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Coherent turbulent wave-packet structures in a jet at Reynolds number 460 000 and
Mach number 0.4 are extracted from experimental measurements and are modeled as linear
fluctuations around the mean flow. The linear model is based on harmonic optimal forcing
structures and their associated flow response at individual Strouhal numbers, obtained
from analysis of the global linear resolvent operator. These forcing-response wave packets
(“resolvent modes”) are first discussed with regard to relevant physical mechanisms that
provide energy gain of flow perturbations in the jet. Modal shear instability and the
nonmodal Orr mechanism are identified as dominant elements, cleanly separated between
the optimal and suboptimal forcing-response pairs. A theoretical development in the frame-
work of spectral covariance dynamics then explicates the link between linear harmonic
forcing-response structures and the cross-spectral density (CSD) of stochastic turbulent
fluctuations. A low-rank model of the CSD at given Strouhal number is formulated from
a truncated set of linear resolvent modes. Corresponding experimental CSD matrices are
constructed from extensive two-point velocity measurements. Their eigenmodes (spectral
proper orthogonal or SPOD modes) represent coherent wave-packet structures, and these
are compared to their counterparts obtained from the linear model. Close agreement is
demonstrated in the range of “preferred mode” Strouhal numbers, around a value of 0.4,
between the leading coherent wave-packet structures as educed from the experiment and
from the linear resolvent-based model.

DOI: 10.1103/PhysRevFluids.4.063901

I. INTRODUCTION

The presence of orderly structures in many turbulent shear flows has been abundantly docu-
mented over the past fifty years; in the case of jets, such studies have largely been motivated by the
need to reduce their noise generation. It was recognized early on that coherent structures in turbulent
jets strongly resemble instability wave packets, as if they were governed by linear dynamics of
small-amplitude fluctuations in a time-averaged mean flow [1]. Many variants of linear analysis
techniques have since been explored, in order to identify a model that may faithfully reproduce
the coherent turbulence structures in jets. Based on the assumption that linear jet instability is
driven by incoming disturbances from upstream, Michalke [2] computed the spatial growth of linear
perturbations in parallel jet profiles, followed by the inclusion of weakly nonparallel effects by way
of multiple-scales expansion [3,4] or parabolized stability equations (PSE [5]), as well as fully
nonparallel linear simulations with inlet forcing [6]. As discussed by Jordan and Colonius [1], all
these studies successfully predict the observed spatial growth of coherent turbulence structures near
the nozzle, over a dominant but restricted range of frequencies. However, the underlying theoretical
model a priori pertains to deterministic linear perturbations developing in a steady laminar base
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flow, and the justification for extending it to chaotic nonlinear fluctuations around a statistical
turbulent mean state has remained vague.

Model equations that govern the statistical moments of turbulent flow, like average and co-
variance values, can be constructed by considering the linearized Navier-Stokes system subject to
stochastic forcing [7]; this approach has recently evolved into the statistical state dynamics frame-
work, where stochastic forcing of higher order statistical moments is considered [8]. Application
of this framework to the aerodynamic turbulent jet problem is very promising; the interpretation,
given on page 6 in Ref. [8], that “turbulence in shear flow can be essentially understood as
determined by quasi-linear interaction occurring directly between a spatial or temporal mean
flow and perturbations” whereas “the role of nonlinearity in the dynamics of turbulence is highly
restricted” is clearly born out by the empirical evidence of turbulent jet studies [1]. While most of
the literature on stochastic forcing in the linearized Navier-Stokes equations, including the reviews
by Schmid (Sec. 4 in Ref. [9]) and Bagheri et al. [10], focuses on time-domain formulations of
covariance dynamics, coherence in jet turbulence has often been analyzed in the frequency domain.
In particular, several recent jet studies make use of spectral proper orthogonal decomposition
(SPOD, see Ref. [11], not to be confused with Ref. [12]) as a means to extract empirical coherent
structures at a given frequency from experimental or numerical flow data [5,13,14].

Linear instability analysis of jets in recent years has increasingly been carried out in a frequency-
domain framework based on optimal forcing and associated flow response structures, with no
limiting assumptions about the spatial development of the base state [15–21]. Forcing and response
structures in this formalism are distributed throughout the interior of the flow, in contrast to the
assumption of pure upstream boundary forcing made in most previous models (as cited above), and
they are found as the singular modes of the global resolvent operator [9]. This global resolvent
framework, also referred to as “frequency response” [15,22] or “input-output” [17] analysis, has
similarly been applied in the study of boundary layers [23–25], and its potential for the modeling
of stochastic dynamics has been explored for backward-facing step flow [26–28]. The question
at this point remains, exactly what stochastic quantities can be consistently modeled on the basis
of linear resolvent analysis? Dergham et al. [26] use a low-rank resolvent model in order to
construct approximations of time-domain POD modes, whereas Boujo and Gallaire [27] follow the
arguments of Farrell and Ioannou [22] in order to estimate the frequency spectrum of the stochastic
flow response to white-noise forcing. Beneddine et al. [28] go further and set out to model the
spatial distribution of coherent fluctuations in the frequency domain; they demonstrate convincing
agreement between the spatial structures of the optimal linear flow response and the leading SPOD
mode, obtained from numerical simulations.

A formal justification for a direct comparison between optimal linear response structures and
SPOD modes has been suggested by Beneddine et al. [28], and, with an increasing level of detail,
in two conference papers [19,29] and by Towne et al. [20], who also examine the link between
resolvent modes and dynamic mode decomposition (DMD). A recent review article [30] provides
a didactical introduction to resolvent-based modeling of SPOD modes, including numerical codes
for a simple model problem, and a discussion of its relevance for the study of jet noise. Schmidt
et al. [21] present a detailed comparison between resolvent analysis results and SPOD modes,
extracted from LES data, for high-Reynolds-number turbulent jets at Mach numbers 0.4, 0.9, and
1.5. It is found that the leading SPOD mode is well reproduced by the optimal linear flow response,
at the dominant Strouhal number 0.6 for the Ma = 0.4 case.

The present paper revisits the same turbulent jet configuration, at Mach number 0.4 and Reynolds
number 460 000, entirely based on the experimental measurements by Cavalieri et al. [13] and
Jaunet et al. [31]. The latter study involved velocity measurements in cross-planes of the jet
by means of two high-cadence, stereoscopic particle-image velocimetry systems that could be
displaced in the streamwise direction so as to provide the cross-spectral density (CSD) of the
velocity fluctuations, decomposed both in frequency and in azimuth. In this paper, SPOD modes
will be extracted from these experimental CSD matrices, such that they can be compared with
linear predictions derived from a resolvent analysis of the experimental mean flow. The principal
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FIG. 1. Axial velocity of the mean flow, as used throughout this study [33]. The distribution has been
modeled such as to closely reproduce the experimental measurements [13]. The pipe wall is represented as a
white line, and only a portion of the numerical domain is shown. The rasterization of the color plot corresponds
to the standard numerical grid resolution (Sec. III D).

new aspects of the present study are (i) the use of an experimental database for jet resolvent
analysis, (ii) the extraction of SPOD modes from experimental jet measurements, (iii) the design
of a resolvent-based linear model for such experimental SPOD modes, which are necessarily
based on partial-state information, and (iv) a detailed discussion of the linear instability dynamics
triggered by optimal and suboptimal forcing in thin-shear-layer jets, which, by extension, underpin
the spectral covariance dynamics contained in the SPOD modes. Although the results of this study
are mostly consistent with those of Schmidt et al. [21], several quantitative as well as qualitative
differences arise, with relevance for the physical interpretation in terms of instability mechanisms.
These differences are attributed to the inclusion of a nozzle pipe in the present analysis. The
nozzle boundary layer is identified as the most receptive flow region in the following calculations,
underlining the importance of its numerical resolution, similar to recent observations in large-eddy
simulations (LES) [32].

The flow configuration, corresponding to the jet experiments, is briefly defined in Sec. II. The
linear resolvent analysis, including the modal decomposition framework, the numerical implemen-
tation, and the presentation of results, is documented in Sec. III. This is followed, in Sec. IV, by a
discussion of the salient linear instability mechanisms that are active in optimal and suboptimal jet
forcing. Section V presents a detailed comparison between SPOD modes from experimental data
and stochastic predictions derived from the resolvent-based linear model. Our new results are then
put into perspective with regard to previous modeling attempts. The paper closes, in Sec. VI, with a
summary of the main conclusions.

II. FLOW CONFIGURATION

The study is based on jet experiments conducted at the Bruit et Vent jet-noise facility of the
Pprime Institute in Poitiers. Technical details of the experimental apparatus, as well as measurement
validation, are thoroughly described in past publications [13,31].

The experiments are performed on a Ma = 0.4 isothermal jet issuing from a convergent-straight
nozzle. The Reynolds number of the jet, based on the nozzle exit diameter D = 50 mm and the
maximum exit velocity Uj , is defined as Re = UjD/ν = 460 000, where ν is the kinematic viscosity.
The Strouhal number corresponding to the dimensional frequency f is defined as St = f D/Uj . The
transition to turbulence of the incoming boundary layer is forced using an azimuthally homogeneous
carborandum strip, such that a fully turbulent boundary layer is obtained at the exit section of the
nozzle (see Fig. 1 in Ref. [13]).

Free-jet mean flow measurements from this setup, obtained with a Pitot tube, are available from
the experiments by Cavalieri et al. [13], and excellent reproducibility has been demonstrated in
the more recent experiments by Jaunet et al. [31]. These experimental data are used to construct
a parametric model of the mean flow, providing smooth variations of axial and radial velocity,
density, and temperature [33]. The modeled axial velocity field is shown in Fig. 1. In the free-jet
region, our modeling procedure follows closely the one described in Rodriguez et al. [14], but the
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ū

FIG. 2. Comparison of axial velocity profiles along r, at various x locations, between the numerically
modeled mean flow (red lines) and the experimental measurements [13] (circles).

present mean flow in our numerical domain has been entirely computed anew from the experimental
reference data. It includes a straight pipe that is added upstream of the nozzle exit x = 0, and the
mean flow inside this pipe is taken to be parallel. Twenty-one experimental velocity profiles in the
free jet are available between x = 0.1D and x = 10D; some of these are compared in Fig. 2 to
the modeled mean flow at selected x locations. At x = 6.2D, the interpolated center line velocity
falls below 0.95Uj , which may be taken to mark the end of the potential core. Downstream of
x = 10D, a self-similar development is assumed, according to the solution discussed in Sec. 5.2 of
Ref. [34],

ū(r, x) = ū(0, x)

(1 + c1η2)2
with η = r

x − x0
and ū(0, x) = c2

x − x0
. (1)

The parameters c1 and c2, as well as the virtual origin x0, are determined from the available
experimental profiles. Parallel nozzle flow, near-nozzle jet, and self-similar far field constitute
three distinct flow regions, and smooth transitions between these three are enforced by means of
weighted superposition in overlap zones [15,35]. Residual nonsmoothness in the derivatives of
the reconstructed mean flow is removed by applying high-order explicit filtering. The final axial
velocity field (Fig. 1) is used for computing temperature and density distributions by way of the
Crocco-Busemann relation, and the radial velocity component is recovered from the continuity
equation [14].

The momentum thickness of the free-jet shear layer, defined at a given x position as

δm =
∫ rmax

0

ρ̄ū

ρ∞Uj

(
1 − ū

Uj

)
dr, (2)

grows linearly in x, at a rate of dδm/dx ≈ 0.031. This variation is extrapolated upstream from
x = 0.1D to the nozzle exit at x = 0, resulting in a momentum thickness δm(x = 0) = 0.0075D,
significantly thinner than in the LES-based study by Schmidt et al. [Ref. [21], their Fig. 2(b)]. This
exit profile is taken between 0 � r � D/2 to form the parallel flow inside the nozzle, with a linear
decay to zero over the first few discretisation points nearest the wall interior. This parallel flow has
a thickness δm = 0.0055D, when evaluated according to (2) with rmax = D/2.

III. LINEAR RESOLVENT ANALYSIS OF FLUCTUATIONS AROUND A MEAN FLOW

A. Governing equations

We consider the compressible Navier-Stokes equations, in terms of conservative variables
(ρ, ρu, ρE ), cast in axisymmetric cylindrical coordinates (x, r). In the notation of Ref. [36], these
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equations are

∂ρ

∂t
+ ∇(ρu) = 0, (3a)

∂ρu
∂t

+ ∇(ρu ⊗ u) = −∇p + ∇τ, (3b)

∂ρE

∂t
+ ∇(ρuE ) = −∇h + ∇(τu), (3c)

where ρ is density and u = (ux, ur, 0) is the velocity vector, with axial and radial components ux

and ur , and with zero azimuthal velocity. In our axisymmetric setting, all quantities are independent
of the azimuthal coordinate θ . The total energy E is then defined as

E = T

γ (γ − 1)Ma2
+ 1

2
(|ux|2 + |ur |2), (4)

with γ = 1.4 being the ratio of specific heats. The tensor τ denotes the molecular stresses, and h
is the heat flux vector. The reference length of the problem is the pipe diameter D. The reference
velocity is chosen as the center-line velocity Uj at the pipe exit x = 0, and the reference density
is set as the ambient value ρ∞. Sutherland’s law is used to calculate the viscosity, and the Prandtl
number is set to Pr = 0.72, the standard value for air.

B. Representation as a linear input-output system

The flow variables q = (ρ, ρux, ρur, ρE ) are decomposed into their time-averaged mean
and time-dependent fluctuation components, q(x, r, t ) = q̄(x, r) + q′(x, r, t ). The governing equa-
tions (3) can then be rewritten in the form

∂q′

∂t
− Aq′ = f , (5)

where A is the operator obtained by linearizing (3) around the mean flow, and the vector f contains
all remaining nonlinearities in q′, i.e., the fluctuations of the generalised Reynolds stresses [37], as
well as any external forcing at the boundaries of a finite-domain flow problem. The vector f thus
contains zero-mean source terms of the continuity, momentum, and energy equations.

A Fourier-transform

q′(x, r, t ) =
∫ ∞

−∞
q̂(x, r, ω)eiωt dω, f (x, r, t ) =

∫ ∞

−∞
f̂ (x, r, ω)eiωt dω, (6)

leads to the frequency-domain system

q̂ = (iωI − A)−1 f̂ = R(ω) f̂ , (7)

where R is the resolvent operator [9]. As f contains all terms nonlinear in q′, the forcing with
its Fourier-transform f̂ induces an inherent coupling between all frequencies. In order to make
use of the system (7) for the purpose of modeling, a closure assumption is required that allows a
decoupling of frequencies. Following previous literature [20,22,28,38], we choose to simply regard
f as an anonymous forcing term, representing any incoming perturbations from the nozzle or the
ambient, as well as fluctuations in the nonlinear terms of the momentum and energy equations, but
without accounting for its inner structure that makes it dependent on q′. Accordingly, we neglect the
dependence of f̂ at one given frequency on q̂ at other frequencies.

One possibility to account for a limited interaction between frequencies lies in the inclusion of
turbulent dissipation through small scales in the linear operator A, in the form of turbulent viscosity.
Indeed, any portion of f̂ may be modeled as being linearly dependent on q̂, without introducing
explicit coupling between frequencies. Some empirical evidence suggests the pertinence of such
modeling [39,40], and we have used it in the past for the resolvent analysis of turbulent jets [18,41],
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but the procedure requires additional modeling hypotheses and is not pursued here. All computations
in this section only account for molecular viscosity at Re = 460 000.

C. Modal decomposition of the resolvent operator

First attempts to model the global linear response of shear flows to forcing were based on
eigenmode decomposition, e.g., Ref. [42]. However, it has generally been realized that amplifier-
type flow dynamics [43] are not adequately described by their spectrum of stable eigenmodes. For
jet flows, this case is made by Garnaud et al. [44]. Instead, a decomposition approach based on
singular modes (SVD) is conceptually well suited.

The following development restates the SVD-based resolvent analysis formalism as it has been
applied in numerous past studies, including Refs. [15,17–21]. It is presented here in a form that
establishes our nomenclature and clarifies the influence of the chosen energy norm.

For a given frequency ω, the resolvent operator provides the mapping between any forcing
structure f̂ (x, r, ω) and its linear flow response q̂(x, r, ω). The common choice for an energy
measure in compressible settings is the norm defined by Chu [45],

‖q̂‖2 =
∫∫

�

[
ρ̄(|ux|2 + |ur |2) + p̄

ρ̄
|ρ̂|2 + ρ̄2

γ 2(γ − 1)Ma4 p̄
|T̂ |2

]
r dr dx, (8)

which is used in the following computations. Both the forcing and the flow response are measured
in this norm, and the spatial integration in both cases is carried out over the entire numerical domain
�, with the exception of absorbing layers near the outer boundaries (see Sec. III D). In discrete
form, the norm is expressed by a Hermitian positive-definite matrix M, such that ‖q̂‖2 = q̂H Mq̂,
with a Cholesky factorization M = NH N . Flow forcing and response are represented by discrete
complex-valued vectors f̂ and q̂ in the following.

The gain between input and output energy is then defined as

σ 2 = ‖q̂‖2

‖ f̂ ‖2
= f̂ H RH MR f̂

f̂ H M f̂
= v̂H N−1,H RH MRN−1v̂

v̂H v̂
, with v̂ = N f̂ , (9)

which has the form of a Rayleigh quotient, involving the Hermitian operator N−1,H RH MRN−1.
Consequently, the eigenvectors v̂i of this operator are orthogonal, its eigenvalues σ 2

i are real positive,
and the largest possible energy gain of the linear flow system is given by the largest eigenvalue. The
forcing structure that gives rise to an energy gain σ 2

i is recovered as f̂i = N−1v̂i. After normalization,
v̂H

i v̂i = 1, the eigenvectors v̂i are the columns of the right singular matrix V of the operator

NRN−1 = UV H , (10)

associated with the singular values σi as entries in the diagonal matrix , and with the unique unitary
matrix U .

The forcing structures f̂i are the columns of a matrix F = N−1V , and the associated flow response
structures q̂i form the matrix Q̂ = RF . With (10), it is found that Q̂ = N−1U, from where it
follows that Q̂H MQ̂ = 2. A normalized response matrix Q = Q̂−1 is introduced, such that the
final identities for our modal resolvent decomposition are recovered:

F H MF = QH MQ = I, (11a)

R = QF H M. (11b)

The singular values σi are arranged in descending order, such that the optimal energy gain is
given by σ 2

max = σ 2
1 , arising for the forcing structure f̂1. In the inner-product space defined with

the matrix M, each vector f̂ j represents the optimal forcing in the subspace that is orthogonal to
all leading vectors f̂i with i > j. As a convention, we will refer to a given triple (σi, f̂i, q̂i) as the
resolvent mode i, consisting of the ith gain, forcing mode, and response mode. The triple (σ1, f̂1, q̂1)

063901-6



RESOLVENT-BASED MODELING OF COHERENT …

0 5 10 15 2010−3

10−2

10−1

r

Δr
(a)

−10 0 10 20
10−2

10−1

x

Δx

(b)

FIG. 3. Spacing of mesh points (a) in the radial direction and (b) in the axial direction. The mesh is
orthogonal.

of optimal gain, optimal forcing, and optimal response is characterized by the maximum value of
σ , and resolvent modes with i > 1 are sometimes referred to as suboptimals. Note that gain in the
following refers to σ , not to the energy gain, given by σ 2.

D. Matrix-free computation of resolvent modes

Gain values and associated forcing modes are computed by solving the reformulated eigenvalue
problem

RH MR f̂i = σ 2
i M f̂i, (12)

using the iterative Lanczos method that is provided by the SLEPc library [46]. A matrix-free
time-stepping method is used in each iteration step, as described in detail in Ref. [35]. Time stepping
needs to be performed both for the solution of a direct system, a = Rb, and for the subsequent
solution of an adjoint system, a′ = RH b′. The time horizon tmax of these calculations must be
chosen long enough such that the final periodic flow regime is recovered with sufficient accuracy. A
numerical procedure for the adjoint system is constructed according to the method of Fosas de Pando
et al. [47], which ensures that the complete numerical encoding of the operator in (12) remains
strictly Hermitian; this is an important requirement for the efficiency of the Lanczos algorithm.

The linear system (5) is discretized with explicit finite-difference schemes [48], using an 11-
point stencil. Time integration is performed with a third-order Runge-Kutta algorithm, with time
step �t = 2.85 × 10−3. The computational domain extends along the streamwise direction over
the interval x ∈ [−12.5, 25], and from the symmetry axis r = 0 outward to r = 20; the nozzle
exit is placed at x = 0. The mesh that is used in all calculations presented in the following sections
consists of (Nx, Nr ) = (750, 380) discretization points. These points are distributed on a nonuniform
Cartesian grid, with maximum resolution along the pipe walls, in the shear layer and around the
nozzle lip. Figure 3 displays the axial and radial point distributions.

Symmetry boundary conditions are imposed on the jet axis by the use of ghost points: ρ, ρux, and
ρE are prescribed to be even functions in r across the axis, while ρur is odd. On all other boundaries,
the LODI boundary conditions are applied [49], in combination with absorbing layers [50] at r > 16,
x < −8, and x > 21.

Convergence of the optimal gain is tested with respect to the grid spacing and to the final time
tmax of the simulations. Several results are reported in Table I. For a fixed value tmax = 60, the
mesh of case C0 is deemed sufficiently refined; this is the standard mesh displayed in Fig. 3. The
final time is chosen by tracking the energy of time-harmonic fluctuations, in order to evaluate to
what extent transient dynamics have died out. Satisfactory convergence is reached at tmax = 80,
which corresponds approximately to twice the convection time of vortical structures between the
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TABLE I. Convergence of the optimal gain σ1 at St = 0.5, as a function of grid resolution and final
simulation time tmax. These test calculations were performed with a reduced Krylov space dimension Nkr = 4.
A value of Nkr = 12 is used in all following computations for increased accuracy of suboptimal modes.

�xmin �rmin tmax σ1

Case A 0.0200 0.0075 60 5117.2
Case B 0.0200 0.0025 60 5256.3
Case C0 0.0100 0.0025 60 5264.3
Case C1 0.0100 0.0025 70 5294.4
Case C2 0.0100 0.0025 75 5302.6
Case C3 0.0100 0.0025 80 5306.6

nozzle exit and the downstream end of the physical domain; this value is retained for all following
calculations.

For any given Strouhal number, the five leading resolvent modes are computed, using a Krylov
space of dimension Nkr = 12. The Lanczos iteration is halted when the estimated residual norms of
all five modes have fallen below the tolerance value ε = 10−4 (see Ref. [46]), implying confidence
in the first four significant digits of the gain values. A typical computation for one Strouhal number
requires about 12–16 wall-time hours on 192 cores of Intel Xeon E5-2690 v3 CPUs.

E. Resolvent mode results

Gain values of the five leading resolvent modes are shown in Fig. 4 as functions of the Strouhal
number. Above St = 0.3, the optimal gain curve is well separated from the suboptimal ones. The
maximum overall gain occurs at St = 0.7, where σ1 is one order of magnitude larger than σ2.

The optimal forcing and response structures are presented in Figs. 5 and 6 for several Strouhal
numbers between 0.2 and 0.7; snapshots of the real axial momentum components are shown in
all frames, with a rasterization that corresponds to the numerical mesh. At Strouhal numbers 0.3
and above, the forcing is localized in a thin layer at the inner pipe wall, near the nozzle. The
right-column frames in Fig. 5 give a magnified view of the forcing in this flow region. Elongated
structures are tilted against the flow direction, in a fashion that is typical of the Orr mechanism
(see Sec. IV for a brief description of this phenomenon). Similar optimal forcing structures

0.2 0.4 0.6 0.8 1 1.2 1.4

102

103

104

St

σ

FIG. 4. The five leading resolvent gain values ( σ1, σ2, σ3, σ4, ◦ σ5) as functions of Strouhal
number.
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FIG. 5. Optimal forcing modes at various Strouhal numbers, associated with the response modes in Fig. 6.
The real part of axial velocity forcing is represented. [(a), (c), (e), (g)] Optimal forcing, plotted with aspect
ratio 2. [(b), (d), (f), (h)] Closeup of the pipe boundary layer, where the forcing is localized, at the same St
values as in the left column. The rasterization corresponds to the numerical mesh; each field is normalized with
respect to its maximum amplitude.

have been identified in boundary layers [23,24] and in past studies of incompressible as well as
compressible jets [15,16,18]. The response structures at St � 0.3 exhibit the classical wave-packet
shape associated with shear instability, with peak amplitudes inside the potential core [14,15,21].

The main characteristics of both the optimal forcing and the optimal response modes are similar
at all Strouhal numbers above 0.2: Optimal forcing acts upstream in the pipe and generates a
wave packet with amplitude growth in the potential core region of the jet. As the Strouhal number

(a) St = 0.2
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1r
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0

1r
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1r

(d)St = 0.7
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FIG. 6. Optimal response modes at various Strouhal numbers, associated with the forcing modes in Fig. 5.
The real part of axial velocity perturbations is represented, with aspect ratio 1. The pipe wall is shown as a
black line. Each field is normalized with respect to its maximum amplitude.
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FIG. 7. Suboptimal forcing and response modes for St = 0.7. The real part of axial velocity perturbations
is represented. [(a), (c), (e), (g)] Forcing modes and [(b), (d), (f), (h)] associated response modes. The pipe wall
is shown as a black line. Each field is normalized with respect to its maximum amplitude. The aspect ratio is
2, and strong magnification is required in order to visualize the fine-scale radial variations.

increases, the wavelength shortens, and the location of the peak amplitude moves closer to the
nozzle, consistent with the interpretation of local spatial instability [2]. At low Strouhal numbers,
as shown in Figs. 5(a) and 6(a), different effects seem to arise: In addition to the described scenario,
tilted forcing structures protrude into the free shear layer close to the nozzle, and the response wave
packet appears to be composed of two distinct regions. Along the jet axis, one local amplitude
maximum occurs at x = 5.5, and another one at x = 13, far downstream of the potential core. The
low-St optimal mode results of Schmidt et al. (Fig. 12(f) in Ref. [21]) show a similar pattern. As
argued by those authors, the distinct mode characteristics at low Strouhal numbers are likely to be
associated with a crossing or merging of mode branches, due to a lessened efficiency of the shear
instability mechanism.

Suboptimal forcing and response structures, modes 2–5, are displayed in Fig. 7 for St = 0.7.
The forcing in all cases is again characterized by structures that are tilted against the mean flow,
although these structures arise at a small radial distance away from the pipe wall, and they extend
far into the free jet, with significant amplitude inside the shear region. The associated response wave
packets have their maximum amplitude far downstream of the potential core. The forcing structures
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display radial variations that are suggestive of orthogonal functions, with an increasing number of
zero-amplitude nodes along r, and corresponding radial structures are imparted to the response wave
packets. A similar hierarchy of optimal modes has been described in Ref. [18].

Preliminary results, pertaining to the same flow configuration of the jet experiments, have been
presented in a previous conference paper [19]. While all forcing modes in that paper are visually
identical to the present results, the associated suboptimal response modes were quite different, all
bearing a strong resemblance to the optimal mode. Those earlier calculations were clearly affected
by spurious numerical noise, which in all cases triggered the optimal mode sufficiently so as to
overwhelm the true suboptimal response. Nonsmoothness in the base flow, as used in Ref. [19], was
identified as the cause of this spurious effect. It has been carefully verified that forcing and response
modes in the present results form orthogonal sets, with respect to our scalar product, within the
accuracy imposed by the residual tolerance of the Lanczos algorithm.

IV. INTERPRETATION OF OPTIMAL GROWTH MECHANISMS

The role of modal shear (Kelvin-Helmholtz) and nonmodal Orr mechanisms for optimal
and suboptimal jet resolvent modes has often been invoked in the literature (see, for instance,
Refs. [21,51,52]). The aim of this section is to substantiate this interpretation by use of local analysis
(for shear) and a parallel model flow (for Orr).

The Orr mechanism denotes a linear phenomenon of vorticity convection in a sheared mean flow
that gives rise to a growth of perturbation energy. Vortical perturbation structures of alternating
sign, initially tilted at an angle opposite to the mean shear, are convected by the mean flow in a
way that their tilting angle is first reduced, until the vortex structures are aligned perpendicular to
the main flow direction. This deformation is accompanied by an algebraic energy growth of the
perturbations. Subsequently, the structures are tilted further, such that they are increasingly aligned
with the main flow direction; this phase is accompanied by energy decay. An example of the Orr
scenario in a parallel jet is discussed in the second half of this section. Butler and Farrell [53]
investigate the mechanisms of energy transfer between perturbations and the mean flow for this
phenomenon, based on the Reynolds-Orr equation, in the context of an initial perturbation that
evolves in time. They interpret the energy growth as being caused by an interaction of mean shear
and perturbation Reynolds stresses, whereas Jiménez [54] describes it as being the result of mass
conservation.

Our optimal resolvent modes (Fig. 6) strongly resemble those described by Garnaud et al. [15] for
an incompressible turbulent jet, which have been interpreted as a constructive combination of the Orr
mechanism in the pipe boundary layer and the shear mechanism in the free jet. Close to the nozzle,
the optimal response modes display peak amplitudes inside the free shear layer, when measured
along the radial direction. As discussed in Ref. [15], and consistent with many other studies on
jet wave packets (e.g., Refs. [14,21]), the spatial distribution as well as the strong streamwise
amplitude growth indicates a preponderant role of shear instability in the optimal forcing response.
This hypothesis is easily validated by a comparison with local instability results in the near-nozzle
region. In a local framework, the shear instability mechanism gives rise to a single spatial k+ mode,
which is indeed the only unstable spatial mode that can be found in the jet [55]. The downstream
evolution of this k+ eigenvalue, for St = 0.7 in the present jet mean flow, is displayed in Fig. 8
in terms of its spatial growth rate −ki and its real phase velocity cr = −ω/k. The latter is further
scaled with the local centerline velocity Uc(x) of the jet profile.

The local shear instability mode, for St = 0.7, is seen to be unstable only over the interval 0 �
x � 2.17. Downstream of this position, its eigenfunction (not shown) develops strong oscillations
around r = 0.5, characteristic of the viscous solution in the Stokes sector above the critical
point [56], and it remains numerically tractable with confidence over only a short distance further.
A Reynolds number of 20 000 has been used in these local calculations, lower than in the reference
experiment and in the global resolvent analysis, in order to accommodate an accurate resolution
of eigenfunctions in the slightly stable regime. It can be demonstrated that results in the unstable
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FIG. 8. Growth rate −ki and real phase velocity cr of the local shear instability mode, and their downstream
variations in the jet mean flow. The phase velocity is scaled with the local mean centerline velocity.

regime are unaffected by this large value of Re. Relevant details on local spectra of compressible jets
are discussed by Rodriguez et al. [14]; in particular, it is described how the shear layer mode, once
it is stable, quickly merges into a continuous branch of oscillating modes. The same observations
apply here.

Following the method of Rodriguez et al. [14], the optimal resolvent response wave packet at
St = 0.7 [Fig. 9(a)] is projected at each x onto the complete basis of local spatial eigenfunctions, by
an inner product with the associated local adjoint modes. Projection coefficients are thus obtained
at each x position, and the superposition of all local modes indeed fully reproduces the entire global
response wave packet. The isolated contribution of the local k+ shear mode is shown in Fig. 9(b)
over the streamwise region where this mode is identifiable without ambiguity. It is seen that this
mode alone accounts rather accurately for the optimal resolvent response in the unstable interval
0 � x � 2.17. Downstream of this region, the radial distribution of the local eigenfunction differs
notably from the global result and, contrary to the discussion in Ref. [15], no other single local mode
can be identified as being dominant anywhere for x > 2.17. The global structure in that region
projects significantly onto a large number of local modes from a continuous branch, with strong
nonorthogonal cancellation effects.

The second resolvent response structure (mode 2) at St = 0.7 [Fig. 7(b)] cannot be related to any
dominant local mode anywhere along x. As perturbation growth in the resolvent mode is observed
down to a streamwise station x = 14, it is already obvious that this behavior is not attributable
to modal growth in a local sense, since local instability at this Strouhal number is confined to
x < 2.17. Instead, the spatial features of the response wave packet suggest again an action of the Orr
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FIG. 9. Local shear instability contribution to the optimal response mode at St = 0.7. (a) Optimal response
mode from global resolvent analysis; (b) its reconstruction from projection onto the k+ local shear instability
mode. Axial velocity fluctuations are shown over the interval in x where the local mode can be identified
numerically. Both fields are normalized with respect to their amplitude maxima, but the color scale is saturated
in order to make small-amplitude fluctuations visible. The zero contour is traced in black.
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FIG. 10. Forcing mode structures in a parallel incompressible jet with Gaussian base flow profile. Kinetic
energy at x = 10 is maximized. Streamwise velocity forcing is shown in linear color scale. Black lines: contours
that are convected into vertical lines at x = 10 after �t = (2.5, 5, 7.5, 10). (a) Forcing mode 1; (b) forcing
mode 2.

mechanism, both inside the pipe and in the jet, which feeds on energy gain from the pure convection
of tilted vortical structures in a sheared base flow. Such tilted structures are generated by distributed
forcing in the free shear layer [Fig. 7(a)] upstream of the response maximum. This mechanism has
been described by Tissot et al. [51] in a different framework, where PSE and its adjoint are used
to determine forcing terms that optimally match experimental results for the same jet as analyzed
here. A discussion in terms of local instability modes is not helpful in this case, but the suboptimal
forcing mechanism can still be characterized in the setting of a parallel jet flow, which will serve as
a model problem in order to understand the trends obtained in the nonparallel framework.

A parallel incompressible jet is considered, defined by a Gaussian velocity profile

U (r) = e−2r2
, (13)

as a simple analytical model for the flow downstream of the potential core. The inflection point is
located at r = 0.5, and the flow is locally stable at a Reynolds number Re = 20 000. Axisymmetric
linear perturbations are computed in a numerical domain of 10 diameters in the axial and radial
directions, in response to forcing of both velocity components, which may act anywhere in the
domain. The numerical method of Ref. [57] is adapted for the global computation of optimal
resolvent structures, such that the kinetic energy of the flow response at x = 10, integrated in r,
is maximized. Thus, forcing is allowed to act throughout the flow domain, but the optimization
objective is measured only at the downstream end.

The first two forcing modes are shown in Fig. 10, for a Strouhal number St = 1/π . Tilted
structures are observed, quite similar to the compressible results displayed in Figs. 7(a) and 7(c),
and the tilting angle increases with upstream distance from the target position x = 10. Black curves
trace material lines in the flow that are transported, through convection with the local flow velocity,
into vertical lines at x = 10 after various time lapses. It is immediately seen that the forcing
structures follow closely the local curvature of these contours, especially at far upstream positions.
Along the black curves, the phase of the first forcing mode structure is approximately constant,
whereas the second mode displays a sign change in the phase at the inflection point r = 0.5.
This radial sign change provides for the orthogonality between different forcing modes, and their
associated flow responses, while the streamwise variations in modes 1 and 2 are nearly identical.
The third and fourth forcing modes of the parallel incompressible jet, not shown in Fig. 10, are
merely characterized by additional phase changes in the radial direction. All these features are fully
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consistent with the suboptimal forcing structures found for the nonparallel compressible jet (Fig. 7).
The parallel jet results clearly demonstrate that an Orr-type convection mechanism is responsible
for the forcing gain in this locally stable setting. From their resemblance, it is inferred that the same
mechanism accounts for the gain of suboptimal structures in the nonparallel compressible jet.

In summary, the following main interpretations of the findings in Sec. III E are proposed: (i) The
optimal forcing (mode 1) targets the shear instability of the jet, leading to exponential amplitude
growth along x in a finite region directly downstream of the nozzle. Forcing of this mechanism is
most efficient at the upstream end of the locally unstable region. Even more efficient than direct
forcing of shear-instability perturbations at the nozzle lip is the forcing of Orr structures in the
inner pipe boundary layer, which experience growth before they enter the free jet (consistent with
Refs. [15,16,18]). (ii) Suboptimal forcing exploits the Orr mechanism in the free jet as a means of
perturbation energy growth, independent of modal shear instability. Successive suboptimal modes
exhibit an increasing number of sign changes in the phase along r, which accounts for their mutual
orthogonality. (iii) In our present results (Sec. III E), the above two mechanisms appear to be
well separated in the optimal and suboptimal resolvent modes at moderate Strouhal numbers. At
St = 0.2, the shape of the optimal mode [Figs. 5(a) and 6(a)] suggests a mixed excitation of shear
instability and free-jet Orr mechanism.

V. COHERENT STRUCTURES IN JET TURBULENCE: EXPERIMENT AND LINEAR MODEL

The resolvent analysis of Sec. III so far only describes the linear flow response to harmonic
forcing input. In this section, those results will be leveraged for the modeling of coherent turbulent
structures, where both the forcing f and the response q′ are of a stochastic nature.

A. Extraction of SPOD modes from experimental data

The jet experiments of Jaunet et al. [31] provide an extensive database of synchronous PIV
measurements in cross-planes at several axial positions. Two-point coherence statistics along fixed
radial positions have been discussed in the first publication [31] with a focus on the streamwise
coherence length; here, the same database is fully exploited for the computation of the two-
dimensional cross-spectral density of axisymmetric velocity fluctuations in the (x, r) plane. To our
knowledge, no experimental CSD measurements of comparable size and detail in a turbulent jet
exist in the literature.

The acquisition apparatus consists of two time-resolved stereo-PIV systems that can be moved
independently. Both systems measure the velocity in planes orthogonal to the jet axis at either the
same axial location (coplanar configuration) or at different positions. A sketch of the setup is shown
in Fig. 11(a), where it is illustrated how the two PIV systems can be positioned with respect to the
nozzle. The axial positions of the measurement planes are x1 ∈ [1, 8] and x2 ∈ [x1, 8] in increments
of �x = 0.5, where x1 refers to the axial position of the upstream system (S1) and x2 to that of
the downstream system (S2). The instantaneous velocity fields are interpolated onto a polar grid of
32 points in the radial direction and 64 in azimuth, for r � 0.8, using a bicubic interpolation that
guarantees a close match with the original data.

The axisymmetric component of axial velocity fluctuations is isolated by averaging each
snapshot in the azimuthal direction. The cross-spectral density (CSD) matrix between all resulting
(Nx × Nr ) = (15 × 64) spatial positions is then constructed using Welch’s periodogram method,
with data blocks of 128 time samples, overlapped by 50% (see Ref. [31] for further details). This
empirically constructed matrix converges statistically toward the true CSD, which is defined as the
covariance of the Fourier-transformed velocity signal ŷ(xi, ω),

Pŷŷ|i j (ω) = E [ŷ(xi, ω)ŷ∗(x j, ω)]. (14)

The “expected value” operator E denotes the asymptotic limit of an ensemble average. In the present
calculations, for numerical reasons, each element of the CSD matrix is further scaled with a factor
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(a) (b)

FIG. 11. (a) Sketch of the experimental setup, viewed from the top. The green lines represent the laser light
sheets S1 and S2, placed at x1 and x2, respectively; these planes are shifted during the experiment in the range
x = [1, 8] (see Ref. [31]). (b) Front view of the experiment during the PIV acquisition.

√
rir j , composed of the radial coordinates of any two points for which the correlation is computed.

This procedure ensures that the resulting modified CSD matrix is strictly Hermitian [58].
Eigenvectors φ̃k of the modified matrix are computed. These are then again rescaled in each point

as φk (r, x) = φ̃k (r, x)r−0.5, and they are sorted in descending order of their associated eigenvalues.
The structures φk (r, x) represent the SPOD modes, in the terminology of Picard and Delville [11],
and as used in recent literature [20,21]. Unfortunately, the same name is also used by Sieber
et al. [12] for a different modal decomposition, which is not employed here.

The statistical convergence of SPOD modes is examined by dividing the datasets into two blocks,
indicated as i = (1, 2), and performing the computation procedure on each subset. Each block
corresponds to half of the original dataset. We use a normalized scalar product α between each
mode φi,k obtained with half of the original dataset and the corresponding mode φk obtained with
the complete set,

αi,k = 〈φk, φi,k〉√||φk||2 · ||φi,k||2
. (15)

The scalar quantity αi,k is the correlation coefficient between the kth mode of subset i and the
corresponding mode of the full dataset. We consider modes with a correlation coefficient close to
unity as being converged, showing thus that the same computation with half of the dataset leads to
a very similar result.

The correlation coefficients for St = 0.2, 0.4, 0.6, and 0.8 are presented in Fig. 12. It is clear
from these figures that the analysis is rather sensitive to the amount of data being used. The
discrepancies in the higher (less energetic) modes are partially explained by differences in the order
in which they emerge, depending on the data subset. However, the first two SPOD modes seem to
be sufficiently correlated and can be accepted as being converged at all Strouhal numbers below
St = 0.8. Only modes 1 and 2 will be discussed in the following, for 0.2 � St � 0.7.

B. Resolvent-based modeling of SPOD modes

The relation between resolvent modes, as presented in Sec. III, and SPOD modes, as obtained
from the experiments, is made explicit here on the basis of our earlier formulation [19]. The
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FIG. 12. Correlation coefficients α [Eq. (15)], for a quantification of the statistical convergence of
experimental SPOD modes. Two subsets of data are taken from the experimental acquisitions, and for each of
these the SPOD modes are computed and compared: ( ) α1,k and ( ) α2,k . Satisfactory convergence is observed
at least for mode 1 (throughout) and for mode 2 (at St < 0.8). (a) St = 0.2, (b) St = 0.4, (c) St = 0.6, and
(d) St = 0.8.

following development is consistent with the recent work of Towne et al. [20] and Schmidt
et al. [21], while using the nomenclature introduced in the previous sections.

Let f (t ) and q′(t ) represent spatial discretizations of the stochastic forcing and response, as
discussed in Sec. III B. The CSD of their spectral components f̂ (ω) and q̂(ω) is given by

Pf̂ f̂ (ω) = E [ f̂ (ω) f̂ H (ω)] and Pq̂q̂(ω) = E [q̂(ω)q̂H (ω)]. (16)

For the purpose of flow modeling, we consider the CSD of an experimentally observable vector
ŷ of flow quantities,

Pŷŷ(ω) = E [ŷ(ω)ŷH (ω)], with ŷ = Cq̂. (17)

The relation between Pŷŷ and Pf̂ f̂ at a given frequency involves the resolvent operator; with (11b)
and the definitions in Sec. III C, this relation can be written as

Pŷŷ = CR E [ f̂ f̂ H ]RHCH = CQF H MPf̂ f̂ MFQHCH . (18)

If the forcing f̂ is expanded in the basis given by the columns of F , with a coefficient vector β such
that f̂ = Fβ, (18) becomes

Pŷŷ = CQPββQHCH . (19)

We now seek the relation between eigenvectors (SPOD modes) of Pŷŷ and the resolvent response
modes contained in the matrix Q. If full-state information is available, C = I and ŷ = q̂, one can
write

NPŷŷNH = NQPββQH NH . (20)
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Recall that the scalar product (8) is represented by the matrix M = NH N . As NQ is unitary,
(NQ)H NQ = I , it represents the eigenvector matrix of NPŷŷNH , under the condition that Pββ is a
diagonal matrix. This condition signifies that the resolvent forcing modes, for a given frequency,
are uncorrelated in the actual stochastic forcing of the system (“spatial white-noise hypothesis”). It
finally follows that Q in this case is the eigenvector matrix of PŷŷM (the “weighted CSD” [21]), with
the diagonal elements of Pββ2 as associated eigenvalues.

If ŷ represents only partial-state information, C = I , such a direct link between resolvent response
modes and SPOD modes cannot be made. This is the case for the present experimental dataset.
However, under the strong hypothesis Pββ = I , it is possible to construct a low-rank approximation

Pŷŷ ≈ CQ̃̃2Q̃HCH (21)

of the observable CSD, where Q̃ and ̃ only contain a limited number of resolvent response modes
and associated gains, as obtained from the linear analysis. The eigenvectors of (21), or equivalently
the left singular vectors of CQ̃̃, can then be identified and compared to those computed from the
experimental data. It may be expected that the leading SPOD mode structure is well represented by
such a linear model in situations where the first optimal gain σ1 is significantly larger than σ2: as
the ratio σ1/σ2 tends toward infinity, the leading SPOD mode tends toward the optimal resolvent
response mode Cq̂1. At finite gain ratios, however, the inclusion of several resolvent modes in
CQ̃̃ has the potential to improve the agreement. The comparisons provided in recent analyses of
backward-facing step flow [28] and jets [20,21] show such favorable cases of strong gain separation,
as discussed in those articles.

C. Comparison between experimental and model results

It is now assessed to what extent the experimentally obtained SPOD modes are accurately
reproduced by the resolvent-based model. The success of this comparison depends on many factors,
namely, the assumption that our forcing modes are uncorrelated in Pŷŷ, the hypotheses involved
in the linear resolvent analysis in Sec. III, and the accuracy of both experimental and numerical
methods used.

Approximations of Pŷŷ are constructed according to the low-rank model (21). The first five
resolvent modes, discussed in Sec. III E, are used to build Q̃ and ̃ (the low-rank versions of Q
and ) at various Strouhal numbers. The matrix C selects the streamwise velocity component in the
same grid points that are used in the experimental CSDs. SPOD modes are then computed as the
left singular modes of the matrix CQ̃̃.

The leading SPOD modes obtained from experimental data and from the resolvent-based model
are compared in Fig. 13, for Strouhal numbers St = 0.2, 0.4, 0.6, and 0.7. Contours of their absolute
value are shown, and each mode is normalized with respect to its global maximum value. The
agreement between experimental (left column) and model results (right column) is remarkably good
at Strouhal numbers between 0.4 and 0.7. Within this range of St, maximum SPOD amplitudes are
located inside the potential core region of the jet. The maximum along r at each streamwise station
follows a line that tends toward the jet axis, evocative of the “critical layer” as discussed by Tissot
et al. [51]. At St = 0.2, however, the agreement between experiment and model is rather poor. While
the experimental mode structure in Fig. 13(a) resembles those found at higher Strouhal numbers, but
with its maximum further downstream and possibly outside the measurement window, the resolvent-
based model predicts high amplitudes in the outer portion of the shear layer [Figs. 13(b) and 6(a)].

The second SPOD modes are shown in the same manner in Fig. 14. For these modes, the
comparison between experimental and model results fails at all Strouhal numbers. Mode structures
obtained from the resolvent-based model have high amplitudes inside the shear layer, similar to
the suboptimal response structures shown in Fig. 7, whereas the experimentally educed structures
are still characterized by maximum amplitudes near the jet axis. Inside the jet, the latter display
an amplitude modulation along x with two distinct local maxima. Subsequent SPOD modes show
similarly poor agreement, and they are not reported here.
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FIG. 13. Modulus of the first SPOD mode at St = 0.2, 0.4, 0.6, and 0.7, as obtained from the experimental
data (left column) and from the resolvent-based model (right column). The resolution of the color plots
corresponds to the spatial grid where the CSD is defined, without interpolation.

Several effects may contribute to the failure of the model to capture the second SPOD mode; a
rather obvious one seems to derive from the specific structure of the suboptimal resolvent modes
that are included in the low-rank operator (21). The optimal resolvent mode cannot be significantly
involved in the second SPOD mode, which is orthogonal to the first one, and none of the four
suboptimal structures in Fig. 7 can be expected to reproduce spatial variations of the kind observed
in the left column of Fig. 14.

Energy spectra, as given by the eigenvalues of the measured and modelled CSD matrices, are
compared in Fig. 15. Their variations with Strouhal number are quite different from one another.
The dominant eigenvalue of the experimental CSD takes on its highest value at St = 0.1, and another
local maximum arises at St = 0.4. The first and second eigenvalue curves are separated by a factor
between 3 and 7 over the interval 0.4 � St � 0.8, where SPOD modes in model and experiment are
in good agreement. CSD eigenvalues derived from the model closely resemble the gain values shown
in Fig. 4, with a slight shift of the maximum value from St = 0.7 to 0.6. An important source of
discrepancy between the dominant branches in Figs. 15(a) and 15(b) is very likely the assumption
that all resolvent forcing modes over all Strouhal numbers are contained in the Reynolds stress
fluctuations with equal amplitude.

In order to visualise the wave-packet structure of the leading SPOD mode at St = 0.4, the
dominant St value according to the experimental spectrum [Fig. 15(a)], the amplitude and the phase
of this mode are interpolated onto a fine mesh. This is done both for the experimental and for
the model SPOD mode, and the resulting real parts are shown in Figs. 16(a) and 16(b). Clean wave
packets are recovered, and their resemblance is even more appreciable than in the amplitude plots of
Fig. 13. Recall that the model SPOD mode has been obtained as the eigenmode of a CSD matrix that
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FIG. 14. Modulus of the second SPOD mode at St = 0.2, 0.4, 0.6, and 0.7, as obtained from the
experimental data (left column) and from the resolvent-based model (right column). The resolution of the
color plots corresponds to the spatial grid where the CSD is defined, without interpolation.

was constructed from the first five resolvent response modes at St = 0.4. The optimal response mode
alone is plotted in Fig. 16(c); although not strictly identical, it is indeed virtually indistinguishable
from the five-mode model result. This comparison demonstrates that the extra effort of including
suboptimal response modes in the model has not led to any improvement of the SPOD prediction:
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FIG. 15. The leading five CSD eigenvalue branches as functions of Strouhal number (a) from the
experiment and (b) from the resolvent-based linear model.
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FIG. 16. Interpolated SPOD wave packets at St = 0.4 (a) from the experiment and (b) from the linear
model based on five resolvent modes. Amplitude and phase are interpolated between the available data points,
and the resulting real part is represented. (c) The corresponding optimal response mode alone.

the “rank 1 approximation” used in previous studies [21,28], which consists in equating the optimal
response with the first SPOD mode, is applicable in the current jet case, and suboptimal modes are
of no use for increasing the accuracy of the linear model.

For a more quantitative comparison, real-part oscillations of the interpolated SPOD modes are
extracted along the centerline, and displayed in Fig. 17, together with their amplitude envelope.
Black and red lines represent the five-mode model and the experimental data, respectively. Markers
indicate the values obtained directly in the original measurement points. Experimental wave packets
are traced with their actual absolute amplitude, whereas a best-fit coefficient has been constructed,
based on the interval 1 � x � 5, for a proper scaling of the model amplitude. Good agreement
is generally observed in the upstream region of exponential amplitude growth; at St = 0.4, the
agreement is excellent down to the amplitude maximum. At lower Strouhal numbers, the model
underpredicts the maximum, even by a large measure in the case of St = 0.2, whereas at higher
Strouhal numbers, the amplitude maximum is overpredicted. Considering that a phase match is
imposed in the very first position, x = 1, and differences therefore accumulate in the downstream
direction, the phase prediction can be said to be satisfactory for all Strouhal numbers above 0.2.
Several radial positions have been tested for the present comparison, and all have been found to
give very similar agreement. The most notable difference between model and experimental results,
at St � 0.4, is an underpredicted downstream attenuation of fluctuation amplitudes. This trend is
clearly visible in Figs. 13, 16, and 17, and it increases with St.

It must be kept in mind that individual wave packets in the present approach are regarded
as isolated objects, which is made possible by our choice to replace the nonlinear term with a
generic white noise forcing. In reality, all frequencies and azimuthal wave numbers are coupled
through the nonlinear Reynolds stresses, such that energy is exchanged between coherent structures,
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FIG. 17. Comparison between experimental (red) and model (black) SPOD wave packets at various
Strouhal numbers. Amplitude and phase variations on the centerline are interpolated between the available
data points, indicated by markers. Both the amplitude envelopes and the oscillating real parts are shown.
(a) St = 0.2, (b) St = 0.3, (c) St = 0.4, (d) St = 0.5, (e) St = 0.6, and (f) St = 0.7.

axisymmetric and nonaxisymmetric, at different frequencies. This energy transfer would be cor-
rectly represented by spatial variations of the forcing at a given Strouhal number, which influence
the wave-packet envelope, while furthermore the forcing distributions at all Strouhal numbers are
coupled among each other. It remains a challenge for future work to identify a consistent way to
model these interactions in a turbulent flow with a broadband spectrum of frequencies and azimuthal
wave numbers.

D. Comparison with linear jet studies in the recent literature

The resolvent modes presented in Sec. III E and their comparison with SPOD modes in Sec. V C
are, by and large, consistent with the findings of similar recent studies [15,17,18,20,21]. One striking
difference with the results of Schmidt et al. [21] is noted in the structure of suboptimal response
modes: At Strouhal numbers above 0.2, our computations yield a clean separation between modal
shear and nonmodal Orr structures, whereas Schmidt et al. [21] observe a mixing of shear-induced
wave packets with Orr-related structures in all their suboptimals. The associated forcing structures,
shown in Figs. 5 and 7, suggest that this difference can be attributed to the presence of a nozzle in
our numerical configuration. Forcing inside the pipe is found to be particularly efficient, especially
in the case of the optimal resolvent mode, which must therefore be expected to be very sensitive
to the truncation of the most receptive flow region. In turn, changes in the optimal mode will be
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FIG. 18. Power-spectral density (PSD) along the jet centreline as a function of x at different Strouhal
numbers. (◦) Hot-wire measurements [13]; (–) PSE model [13]; ( ) optimal response mode (present
calculations). (a) St = 0.2, (b) St = 0.3, (c) St = 0.4, (d) St = 0.5, (e) St = 0.6, and (f) St = 0.7.

accompanied by changes in the orthogonal suboptimals. The localization of optimal forcing in the
present results may furthermore be linked to the observed sensitivity of LES statistics with respect
to flow details in the nozzle boundary layer [32].

Numerous previous studies addressing the linear modeling of wave packets in turbulent jets,
when only boundary forcing at the inflow was considered, observed discrepancies in the initial
amplitude growth at low Strouhal numbers, typically St � 0.3 [5,13,59], which play an important
role in the generation of jet noise. These differences were initially attributed either to the weakly
nonparallel assumption that underlies the parabolized stability equations (PSE) or to unmodeled
nonlinear effects. The limitation of PSE with regard to nonparallelism has since been ruled out by
computations based on the fully nonparallel, linearized Euler equations [6]. We complete this study
by revisiting the low-Strouhal discrepancy in the resolvent framework, where volume forcing is
included as a surrogate for nonlinear effects.

Figure 18 compares the PSE and measured power-spectral density (PSD) results from Cavalieri
et al. [13] with the kinetic energy of the optimal response modes presented in Sec. III E. All curves
are extracted on the jet axis. It can be seen how, at St = 0.2, the resolvent mode captures the
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initial wave-packet growth measured in the experiment, and underpredicted by PSE, while at higher
Strouhal numbers the PSE solution and resolvent mode comprise similar initial growth. The optimal
forcing at St = 0.2 [Figs. 5(a) and 5(b)] involves significant contributions from inside the shear layer
of the free jet, which were excluded in the models of Refs. [5,6,13,59]. This volume forcing boosts
the spatial growth of the response wave packet near the nozzle. Although the high-amplitude portion
of the optimal response mode is not in agreement with the experimental PSD, the initial growth is
faithfully reproduced. This observation suggests that Orr-type forcing through Reynolds stresses
in the free shear layer indeed contributes to perturbation growth at low Strouhal number near the
nozzle.

Another much-discussed discrepancy between PSE and PSD results arises in the downstream
region where linear models predict a decay in perturbation amplitude, whereas the PSD displays
a marked additional growth, accompanied by a slope break in the growth rate. Jordan et al. [60]
interpret the PSD growth in this region in terms of the non-normality of decaying local eigenmodes.
However, this peculiar behavior of the PSD is entirely absent in the present SPOD results, in
agreement with the LES-based analysis by Schmidt et al. [21]. This leads us to conclude that
the spatiotemporal coherence, from which SPOD modes are derived, provides a sharper and more
pertinent criterion for the eduction of coherent turbulent structures than the PSD, which only
measures temporal coherence. As discussed by Towne et al. [20], the PSD may contain the trace
of many SPOD modes. Figure 18 strongly suggests that suboptimal SPOD or resolvent mode wave
packets contribute in a very significant way to the turbulent dynamics downstream of x = 4. The
Orr-type character of our suboptimal resolvent modes is fully consistent with the discussion of the
PSD behavior by Tissot et al. [51].

VI. CONCLUSIONS

Perturbation wave packets in the mean flow of a turbulent jet have been computed in the
form of resolvent modes. Nonlinear terms in the governing equations, which arise in the form of
generalized Reynolds stresses, are regarded as generic forcing terms [22,28,38]. The five leading
orthogonal forcing-response modes have been identified for several values of the Strouhal number
between 0.2 and 1.5. The most amplified (“optimal”) mode, over the interval 0.3 � St � 1.5, bears
the traits of a shear instability in the free jet, with strong spatial growth in the potential core.
This mode arises principally from forcing in the nozzle boundary layer, which takes the shape
of tilted structures indicative of the Orr mechanism, as described in our earlier studies [15,18].
The dominant role of shear instability in the free-jet portion of the optimal resolvent mode has
been demonstrated by projecting the response wave packet onto a local k+ shear instability mode.
Subsequent (“suboptimal”) modes, with significantly lower energy gain, appear to exploit the Orr
mechanism in the free jet. This interpretation is supported via an analogy with optimal forcing in a
fully developed parallel jet. At low Strouhal number, St = 0.2, both shear and Orr mechanisms in
the free jet seem to contribute to the optimal resolvent mode in a mixed fashion.

Coherent structures have then been extracted from experimental measurements, in the form of
eigenvectors of the cross-spectral density, named “spectral POD” (SPOD) modes [11,20]. Following
recent works [19,20], it has been demonstrated that such modes should, in theory, correspond to the
optimal response mode described above, under two strong conditions: (i) the corresponding optimal
forcing modes are statistically uncorrelated among each other in the nonlinear dynamics, which are
interpreted in the linear model as forcing terms; (ii) the SPOD modes are extracted from full-state
information. As full-state information is not available from the experimental dataset, the five leading
response modes were instead used to construct a low-rank model of the cross-spectral density, under
the even stronger assumption that the corresponding optimal forcing structures are uncorrelated and
of equal amplitude in the nonlinear dynamics. This procedure constitutes our resolvent-based linear
model for the statistical dynamics of coherent turbulence structures, as characterised by two-point
covariance.
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Very good agreement has been found between the leading SPOD modes as obtained from the
experiment and from the resolvent-based model, in a range of Strouhal numbers around 0.4. The
leading SPOD mode of the linear model is in fact nearly identical to the optimal response wave
packet, such that the intermediate step of building a model CSD from several response structures
turned out to be unimportant for the comparison with the experiment. At St = 0.4, the model
reproduces accurately both the amplitude variations over three decades, down to at least 7 diameters
behind the nozzle, and the phase variations in the experimentally extracted SPOD mode. The
maximum wave-packet amplitude is underpredicted at St < 0.4 and overpredicted at St > 0.4. At
all Strouhal numbers between 0.2 and 0.7, the initial streamwise perturbation growth close to the
nozzle is very well retrieved.

Subsequent (nonleading) SPOD modes of the experimental data and the linear model do not
show satisfactory agreement. The discussion of their discrepancies may be approached from two
ends: On the one hand, the linear model probably cannot replicate the experimental results because
of the restricted number of basis vectors and because the above-mentioned modeling hypotheses
are too crude in order to reproduce the dynamics beyond leading order. On the other hand, the
experimental measurements may be too sparse, particularly in terms of spatial resolution, in order
to detect the rather fine-scale structures that the linear model predicts.

In summary, the results presented in this paper demonstrate that linear resolvent analysis,
performed around the spatially developing, time-averaged mean flow, represents a valid tool for
the modeling of coherent wave-packet structures in a stochastically driven turbulent jet. Only the
mean flow is required for the construction of this linear model. Wave packets arising from shear
instability, which experience the strongest energy gain, could be matched between model and
experiment at Strouhal numbers between 0.2 and 0.7. While these general conclusions corroborate
those of the parallel study by Schmidt et al. [21], performed on the basis of LES data for the
same flow configuration, differences are observed in the resolvent mode structures. These relate
to the separation of shear and Orr mechanisms in the optimal and suboptimal modes, and they are
attributed to the inclusion of a nozzle in the present analysis.

From a final comparison with earlier PSD measurements [13], it is inferred that suboptimal
SPOD modes seem to play a determining role near and beyond the end of the potential core region.
While the link between these modes and free-jet Orr-type growth mechanisms is one more time
predicted by the present analysis, poor agreement is found between suboptimal structures in model
and experiment. Further progress of wave-packet modeling in high-Reynolds-number turbulent jets
requires establishing the dynamics that dominate in the flow region downstream of the potential
core and how best to model them.
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