spectral bumps of Eu(k), Ew(k), and Eθ (k) on an equal
footing is to divide the compensated spectra by their plateau values, the Kolmogorov constant CK ,
and the Obukhov-Corrsin constants Cw

K and COC, respectively. The resulting curves are plotted in
Fig. 10. The peak values indicate the bump amplitude with respect to the plateau level. The wave
numbers and values of the bump maximum of the curve are denoted ku

p, kw
p , kθ

p and Au
p, Aw

p , Aθ
p. We

then obtain

ku
p = 0.12, kw

p = 0.18, kθ
p = 0.21, (100)

Au
p ∼ Aw

p = 1.2, Aθ
p = 1.9. (101)
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FIG. 10. Measurement of the bottleneck effect. The + symbols denote the peaks of the compensated energy
spectrum.
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It can readily be seen that the spectral bump of the passive scalar is the largest, and its velocity is
lowest, while the passive vector lies between. Thus, the bottleneck effect is strongest for the passive
scalar, weakest for the velocity, and intermediate for the passive vector.

Donzis and Sreenivasan [38] showed that the spectral bump decreases with increasing Reynolds
number, and suggested nonlocalness in the spectral transfer as a possible mechanism for generating
the spectral bump. The spectral bump has been explained as a manifestation of the bottleneck
effect [47]. When one or two components in the triad interaction are only weakly excited due to
dissipation, the spectral transfer becomes less efficient, so the spectrum piles up at wave numbers
just below the dissipation range. If the spectral transfer is dominated by nonlocal interactions, the
lack of excitation of one or two components at distant wave numbers would result in a larger pileup
of spectral excitation before the beginning of the spectrum rolloff that occurs in the dissipation
range. In other words, the stronger the nonlocalness, the larger the spectral bump.

To determine whether this is the case, we analyzed the nonlocalness of the spectral transfer of the
scalar variance by comparing it to that of the kinetic and pseudokinetic energy. First, we consider
the spectral transfer fluxes of the kinetic energy and the scalar variance, which are written

�(k)

ε
=

∫ ∞

1
W (ξ, k)

dξ

ξ
, (102)

�θ (k)

χ
=

∫ ∞

1
Wθ (ξ, k)

dξ

ξ
, (103)

ξ = max(k, p, q)

min(k, p, q)
, (104)

where (k, p, q) are the three wave numbers of the triad interaction in the nonlinear and convective
terms. ξ is a nonlocalness metric in the triad interaction, with larger ξ indicating more nonlocal
interaction, and the functions W (ξ, k) and Wθ (ξ, k) represent the fractional contributions to the total
mean transfer flux from the interactions in the range [ξ, ξ + dξ ]. Using the Lagrangian renormalized
approximation (LRA) [48–50], Gotoh and Watanabe [51] showed that, in the inertial range at very
high Reynolds numbers, the functions W (ξ ) and Wθ (ξ ) are asymptotically

W (ξ ) ∼ C2
KIv

(
4

9
ξ−4/3 ln ξ + 16

45
ξ−4/3

)
, (105)

Wξ (ξ ) ∼ CKCOCIθ

(
22

45
ξ−2/3 + 4

3
ξ−4/3 ln ξ

)
, (106)

Iv = 0.7896, Iθ = 1.202, (107)

respectively. The function Wθ (ξ ) decays more slowly than W (ξ ) for large ξ . This means that the
spectral transfer of the passive scalar variance is less local than that of the kinetic energy, which is
consistent with the bump in the scalar spectrum being larger at higher wave numbers than in the
case of the kinetic energy.

The above results are for an infinite Reynolds number and depend on the assumptions of the
LRA. To investigate the energy transfer from band to band at finite Reynolds numbers, we introduce
a sharp filter G and filtered quantities AK , which we define as follows:

GK (k) =
{

1 if K − 0.5 � |k| < K + 0.5,

0 otherwise, (108)

AK (x, t ) = F−1[A(k, t )GK (k)]. (109)
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Then, the spectral transfer functions between bands K and Q are defined in the same way as in
Ref. [52]:

T u
K,Q = − 1

ε̄V

∫
uK · [(u · ∇ )uQ] dx, (110)

T w
K,Q = − 1

ε̄wV

∫
wK · [(u · ∇ )wQ] dx, (111)

T θ
K,Q = − 1

χ̄V

∫
θK [(u · ∇ )θQ] dx. (112)

The numerical results are shown in Fig. 11. A common feature is that they are negative for K/Q < 1
and positive for K/Q > 1; furthermore, the local minimum and maximum appear in the narrow wave
number band, close to K/Q = 1, which means that the mean spectral transfer is predominantly local
for all T u

K,Q, T w
K,Q, and T θ

K,Q.
We now examine the effects of the band position Q on the transfer to the band K . For T u

K,Q (top
panel of Fig. 11), the curve for Qη ∼ 0.005 (red) has positive peaks at approximately K/Q = 2
and reaches distant wave numbers at Q/K > 10, while the curve for Qη ∼ 0.02 (blue) is largely
negative at K/Q ∼ 1/2, and exhibits positive peaks at wave numbers near K/Q = 1. The curve
for Qη ∼ 0.15 (green) has sharp negative and positive peaks at wave numbers close to K/Q = 1
but their amplitudes are smaller due to the smaller excitations. The above observations can also be
applied to the mean spectral transfer fluxes T w

K,Q and T θ
K,Q.

We now compare the relative strengths of the nonlocalness of the mean spectral transfers for three
bands, Qη = 0.005, 0.02, 0.15, by plotting their absolute values on logarithmic scales in Figs. 12.
The solid lines represent positive values and the lines plotted with symbols indicate negative values.
The general trend is that the curve of the passive vector is close to that of the velocity for wave
numbers between the peak and the band, prior to the rapid decay of the velocity curve, while the
passive vector curve is close to that of the passive scalar at high wave number bands. In the case
such that Qη = 0.005, the passive scalar curve (green) decays most slowly, approximately as K−2.
On the other hand, the kinetic energy (red) and pseudokinetic energy (blue) curves are very similar
for some wave number ratios and decay faster than the passive scalar curve. This means that the
spectral transfer of the passive scalar is strongest and the passive vector is slightly less local than the
velocity. This observation is consistent with the order of the bump amplitudes of the compensated
spectra shown in Fig. 10. However, the above analysis provides a somewhat indirect method for
exploring the relationship between the bump strength and nonlocalness of the spectral transfer. A
more direct approach is necessary, such as DNSs with restricted nonlocal interactions. This will be
the subject of a future study.

Figure 12 shows an interesting and unexpected result: the curves for the kinetic energy change
sign at the high end of K/Q, indicating an inverse transfer of kinetic energy. The wave numbers
at which the change of sign occurs correspond to approximately kη ≈ 0.4 in the cases of Qη =
0.005, 0.02, 0.15, where the kinetic energy spectra begin to roll off in the dissipation range, as
shown in Fig. 3. This fact can be regarded as one reason for the kinetic energy spectrum decaying
faster than the other spectra in the dissipation range. Although the amplitude of the spectral transfer
is very low, the trend is clear. Unfortunately, we cannot explain this negative transfer.

VI. DISCUSSION

The key findings of this study are the following. (1) The three spectra have inertial and inertial
convective ranges and approximately follow a k−5/3 power law, with constants Cu

K = 1.57 for the
kinetic energy, Cw

K = 0.99 for the pseudo kinetic energy, and COC = 0.67 for the passive scalar
variance. Their order, Cu

K > Cw
K > COC, reflects the fact that in the inertial-convective range, more

efficient spectral transfer is associated with lower constants. (2) The passive scalar has the largest
bump, the velocity has the smallest, and that of the passive vector is in between. (3) The spectra

064601-18



STATISTICAL PROPERTIES OF AN INCOMPRESSIBLE …

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1  10  100

K/Q

Qη = 0.005

Qη = 0.02

Qη = 0.15

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1  10  100

K/Q

Qη = 0.005

Qη = 0.02

Qη = 0.15

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1  10  100

K/Q

Qη = 0.005

Qη = 0.02

Qη = 0.15

FIG. 11. Band-to-band transfer for Run C. Top: kinetic energy; middle: pseudokinetic energy; bottom:
passive scalar variance. Red: Qη = 0.005; blue: Qη = 0.02; black: Qη = 0.15.

and transfer flux spectra of the variances of the passive vector and passive scalar decay slower than
those of the kinetic energy in the dissipation range. (4) The cubic moment 〈(δuL )|δw|2〉 was shown
theoretically to obey a 4/3 power law, similar to Yaglom’s 4/3 law for the passive scalar, and the
curve computed by the DNS approaches the 4/3 law, which is close to the velocity curve at large
scales and to the passive scalar curve at small scales.

All of these facts suggest that, for the Reynolds numbers investigated in this study, the behavior
of w at large scales is close to u and resembles θ at small scales, and that the transfer efficiency of
the passive vector is “intermediate” between the velocity and passive vector.
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FIG. 12. Comparison between absolute values of the band-to-band spectral transfer on a logarithmic scale
for Run C. Lines with circles denote absolute values of negative numbers. The straight line indicates K−2. Top:
Qη = 0.005; middle: Qη = 0.02; bottom: Qη = 0.15. Red: kinetic energy; blue: pseudokinetic energy; green:
passive scalar variance.

To explore the physics behind the intermediate behavior of the passive vector, we investigated
the non-localness of the spectral transfer of the three fields and the pressure and pseudo pressure
spectra. Although the spectral transfer of the three fields is basically local in wavenumber space,
there are some contributions from non-local spectral transfer. The degree of nonlocalness of the
spectral transfer of the passive scalar is stronger than that of the velocity and passive vector. We also
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found that the spectral transfer fluxes of the passive vector and passive scalar in the case such that
K/Q > 1 are positive, but the velocity is negative for K in the far-dissipation range. The pressure
spectrum is approximately five times larger than the pseudopressure spectrum at all wave numbers,
but their functional forms are very similar. They scale approximately as k−2 in the range of wave
numbers in which inertial effects are dominant.

One possible interpretation of these observations could be that the action of the pseudopressure
is dominant at large scales, but weaker at small scales. Hence, the two- point statistics of the passive
vector, such as the spectrum, spectral transfer flux, and cubic moments, resemble those of the
velocity at large scales while being closer to the passive scalar at small scales. These differences can
be traced back to the difference between the source terms of the Poisson equations for the pressure
and the pseudopressure, the second-order nonlinearity in the velocity gradient, or the bilinear nature
of the gradients of the velocity and passive vector. At large scales, the pseudopressure is given
as the integral of the source term over the entire domain, and is weighted by the Poisson kernel
so that the detailed structures of the straining field, whether ∇u : ∇u or ∇u : ∇w, are smoothed
out by the integration except for the amplitudes. However, at small scales, both the pressure
and pseudopressure tend to be dominated by the local structure, and differences emerge between
∇u : ∇u and ∇u : ∇w. It is plausible that the nonlinearity of the velocity gradients can develop
space-time coherency with respect to the amplitudes and geometry, and thus maintain long-lived
vortex tubes. However, the passive nature of w means that it cannot maintain such a locally coherent
structure, so the pseudopressure cannot behave similarly to the pressure.

It is useful to recall the behavior of turbulence in D dimensions [53]. When the spatial dimension,
D, increases, the incompressibility constraint weakens because the number of terms such that
∂ui/∂xi = 0 increases with D, thus diminishing the contributions of the pressure. In this case, the
relative importance of the convective action increases, meaning that the nonlinearity dominates
the small-scale dynamics. One implication of this argument is that the incompressibility condition
for the passive vector, which is assured by the pseudopressure, is of secondary importance to the
small-scale dynamics of the passive vector, and the convective term is a main player. Therefore,
whether the convective term is linear or nonlinear makes a difference at small scales, while the
pseudopressure becomes appreciable for large-scale statistics. Indeed, the visualization shows that
the structure of the pseudovorticity ζ resembles that of the passive scalar, being sheet-like rather
than tube-like. This will be discussed in a future publication [35].

VII. SUMMARY

In order to explore the physics behind the differences and similarities in the statistical properties
between the velocity vector and passive scalar, we have investigated the low order statistics of
the passive vector by comparing them with those of the velocity and passive scalar. The passive
vector shares dynamics with passive scalar due to convection by turbulent velocity and diffusion,
but the incompressibility constraint under the action of pseudopressure is similar to that of turbulent
velocity. We analyzed the energy spectrum, pressure spectrum, energy flux, and cubic order structure
functions of u, w, and θ , and compared the gradients of the three fields. Based on this comparison,
we conclude that, at the Reynolds numbers investigated in this study, the behavior of w is (1) close
to u at large scales due to the nonlocal effects of the pseudopressure and (2) close to θ at small
scales. Therefore, the differences between w and θ at large scales are due to the pseudopressure,
and their resemblance at small scales is due to the linearity of the convective term. When this
interpretation is applied to the velocity, the difference between the velocity and passive scalar at
small scales can ultimately be attributed to whether or not the convective term is nonlinear. In
other words, the differences arise from the nonlinear dynamics; the kinematic constraints are of
secondary importance. It is interesting and important to see whether the above interpretation can
also be applied to the high order statistics. Intermittency, high order statistics, and field structure of
the passive vector will be reported in a separate paper [35].
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