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The effects of different initial perturbations on the evolution of stratified shear flows
that are subject to Kelvin-Helmholtz instability and vortex pairing have been investigated
through direct numerical simulation. The effects of purely random perturbations of
the background flow are sensitive to the phase of the subharmonic component of the
perturbation that has a wavelength double that of the Kelvin-Helmholtz instability. If
the phase relationship between the Kelvin-Helmholtz mode and its subharmonic mode
is optimal, or close to it, then vortex pairing occurs. Vortex pairing is delayed when there
is a phase difference, and this delay increases with increasing phase difference. In three-
dimensional simulations vortex pairing is suppressed if the phase difference is sufficiently
large, reducing the amount of mixing and mixing efficiency. For a given phase difference
close enough to the optimal phase, the response of the flow to eigenfunctions perturbations
is very similar to the response to random perturbations. The phase difference has a
more significant effect on vortex pairing compared to the initial perturbation amplitude
ratio between the KH and the subharmonic modes. In addition to traditional diagnostics,
we show quantitatively that a nonmodal Fourier component in a random perturbation
quickly evolves to be modal and describe the process of vortex pairing using Lagrangian
trajectories.
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I. INTRODUCTION

Fluids are often stably stratified in the atmosphere, ocean, and lakes, due to temperature or
salinity or both. The existence of shear (vertical variations in the horizontal currents) may give
rise to instabilities in these otherwise stably stratified flows. Kelvin-Helmholtz (KH) instabilities,
also called Rayleigh instabilities in homogeneous fluids, are one of the most widely known shear
instabilities. KH instabilities have been studied extensively in both homogeneous and stratified
fluids using laboratory experiments (e.g., Refs. [1–3]), field observations [4–6], and numerical
simulations (e.g., Refs. [7–14]). They are characterized by two-dimensional periodic elliptic vortices
called KH billows, which are connected by thin tilted braids of high strain rate [15].

KH instabilities are susceptible to several secondary instabilities, e.g., vortex pairing [1,3,16,17],
convective core instability due to the overturn of fluid caused by the roll-up (e.g., Refs. [7,8]), and
instabilities that are located in braid regions and extract energy from the mean shear or strain (see
Ref. [9]). Which secondary instabilities exist or dominate depends on nondimensional parameters
governing the flows, i.e., Reynolds number, Richardson number, and Prandtl number. Klaassen and
Peltier [18] verified that vortex pairing is the most unstable two-dimensional secondary instability.
Strong stratification can inhibit vertical motion and suppress pairing [19]. Mashayek and Peltier
[9,19] show that three-dimensional secondary instabilities grow faster in high Reynolds number
flows and can destroy the two-dimensional coherent structure required for vortex pairing. The
critical Reynolds number at which pairing does not occur decreases with increasing Richardson
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TABLE I. Numerical parameters for all the simulations. The number of grid points is for the velocity field
and is half that of the density field.

Re Pr J Lx/h0 Ly/h0 Lz/h0 Nx Ny Nz

1200 16 0.07 14.43 7.22 15 320 160 320

number. Klaassen and Peltier [8], Mashayek and Peltier [9], and Salehipour and Peltier [13] have
shown that high Prandtl number can increase the growth rate of some three-dimensional secondary
instabilities, e.g., the secondary core instability.

However, in low to intermediate Reynolds number flows, which are applicable to some mixing
layers [20] and environmental flows ([21], see Table 1), vortex pairing is the dominant two-
dimensional secondary instability. The pairing instability results from a coincident subharmonic
of the most unstable wave number that forces neighboring KH billows to combine (pair). It can
increase the vertical scale of motion and thickness of the shear layer [22–24]. As a result, the
effective Reynolds number is also increased. Since the amount of mixing and mixing efficiency
are higher for higher Reynolds numbers in the mixing transition regime [12], vortex pairing can
enhance mixing and mixing efficiency. The dominant three-dimensional secondary instability in
this Reynolds number regime is the convective core instability [7,8]. Caulfield and Peltier [7] show
that the growth rate of the convective core instability mainly comes from the mean shear, while
the two-dimensional KH instability acts as a catalyst in the sense that it provides the flow on which
the secondary instability grows. The competition of vortex pairing and three-dimensional secondary
instabilities determines whether vortex pairing occurs or not. This competition is dependent on the
initial nondimensional parameters, and also on the details of the initial perturbations [7,25], e.g., the
amplitudes of KH, the subharmonic components, and three-dimensional motions.

Some researchers have studied the dependence of secondary instabilities on initial conditions in
shear layers without density stratification [11,16,25–28]. Patnaik et al. [11] show that shredding re-
places pairing when the phase relationship between KH and the subharmonic modes is unfavourable
for pairing. One vortex is strengthened and the other is weakened in that case. However, shredding is
seldom observed in experiments due to the existence of ambient noise other than pure eigenfunctions
of the Orr-Sommerfeld equation. Ho and Huang [16] study the spreading rate of a spatially varied
shear layer under different forcing. They show that without including the subharmonic mode in the
initial perturbations pairing is significantly delayed. Metcalfe et al. [25] demonstrate that vortex
pairing can suppress the modal growth rate of a three-dimensional mode when the subharmonic
mode reaches finite amplitude and the three-dimensional mode is small. However, this may only
be valid for flows initialized by eigenfunctions of sufficient amplitudes. Hajj et al. [26] show that
the growth of the subharmonic mode is maximum close to an optimal phase difference between the
KH and the subharmonic mode and is suppressed at other phase differences. Similarly, Husain and
Hussain [28] demonstrate that at a phase difference unfavourable for pairing, and also for angles
close to this phase difference, the growth rate of the subharmonic mode reduces significantly. The
phase difference between different modes of the instability in the initial conditions has also been
shown to influence the rate of mixing and flow structure in Rayleigh-Taylor instabilities [29].

Numerical investigations of shear instabilities in stratified flows have also found that vortex
pairing depends on initial conditions, e.g., Klaassen and Peltier [18] and Smyth and Peltier [23].
Klaassen and Peltier [18] obtain the amplitude ratios of the first three harmonics with wave number
1
2αkh, αkh, and 3

2αkh, where αkh is the wave number of the most unstable mode to the viscous
Taylor-Goldstein (TG) equation [30,31], in a two-wavelength domain from a numerical simulation
perturbed by white noise. They demonstrate that pairing is delayed and the growth rate of the
subharmonic mode is decreased if the subharmonic and the third modes are out of phase relative
to KH instabilities. In general, the time of vortex pairing may be sensitive to the phase of the 3

2αkh
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mode if the subharmonic mode is out of phase with KH mode. Smyth and Peltier [23] reached a
similar conclusion about the effect of the phase on pairing.

Previous studies only considered the effect of initial conditions on pairing in two-dimensional
simulations and mostly used eigenfunctions as initial perturbations. We extend these studies to
examine the effects of phase difference between KH and subharmonic components in two- and
three-dimensional flows with eigenfunction and random initial perturbations. Two-dimensional
simulations are used to compare random perturbation simulations with eigenfunction perturbation
simulations in terms of vortex pairing and sensitivity of pairing to the phase difference between
the KH and subharmonic mode. Three-dimensional simulations are used to investigate the effect of
three-dimensional motions on pairing and mixing.

The paper is organized as follows. The numerical methods and diagnostic tools are described
in Sec. II. A simplified pairing mechanism is described in Sec. III. Section IV describes the
process of vortex pairing using the Lagrangian trajectory, the phase shift and the growth rate of
the subharmonic mode in two-dimensional simulations. In Sec. V, three-dimensional results are
compared with two-dimensional results to study the effect of three-dimensional motions and mixing
properties are compared in different simulations.

II. METHODOLOGY

A. Mathematical model

The unperturbed background flow is a pure horizontal stratified shear flow. The background
velocity U and density ρ are hyperbolic tangent functions of vertical coordinate z, as first introduced
by Hazel [32],

ρ̄ = −�ρ

2
tanh

(
2z

δ0

)
, (1a)

U = �U

2
tanh

(
2z

h0

)
, (1b)

where �U and �ρ are the variations of velocity and density respectively, δ0 is the thickness of the
density interface, and h0 is the thickness of the velocity interface. Four nondimensional parameters
characterize the flows, i.e., the bulk Richardson number J , the Reynolds number Re, the Prandtl
number Pr, and the scale ratio R which are defined as

J = �ρgh0

ρ0(�U )2
, Re = �Uh0

ν
, Pr = ν

κ
, R = h0

δ0
, (2)

where κ is molecular diffusivity, ν is kinetic viscosity, ρ0 is a reference density. Here, we use the
total velocity difference, density difference, and shear layer thickness to define the dimensionless
parameters, while in some studies half of these scales are used (e.g., see Caulfield and Peltier [7]).
In this study, J = 0.07, Re = 1200, Pr = 16, R = 1. The motivation for studying flows with Pr � 1
is that for the diffusion of heat in water, Pr varies from 7.1 at 20◦C to 13.4 at 0◦C and for the
diffusion of salt in water, Pr varies from 666 at 20◦C to 1264 at 0◦C [33]. Our choice of Pr = 16
was influenced by these environmental values and computational restrictions. The flow is susceptible
to Kelvin-Helmholtz instabilities for this combination of J and R (see Ref. [34], for a review of
instability types).

We assume the fluid is incompressible and apply the Boussinessq approximation for small density
difference, so the governing equations for the system are

∇ · u = 0, (3)

Du
Dt

= − 1

ρ0
∇p − ρ

ρ0
gk̂ + ν∇2u, (4)

Dρ

Dt
= κ∇2ρ, (5)
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where u and p are the fluid’s velocity and pressure, respectively, and k̂ is the unit vertical vector.
D/Dt is the material derivative and g is the gravitational acceleration.

B. Direct numerical simulations

The governing Eqs. (3), (4), and (5) are solved by a pseudospectral code developed by Winters
et al. [35] and later improved by Smyth et al. [36]. The code employs a third-order Adams-Bashforth
time-stepping scheme. Boundary conditions are horizontally periodic and vertically free slip and no
flux for our simulations.

The domain length Lx is set to two wavelengths of the most unstable mode to allow vortex pairing.
The spanwise width of the domain Ly for the three-dimensional simulations is one wavelength of
the primary KH instability, which is at least six wavelengths of the most unstable spanwise mode
(for the most unstable spanwise wave number, see Ref. [18]). The domain height is 15h0, which is
sufficient to remove the effects of the top and bottom boundaries on pairing [9,12]. The numerical
details are summarized in Table I.

The resolution of DNS is typically determined by the Kolmogrov scale, Lk = (ν3/ε′)1/4, in
homogeneous fluids where ε′ is the viscous dissipation rate of turbulent kinetic energy. Moin and
Mahesh [37] suggest that the grid spacing in DNS should be O(Lk ). In stratified flows with Pr > 1,
the smallest scale that need to be resolved is O(LB), where LB is the Batchelor scale [38] and
LB = Lk/

√
Pr. In our simulations, �z/LB is always less than 4.0 and �z/LK is always less than

2.0 (grid spacing of the density field is half of that of the velocity field). The dissipation rate ε′
used to calculate LK is averaged within Lz/2 − h0/2 < z < Lz/2 + h0/2, where turbulence is the
most energetic. Although previous studies have used finer resolutions, e.g., Smyth and Winters [34]
and Rahmani et al. [12], more recent studies, e.g., Salehipour and Peltier [13], have used similar
resolutions. We also ran a resolution test for simulation R π

2 3D (Table II) with a double resolution.
The final amount of mixing in the simulation with the finer resolution changed by less than 0.1%.

We ran two sets of simulations to study the effect of initial perturbations on vortex pairing and
mixing. One set is perturbed by random perturbations, where three simulations are performed in
both two and three dimensions. The energy of initial random perturbations projected on each two-
dimensional Fourier component is almost the same. The other set is perturbed by the eigenfunctions
to the TG equation of the KH and the subharmonic modes with the same amount of kinetic energy of
the KH and the subharmonic mode [defined in Eq. (13)] as in random perturbation simulations. The
eigenfunctions are obtained by solving TG equation using a second-order finite difference method.
The eigenfunction simulations are performed in two dimensions only. The simulations are listed in
Table II with key resultant times. In all the simulations in Table II, the initial amplitude ratio between
the energy of the KH and the subharmonic components is one. In the Appendix, we examine the
effects of the initial amplitude ratio for the simulation E02D.

For random perturbation simulations, random perturbations of u′ and w′ are added to the
background flow. To simplify comparisons between 2D and 3D simulations, we used perturbations
in u′ and w′ only. The perturbations quickly become fully three-dimensional in 3D simulations. The
perturbations in u′ and w′ are given by the following equations:

u′ = aru(x, y, z)
�U

2

[
1 −

∣∣∣∣tanh

(
2z

h0

)∣∣∣∣
]
, (6)

w′ = arw(x, y, z)
�U

2

[
1 −

∣∣∣∣tanh

(
2z

h0

)∣∣∣∣
]
, (7)

where ru and rw are random numbers between −1 and 1, and a sets the maximum amplitude of
perturbations.

In the present study, a = 0.1, as in the simulations of Smyth and Winters [34] and Carpenter
et al. [39], and small enough for perturbations to grow linearly initially. The initial conditions in
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TABLE II. Definition of phase and important times and list of simulations. The simulations beginning
with E are perturbed by eigenfunctions, while those beginning with the letter R are perturbed by random
perturbations. The phase difference (0, π/4, or π/2) and the dimensions of each simulation appear in the
name of the simulation. We also performed three-dimensional random perturbation simulations with phase
differences −0.125π , −0.375π , and −0.45π (not listed in the table) for mixing quantifications.

Random perturbations Eigenfunctions

Run R02D R π

4 2D R π

2 2D R03D R π

4 3D R π

2 3D E02D E π

2 2D

θM
sub/π 0.04 −0.21 −0.46 0.05 −0.21 −0.48 0 0.5

tM 24 24 24 24 24 24 0 0
tkh 80 82 85 80 81 84 81 87
tsub 106 110 146 107 113 129 104 249
tp 108 112 148 109 113 – 107 249
t3d – – – 143 146 123 – –
t f – – – 231 221 186 – –

Parameter Definition Reference figure

θM
sub phase difference between the primary KH Fig. 4(a)

and subharmonic mode
tM onset of modal growth, time when r = 0.99 Fig. 3
tkh first peak in kinetic energy of the primary KH Fig. 6
tsub global peak in the kinetic energy of the subharmonic Fig. 6
tp when pairing vortices initially cross Fig. 4(b)
t3d first peak in the 3D kinetic energy Fig. 6
t f first time Reb < 20 after a peak in 3D kinetic energy

two-dimensional simulations are spanwise averaged values of those in corresponding three-
dimensional simulations.

We define the phase of each wave-number component in terms of two-dimensional vertical
velocity w2d [defined in Eq. (9b)], i.e.,

θk = π

2
+ arg

{
ŵ2d,k

(
z = Lz

2

)}
, (8)

where arg is the argument or phase of a complex number, π
2 is added to make the vertical velocity

�{ŵ2d,kei2kπx/Lx } of a specific mode a sine wave, and ŵ2d,k is the kth Fourier component of
spanwise averaged vertical velocity w2d . Klaassen and Peltier [18] and Smyth and Peltier [23]
use a similar definition in terms of streamfunction. We use “component” to denote the Fourier
component and “mode” to denote eigenfunction of a specific wave number throughout the paper.
When a component becomes approximately modal after a nonmodal growth, we call it a mode. Note
that k = 2 corresponds to the KH component and k = 1 corresponds to the subharmonic component,
i.e., a wavelength equal to the domain length, Lx.

For random initial perturbations, initially each Fourier component experiences a nonmodal
growth and the phase of every component defined in Eq. (8) changes. When the subharmonic
component becomes approximately modal, i.e., identical to the eigenfunction of the TG equation
(this occurs around nondimensional time t�U/h0 = 24 for the random perturbation simulations),
the phase becomes almost constant for some time until nonlinear effects become important. We
define θsub as the phase of the subharmonic component relative to the KH component and θM

sub as
the value of θsub when the subharmonic component becomes modal (defined in Sec. IV A). We
examine the effects of the phase difference between the KH and subharmonic mode by considering
three different phases in our random perturbation simulations. To determine the appropriate initial
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phase difference, we first determine the phase shift that occurs in the premodal phase. We run a
simulation with the random perturbation generated using Eqs. (6) and (7) until tM [e.g., t = 24
in Fig. 4(a)] and then calculate the phase shift of the subharmonic mode. Then we run the three
simulations with the initial phase of the subharmonic set such that at t = tM , θM

sub is approximately
0, −π/4, and −π/2. These random simulations are designated by R followed by the approximate
modal phase θM

sub, and 2D or 3D depending on the number of dimensions of the simulation. For
example, θM

sub is approximately 0, −π
4 , and −π

2 , respectively, in three-dimensional simulations
R03D, R π

4 3D, and R π
2 3D (exact phase values are listed in Table II). It will be explained in Sec. IV E

that the sign of the phase is not important.
Simulations perturbed by eigenfunctions are named by the same procedure, but the first letter

is E , indicating that they are perturbed by eigenfunctions. For these eigenfunction perturbed
simulations, the phase of the subharmonic mode does not change initially and θM

sub is equal to the
initial phase value. θM

sub = −π
2 for E π

2 2D and θM
sub = 0 for E02D.

C. Diagnostic tools

Following Caulfield and Peltier [7], the velocity is decomposed into three parts, i.e.,

u = 〈u〉xy, (9a)

u2d = 〈u〉y − 〈u〉xy, (9b)

u3d = u − u − u2d , (9c)

where the subscripts indicate averaging over that direction. Given these definitions, the total kinetic
energy K is defined as

K = 〈u · u〉xyz

2ρ0�U 2
, (10)

where ρ0�U 2 is used for nondimensionalization, and can be partitioned into three parts K , K2d , K3d ,
i.e.,

K = K + K2d + K3d , (11)

where

K = 〈u · u〉z

2ρ0�U 2
, (12a)

K2d = 〈u2d · u2d〉xz

2ρ0�U 2
, (12b)

K3d = 〈u3d · u3d〉xyz

2ρ0�U 2
. (12c)

Fourier transforms are applied to u2d and w2d to identify the contribution of each wave-number
component K2d , so that the kinetic energy of the kth component is

K2d,k = 〈|û2d,k|2 + |ŵ2d,k|2〉z

ρ0�U 2
, k � 1, (13)

where û2d,k and ŵ2d,k are the Fourier components of u2d and w2d of wave number 2πk/Lx. Hence,

K2d =
Nx
2∑

k=1

K2d,k . (14)

Note that k = 1 corresponds to the subharmonic component and we denote it as Ksub. k = 2
corresponds to the KH instability and we denote it as Kkh.
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We follow the framework in Winters et al. [40] to study mixing. The potential energy is then
defined as

P = g〈ρz〉xyz

ρ0�U 2
. (15)

Potential energy P is partitioned into background potential energy Pb and available potential energy
Pa defined as

Pb = g〈ρzb〉xyz

ρ0�U 2
, Pa = P − Pb, (16)

where zb is the location of fluid parcels after being rearranged into a statically stable state (see
Ref. [40]). Available potential energy characterizes the energy that can be exchanged between
potential energy and kinetic energy, while the increase in background potential energy quantifies
irreversible mixing in a closed system. The amount of mixing caused by the fluid’s motion is

M = �Pb − D ≡
∫

φMdt, (17)

where φM is defined as the rate of mixing and D is the mixing caused by molecular diffusion in
quiescent fluid and calculated by

D = −κg(ρ̄|z=Lz − ρ̄|z=0)t

Lz

1

ρ0�U 2
. (18)

During the whole process, D grows approximately linearly. The instantaneous mixing φM is always
positive and varies over time. Cumulative mixing efficiency [7] is used as a measure of overall
mixing properties in this study. It is defined as

E
t3d −t f
c =

∫ t f

t3d

φMdt

∫ t f

t3d

φMdt +
∫ t f

t3d

εdt

, (19)

where t3d is the time when K3d reaches its maximum and t f is defined as the time when buoyancy
Reynolds number Reb = ε′/ν〈N2〉z first drops below 20 after t3d . To compute Reb, we average N2

and ε′ over an active range of turbulence where density gradients are significant, as proposed by
Smyth and Moum [41]. The computed mixing efficiency showed a small sensitivity to the choice of
t f as long as t f represented a time in the relaminarization stage. This period is chosen as previous
investigations show that turbulence is active only when Reb > 20 [41]. By choosing t > t3d ,
we remove the two-dimensional mixing because mixing caused by two-dimensional overturns is
process dependent [42–44] and specifically depends on initial perturbation. To examine the effects
of pairing on the mixing efficiency of a complete mixing event, we also consider a cumulative
mixing efficiency, E

t0−t f
c , where the mixing efficiency in Eq. (19) is computed between t = 0 and

t f . Hereafter, time is nondimensionalized by h0/�U and we refer to t as the dimensionless time.

III. PAIRING MECHANISM

The pairing process and the importance of the phase of the subharmonic are illustrated in Fig. 1.
In Fig. 1(a), the subharmonic mode displaces the left KH billow upward and the right KH billow
downward. The two KH billows are then advected toward each other by the mean flow, cross each
other, and merge into one larger billow. This is the optimal phase for pairing. In Fig. 1(b), the phase
of the subharmonic mode is θsub = −π

2 and two KH core centers are at the nodes of the subharmonic
mode. This is called the “shredding mode” in Patnaik et al. [11] and the “draining mode” in the
discussions by Klaassen and Peltier [18] and Smyth and Peltier [23]. In this case, one KH vortex
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FIG. 1. Conceptual drawing of vortex pairing demonstrating the effect of phase of the subharmonic mode.
(a) θsub = 0, (b) θsub = − π

2 . The blue solid line is KH mode and the red dash-dotted line is the subharmonic
mode. Blue circles denote the location of KH vortex centers and red squares are vortex centers associated with
the subharmonic mode. The two arrows show the directions of the mean flow.

[the right one in Fig. 1(b)] is strengthened by the subharmonic mode and the other KH vortex [the
left one in Fig. 1(b)] is weakened by the straining field of the subharmonic mode. For example, in
Fig. 1(b), the right vortex will be stronger than the left one.

Resultant KH billows with and without pairing are illustrated in the vorticity snapshots from
DNS in Fig. 2. At t = 106, the simulation with the phase of subharmonic mode θsub = 0, R02D,
is undergoing a vortex merging, while the simulation with θsub = −π

2 , θsub = 0, R π
2 2D, exhibits a

draining mode. In R π
2 2D, the pairing mode eventually grows and surpasses the KH mode. During

this adjustment, the phase of the subharmonic mode shifts toward 0. We discuss this pairing
process in Sec. IV. In three-dimensional simulations, the growth of three-dimensional motions
disintegrates the two-dimensional structure of the billows and can inhibit the merging of the billows;
see simulations R03D and R π

2 3D at t = 146. We discuss these effects in Sec. V.

IV. TWO-DIMENSIONAL ASPECTS OF PAIRING

In this section, we examine the 2D pairing process focusing on comparing pairing in flows
perturbed by eigenfunctions with flows perturbed by random perturbations. Besides the traditional
phase and growth rate analysis, we characterize the degree of modality quantitatively and use
Lagrangian trajectories to aid in the interpretation of the Fourier decomposition.

A. Degree of modality

We use the cosine of Hermitian angle [45] between the subharmonic component ŵ2d,sub and the
initial eigenfunction of the subharmonic mode ŵeig,sub to quantify the degree of modality,

r(t ) = |(ŵ2d,sub, ŵeig,sub)|
|ŵ2d,sub||ŵeig,sub| , (20)

where (·, ·) denotes the standard scalar product for complex vectors and || denotes the amplitude of a
complex number. r(t ) is the ratio between the length of the orthogonal projection of the subharmonic
component onto the the eigenfunction to the length of itself. It is always between 0 and 1, and
equal to 1 only when the subharmonic component of the random perturbation is identical to the
eigenfunction.
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FIG. 2. Nondimensional spanwise vorticity (uz − wx )h0/�U of two-dimensional simulations R02D (phase

of the subharmonic mode is θM
sub ≈ 0) and R π

2 2D (phase of the subharmonic mode is θM
sub ≈ −π

2
) and

their corresponding three-dimensional simulations R03D and R π

2 3D. The snapshots of three-dimensional

simulations are plotted at y = Ly

2 . Pairing is delayed in two-dimensional simulation R π

2 2D but completely
eliminated in the three-dimensional simulation R π

2 3D. Black stars are fluid particles located at vortex centres
at t = 30.

Figure 3 shows the evolution of r for the three random perturbation simulations R02D, R π
4 2D,

and R π
2 2D. Initially, r is small because the subharmonic component of the initial random pertur-

bations is significantly different from the eigenfunction. As the subharmonic component evolves to
the eigenfunction, r increases to 1. We define the time required for the subharmonic component to
become modal, tM , as the time when r first exceeds 0.99, which is t = 24 for these three simulations.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

FIG. 3. Evolution of r for random perturbation simulations R02D, R π

4 2D, and R π

2 2D.
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FIG. 4. (a) Evolution of the phase of the subharmonic component. The phase before tM is shown as thin
lines. The phase shift in simulation E π

2 2D begins after t = 150 and is not shown in this figure. (b) x coordinates
of two fluid particles located at the two vortex centers at t = 30 for random perturbation simulations and at
Lx/4 and 3Lx/4 for eigenfunction perturbation simulations. Pairing occurs at t = 249 for simulation E π

2 2D
and is not shown in this figure. (c) Growth rate of the subharmonic mode. The vertical dashed line indicates
the saturation time of KH instabilities in simulation R π

4 2D. The stars labeled as TG indicate the growth rate
calculated using the TG equation with the time-dependent mean flow.

Before t = 24, the three simulations appear identical in Fig. 3 because the subharmonic component
is evolving linearly, i.e., nonlinear interaction of different components is negligible.

B. Phase evolution

The phases for the five two-dimensional simulations perturbed by random perturbations and the
eigenfunctions are plotted in Fig. 4(a). Initially, in the eigenfunction perturbation simulations, the
phase does not change. In the three random perturbation simulations, before t = 24, the phases
change because of nonmodal growth. The premodal phase (before tM) in the random perturbation
simulations is therefore shown as a thin line. Between t = 24 and t = 50, the phases stay almost
constant. During this period, the phases are approximately 0,−π

4 ,−π
2 for R02D, R π

4 2D, and R π
2 2D,

respectively (see Table II). After t = 50, the phases of the subharmonic mode in simulations R π
4 2D

and R π
2 2D shift toward 0, which is similar to the results of Klaassen and Peltier [18]. For the
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FIG. 5. The trajectories of two fluid particles between t = 45 and t = 135. The stars indicate tkh and the
triangles indicate tsub.

eigenfunction simulation E π
2 2D, the phase begins to shift after t = 200 and is not shown in the

figure. We ran a supplementary simulation perturbed by the KH, the subharmonic, and a third mode
of wave number 3

2αkh, and found that the time of pairing is greatly reduced compared to the E π
2 2D

simulation. This result is consistent with the earlier phase shift found in the three-mode simulations
of Klaassen and Peltier [18].

C. Trajectories of pairing KH billows

To characterize the trajectories of KH billows during pairing, fluid particles are introduced at
a prescribed time at the KH vortex centers. The vortex centers are identified by the two inflection
points of the contour ρ = ρ0. In the randomly perturbed simulations the vortex centres are identified
at t = 30, the earliest time when the KH vortices are clearly identifiable. In the case of the
eigenfunction simulations the vortex centres are initially at Lx

4 and 3Lx
4 .

Figure 2 shows the evolution of the vorticity field with the two fluid particles shown as black
stars. As the figure shows, these two fluid particles approximately represent the vortex centres until
small-scale motions prevail, e.g., at t = 146 for simulation R02D. As an example, Fig. 5 shows
the trajectories in the eigenfunction perturbation simulation E02D with the optimal phase. The
trajectories of the two particles are well organized and symmetric about the domain center because
of the symmetry of the initial conditions. From tkh, defined as the time when Kkh reaches its first
maximum (the global maximum is caused by vortex pairing), to tsub, defined as the time when Ksub

reaches its global maximum, the KH billows undergo most of their vertical displacement. After this
time, the billows cross over each other merging into the subharmonic billow, while the two vortex
centres rotate around the domain center. The KH billow originally at the crest of the subharmonic
remains, on average, elevated above the KH billow originally at the trough of the subharmonic.
As will be shown in Sec. V, during this first orbit (t = 107 to t = 119) three-dimensional motions
become important.

Now we return to Fig. 4(b), which shows the temporal variability of the horizontal coordinates
of the two fluid particles. After approximately t = 75, the two fluid particles quickly converge in x
for the two optimal phase simulations E02D and R02D. We defined the time of pairing, tp, as the
time when the horizontal distance first becomes zero and listed in Table II (for three-dimensional
simulations, tp is obtained by averaging two sets of trajectories each composed of 21 fluid particles
spread over the spanwise direction). The two vortices become closer and merge in simulation
E π

2 2D at t = 249 (not shown in the figure). Unlike the results of the eigenfunction simulations,
in the random perturbation simulations there is an oscillation of the fluid particles before tsub and
tp because of the existence of modes other than the KH and subharmonic modes. For these three
random perturbation simulations, the horizontal distance between the two fluid particles is always
the smallest for R02D and largest for R π

2 2D. Also, pairing occurs first in R02D and last in R π
2 2D, so

tR02D
p < t

R π
4 2D

p < t
R π

2 2D
p . Relating Fig. 4(b) with the phase evolution in Fig. 4(a), we find that the two

fluid particles begin to move together (i.e., pair) only once the phase is approximately optimal. The

063902-11



DONG, TEDFORD, RAHMANI, AND LAWRENCE

pairing therefore occurs earliest if the subharmonic is in phase and latest if it is out of phase similar
to the previous studies of Klaassen and Peltier [18], Smyth and Peltier [23], Hajj et al. [26], and

Husain and Hussain [28]. Comparison between t
R π

4 2D
p and tR02D

p indicates that if the subharmonic
mode is not close to ±π

2 , the difference in pairing is small, as also observed by Husain and Hussain
[28]. Also, the time of pairing for simulation R02D is close to E02D, but the time of pairing for
simulation R π

2 2D is much earlier than in simulation E π
2 2D.

D. Growth rate

Figure 4(c) shows the growth rate of the subharmonic component for the three random
perturbation simulations and the two eigenfunction simulations. Initially, the growth rates of the
subharmonic mode for the two eigenfunction simulations (E02D and E π

2 2D) are the same and
decline as the shear layer diffuses. The estimated growth rate (labeled with TG) using the TG
equation and the varying mean flow has the same decreasing trend as the growth rates based on
Ksub. For the random perturbation simulations (R02D, R π

4 2D, and R π
2 2D), the growth rate during

the nonmodal stage of growth can be either smaller or larger than the modal growth rate as found
by Guha and Lawrence [46]. For all five simulations, the growth rate is independent of the phase in
the initial linear stage of growth, i.e., before around t = 45.

After t = 45, nonlinear effects and the phase become important. After t = 45 and before tkh,
the growth rates in the late pairing simulations (E π

2 2D and R π
2 2D) drop compared to the other

simulations, in agreement with Klaassen and Peltier [18]. However, we find that the growth rate in
the R π

4 2D simulation stays closer to the optimal phase simulations R02D and E02D. The growth
rates in simulations R02D and E02D are almost the same and the growth rates in simulations R π

2 2D
and E π

2 2D are almost the same. This suggests that if the phase and amplitude of the subharmonic
and KH are the same for an eigenfunction perturbation and a random perturbation, the growth rate of
the subharmonic mode is the same before saturation of KH instabilities. In other words, the existence
of the other components in initial perturbations and initial nonmodal growth have negligible effects
on the growth rate during this nonlinear growth stage.

When the KH instability reaches its maximum amplitude (tkh) the phase is close to optimal in
R02D, R π

4 2D, and E02D. The growth rates then quickly decrease to zero. In these three simulations,
the first zero crossing of the growth rate is close to tp and denotes the saturation of the subharmonic
mode, i.e., the global maximum of Ksub. In R π

2 2D, after tkh the growth rate begins to increase along
with the phase shifting toward the optimal value [see Fig. 4(a)]. In this simulation, the saturation of
the subharmonic mode occurs at t = 146. In E π

2 2D, the phase remains at −π
2 and the growth rate

continues to decrease. Unlike the other simulations, the growth rate crosses zero before saturation of
the subharmonic mode (at t = 249). Comparison between simulations R π

2 2D and E π
2 2D shows that

the growth rate is sensitive to the initial structure of the subharmonic component or the existence of
the other components in initial conditions if the phase is close to −π

2 .
In Table II, the saturation times of KH and the subharmonic mode and time of pairing (tkh, tsub,

and tp) are summarized. Pairing occurs first in simulation E02D, second in R02D, third in R π
4 2D,

fourth in R π
2 2D, and last in E π

2 2D. In all simulations tsub is close to tp, i.e., the global maximum in
the kinetic energy of the subharmonic approximately coincides with the initial crossing of pairing
KH billows. Ho and Huang [16] obtain a qualitatively similar result in the laboratory.

E. Sensitivity of the time of pairing to the phase

We find that vortex pairing is sensitive to initial conditions when the phase of the subharmonic
mode is close to ±π

2 . For simplicity in this discussion, we use tsub to characterize the time of pairing.
Provided pairing occurs, this is generally accurate (i.e., tsub ∼ tp). In general, tsub is a function of all
modes in the initial conditions, not only the subharmonic mode.

We consider the sensitivity of tsub to the phase of the subharmonic mode by running two-
dimensional simulations perturbed by KH and the subharmonic mode eigenfunctions. Since the
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FIG. 6. Saturation time of the subharmonic mode, tsub, as a function of the phase θM
sub for two-dimensional

simulations perturbed by eigenfunctions and random perturbations. Note tsub is approximately equal to the time
of pairing (see Table II).

initial velocity and density fields of phase θM
sub are the negatives of the reflection of velocity and

density fields of phase θM
sub about the center of the domain and the governing equations conserve

this symmetry, tsub is an even function of θM
sub. Therefore, we only consider phases from −π

2 to 0
for random perturbations. We calculate tsub for 12 discrete phases between −π

2 and 0 and plot the
results and the symmetric reflection between 0 and π

2 in Fig. 6. The figure shows that the time of
pairing is not sensitive to the phase when the phase is close to 0. However, the time of pairing
increases significantly near θM

sub = ±π
2 , which indicates that tsub is sensitive to the phase when the

phase is close to ±π
2 . Additional simulations (not shown) indicate that slight deviation from the

eigenfunction of the subharmonic mode in initial conditions can also change the time of pairing.
Hence, the delay of vortex pairing is sensitive to the functional form of the subharmonic component,
phase, and other modes in two-dimensional simulations when the phase is close to ±π

2 . Detailed
investigations of these effects are the subject of future studies.

Figure 6 also shows the time of pairing tsub for two-dimensional random perturbation simulations.
The results show the same trend as the eigenfunction simulations, i.e., tsub increases with the phase.
The initial nonmodal growth and existence of other modes in the initial conditions cause the slight
difference between random perturbation and eigenfunction results. However, the significant increase
of tsub near ±π

2 can only occur in pure eigenfunction simulations since any deviation from the pure
eigenfunctions in initial conditions will project on the pairing mode with phase 0 and reduce the
time of pairing compared to pure eigenfunctions with phase ±π

2 .
The time of pairing can also be sensitive to the initial amplitude ratio between the KH and the

subharmonic components. We examine this effect in the Appendix for the simulation E02D. The
results in this Appendix suggest that while the time of pairing is sensitive to the initial amplitude
ratio, the phase effects on the time of pairing are more significant. However, a more detailed study is
required to understand the combined effects of phase and amplitude ratio. For the rest of the paper,
we only consider cases where the KH and subharmonic components initially have the same level of
energy.

V. THREE-DIMENSIONALIZATION AND MIXING

A. Three-dimensionalization

The growth of three-dimensional instabilities inhibits pairing. In simulation R π
2 3D, where

pairing is delayed, three-dimensional instabilities break down the two individual KH billows before
pairing can occur, see Fig. 2, t = 146. In simulation R03D pairing occurs before the growth of
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FIG. 7. Kinetic energy of the subharmonic mode Ksub and three-dimensional kinetic energy K3d in two-
dimensional and three-dimensional simulations: (a) θM

sub ≈ 0, (b) θM
sub ≈ − π

2 .

three-dimensional instabilities and by t = 146 the two vortices have merged into the subharmonic
billow; see Fig. 2.

To quantify the effects of three-dimensional motions on pairing, we compare the kinetic energy of
the subharmonic component in two- and three-dimensional random perturbation simulations to the
kinetic energy of three-dimensional motions (Fig. 7) for most and least favourable phase conditions
for vortex pairing. Before the emergence of pairing (for t < 75), the total kinetic energy, K2d (not
shown in the figure), is the same for all simulations as the growth of KH is similar in all cases.
In the optimal phase simulation, i.e., θM

sub ≈ 0, the peak of the kinetic energy of the subharmonic
mode, Ksub, is reduced slightly in the three-dimensional simulation, while the saturation time of
the subharmonic mode is almost identical in the 2D and 3D simulations (see R02D and R03D in
Fig. 7(a) and Table II). The peak in K3d occurs at t = 143, well after the peak in Ksub. These indicate
that in cases with the phase at or near optimal the growth of three-dimensional motions has little
effect on pairing.

For θM
sub ≈ −π

2 , the peak of the kinetic energy of the subharmonic mode Ksub is significantly lower
in the three-dimensional simulation compared to the two-dimensional simulation [see Fig. 7(b)]. In
the R π

2 3D simulation, the peak in K3d occurs earlier, at t = 123, and precedes the peak of Ksub in
both two- and three-dimensional simulations. During the extra time needed in R π

2 3D for the phase
to shift from −π

2 to ∼0, the three-dimensional motions grow and and destroy the two-dimensional
coherent KH billows before vortex pairing occurs. Therefore, pairing is eliminated in simulation
R π

2 3D. The peak in K3d in simulation R π
2 3D is smaller compared to that in simulation R03D. The

vortex pairing in simulation R03D effectively increases the Reynolds number and makes the flow
more energetic.

B. Mixing

Figure 8(a) shows the increase in the total potential energy caused by the fluid’s motion, �P − D,
with time. Time variation of �P − D is the same for the three simulations before t = 80. The first
peak in R03D and R π

4 3D represents vortex pairing and the first peak in R π
2 3D represents saturation

of KH. The peak due to vortex pairing does not exist for R π
2 3D as pairing never occurs. Contrary to

the results of Mashayek and Peltier [10], where vortex pairing occurred during the turbulent stage,
the peak of �P − D due to vortex pairing occurs during the preturbulent stage due to our relatively
low Reynolds number. Overall, the increase in total potential energy in cases with vortex pairing
is much higher than the case without vortex pairing because vortex pairing efficiently increases the

063902-14



SENSITIVITY OF VORTEX PAIRING AND MIXING TO …

0 100 200 300 400
0

0.002

0.004

0.006

0.008

0.01

0 100 200 300 400
0   

0.002

0.004

0.006

0.008

0.01 (a) (b)

FIG. 8. (a) The increase in total potential energy caused by fluid’s motion �P − D, (b) the increase in
mixing M.

vertical scale of fluid’s motion and stirs the fluid. The increase in total potential energy in R π
4 3D is

also slightly lower than in R03D.
Figure 8(b) shows the amount of mixing M. For all simulations, the amount of mixing is

negligible before saturation of KH instabilities because the flow is still well-organized and mixing
is mainly caused by laminar molecular diffusion. This is consistent with findings of Mashayek and
Peltier [10], Rahmani et al. [47], and Salehipour and Peltier [13], which have shown that mixing is
negligible before the KH billow reaches its maximum amplitude. After about t = 130, the amount of
mixing significantly increases as small-scale motions reach sufficient amplitude and mixing occurs
through turbulent diffusion. As turbulence subsides, the amount of mixing gradually approaches a
constant. The final amount of mixing in simulation R03D with vortex pairing is significantly higher
than simulation R π

2 3D without pairing. The amount of mixing M at t = 400 in simulation R03D
is double that of simulation R π

2 3D. Mixing in simulation R π
4 3D is only slightly lower than that in

simulation R03D.
We examine the dependence of the final amount of mixing M and the cumulative mixing

efficiency E
t3d −t f
c , defined in Eq. (19) as a measure of mixing efficiency during the active turbulence

stage, on θM
sub in Fig. 9. In the same figure we also show the variation of the overall cumulative mixing

efficiency, E
t0−t f
c , with θM

sub. As the phase of the subharmonic mode relative to KH decreases from
0 to −π

2 , mixing drops monotonically to less than half of its maximum value at θM
sub = 0. However,

this effect is less pronounced when the phase difference is close to optimal and mixing starts to
sharply drop for θM

sub � −0.375π . This is consistent with the laboratory experiments of Husain and
Hussain [28] and Hajj et al. [26], where they observed the vortex pairing was suppressed over a
range of phases close to the nonoptimal phase.

The turbulent phase cumulative mixing efficiency drops monotonically from 0.229 at θM
sub = 0

to 0.198 at θM
sub = −π

2 , marking a 14% drop. The overall cumulative mixing efficiency drops 20%,
from 0.193 to 0.155 as θM

sub varies from the optimal phase of 0 to the nonoptimal phase of −π/2.
Therefore, the effect of phase on cumulative mixing efficiency is less pronounced compared to its
effect on the amount of mixing. The effect of phase is more significant for the overall cumulative
mixing efficiency, E

t0−t f
c , compared to the turbulent phase cumulative mixing efficiency, E

t3d −t f
c .

The reason is the effects of the initial perturbations are more important during the initial laminar
phases of the flow that are included in the overall cumulative mixing efficiency measurement. The
overall mixing efficiency, E

t0−t f
c , is lower than the turbulent mixing efficiency, E

t3d −t f
c , contrary to the

results of some previous studies [10,42,43] that found a highly efficient preturbulent mixing. This
difference is because our Prandtl number is higher compared to these studies and so the preturbulent
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FIG. 9. The dependence of (a) the final amount of mixing M and (b) the cumulative mixing efficiency Ec

on the phase difference between the primary KH and the subharmonic component, θM
sub. In panel (b) the solid

line shows E
t3d −t f
c , the cumulative mixing efficiency computed from t3d to t f , and the dashed line delineates the

overall cumulative mixing efficiency, E
t0−t f
c , the cumulative mixing efficiency computed from t = 0 to t f .

mixing is small in our simulations (e.g., see Rahmani et al. [47]). Our random perturbations also
induce a higher viscous dissipation in the beginning of the simulation and slightly lower mixing
efficiency in the preturbulent stage. The range of E

t3d −t f
c obtained here is close to the cumulative

mixing efficiency of 0.2 commonly computed in other numerical studies [12,44,47–49], while the
range of E

t0−t f
c is slightly lower than 0.2. However, these studies have revealed some sensitivity of

the mixing efficiency to the Reynolds number, Prandtl number, and the bulk Richardson number
that can make direct comparisons to our results less straightforward.

VI. CONCLUSIONS

We have investigated the effect of phase of subharmonic mode on vortex pairing and mixing
using two-dimensional and three-dimensional DNSs. In two-dimensional simulations, we use a ratio
to measure the extent to which that the subharmonic component deviates from the eigenfunction to
the TG equation with the same wave number. That the ratio quickly increases to 1 from a small
number shows that the nonmodal subharmonic component quickly evolves to the eigenfunction. We
also track the Lagrangian trajectories of two fluid particles located at the centres of the KH vortices
and their trajectories are shown to represent the vortex centres before small scale motions prevail.
Similar to Ho and Huang [16], when kinetic energy of the subharmonic mode reaches its maximum,
one KH vortex is almost on top of the other, i.e., tsub coincides with tp.

As Klaassen and Peltier [18] and Smyth and Peltier [23] have shown, if the subharmonic mode
is out of phase, then it adjusts its phase and pairing is delayed. We have found that if the initial
phase of the subharmonic mode is not close to ±π

2 , pairing is only slightly delayed and the flow
perturbed by eigenfunctions behaves similarly to the flow perturbed by random perturbations.
Before the KH instability reaches its first maximum in kinetic energy, i.e., before tkh, the growth
rate of the subharmonic component is almost the same for the eigenfunction simulation and random
perturbation simulation if the phase of the subharmonic component is the same. Moreover, the
growth rate in the case where the phase is about π

4 is close to the case where the phase is 0. After tkh,
if the phase is not close to ±π

2 , then the growth rate is still not sensitive to the initial perturbations. If
the phase is close to ±π

2 , then the growth rate in the random perturbation differs significantly from
that in the eigenfunction simulation and the subharmonic component reaches its maximum earlier
in the random perturbation simulation. To investigate the sensitivity of time of pairing to the phase,
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we ran simulations perturbed by the KH and subharmonic eigenfunctions with different phases. It
is shown that tsub increases with the phase of the subharmonic mode and it increases significantly at
θM

sub = ±π
2 . Time of pairing and tsub show the same trend in the flows perturbed by eigenfunctions

as in the flows perturbed by random perturbations.
In three-dimensional simulations, vortex pairing is always suppressed by three-dimensional

motions and the suppression is greater when the phase difference is larger. Thus the maximum
two-dimensional kinetic energy decreases as the phase increases. Three-dimensional motions can
grow to sufficient amplitude and eliminate pairing when the phase difference is sufficiently large.
Weaker pairing leads to less mixing inasmuch as mixing for the phase of the subharmonic mode
of −π

2 mixing drops more than two times compared to when the phase is 0. The mixing efficiency
however diminishes only slightly when the phase changes from 0 to −π

2 and its value remains close
to 0.2, commonly found in previous studies. Mixing sharply decreases as the phase approaches −π

2 ,
similar to the sharp increase in the time of pairing close to ±π

2 . These results are consistent with the
laboratory observations of Hajj et al. [26], and Husain and Hussain [28] for the suppression of the
subharmonic mode close to an unfavourable phase.

We examined the effects of the initial amplitude ratio between the KH and subharmonic energy
on pairing for the case where the phase was optimal for pairing. We found that by changing the
amplitude ratio the time of pairing will be adjusted so that the subharmonic mode reaches the
same peak. The changes in the phase of the subharmonic mode however have more significant
consequences for the time of pairing as the phase change influences the growth rate of the
subharmonic mode. A more comprehensive investigation of the combined effects of the amplitude
ratio and the phase is the subject of future studies.
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APPENDIX: AMPLITUDE RATIO EFFECTS

In this Appendix, we examine the effects of the amplitude ratio between the KH and the
subharmonic mode of the eigenfunction perturbations in the simulation E02D in Table II. We first
lower the amplitude of the initial subharmonic mode to obtain an initial ratio between the kinetic
energy of the two modes of (Ksub/Kkh)t0 = 0.05. In a second simulation, we increase the amplitude
of the subharmonic mode in the initial perturbation to get (Ksub/Kkh)t0 = 30. These amplitude ratios
are considered to provide significant deviations from one as in natural environments the energy is
more likely to be distributed evenly between different modes.

The growth of the kinetic energy of the KH and the subharmonic mode for the three different
amplitude ratios are shown in Fig. 10. The KH mode has a higher linear growth rate compared to
the subharmonic mode and reaches its first peak around t = 81 for all cases. The time evolution of
Kkh to a saturation is slightly different when (Ksub/Kkh)t0 = 30. In all cases, the subharmonic mode
exhibits a close to linear growth before reaching a peak at tsub. The location of the peak is shifted
in time depending on the value of (Ksub/Kkh)t0 and varies between tsub = 80 and tsub = 124. The
growth rates of the subharmonic mode are however the same in all three cases. We also present the
trajectories of the fluid particles initially located at vortex centers in Fig. 10. The first crossing of
the two particles, that identifies the time of pairing, tp, occurs at t = 78 for (Ksub/Kkh)t0 = 30 and at
t = 124 for (Ksub/Kkh)t0 = 0.05. These times are summarized in Table III.

The initial amplitude ratio between the KH and the subharmonic mode changes the time of
pairing; see Table III. As one might expect, as the initial amplitude of the subharmonic mode relative
to the KH mode increases, the time of pairing decreases. However, when compared to the effects of
the phase, the amplitude ratio effects are less pronounced. By increasing (Ksub/Kkh)t0 from 0.05 to
30, which is a factor of 600 and an unlikely range of variation in nature, tp decreases from 125 to
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FIG. 10. Effects of the initial perturbation amplitude on the emergence of pairing for the simulation E02D.
The kinetic energy of the KH and the subharmonic mode for the initial ratios of (a) (Ksub/Kkh)t0 = 1.0,
(b) (Ksub/Kkh)t0 = 0.05, and (c) (Ksub/Kkh)t0 = 30. The dashed lines show the linear growth predictions from
the Taylor Goldstein equations. Panel (d) shows the x coordinate of two fluid particles initially located at Lx/4
and 3Lx/4.

78. However, for the same simulation, by changing the phase from 0 to π
2 , tp increases from 107 to

249. The changes in the time of pairing due to the effects of the amplitude ratio are mainly because
of the different time required for the subharmonic mode to reach a saturation, while the growth rate
of the subharmonic mode remains independent of the amplitude ratio. The phase effects, however,
are due to the phase locks between the two modes that occur more slowly and influence the growth
rate of the subharmonic mode.

TABLE III. Times of pairing for different initial perturbation amplitude ratios in the simulation E02D.

(Ksub/Kkh)t0 = 0.05 (Ksub/Kkh)t0 = 1 (Ksub/Kkh)t0 = 30

tsub 80 104 124
tp 78 107 125
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