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This paper reports the results of a theoretical modeling of the fully developed elec-
troosmotic flow in a rectangular microchannel with a high-density polyelectrolyte layer
(PEL) attached to the walls. At these conditions, the ions are partitioned between the
PEL and the fluid outside the PEL owing to the difference between the permittivities
of the two media. It is taken into account that the dynamic viscosity is higher within
the PEL because of hydration effects. Solutions are obtained for the electric potential
and velocity distributions as well as the mean velocity by making use of a variational
approach, applied to the linearized form of the governing equations, which treats the
whole area under consideration as a single domain with variable physical properties. The
resulting equations are solved using a spectral method. Closed-form analytical expressions
are obtained for a slit geometry, representing the case of high aspect ratios. The solutions
obtained are validated by comparing to finite-element simulations of the full nonlinear
equations. It is shown that the electric potential drop inside the channel increases due to
the depletion of the counterions within the PEL caused by the ion partitioning effect. This
effect, surprisingly, magnifies the electroosmotic flow rate because of the increase of the
space charge outside the PEL. As expected, the hydration effects reduce the flow rate,
especially for thick PELs.
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I. INTRODUCTION

Unlike fluid flow in macroscopic ducts, in microchannels liquid flow is often driven by electric
fields instead of pressure gradients. One of the main underlying reasons is the unfavorable scaling
of pressure-driven flow with the channel diameter. Electroosmotic flow (EOF) is caused by the body
force an electric field exerts on the space-charge layer forming in the vicinity of surfaces, termed the
electric double layer (EDL). Although the ions located in the inner layer are attached to the surface,
those within the outer diffuse layer can move under the influence of an electric field. The ionic
movement within the diffuse layer due to an applied electric field results in momentum transfer to
the liquid molecules through viscous drag, creating a net fluid flow called electroosmosis [1].

Electroosmotic pumps are now considered one of the prominent microfluidic actuators. Apart
from the more favorable scaling of the flow rate with the channel diameter than pressure-driven
devices, there are other reasons for such achievements, including the fact that the electroosmotic
micropumps do not possess moving parts, rendering their design and fabrication much easier than
many of their counterparts [2]. Furthermore, the pluglike velocity profile makes it possible to
transport samples with minimum dispersion [3].
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The electroosmotic velocity is dependent on different parameters like the applied electric field
strength, the fluid properties, and the wall zeta potential. For a given fluid, the velocity may be
increased by increasing either the electric field strength or the zeta potential. However, increasing
the electric field results in more Joule heating which may lead to denaturation of samples in
biomicrofluidic devices. Moreover, the temperature gradients arising from Joule heating can cause
band spreading of the samples [4]. Hence, often the only practical way of increasing the flow rate
is to choose materials with high zeta potentials. In many cases, however, the design objectives are
not met by the native properties of the materials. For such cases, it is possible to alter the surface
properties in order to attain the desired flow characteristics. One of the most successful ways of
surface treatment is to apply polyelectrolyte layer (PEL) coatings, which often consists of grafting
polymer brushes containing electrically charged groups to the surface [5]. Such brushes are formed
when polymer chains are densely grafted to a surface, forcing them to stretch along the direction
normal to the surface to avoid overlapping each other [6]. The presence of the polyelectrolyte (PE)
brushes in a channel modifies the fluid flow in a twofold manner. First, the brushes exert a resistive
force on the fluid that tends to retard the flow. Second, the fixed-charge groups located on the
brushes attract ions of opposite sign, thereby altering the charge distribution and, ultimately, the
electroosmotic flow. By appropriately adjusting the above-mentioned effects, it may be possible to
obtain the desired flow characteristics [7]. Alternatively, the coating may consist of PE multilayers
that are created by physisorption of polyelectrolytes to a surface [8].

One of the first theoretical studies related to EOF in PEL-coated conduits (also called soft
channels) was performed by Donath and Voigt [9]. They proposed expressions for the streaming
potential and the surface conductivity associated with a pressure-driven flow between two parallel
plates. Shortly thereafter, a theory was developed by Ohshima and Kondo [10] for electrokinetic
flow between two parallel plates covered by ion-penetrable charged layers, considering a uniform
distribution of the fixed-charge groups. More recently, an equation was derived by Starov and
Solomentsev [11] for the streaming potential in coated capillaries by incorporating the influence
of the ionic diffusion along the capillary. In a paper by Keh and Liu [12], explicit formulas were
obtained for the electroosmotic velocity and streaming potential in a soft circular capillary. The
research on different aspects of EOF in soft channels was continued in the subsequent years using
different theoretical methods [13–17].

The research conducted in recent years on electrokinetic properties of PEL-coated channels
is quite diverse. In a series of papers published by Werner and co-workers [8,18,19], detailed
theoretical studies were conducted on electrokinetics of soft interfaces with single- and multilayered
PELs that, unlike the vast majority of the available literature, were validated experimentally. Qian
and his co-workers [20–22] studied different aspects of soft electrokinetics including EDL overlap
and the field-effect regulation of the Donnan potential. More recently, the alternating current EOF
of viscoelastic fluids was analytically studied by Li et al. [23]. Furthermore, lattice-Boltzmann
simulations of EOF in coated capillaries were carried out by Melchionna and co-workers [24,25].
While the studies mentioned above all deal with simple geometries like circular or slit channels,
more complex geometries such as conical [26] and rectangular [7,27] channels have been recently
considered as well.

In all of the available research works concerning EOF in soft microchannels, it has been assumed
that there is no difference between the tendencies of ions to accumulate inside or outside the PEL.
This is true when the density of the grafted brushes is low so that the same dielectric permittivities
are found in the bulk and in the PEL. However, since the permittivity of polyelectrolyte brushes
is lower than that of the electrolyte, the effective permittivity of the PEL will be significantly
smaller than that of the electrolyte for high grafting densities [28]. Under such circumstances, the
ions will prefer to stay in the electrolyte, which is the medium of higher permittivity, leading to
significant changes in the ionic distribution [29]. Such a phenomenon is called ion partitioning.
Besides the partitioning of ions, another issue that needs to be taken into account for high grafting
densities is the increase in the fluid viscosity in the PEL due to effects such as hydration [30,31].
It appears as if the difference between the dynamic viscosities within and outside the PEL has
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FIG. 1. Schematic of the soft microchannel under consideration including the dimensions and the coor-
dinate system. The polyelectrolyte layer (PEL) is the region between the rigid wall and the dashed lines.
It contains fixed ions, shown as large circles, whereas the electrolyte ions, represented by small circles, are
mobile. Different physical properties are considered inside and outside the PEL.

not been considered so far when computing the EOF. These gaps are closed in this study by
considering different permittivity and dynamic viscosity values inside and outside the PEL. The
flow is considered to be both steady and fully developed, and the channel is assumed to be of a
rectangular cross-sectional area, which is the shape commonly created by standard microfabrication
methods [32]. The main approach adopted is a variational formulation of the linearized problem.
In addition, numerical simulations of the nonlinear governing equations are performed utilizing a
finite-element discretization. The variational formulation treats the whole fluid domain as a single
medium with variable properties. The solutions are obtained using a spectral method. For the special
case of a slit geometry, which is a representative of a rectangular channel when the aspect ratio is
high, closed-form solutions in terms of basic functions are obtained. The importance of our work
not only lies in incorporating the ion partitioning and hydration effects, but also in presenting
formulations that can easily be applied to multidomain problems. This is crucial for modeling of
PEL-covered channels having cross-sectional geometries other than circular or slitlike, where the
classical approach of obtaining different solutions for inside and outside of the PEL followed by
matching the solutions cannot be applied.

II. PROBLEM FORMULATION

A. Problem definition

The electrostatic potential, ionic concentration, and EOF in a rectangular microchannel with a
PEL attached to the wall (shown schematically in Fig. 1), are studied in a steady-state configuration.
The thickness of the PEL t is constant, and its fixed charges are uniformly distributed. The flow is
assumed to be hydrodynamically fully developed and the physicochemical properties are considered
to be constant. It is, however, assumed that the dielectric permittivity and the liquid viscosity are
different inside and outside the PEL in order to obtain solutions valid at high PEL densities. In
addition, the liquid is considered to contain a fully dissociated and symmetric electrolyte. While
the number density of the fixed-charge groups are considered to be low when treating the problem
analytically, no restriction is imposed when solving the governing equations numerically. Since
there is symmetry with respect to both y and z axes, only a quarter of the channel is considered in
the analysis.

B. Electric potential distribution

An understanding of the ionic distribution is necessary for the evaluation of the volumetric body
force, which is required for obtaining the electroosmotic velocity. The distribution of ions is dictated
by the electric potential distribution. The total electric potential ϕ within the channel is given by the
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superposition of the externally applied electric potential � and that created due to the presence of
the dissolved ions and fixed-charge groups. The former depends on x only, whereas the latter may
be considered as a function of y and z. Hence, one may write

ϕ(x, y, z) = �(x) + ψ (y, z). (1)

The physical law governing the electric potential distribution is the Poisson equation, which relates
ϕ to the net electric charge density ρe as

∇ · (ε∇ϕ) = −ρe, (2)

where ε stands for the dielectric permittivity. For evaluation of the net electric charge in the channel,
attention should be given to the fact that there are two types of electric charges in the channel: the
dissolved ions, which can move freely throughout the channel, and the charges fixed to the PEL
chains. As noted previously, partitioning of the dissolved ions occurs at the liquid/PEL interface, for
example, because of differences in the electrostatic or van der Waals interaction energies of different
types of ions. One well-known phenomenon is the difference in the electrostatic self-energies of the
ions resulting from the permittivity difference, the so-called Born energy, to be considered below.
The ratio of the ionic concentrations inside and outside the PEL is given by the partition coefficient
Pi which, making use of the Boltzmann distribution, is given as [33]

Pi = exp

(
−�Wi

kBT

)
, (3)

wherein kB represents the Boltzmann constant, T stands for the absolute temperature, and �Wi is
the energy difference of the ith ionic species. Assuming that �Wi is solely due to the Born energy
and considering ions of spherical shape with radius ri, it can be shown that [28]

�Wi = e2Z2
E

8πri

(
1

εPEL
− 1

εE

)
. (4)

Here, e is the proton charge, ZE is the valency of the electrolyte ions, and εE and εPEL are the
permittivities of the liquid and the PEL, respectively. Assuming the same radii for the anions and
cations, that is, r− = r+ = r, which is roughly fulfilled for salts such as KCl [34], taking advantage
of Eqs. (3) and (4), and adopting the Boltzmann distribution, the ionic concentration inside and
outside the PEL is given as

c± = c∞exp

(
∓eZEψ

kBT

)
exp

[
e2Z2

E

8πrkBT

(
1

εE
− 1

εPEL

)]
, (5)

c± = c∞exp

(
∓eZEψ

kBT

)
, (6)

where c∞ stands for ionic concentration at neutral conditions. Instead of Eqs. (5) and (6), the
following compact formula may be used to obtain the ionic concentration in both regions

c± = c∞exp

(
∓eZEψ

kBT

)
exp

[
e2Z2

E

8πrkBT

(
1

εE
− 1

ε

)]
. (7)

Inside the PEL, where ε = εPEL, Eq. (7) reduces to Eq. (5) and in the bulk electrolyte solution, for
which ε = εE , Eq. (6) is recovered. Utilizing Eq. (7), the charge density of the electrolyte ions ρE

is obtained as

ρE = eZE (c+ − c−) = eZE c∞
[

exp

(
−eZEψ

kBT

)
− exp

(
eZEψ

kBT

)]
exp

[
e2Z2

E

8πrkBT

(
1

εE
− 1

ε

)]

= −2eZE c∞ sinh

(
eZEψ

kBT

)
exp

[
e2Z2

E

8πrkBT

(
1

εE
− 1

ε

)]
. (8)
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For evaluation of the volumetric charge density of the PEL fixed-charge groups ρPEL, a positive
valence of ZPEL and a number density of NPEL are considered to yield

ρPEL = eNPELZPEL. (9)

Note that on the PEL chains charge regulation effects may occur, for example, Manning con-
densation [35,36]. Such effects imply a transfer of ions between the electrolyte solution and the
PEL chains. In that context, Eq. (9) represents the effective charge density of the PEL molecules.
Specifically, it is not assumed that the PEL chains are fully ionized. Because of potential changes
in ion concentration due to charge regulation effects, the concentrations appearing in the model
equations are the actual concentrations inside the channel. These may differ from the concentrations
in the reservoirs to which the channel is connected.

Equation (8) may be substituted into Eq. (2) in order to obtain the equation governing the electric
potential distribution in the PEL-free region, albeit with the consideration of Eq. (1) and the fact that
� is a linear function of x. To obtain the corresponding equation for the PEL, the contribution of
the fixed ions to the volumetric charge density should be accounted for from Eq. (9), i.e., ρe =
ρE + ρPEL. Since it is intended to perform a single analysis valid for both regions, it is not possible
to use separate equations for inside and outside the PEL. Instead, the following compact form of the
Poisson equation is used:

∂

∂y

(
ε
∂ψ

∂y

)
+ ∂

∂z

(
ε
∂ψ

∂z

)
− 2eZE c∞ sinh

(
eZEψ

kBT

)
exp

[
e2Z2

E

8πrkBT

(
1

εE
− 1

ε

)]
+ eNZPEL = 0.

(10)

In Eq. (10), N denotes the density of the fixed charges and is 0 and NPEL outside and inside the
PEL, respectively, thereby rendering Eq. (10) valid in both regions. Note that this equation is in fact
valid for any cross-sectional distributions of ε and N. Accordingly, although we finally apply the
assumption of uniform PEL properties, the majority of the subsequent analysis is valid for PEL with
position-dependent properties. In dimensionless form, Eq. (10) is written as

∂

∂y∗

(
ε∗ ∂ψ∗

∂y∗

)
+ ∂

∂z∗

(
ε∗ ∂ψ∗

∂z∗

)
− K2exp

[



(
1 − 1

ε∗

)]
sinh ψ∗ + K2η−2

λ N∗ = 0, (11)

in which y∗ = y/H , z∗ = z/H , ε∗ = ε/εE , ψ∗ = eZEψ/kBT , N∗ = N/NPEL, and 
 =
e2Z2

E/8πrkBT εE . Furthermore, K = H/λE with λE = (kBT εE/2e2Z2
E c∞)1/2 being the character-

istic EDL thickness and ηλ = λPEL/λE , with λPEL = (kBT εE/ZEZPELNPELe2)1/2 representing an
equivalent EDL thickness inside the PEL. Equation (11) is nonlinear and, hence, should generally be
solved utilizing numerical tools. It is, however, possible to linearize this equation by approximating
sinh ψ∗ by ψ∗ for small electric potentials, that is, for ψ∗ � 1. This approximation, known as the
Debye-Hückel linearization, results in

∂

∂y∗

(
ε∗ ∂ψ∗

∂y∗

)
+ ∂

∂z∗

(
ε∗ ∂ψ∗

∂z∗

)
− K2exp

[



(
1 − 1

ε∗

)]
ψ∗ + K2η−2

λ N∗ = 0. (12)

Equation (12) needs to be solved considering the following boundary conditions:

∂ψ∗

∂y∗

∣∣∣∣
y∗=0

= ∂ψ∗

∂z∗

∣∣∣∣
z∗=0

= ∂ψ∗

∂y∗

∣∣∣∣
y∗=1

= ∂ψ∗

∂z∗

∣∣∣∣
z∗=W ∗

= 0, (13)

wherein W ∗ = W/H stands for the channel aspect ratio. The first two of the boundary conditions in
Eq. (13) represent the symmetry at the centerlines, while the following two reflect the fact that the
channel walls are considered uncharged. Note that the PEL/electrolyte interface is now an internal
region and the interfacial conditions therein are automatically satisfied by the formulation. We
utilize the variational calculus for solving Eq. (12) subject to the boundary conditions (13). In this
technique, instead of directly solving Eq. (12), the solution is obtained by the minimization of the
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following functional [37]:

Iψ =
∫
A∗

{
ε∗

(
∂ψ∗

∂y∗

)2

+ ε∗
(

∂ψ∗

∂z∗

)2

+ K2exp

[



(
1 − 1

ε∗

)]
ψ∗2 − 2K2η−2

λ N∗ψ∗
}

dA∗. (14)

Note that Iψ = ∫A∗ FdA∗ is constructed so that

∂F

∂ψ∗ − ∂ (∂F/∂ψ∗
y∗ )

∂y∗ − ∂ (∂F/∂ψ∗
z∗ )

∂z∗ = 0 (15)

reduces to Eq. (12) [38]. In Eq. (15), the subscripts y∗ and z∗ represent partial differentiation with
respect to these variables. The transformation of the differential equation into an integral over the
dimensionless area A∗ = A/H2 by means of the variational calculus is the key to bypassing the
difficulties pertinent to matching different solutions valid in different domains. In the following, ψ∗
is expanded in terms of a complete and linearly independent set of basis functions f j , that is,

ψ∗ =
M∑

j=1

b j f j . (16)

One is allowed to select any type of basis functions provided the boundary conditions (13) are
satisfied without imposing unphysical constraints on the solution. Given the ease of utilizing the
trigonometric functions, f j is written as

f j (y
∗, z∗) = cos(ξl j y

∗) cos

(
ξmj z

∗

W ∗

)
, (17)

where ξl j = l jπ and ξmj = mjπ with l j = 0, 1, 2, . . . , lmax and mj = 0, 1, 2, . . . , mmax. Note
that l j and mj are varied independently to provide a complete set of the basis functions and, hence,
the number of the basis functions becomes M = (lmax + 1)(mmax + 1). Since Iψ is a function of
b1, b2, . . . , bM , its minimization requires having

∂Iψ
∂bi

= 0 for i = 1, 2, . . . , M, (18)

which leads to
M∑

j=1

b j

∫
A∗

{
ε∗ ∂ fi

∂y∗
∂ f j

∂y∗ + ε∗ ∂ fi

∂z∗
∂ f j

∂z∗ + K2exp

[



(
1 − 1

ε∗

)]
fi f j

}
dA∗

= K2η−2
λ

∫
A∗

N∗ fidA
∗ for i = 1, 2, . . . , M. (19)

Equation (19) represents a system of M equations for the M unknowns b1 to bM . The matrix form
of this equation can be expressed as

Ab = C, (20)

wherein the symmetric matrix A and vector C possess the following elements:

ai j =
∫
A∗

{
ε∗ ∂ fi

∂y∗
∂ f j

∂y∗ + ε∗ ∂ fi

∂z∗
∂ f j

∂z∗ + K2exp

[



(
1 − 1

ε∗

)]
fi f j

}
dA∗, (21)

ci = K2η−2
λ

∫
A∗

N∗ fidA
∗. (22)

The vector b stands for the coefficients b1, b2, . . . , bM . Effectively, the outlined approach constitutes
a spectral method. For the determination of A and C utilizing Eqs. (21) and (22), we apply the
assumption of constant PEL properties. The corresponding expressions can be found in Appendix A.
The linear algebraic system Eq. (20) can be solved by applying common numerical methods.
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C. Velocity distribution

The momentum conservation in the microchannel is governed by the Navier-Stokes equations.
For a steady and hydrodynamically fully developed flow, only the axial momentum equation matters,
which is given as

∂

∂y

(
μ

∂u

∂y

)
+ ∂

∂z

(
μ

∂u

∂z

)
− ∂ p

∂x
+ F = 0. (23)

In Eq. (23), u is the axial velocity, p represents the pressure, F stands for the body force in the
axial direction, and μ denotes the dynamic viscosity, which is allowed to vary over the channel
cross-sectional area. There are two body forces in the problem under consideration which are
the electroosmotic force and the resistive force created by the polyelectrolyte layer. The former
is created upon the interaction of the electric field and the electrolyte ions and is given as ρE Ex, with
Ex = −d�/dx being the externally applied electric field. The volumetric resistive force of the PE
layer is usually considered to be proportional to the velocity and, for a fully developed flow, is given
as fPELu where fPEL denotes the friction coefficient inside the PEL per unit volume [3]. Considering
the two contributions to the body force in Eq. (23), after substitution for ρE from Eq. (8), and
omitting the pressure gradient for a purely electroosmotic flow, the compact form of the momentum
equation is

∂

∂y

(
μ

∂u

∂y

)
+ ∂

∂z

(
μ

∂u

∂z

)
− fu − 2e zE c∞Ex sinh

(
e zEψ

kBT

)
exp

[
e2z2

E

8πrkBT

(
1

εE
− 1

ε

)]
= 0, (24)

wherein f represents the friction coefficient, which is fPEL and 0 inside and outside the PEL,
respectively. Introducing four new dimensionless parameters, u∗ = −eZEμE u/εE kBT Ex (with μE

denoting the dynamic viscosity of the bulk electrolyte solution), μ∗ = μ/μE , f∗ = f/fPEL, and
α = H (fPEL/μE )1/2, the momentum equation (24) is rewritten as

∂

∂y∗

(
μ∗ ∂u∗

∂y∗

)
+ ∂

∂z∗

(
μ∗ ∂u∗

∂z∗

)
− α2f∗u∗ + K2exp

[



(
1 − 1

ε∗

)]
sinh ψ∗ = 0, (25)

which, upon application of the Debye-Hückel linearization, reduces to

∂

∂y∗

(
μ∗ ∂u∗

∂y∗

)
+ ∂

∂z∗

(
μ∗ ∂u∗

∂z∗

)
− α2f∗u∗ + K2exp

[



(
1 − 1

ε∗

)]
ψ∗ = 0. (26)

The dimensionless momentum equation is subject to symmetry and no-slip boundary conditions,
given as

∂u∗

∂y∗

∣∣∣∣
y∗=0

= ∂u∗

∂z∗

∣∣∣∣
z∗=0

= u∗|y∗=1 = u∗|z∗=W ∗ = 0. (27)

The momentum equation can be derived from minimization of the following functional:

Iu =
∫
A∗

{
μ∗

(
∂u∗

∂y∗

)2

+ μ∗
(

∂u∗

∂z∗

)2

+ α2f∗u∗2 − 2K2exp

[



(
1 − 1

ε∗

)]
ψ∗u∗

}
dA∗. (28)

We now consider u∗ of the form

u∗ =
N∑

j=1

d jg j, (29)

wherein the basis functions are

g j = cos(ξr j y
∗) cos

(
ξq j z

∗

W ∗

)
, (30)
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where ξr j = (2r j + 1)π/2 and ξq j = (2q j + 1)π/2, with r j = 0, 1, 2, . . . , rmax and q j = 0, 1,

2, . . . , qmax. The number of basis functions, therefore, becomes N = (rmax + 1)(qmax + 1). The
minimization of Iu(d1, d2, . . . , dN ) requires having

∂Iu

∂di
= 0 for i = 1, 2, . . . , N. (31)

Differentiating Eq. (28) with respect to di results in∫
A∗

{
μ∗ ∂u∗

∂y∗
∂gi

∂y∗ + μ∗ ∂u∗

∂z∗
∂gi

∂z∗ + α2f∗u∗gi − K2exp

[



(
1 − 1

ε∗

)]
ψ∗gi

}
dA∗

= 0 for i = 1, 2, . . . , N. (32)

After the introduction of u∗ from Eq. (29) into Eq. (32), it becomes
N∑

j=1

d j

∫
A∗

(
μ∗ ∂gi

∂y∗
∂g j

∂y∗ + μ∗ ∂gi

∂z∗
∂g j

∂z∗ + α2f∗gig j

)
dA∗

= K2
∫
A∗

exp

[



(
1 − 1

ε∗

)]
ψ∗gidA

∗ for i = 1, 2, . . . , N. (33)

which is a system of N equations for N unknowns, written in matrix form as

Ed = H, (34)

wherein the matrix E and vector H are composed of the following elements:

ei j =
∫
A∗

(
μ∗ ∂gi

∂y∗
∂g j

∂y∗ + μ∗ ∂gi

∂z∗
∂g j

∂z∗ + α2f∗gig j

)
dA∗, (35)

hi = K2
∫
A∗

exp

[



(
1 − 1

ε∗

)]
ψ∗gidA

∗. (36)

The vector d stands for the coefficients d1, d2, . . . , dN . Again, we apply the assumption of constant
PEL properties. The corresponding expressions for ei j and hi can be found in Appendix B. The
linear algebraic system Eq. (34) can be solved by applying common numerical methods.

Having computed the solution, the parameters of physical interest such as the mean velocity can
be obtained. The mean velocity in dimensionless form is given as

u∗
m =

∫ W ∗

0

∫ 1
0 u∗dy∗dz∗∫ W ∗

0

∫ 1
0 dy∗dz∗

=
N∑

j=1

d j (−1)r j+q j

ξr j ξq j

. (37)

D. Special solution for 1 � W ∗

When the width of the channel is significantly larger than the height, that is, when 1 � W ∗, the
problem is significantly simplified since the z dependence of the electric potential and fluid velocity
disappears except for vanishingly small regions near the vertical walls. Neglecting these regions,
the electric potential and momentum equations are reduced to ordinary differential equations that
are easy to be solved via the classical approach of obtaining separate solutions for the core and the
PEL, after which the solutions are matched. Discarding the derivative with respect to z in Eq. (12),
it reduces to Eqs. (38) and (39) outside and inside the PEL, respectively:

d2ψ∗
E

dy∗2 − K2ψ∗
E = 0, (38)

ηε

d2ψ∗
PEL

dy∗2 − K2exp
[



(
1 − η−1

ε

)]
ψ∗

PEL + K2η−2
λ = 0, (39)
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which are subject to the following interfacial and boundary conditions:

dψ∗
E

dy∗

∣∣∣∣
y∗=0

= dψ∗
PEL

dy∗

∣∣∣∣
y∗=1

= 0, ψ∗
E |y∗=1−t∗ = ψ∗

PEL|y∗=1−t∗ ,
dψ∗

E

dy∗

∣∣∣∣
y∗=1−t∗

= ηε

dψ∗
PEL

dy∗

∣∣∣∣
y∗=1−t∗

.

(40)

It can be shown that the solutions of Eqs. (38) and (39) subject to the boundary conditions (40) are
given as

ψ∗
E = A1 cosh(Ky∗), (41)

ψ∗
PEL = B1

[
cosh

(
Kγ 1/2η−1/2

ε y∗) − tanh
(
Kγ 1/2η−1/2

ε

)
sinh

(
Kγ 1/2η−1/2

ε y∗)] + η−2
λ γ −1, (42)

wherein γ = exp[
(1 − η−1
ε )] and the coefficients A1 and B1 are given as

A1 = η−2
λ γ −1/2η1/2

ε {sinh[K (1 − t∗)]}−1{tanh
[
Kγ 1/2η−1/2

ε (1 − t∗)
] − tanh

(
Kγ 1/2η−1/2

ε

)}
×

�
(γ ηε )1/2{tanh[K (1 − t∗)]}−1{tanh

[
Kγ 1/2η−1/2

ε (1 − t∗)
] − tanh

(
Kγ 1/2η−1/2

ε

)}
− 1 + tanh

(
Kγ 1/2η−1/2

ε

)
tanh

[
Kγ 1/2η−1/2

ε (1 − t∗)
]�−1

, (43)

B1 = η−2
λ γ −1

{
cosh

[
Kγ 1/2η−1/2

ε (1 − t∗)
]}−1

�
(γ ηε )1/2{tanh[K (1 − t∗)]}−1

× {
tanh

[
Kγ 1/2η−1/2

ε (1 − t∗)
] − tanh

(
Kγ 1/2η−1/2

ε

)} − 1 + tanh
(
Kγ 1/2η−1/2

ε

)
× tanh

[
Kγ 1/2η−1/2

ε (1 − t∗)
]�−1

(44)

In the same way, from Eq. (26), the dimensionless momentum equations for the bulk and the PEL
are obtained as

d2u∗
E

dy∗2 + K2ψ∗
E = 0, (45)

ημ

d2u∗
PEL

dy∗2 − α2u∗
PEL + K2γψ∗

PEL = 0. (46)

Equations (45) and (46) should satisfy the following boundary conditions:

du∗
E

dy∗

∣∣∣∣
y∗=0

= u∗
PEL|y∗=1 = 0, u∗

E |y∗=1−t∗ = u∗
PEL|y∗=1−t∗ ,

du∗
E

dy∗

∣∣∣∣
y∗=1−t∗

= ημ

du∗
PEL

dy∗

∣∣∣∣
y∗=1−t∗

. (47)

It is easy to verify that the solutions of Eqs. (45) and (46) fulfilling the boundary conditions are
given as

u∗
E = −A1 cosh(Ky∗) + A2, (48)

u∗
PEL = B2

[
cosh

(
αη−1/2

μ y∗) − coth
(
αη−1/2

μ

)
sinh

(
αη−1/2

μ y∗)]
+

{[
cosh

(
Kγ 1/2η−1/2

ε

)]−1
(

K2γ ηεB1

K2γ ημ − α2ηε

)
− K2

α2η2
λ

}
sinh

(
αη−1/2

μ y∗)
sinh

(
αη

−1/2
μ

)
−

(
K2γ ηεB1

K2γ ημ − α2ηε

)
cosh

(
Kγ 1/2η−1/2

ε y∗)

+ tanh
(
Kγ 1/2η−1/2

ε

)( K2γ ηεB1

K2γ ημ − α2ηε

)
sinh

(
Kγ 1/2η−1/2

ε y∗) + K2

α2η2
λ

, (49)
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with the following coefficients:

A2 = B2
{
cosh

[
αη−1/2

μ (1 − t∗)
] − coth

(
αη−1/2

μ

)
sinh

[
αη−1/2

μ (1 − t∗)
]}

+
{[

cosh
(
Kγ 1/2η−1/2

ε

)]−1
(

K2γ ηεB1

K2γ ημ − α2ηε

)
− K2

α2η2
λ

}
sinh

[
αη−1/2

μ (1 − t∗)
]

sinh
(
αη

−1/2
μ

)
−

(
K2γ ηεB1

K2γ ημ − α2ηε

)
cosh

[
Kγ 1/2η−1/2

ε (1 − t∗)
] + tanh

(
Kγ 1/2η−1/2

ε

)( K2γ ηεB1

K2γ ημ − α2ηε

)

× sinh
[
Kγ 1/2η−1/2

ε (1 − t∗)
] + K2

α2η2
λ

+ A1 cosh[K (1 − t∗)], (50)

B2 = α−1η−1/2
μ

{
sinh

[
αη−1/2

μ (1 − t∗)
] − coth

(
αη−1/2

μ

)
cosh

[
αη−1/2

μ (1 − t∗)
]}−1

×
�
−A1K sinh[K (1 − t∗)] − αη1/2

μ

{[
cosh

(
Kγ 1/2η−1/2

ε

)]−1
(

K2γ ηεB1

K2γ ημ − α2ηε

)
− K2

α2η2
λ

}

× cosh
[
αη−1/2

μ (1 − t∗)
]

sinh
(
αη

−1/2
μ

) +
(

ημK3γ 3/2η1/2
ε B1

K2γ ημ − α2ηε

)
sinh

[
Kγ 1/2η−1/2

ε (1 − t∗)
]

−
(

ημK3γ 3/2η1/2
ε B1

K2γ ημ − α2ηε

)
tanh

(
Kγ 1/2η−1/2

ε

)
cosh

[
Kγ 1/2η−1/2

ε (1 − t∗)
]�

. (51)

The dimensionless mean velocity becomes

u∗
m =

∫ 1−t∗

0
u∗

E dy∗ +
∫ 1

1−t∗
u∗

PELdy∗

= −A1

K
sinh[K (1 − t∗)] + A2(1 − t∗) − α−1η1/2

μ B2

× {
sinh

[
αη−1/2

μ (1 − t∗)
] − coth

(
αη−1/2

μ

)
cosh

[
αη−1/2

μ (1 − t∗)
] + [

sinh
(
αη−1/2

μ

)]−1}
+α−1η1/2

μ

{[
cosh

(
Kγ 1/2η−1/2

ε

)]−1
(

K2γ ηεB1

K2γ ημ − α2ηε

)
− K2

α2η2
λ

}

×
{

coth
(
αη−1/2

μ

) − cosh
[
αη−1/2

μ (1 − t∗)
]

sinh
(
αη

−1/2
μ

)
}

−
(

Kγ 1/2η3/2
ε B1

K2γ ημ − α2ηε

){
sinh

(
Kγ 1/2η−1/2

ε

)

− sinh
[
Kγ 1/2η−1/2

ε (1 − t∗)
]} + tanh

(
Kγ 1/2η−1/2

ε

)( Kγ 1/2η3/2
ε B1

K2γ ημ − α2ηε

)

× {
cosh

(
Kγ 1/2η−1/2

ε

) − cosh
[
Kγ 1/2η−1/2

ε (1 − t∗)
]} + K2t∗

α2η2
λ

. (52)

E. Incorporating the wall charge effects

Consistent with the recent literature, the channel wall was assumed neutral in the preceding
analysis to reduce the number of the governing parameters. Although the presentation of the results
also relies on this assumption, the modifications required for incorporating the wall charge effects
into the model are briefly discussed here, since in realistic systems the wall charge may become
important. In the presence of a nonzero surface charge density σ , the wall boundary conditions in
Eq. (13) transform into

∂ψ∗

∂y∗

∣∣∣∣
y∗=1

= ∂ψ∗

∂z∗

∣∣∣∣
z∗=W ∗

= σ ∗, (53)
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FIG. 2. Profiles of ψ∗ at the vertical centerline for different values of σ ∗, while keeping W ∗ = 1, t∗ = 0.1,
K = 5, ηλ = 2, 
 = 1.078, and ηε = 0.8. The results of the spectral method obtained utilizing lmax = mmax =
100 are compared with the predictions of the FEM-based numerical solution of Eq. (12). The inset shows the
results for σ ∗ = 5.

where σ ∗ = eZE Hσ/kBT εPEL. According to Rektorys [37], the functional Iψ is modified for this
case by the inclusion of two line integrals at the walls, that is,

Iψ =
∫
A∗

{
ε∗

(
∂ψ∗

∂y∗

)2

+ ε∗
(

∂ψ∗

∂z∗

)2

+ K2exp

[



(
1 − 1

ε∗

)]
ψ∗2 − 2K2η−2

λ N∗ψ∗
}

dA∗

− 2
∫ 1

0
(σ ∗ε∗ψ∗)z∗=W ∗dy∗ − 2

∫ W ∗

0
(σ ∗ε∗ψ∗)y∗=1dz∗. (54)

The addition of the line integrals to the functional does not affect the matrix A but modifies the
elements of the vector C according to

ci = K2η−2
λ

∫
A∗

N∗ fidA
∗ +

∫ 1

0
(σ ∗ε∗ fi )z∗=W ∗dy∗ +

∫ W ∗

0
(σ ∗ε∗ fi )y∗=1dz∗. (55)

In principle, the basis functions fi in the presence of a surface charge density should impose no
constraint on the value of the electric potential gradient at the wall. This means that, in a strict sense,
the basis functions used in Sec. II B are not appropriate for this case. Nevertheless, as will be shown
below, these basis functions can provide sufficiently accurate results. Adopting the basis functions
given by Eq. (17) and performing the integrations in Eq. (55) for a uniform σ ∗, the elements ci are
obtained as

ci = K2η−2
λ W ∗

�
δ0,li+mi −

{
δ0,li (1 − t∗) + (

1 − δ0,li

) sin
[
ξli (1 − t∗)

]
ξli + δ0,li

}

×
{

δ0,mi (1 − t∗/W ∗) + (
1 − δ0,mi

) sin
[
ξmi (1 − t∗/W ∗)

]
ξmi + δ0,mi

}�

+ σ ∗ηε

[
δ0,li (−1)mi + δ0,miW

∗(−1)li
]
. (56)

To assess the accuracy of the solution developed for a charged wall in the space of cosine functions,
in Fig. 2 the computed values of ψ∗ at the vertical centerline are compared with finite-element-
(FEM) based results for different values of σ ∗. The corresponding numerical scheme is described
in Sec. II F. Different from the other FEM-based results reported in this work, the Debye-Hückel
linearization was applied for this purpose to restrict the errors solely to those occurring due to the
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TABLE I. List of the dimensionless groups governing the physical problem under consideration.

Parameter Definition

Channel aspect ratio W ∗ W/H
Dimensionless PEL thickness t∗ t/H
Dimensionless Debye-Hückel parameter K H/λE

EDL thickness ratio ηλ λPEL/λE

Partitioning parameter 
 e2z2
E/8πrkBT εE

Permittivity ratio ηε εPEL/εE

Viscosity ratio ημ μPEL/μE

Dimensionless friction coefficient α H (fPEL/μE )1/2

choice of basis functions (17). It can be seen that there is a good agreement between both sets of
results. The effect of the zero-gradient constraint imposed by the basis functions is not observed in
the main figure but is only visible in the inset, which shows that the region over which there is a
noticeable discrepancy between both sets of results is limited to the utmost vicinity of the wall. This
region may be narrowed down to any desired extent by increasing the number of basis functions.
Therefore, the conclusion is that the variational formulation allows obtaining accurate results for the
electric potential in the presence of wall charges even in a space of functions that is not compatible
with the boundary condition at the wall.

F. Numerical solution of the nonlinear equations

One main assumption the analysis presented above is based on is the validity of the Debye-
Hückel linearization. To check the validity of this assumption, the nonlinear governing equations
including Eqs. (11) and (25) were solved subject to the boundary conditions (13) and (27) plus
the interfacial conditions comprising the continuity of the electric potential, electric displacement,
velocity, and shear stress, utilizing COMSOL MULTIPHYSICS version 5.2. Finite-element simulations
were performed based on Lagrange shape functions of quadratic order. All the elements were of
rectangular shape. Nonuniform mapped meshing was used to locate smaller elements close to the
boundaries and corners. The exterior boundaries of each subdomain were divided into 200 parts.
Overall, 16 × 104 elements were employed which was found to be enough for obtaining virtually
mesh-independent results. The resulting nonlinear equations were solved iteratively using Newton’s
method. The iterations were continued until the maximum relative error over the solution domain
became less than 10−9.

III. RESULTS AND DISCUSSION

It was shown that eight dimensionless groups, i.e., W ∗, t∗, K , ηλ, 
, ηε, ημ, and α govern the
electroosmotic flow in rectangular microchannels with neutral walls covered with PELs. These
dimensionless parameters are listed in Table I. In this section, their interactive effects on the
electrostatic potential, ionic concentration, and the flow characteristics are discussed in detail.
Since performing a complete parametric study in an eight-dimensional space is not possible with
reasonable effort, we have to fix some of the parameters at reference values. Along this line, it
is assumed that the effective ionic radius is 3.3 × 10−10 m, corresponding to KCl ions. Moreover,
it is assumed that the working fluid is water at 20 ◦C with a permittivity of εE = 80 × 8.854 ×
10−12 C V−1 m−1. Hence, given the values of 1.6 × 10−19 C and 1.38 × 10−23 J K−1 for e and kB,
respectively, 
 becomes 1.078. In addition, unless otherwise stated, we set ηλ = 1 which means
that the characteristic EDL thickness of the bulk liquid is the same as the EDL thickness of the PEL.
Hence, the parametric study is performed utilizing only six dimensionless groups whose values are
selected according to the typical ranges of the PEL properties, given in Table II. All of the results
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TABLE II. Typical ranges of the PEL properties.

Parameter Value Reference

Thickness t 0.7–198 nm [25,43]
Density of fixed charges divided by Avogadro’s number NPEL/NA 0.4–200 mol m−3 [43]
Square root of ratio of viscosity and friction coefficient (μPEL/fPEL )1/2 0.059–55 nm [43]
Relative permittivity εPEL/ε0 52.8–78 [44,45]
Viscosity ratio of liquid inside and outside the PEL layer μPEL/μE 1–7 [31]

obtained by the spectral method were generated by setting lmax = mmax = rmax = qmax = 100. The
presentation of the results starts with studying the electric potential distribution.

The heightwise variation of ψ∗ at the vertical centerline for different values of t∗ and ηε is
displayed in Fig. 3. The first point to note in this figure is the close agreement between the results
of the spectral method and the predictions of the full numerical solution of Eq. (11), in spite of
the maximum values of ψ∗ being no longer small compared to 1. Therefore, in this regime the
Debye-Hückel approximation is still accurate. A thicker PEL is found to provide higher electric
potentials. This is expected since the number of fixed-charge groups increases with t∗. Moreover,
it is observed that the electric potential increases (especially within the PEL) with increasing the
ion partitioning effect, that is, by decreasing ηε. The underlying physical reason is that the number
of anions accumulated to neutralize the fixed-charge groups decreases within the PEL due to the
partitioning effect, where the permittivity is lower.

We now turn our attention to the ionic distribution over the channel cross-sectional area. Figure 4
depicts the profiles of the cationic and anionic distributions in a dimensionless form, given as c∗

± =
c±/c∞. The partitioning of ions between the two domains, manifesting itself in a discontinuity
of the ionic concentration at the PEL/electrolyte interface accompanied by a reduction of the ionic
concentration within the PEL, can clearly be observed in this figure. Moreover, it can be seen that the
number density of the anions is everywhere larger than the number density of cations, reflecting the
fact that positively charged fixed PEL ions have been considered. The anionic/cationic concentration
at the channel centerline is a little above/below c∞, which is a sign of a moderate EDL overlap.

Figure 5 is devoted to the dimensionless velocity profiles for two different values of α. The
slope change at the PEL/electrolyte interface is visible in this figure, especially for α = 1. The
dimensionless Debye-Hückel parameter in this figure is K = 4, for which there is a net charge
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FIG. 3. Heightwise variation of ψ∗ at the vertical centerline for different values of t∗ and ηε , while keeping
W ∗ = 1 and K = 5. The results of the spectral method are compared with the predictions of the full numerical
solution of Eq. (11).
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FIG. 4. Cross-sectional distributions of c∗
− and c∗

+ for W ∗ = 1, t∗ = 0.1, K = 4, and ηε = 0.8.

everywhere in the liquid, creating a body force over the whole channel area, similar to pressure-
driven flow. Accordingly, it is not surprising to see a nearly parabolic velocity profile, typical for
Poiseuille flows. The parameter α is a measure of the PEL friction, and a reduction of the fluid
velocity, especially within the soft layer, is expected by increasing this parameter, as evidenced by
Fig. 5. For α = 1, the retarding effect of the PEL is quite small and, hence, the velocity profile is
very similar to that established in a duct with rigid walls for which there is no Stokes drag force.

The impacts of the four dimensionless groups t∗, K , ηε, and ημ on the velocity distribution along
the vertical centerline are investigated via Fig. 6. In part (a) of the figure, the influence of t∗ on
the velocity profile is studied, indicating that the fluid velocity is enlarged by increasing the PEL
thickness. This means that, although a thicker soft layer produces higher friction forces, the increase
of the driving force due to the space-charge region overcompensates this effect.

The influence of the EDL thickness on the velocity distribution is studied via Fig. 6(b). To this
end, ηλ is varied along with K to keep the PEL charge constant so as to investigate merely the EDL
thickness effects. It is observed that the fluid velocity is smaller for a smaller λE , corresponding to
a larger K . For thick EDLs, like in the case of K = 4, the body force exists almost over the entire
channel cross section. Since the majority of the body force is applied to the fluid outside the PEL,
where there is no Stokes retarding force, comparatively large velocities are achieved. For thinner
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FIG. 5. Profiles of the dimensionless velocity at two different values of α, while keeping W ∗ = 1, t∗ = 0.1,
K = 4, ηε = 0.8, and ημ = 1.5.
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FIG. 6. Heightwise variation of u∗ at the vertical centerline for different values of t∗, K (and ηλ), ηε , and
ημ. The default parameters are W ∗ = 1, t∗ = 0.1, K = 10, ηε = 0.8, ημ = 1.5, and α = 1. The results of the
spectral method are compared with the predictions of the full numerical solution of Eqs. (11) and (25).

EDLs, however, the body force is mostly limited to the PEL region where the retarding effect of
the PEL and the enhanced fluid viscosity prevent a significant fluid flow. Note that the former is
more important since a thinner EDL results in lower velocities even when the viscosity ratio is
1. This characteristic of EOF in soft microchannels is quite the opposite of that observed in rigid
microchannels where increasing λE tends to increase the EDL overlap which in turn reduces the
flow velocity [1].

In part (c) of Fig. 6, it is shown that the ion partitioning effect enhances the fluid velocity, a trend
that is rather antiintuitive, since the partitioning of ions reduces the ionic concentration within the
PEL. However, this reduction is accompanied by an increase of the ionic concentration outside the
PEL. This is shown in Fig. 7 that depicts the corresponding net ionic concentrations. The parameter
c∗
− − c∗

+, displayed in this figure, is a measure of the electroosmotic body force. The net ionic
concentration increases in the bulk with decreasing ηε. This occurs because the number of PEL
fixed charges, to be neutralized by the free counterions, is the same for all three cases. Because of
the increase of the net ionic concentration outside the PEL where the fluid does not encounter any
resistive body force, a noticeable increase in the velocity occurs when lowering ηε.

Part (d) of Fig. 6 is dedicated to the effects of the viscosity ratio. An increase in ημ is found
to be accompanied by a decrease in the fluid velocity over the entire channel height. This is
anticipated, since a larger ημ corresponds to a larger μPEL for a given μE . Accordingly, the
increased viscous force retards the fluid flow. It is worth noting that for ημ = 2, for which there

063701-15



ARMAN SADEGHI, MILAD AZARI, AND STEFFEN HARDT

y*

c* --c
* +

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

FIG. 7. Heightwise variation of c∗
− − c∗

+ at the vertical centerline for different values of ηε and W ∗ = 1,
t∗ = 0.1, K = 5.

is a considerable viscosity contrast between the two domains, the slope change becomes obvious at
the PEL/electrolyte interface. The last point worth mentioning regarding Fig. 6 is the relatively good
agreement between the results from the spectral method and the full numerical results, especially
for low and moderate velocities.

The mean velocity is plotted vs W ∗ in Fig. 8 for different values of t∗. The special solution
for 1 � W ∗, which is independent of the aspect ratio, is also shown in this figure. It can be seen
that u∗

m increases with W ∗ and approaches an asymptote. The increase of u∗
m with W ∗ may be

attributed to the fact that the effect of the flow reduction at the corners is smaller for larger W ∗. The
analytical solution for 1 � W ∗ provides acceptable results for 10 � W ∗. The discrepancy between
this solution and the general solution increases when the PEL expands.

The dependence of u∗
m on ηε, ημ, and α as obtained from the spectral method and the full

numerical solution is displayed in Fig. 9 for different values of the PEL thickness. It is observed
that u∗

m is a decreasing function of all these parameters, but the dependence becomes weaker for
thinner PELs. This is anticipated since these parameters reflect the PEL properties and, when the
PEL shrinks, the flow is mostly affected by the fluid properties outside the soft layer. An interesting
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FIG. 8. Dependence of the average velocity on W ∗ for different values of t∗, while keeping K = 5, ηε =
0.8, ημ = 1.5, and α = 1. The results of the general solution are compared with the predictions of the special
solution for 1 � W ∗.
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FIG. 9. Dependence of the average velocity on ηε , ημ, and α at different values of t∗. The default parameters
are W ∗ = 1, K = 10, ηε = 0.8, ημ = 1.5, and α = 1. The results of the spectral method are compared with the
predictions of the full numerical solution of Eqs. (11) and (25).

feature visible in Fig. 9(c) is that the effect of t∗ on u∗
m is gradually diminished when α increases.

For a physical interpretation of this trend, one should first pay attention to the impact of α on the
velocity distribution. As noted previously, for increasing α the intensified resistive force of the PEL
retards the fluid flow. In the first place, the retardation effect is limited to the soft layer, and the fluid
outside the PEL is only affected indirectly via the viscous force. As such, there is an upper limit for
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the influence of α on the mean velocity, which is obtained when the fluid virtually stops flowing in
the PEL at high values of α. At this point, any further increase in α leaves the fluid flow outside the
soft layer effectively unchanged, resulting in asymptotic values for the mean velocity. It is worth
noting that, under these circumstances, there is no shear force between the fluid and the rigid wall,
and the electric body force is solely balanced by the PEL retarding force. Concerning the influence
of t∗ on u∗

m, it can be deduced from the above discussion that thickening the PEL will have two
opposite effects on the fluid flow when α is high. First, the region over which there is no fluid flow
extends by increasing t∗. Second, the enhanced electric charge of the fixed ions increases the net
ionic charge, which leads to the magnification of the flow velocity outside the PEL. Accordingly,
there are two effects that partially cancel each other, resulting in a rather weak influence of t∗ at
large values of α.

Finally, we would like to evaluate some aspects related to the practical relevance of the model
presented in this paper. The step change in the physical properties at the PEL/electrolyte implies
a discontinuous change of relevant physical quantities such as the mass and charge density or
permittivity. Naturally, this represents an idealization. Realistic density/volume fraction profiles of
PEL layers have been determined using neutron scattering. PEL brushes grafted to surfaces are often
characterized by rather smoothly decaying density profiles that may be approximated by Gaussian
distributions [39,40]. However, at high salt concentrations, when electrostatic interactions between
the PEL chains are screened, profiles that come close to a step function have been found [41]. Also,
PEL multilayers appear to be well described by a step-function profile [42]. The sharp transitions of
the quantities shown in Figs. 4 –7, respectively of their gradients, are in fact artifacts of our steplike
model of the PEL. How realistic a steplike model will be when local quantities are considered
depends on the specific situation, as described above. However, since realistic PEL density/volume
fraction profiles can be interpreted as mollified versions of a steplike profile, we expect that global
quantities are described quite realistically.

In addition, the model developed neglects some nonlinear effects arising at high flow rates. For
example, the polyelectrolyte brushes may deform by the fluid flow when the flow rate is sufficiently
high, thereby invalidating the assumption of a prescribed uniform PEL structure. This is particularly
true for irreversibly adsorbed PELs which tend to be very deformable.

IV. CONCLUSIONS

The electrostatic potential, ionic concentration, and electroosmotic flow in a soft rectangular
microchannel were studied under the condition that considerable differences occur between the
values of the physical properties such as permittivity and fluid viscosity inside and outside the PEL.
The ion partitioning effect, caused by the permittivity difference between the bulk and the PEL, was
taken into account. The flow was assumed to be steady and fully developed, and the PEL properties
were considered as constant. Since the classical method of obtaining solutions for the two channel
domains followed by matching the solutions is not possible for a rectangular geometry, the problem
was handled utilizing a variational approach that treats the whole area under consideration as a single
domain with variable physical properties. The solution was obtained based on a spectral method
with the aid of the Debye-Hückel linearization and was successfully compared with the predictions
of full numerical solutions of the governing nonlinear equations. A closed-form analytical solution
was obtained for large ratios of channel width to channel height, where the geometry effectively
reduces to a slab bounded by parallel walls. Furthermore, it was demonstrated how charges at the
channel walls may be taken into account.

The results indicate that the reduction of the counterions in the PEL caused by the partitioning
effect increases the electrostatic potential drop inside the channel, especially within the soft layer.
The potential drop is also increased by thickening the PEL. Contrary to expectations, the partitioning
of ions amplifies the fluid velocity, because of an amplification of the net ionic concentration outside
the PEL. Furthermore, by increasing the channel width for a given height, the mean fluid velocity
increases and approaches an asymptotic value. For high aspect ratios the numerically computed
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mean velocity is in good agreement with the analytical solution. As expected, lower flow rates are
obtained when increasing the fluid viscosity in the PEL for a given bulk viscosity, a trend that
is more pronounced for thick PELs. In addition, although increasing the PEL friction reduces the
flow rate, at high friction factors the fluid within the PEL virtually stops flowing, with the result
that the friction factor no longer affects the flow field. Finally, even though shrinking the EDL
results in larger electroosmotic velocities for rigid microchannels [1], the opposite is observed for a
PEL-covered microchannel.

At least two major new results were reported in this research work that call for experimental
validation: the increase of the volumetric flow rate caused by ion partitioning and the increasing
trend of the flow rate with the EDL thickness. The former may be examined by measuring the
flow rate in microchannels covered with dense PELs composed of different monomers that cause
different degrees of ion partitioning, while the latter may be explored by utilizing different salt
concentrations.
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APPENDIX A: PARAMETERS RELATED TO THE ELECTRIC POTENTIAL DISTRIBUTION

It can be shown that

ci = K2η−2
λ

(∫
A∗

fidA
∗ −

∫
A∗

E

fidA
∗
)

= K2η−2
λ W ∗

�
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, (A1)

where t∗ = t/H denotes the dimensionless PEL thickness and δ is the Kronecker delta. For
evaluation of ai j , we first write

ai j = ηε
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[



(
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E

fi f jdA
∗, (A2)

where ηε = εPEL/εE . Performing the integrations in Eq. (A2), the final expression of ai j is obtained
as

ai j = ηε

4W ∗ δli,l j δmi,mj

[
W ∗2

ξliξl j

(
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APPENDIX B: PARAMETERS RELATED TO THE VELOCITY DISTRIBUTION

Performing the integration in Eq. (36), it is shown that
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For calculation of ei j , we first write
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where ημ = μPEL/μE . Carrying out the integrations in Eq. (B2), ei j is determined as
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