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Computational study of the collapse of a cloud with 12 500
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We investigate the collapse of a cloud composed of 12 500 gas bubbles in a liquid
through large-scale simulations. The gas bubbles are discretized by a diffuse interface
method, and a finite volume scheme is used to solve on a structured Cartesian grid the
Euler equations. We investigate the propagation of the collapse wave front through the
cloud and provide comparisons to existing models such as Mørch’s ordinary differential
equations and a homogeneous mixture approach. We analyze the flow field to examine the
evolution of individual gas bubbles and in particular their associated microjet. We find that
the velocity magnitude of the microjets depends on the local strength of the collapse wave
and hence on the radial position of the bubbles in the cloud. At the same time, the direction
of the microjets is influenced by the distribution of the bubbles in its vicinity. We envision
that the present, state-of-the-art, large-scale simulations will serve the further development
of low-order models for bubble collapse.

DOI: 10.1103/PhysRevFluids.4.063602

I. INTRODUCTION

Collapsing and interacting bubbles are encountered in a variety of industrial and scientific
applications ranging from cavitation phenomena associated with engineering devices, such as
marine propellers, hydroelectric turbines, and fuel injectors [1–3], to noninvasive biomedical
procedures, for instance, kidney stone lithotripsy, drug delivery, and tissue ablation histotripsy
[4–6]. The collective (growth and) rapid collapse of a large number of bubbles, i.e., a cloud of
bubbles, in a liquid subjected to large pressure variation has been investigated both experimentally
and numerically. Experiments in Ref. [7] studied the collapse of a cloud of bubbles via the formation
of an inward propagating shock wave and the geometric focusing of this shock at the center of
the cloud. Experimental measurements with hydrofoils subjected to cloud cavitation, conducted in
Ref. [8], showed that very large pressure pulses occur within the cloud and are radiated outward
during the collapse process. A technique developed in Ref. [9] allowed for controlling the bubble
distance within a two-dimensional cloud. The study revealed the shielding effect of the outer bubbles
and showed the formation of an inward-directed microjet. The final stage of the collapse of a
hemispherical cloud near a solid surface was investigated using ultra-high-speed photography in
Ref. [10]. Cloud cavitation in a water jet was examined in Ref. [11]. Various numerical studies were
also reported in the literature; for instance, early ones assuming a potential flow in the liquid in
Refs. [12,13]. The recently presented study [14] used an Euler-Lagrange approach, combining the
Navier-Stokes equations with subgrid-scale spherical bubbles governed by a Rayleigh-Plesset-like
equation, to investigate spherical clouds collapsing near a rigid wall. A similar approach was applied
in Ref. [15] to study the impulsive loads generated by a cloud with 400 bubbles under an imposed
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oscillating pressure field. Resolved and deforming bubbles were considered in Refs. [16–19]. A two-
dimensional simulation of the collapse of a small cluster with seven bubbles in an incompressible
liquid using a front-tracking method was presented in Ref. [16]. The collapse dynamics of a cloud
composed of 125 vapor bubbles with random radii was studied in Ref. [17], while Ref. [18] reported
the evolution of a hemispherical cloud of 50 air bubbles. In Ref. [18] a homogeneous mixture model
and a coupled system of Rayleigh-Plesset-like equations were considered in addition, but provided
qualitatively different predictions of the pressure field. A recent study [19] addressed uncertainty
quantification for the collapse of clouds with 500 randomly located gas bubbles. The goal of the
present paper is to advance the state of the art in studies of cloud collapse processes by simulating
thousands of gas bubbles and studying their collective interactions.

Numerical methods for multicomponent flow that resolve both components on the computational
grid may be classified into single-fluid and two-fluid approaches. In two-fluid methods, each
component is governed by an individual set of conservation equations for mass, momentum and
energy, and discontinuities at the interface are treated explicitly [20–23]. In contrast, single-fluid
methods, such as the diffuse interface method [24–27], introduce a zone around each interface
where the transition from one component to the other is smeared over a few grid cells. In this
context, single-fluid models present a compromise between accuracy and computational efficiency;
that is, both components are explicitly distinguished, while the same numerical scheme can
be used throughout the computational domain. This feature renders diffuse interface methods
particularly appropriate for the large-scale simulation of flow problems with thousands of bubbles,
as demonstrated by the compressible multicomponent flow solver presented in Ref. [28] which
showed a throughput of up to 7 × 1011 computational cells per second on 96 racks of the IBM
Sequoia.

Here we employ an extended version of this compressible multicomponent flow solver to
simulate the collapse process of a cloud of 12 500 resolved gas bubbles. The number of bubbles in
the present simulation is up to two orders of magnitude larger than the ones considered in previous
studies. Clouds of this size recover the separation of scales, i.e., a cloud of large extent formed
by small bubbles. Therefore, the present cloud complies with the assumptions of Mørch’s ordinary
differential equation for the propagation of the pressure wave resulting from the cloud collapse. At
the same time, the large bubble count enables reliable statistics on the behavior of the individual
bubbles and their associated microjets.

The paper is organized as follows: Sec. II summarizes the governing equations together with the
computational method and presents the setup of the cloud collapse problem. Section III reports on
the cloud collapse dynamics from a macroscopic point of view. In Sec. IV the dynamical behavior
of the bubbles and their associated microjets is analyzed. Section V concludes the study.

II. GOVERNING EQUATIONS AND COMPUTATIONAL APPROACH

In the following, we summarize the governing equations, the applied numerical scheme, and the
setup of the cloud collapse problem. The simulation presented in this study is conducted using the
open source software Cubism-MPCF [28–30] for download. The reader is referred to Ref. [31] for
the verification and validation of the compressible multicomponent flow solver for two-component
shock-tube problems and for single-bubble collapse. Additionally, a grid convergence study for a
small spherical cloud composed of 400 air bubbles is shown in Appendix A.

A. Governing equations

We study the collapse process of a cloud of gas (i.e., air) bubbles in a liquid (i.e., water). The
two components, water and air, are assumed immiscible and are captured by the diffuse interface
method for compressible multicomponent flows. The present investigation involves the collapse of
highly nonspherical bubbles that come along with strong microjets. In the case of strong microjets,
inertia forces dominate the initial stages of the collapse process, while viscous effects and surface
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tension may be considered negligible; see Refs. [18,32]. This assumption is justified in Appendix A
for a major part of the precollapse phase of the cloud, i.e., the time period before the cloud reaches
the state of minimum gas volume. However, during the final stages of the bubble collapse, when
the bubble scales are small and local interface curvatures are high, surface tension and viscosity
may influence some details of the bubble collapse process. Being aware of these limitations of our
approach, we exclude data corresponding to this collapse phase from our microscopic analyses.

Hence, we adopt the Euler equations consisting of the mass conservation equations for each
component, conservation equations for momentum and total energy in mixture- (or single-) fluid
formulation, and a transport equation for the volume fraction of one of the two components:

∂α1ρ1

∂t
+ ∇ · (α1ρ1u) = 0, (1)

∂α2ρ2

∂t
+ ∇ · (α2ρ2u) = 0, (2)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u + pI) = 0, (3)

∂E

∂t
+ ∇ · [(E + p)u] = 0, (4)

∂α2

∂t
+ u · ∇α2 = K ∇ · u, (5)

where

K = α1α2
(
ρ1c2

1 − ρ2c2
2

)
α1ρ2c2

2 + α2ρ1c2
1

; (6)

see Refs. [33,34] for derivation. In Eqs. (1)–(5), u denotes the velocity, p the pressure, I the identity
tensor, ρ the (mixture) density, and E the (mixture) total energy E = ρe + 1/2ρ(u · u), where e is
the (mixture) specific internal energy. Moreover, ρk , αk , and ck with k ∈ {1, 2} are density, volume
fraction, and speed of sound of the two components, respectively. It holds that α1 + α2 = 1 as
well as ρ = α1ρ1 + α2ρ2 and ρe = α1ρ1e1 + α2ρ2e2 for the mixture quantities. The source term
on the right-hand side of the transport equation for α2 was originally derived in Ref. [35] and is
nonzero within the diffuse interface only. It allows for treating the interface zone as a compressible,
homogeneous mixture of gas and liquid by capturing the reduction of the gas volume fraction when
a compression wave travels across the mixing region and the increase for an expansion wave. As
shown in Refs. [27,31], the inclusion of this term notably increases the accuracy and lowers the
resolution requirements. Moreover, it allows for a smooth transition to a homogeneous mixture
model, if the resolution limit is reached by a collapsed bubble.

The system of Eqs. (1)–(5) is closed by the stiffened equation of state [36]:

p = (γk − 1)ρkek − γk pc,k, (7)

where isobaric closure is assumed [34]. The speed of sound is then given by

ρkc2
k = γk (p + pc,k ). (8)

The material parameters γk and pc,k are assumed constant. Here the values of Refs. [18,25] are used,
which are given by γ1 = 4.4 and pc,1 = 6.0 × 102 MPa for water and γ2 = 1.4 and pc,2 = 0.0 MPa
for air.

B. Numerical method

The system of governing equations (1)–(5) is expressed in a quasiconservative form as

∂Q
∂t

+ ∇ · F = R, (9)
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where Q = (α1ρ1, α2ρ2, ρu, E , α2)T. The vector F = (F(x), F(y), F(z) )T combines the fluxes F(x) =
(α1ρ1ux, α2ρ2ux, ρu2

x + p, ρuyux, ρuzux, (E + p)ux, α2ux )T, F(y) = (α1ρ1uy, α2ρ2uy, ρuxuy, ρu2
y +

p, ρuzuy, (E + p)uy, α2uy)T, and F(z) = (α1ρ1uz, α2ρ2uz, ρuxuz, ρuyuz, ρu2
z + p, (E + p)uz, α2uz )T.

The right-hand-side vector R = (0, 0, 0, 0, 0, 0, [K + α2] ∇ · u)T is zero except for the last compo-
nent, which comprises the source term of Eq. (5) and a contribution obtained from reformulating its
convective term.

We solve Eq. (9) using a Godunov-type finite volume method on a uniform Cartesian grid. The
choice of a uniform Cartesian grid enables the exploitation of High Performance Computing (HPC)
architectures [28]. The numerical fluxes at the cell faces are computed by an HLLC approximate
Riemann solver, originally introduced for single-phase flow in Ref. [37] and more recently extended
to multicomponent flows in Refs. [27,38,39]. The fluxes are based on the primitive variables u, p,
α1ρ1, α2ρ2, and α2 at the cell faces, which are reconstructed from the cell average values using
a shock-capturing third-order WENO scheme [40]. Primitive variables are used for reconstruction
to prevent numerical instabilities at the interface [38,41]. The approach suggested in Ref. [38] is
adopted for the application of the HLLC Riemann solver to the evolution of α2. In summary, the
resulting semidiscrete system reads as

dV(t )

dt
= L[V(t )], (10)

where V denotes the vector of cell average values and L(·) the spatially discrete forms of divergence
and source term in Eq. (9). Equation (10) is discretized in time by a total variation diminishing
(TVD), low-storage, explicit third-order Runge-Kutta scheme [42] with a time step dictated by the
Courant-Friedrichs-Lewy (CFL) condition.

C. Cloud setup

We investigate an initially spherical cloud of radius RC = 45 mm, composed of nB = 12 500
spherical bubbles of radius RBi with i ∈ 1, . . . , nB. The cloud is generated by randomly positioning
bubbles within a sphere of radius RC using a uniform distribution and subject to the constraint
that the minimum distance between the surfaces of any two bubbles is greater than dG = 0.4 mm.
The radius of the bubbles is chosen in the range [RB,min, RB,max] using a log-normal probability
distribution. The minimum and maximum bubble radii values, RB,min = 0.5 mm and RB,max =
1.25 mm, are based on the respective values suggested in Refs. [17,18]. The mean bubble radius
is given by

R̄B = 2eμ+ 1
2 σ 2 − 1

4
(RB,max − RB,min) + RB,min = 0.7 mm, (11)

where μ = 0 and σ = 0.3 are the mean and standard deviation of the log-normal distribution,
respectively. A two-dimensional sketch of the cloud setup is shown in Fig. 1. The bubble cloud
is characterized by the gas volume fraction αC and the cloud interaction parameter βC, defined as

αC = 1

R3
C

nB∑
i=1

R3
Bi

, (12)

βC = αC

(
RC

RB,avg

)2

, (13)

where

RB,avg = 1

nB

nB∑
i=1

RBi (14)

063602-4



COMPUTATIONAL STUDY OF THE COLLAPSE OF A CLOUD …

FIG. 1. Sketch of spherical cloud with radius RC composed of bubbles with radius RB in close-up of two
bubbles separated by distance dG.

denotes the average bubble radius. Higher βC values indicate stronger interactions among the
bubbles [13,43]. For the present cloud, αC = 4.9%, βC = 208, and RB,avg = 0.69 mm. Figure 2
shows a histogram of the distribution of the bubble radius and a visualization of the generated
cloud.

The cloud is centered in a cubic computational domain of size 6RC × 6RC × 6RC. The domain
is uniformly discretized using 6144 × 6144 × 6144 cells, leading to RB,min/h = 11.38 for the
minimum bubble resolution and RB,max/h = 28.44 for the maximum bubble resolution, where the
cell length is denoted by h. Initially, a zero velocity field is assumed. The density of water is set
to ρ1(x, t = 0) = ρ1(0) = 1000.0 kg/m3 and of air to ρ2(0) = 1.0 kg/m3. Moreover, a smoothed
initial pressure field [18] is used which is essential in order to attenuate the emission of spurious
pressure waves caused by the initial conditions. The bubble and liquid pressure in the sphere defining
the cloud is set to pC = 0.1 MPa and the ambient pressure to p∞ = 1.0 MPa. Following Ref. [18],
the initial pressure field in the liquid outside of the cloud is then approximated via

p(x, t = 0) =
{

pC if ‖x − xC‖ � RC,

pC + tanh
( ‖x−xC‖−RC

λ

)
(p∞ − pC) otherwise,

(15)

FIG. 2. (a) Distribution of bubble radius and (b) rendering of the initial cloud.
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FIG. 3. Temporal evolution of (a) gas volume V2/V2(0) together with pointwise maximum pressure
pmax/ppeak within domain and average kinetic energy Ekin,C/Ekin,C,peak within the cloud as well as (b) V2/V2(0)
together with average pressure pC/pC,peak within the cloud and average pressure pS/pS,peak within sensor
at the cloud center. All quantities are normalized by their peak values. Symbols mark time instants for
three-dimensional visualizations (see Fig. 4) and numerical schlieren (see Fig. 5). The gray shaded area
indicates the time interval used for data extraction in the microjet analysis in Sec. IV B.

where xC denotes the center of the cloud. Parameter λ defines how fast the pressure increases from
the cloud surface to the ambient and is set to 50 mm. In Appendix B we show that the approximation
described in Ref. [18] is sufficiently accurate compared to an initial condition that satisfies the
Laplace equation ∇2 p = 0 for the pressure field. Nonreflecting, characteristic-based conditions
[44–46] are applied at the boundaries of the computational domain. Additionally, we impose the
ambient pressure p∞ in the far field by adding the term Cbc(p − p∞) to the incoming wave [47].
Coefficient Cbc = σ (1 − Ma2)c1/	 ≈ σc1/	 depends on a characteristic length 	 = 3RC, the speed
of sound c1 in the liquid at the boundary, the Mach number Ma at the boundary, which is assumed
negligible, and a user-defined parameter σ = 0.75s. Moreover, the CFL number is set to 0.3.

III. CLOUD COLLAPSE DYNAMICS

In this section, the cloud collapse is examined from a macroscopic point of view without
considering the dynamics of the individual bubbles. The temporal evolution of characteristic
quantities is provided together with visualizations of the collapsing cloud. Subsequently the
propagation of the collapse wave through the cloud is analyzed and compared to predictions by
Mørch’s ordinary differential equation and a homogeneous mixture approach.

A. Temporal evolution and visualizations

We quantify the cloud collapse process through the temporal evolution of a number of local
and global quantities. Figure 3 shows the development of the gas volume V2/V2(0), the pointwise
maximum pressure pmax/ppeak within the computational domain, the average pressure pC/pC,peak

within the cloud, the average pressure pS/pS,peak within a sensor at the center of the cloud, further
described below, and the total kinetic energy Ekin,C/Ekin,C,peak within the cloud. All quantities are
normalized by their peak (i.e., maximum) values. The symbols on top of the curve for the gas volume
coincide with the time instants for which three-dimensional visualizations of the cloud together
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FIG. 4. Temporal evolution of collapsing cloud with pressure isosurface at piso = 0.15 MPa. Symbols in
top left corner correspond to time instants marked in Fig. 3.

with the pressure isosurface at piso = 0.15 MPa are shown in Fig. 4 and numerical schlieren of the
pressure field in the xy plane at z = 0 in Fig. 5. The last two symbols correspond to the time of peak
pressure pS,peak within the sensor and the time of minimum gas volume, respectively. The remaining
symbols are spaced evenly between t = 0 and the time of occurrence of pS,peak.

The minimum gas volume is reached at time tC = 343.9 μs, which is referred to as the cloud
collapse time in the following. At this time, the gas volume is reduced by 88% compared to
its initial value. The pointwise maximum pressure pmax is a highly fluctuating quantity. Its peak
ppeak = 3.41 GPa is detected at time t/tC = 0.898 and occurs before the minimum gas volume is
encountered. A similar observation was made in Ref. [11]. To capture the behavior in the core of
the cloud, we center a spherical pressure sensor of radius RS = 1 mm at the center of the cloud. The
sensor measures the average pressure pS over its domain. The maximum value of pS amounts to
pS,peak = 89.5 MPa and is observed at time t/tC = 0.901. The pressure curve of the sensor reveals
the shielding effect [48,49] of the outer bubbles in the cloud. Although a broad time interval of
high pressures is observed for pmax, merely the major peak and one smaller peak are detected by
the sensor. Strong pressure waves emitted away from the immediate surrounding of the sensor are
absorbed by bubbles between the source of the pressure wave and the sensor by contributing to
the compression of these bubbles. The maximum value of the average pressure within the cloud is
pC,peak = 3.69 MPa and significantly smaller than pS,peak. Furthermore, it is encountered at a later
time t/tC = 1.021, which is almost exactly the time of minimum gas volume. The kinetic energy
of the mixture in the cloud region increases until it reaches its peak value of Ekin,C,peak = 3.69 J
at t/tC = 0.800, which is before the occurrence of ppeak. At time tC, the kinetic energy is already
reduced by 72%.

Figure 4 illustrates the deformation of the bubbles, which is caused by the formation of microjets.
As the collapse of the cloud progresses, the extracted pressure isosurface is moving inward.
Accordingly, an evolving circular front is detected by the numerical schlieren of the pressure field
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FIG. 5. Temporal evolution of collapsing cloud visualized using numerical schlieren images of the pressure
field in the xy plane at z = 0. Symbols in top left corner correspond to time instants marked in Fig. 3.

shown in Fig. 5. Figures 4 and 5 thus reveal an inward-propagating spherical collapse wave and
the aforementioned shielding effect. While the bubbles behind the front are subject to a collapse
process, bubbles ahead of the front remain at their initial state. From the fourth to the fifth frame, a
breakdown of the shielding effect is observed. Furthermore, strong spherical pressure waves emitted
from individual bubble collapses are clearly visible in the fifth numerical schlieren frame.

B. Collapse wave propagation

The large number of bubbles in the cloud renders the macroscopic flow spherically symmetric
and allows for analyzing the collapse wave observed in the previous section. Therefore, spherical
averages ᾱ2(r, t ), p̄(r, t ), and ū(r, t ) of the gas volume fraction, the pressure and the velocity
magnitude are computed over spheres with radius r centered at the cloud center. The radial position
of the collapse wave front is defined by the location of the maximum average velocity magnitude as

RF(t ) = arg max
r

ū(r, t ). (16)

Figure 6 shows the front trajectory in the r-t space on top of a contour plot of ᾱ2(r, t ) as well as
the evolution of the front speed ṘF, i.e., the propagation speed of the bubbly shock in the mixture
[49–51]. Apart from these curves, labeled “bubbles,” predictions by Mørch’s ordinary differential
equation and a homogeneous mixture approach which are further addressed below are also included.
The propagation of the front starts immediately. The front gradually accelerates so that the front
speed reaches 100 m/s at t = 150 μs and 200 m/s at t = 240 μs. These velocities are lower than
the speed of sound in both pure fluids, which amounts to 1625 m/s for water and to 374 m/s
for air under pressure pC = 0.1 MPa. Eventually, the front reaches the speed of sound of air at
approximately t = 270 μs. At about the same time, the kinetic energy of the mixture in the cloud
starts to decrease and pressure disturbances penetrate the front despite the shielding effect; see
Fig. 3.
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FIG. 6. (a) Front trajectory of collapse wave on ᾱ2 contour plot and (b) front speed. Results obtained with
the Mørch model and a homogeneous mixture approach are included for comparison.

Profiles of the spherical averages at various time instants t = 139, 183, 218, 245, 267, 285,
and 297 μs corresponding to RF = 40, 35, 30, 25, 20, 15, and 10 mm are shown in Fig. 7.
The profiles are normalized and plotted in the frame of reference of the front, i.e., depending
on the relative radial location r − RF(t ). The normalized gas volume fraction, pressure, and
velocity are defined as ᾱ2/αC, ( p̄ − pC)/( p̄F − pC), and ū/ūF, where p̄F(t ) = p̄(RF(t ), t ) and
ūF(t ) = ū(RF(t ), t ) are pressure and velocity at the front. The gas volume fraction shows some
oscillations which decay towards the cloud surface as more bubbles contribute to the averages with
increasing r. The normalization of the radial profiles reveals their self-similarity in the vicinity
of the front. The collapse wave, or bubbly shock, does not exhibit a sharp front but has a finite
thickness which is related to the dynamics of the individual collapsing bubbles (see Refs. [50,52]
and references therein). Consistent with the observations of the aforementioned studies, the
thickness of the front is of the size of a few bubble length scales. From the velocity profiles in
Fig. 7, we obtain a front thickness of approximately 10 mm, which is about seven bubble diameters.
Owing to the shielding effect by the outer bubbles, all fields remain at their initial values ahead
of the front, i.e., for r − RF < −10 mm. Closer to the front, the gas volume fraction gradually
decreases to α2/αC ≈ 0.2 at the front, while the pressure and the velocity grow towards their peak
values. Behind the front, the gas volume fraction rebounds and reaches a value of α2/αC ≈ 0.4 at a
distance of r − RF ≈ 3 mm. The gas volume fraction rebound behind the front [49] is accompanied
by a drop in the pressure and velocity. Farther outward from the cloud center, all profiles keep
declining. At the cloud surface, the gas volume fraction drops to zero in a sharp fashion, whereas
pressure and velocity decrease smoothly to their prescribed far field values.

The values of the pressure and velocity at the front increase as seen from their temporal evolution
shown in Fig. 8. As derived from mass and momentum balance [51,52], pF and uF are related to the
front speed. Approximate relations for these quantities near the front are given by

pF − pC ∼ ρ1(1 − αC)αCṘ2
F, (17)

uF ∼ αCṘF (18)

up to a scaling factor which depends on the definition of the front location. Fitting these relations to
the simulation data results in

pF − pC = 6.20 ρ1(1 − αC)αCṘ2
F, (19)

uF = 0.75 αCṘF (20)

and provides a good approximation to the present results; see Fig. 8.
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FIG. 7. Normalized profiles of spherical averages of the gas volume fraction, pressure and velocity
magnitude corresponding to RF = 40, 35, 30, 25, 20, 15, and 10 mm. Simulation with (a) resolved bubbles
and (b) homogeneous mixture approach are shown. Arrows indicate increasing time.

A model proposed by Mørch in Ref. [51] describes the collapse of a spherical cloud of vapor
bubbles in the form of a Rayleigh-Plesset-like equation:

RFR̈F +
[

3

2
− 1

2
(1 − ψ )(1 − αC)

]
Ṙ2

F = − p∞ − pv

αCρ1
, (21)

063602-10



COMPUTATIONAL STUDY OF THE COLLAPSE OF A CLOUD …

FIG. 8. (a) Temporal evolution of average pressure and (b) average velocity magnitude at the front.

where pv denotes the vapor pressure of the liquid and ψ an energy conservation factor. The energy
conservation factor accounts for energy losses due to the radiation of acoustic waves and dissipation.
A larger value leads to a higher front speed. According to Ref. [51], the energy conservation factor
should be in the range 0 � ψ � 0.5. The model assumes that the bubbles are small compared to
the cloud radius and that the vapor volume fraction is sufficiently high. In contrast to the present
simulation of a cloud of gas bubbles, the Mørch model is derived for vapor bubbles, which means
that the pressure inside the bubbles remains constant during the collapse and that the bubbles
collapse completely without any rebound stage. When setting pv = pC, the Mørch model also
provides a reasonable prediction for the front trajectory and speed of the present case, as can be
seen from Fig. 6, where the respective curves are labeled “Mørch.” For the curves shown in Fig. 6,
the energy conservation factor, which is only of minor influence, is set to ψ = 0.5.

Furthermore, results obtained by a homogeneous mixture approach are included for compar-
ison. Homogeneous mixture (or single-fluid) models, such as the ones proposed and/or used in
Refs. [53–58], do not consider individual bubbles but treat the cloud region as a mixture of water
and gas (or vapor), for instance, based on a cell-averaged void-fraction distribution. Homogeneous
mixture models may be used in situations where none of the void structures are resolved on the
computational grid. These situations exhibit a ratio R̄B/h 	 1 of the characteristic size of the
bubbles to the grid cell length. In this case, homogeneous mixture models allow the simulation of
large-scale flow dynamics, i.e., dynamics that are resolvable on the chosen computational grid. By
increasing the grid resolution, homogeneous mixture models are able to capture the flow dynamics
of decreasingly smaller scales. The mathematical description introduced in Sec. II A may also be
used to describe a homogeneous mixture of gas and liquid owing to the right-hand-side term of
Eq. (5). Here we simply set a uniform gas volume fraction α2 = αC for all cells within the sphere
of radius RC, instead of initially computing the cell-averaged gas-volume-fraction field from the
distribution of the 12 500 bubbles in the cloud by some kind of filtering procedure. The initial
conditions for the velocity and the pressure as well as the applied boundary conditions remain
unchanged compared to the case with resolved bubbles. A similar approach was used in Ref. [18].
For the homogeneous mixture approach, the computational domain is discretized by 1024 cells
per spatial direction. Spherically averaged profiles for RF = 40, 35, 30, 25, 20, 15, and 10 mm
corresponding to t = 94, 154, 203, 242, 271, 293, and 309 μs are shown in Fig. 7. In contrast
to the case with resolved bubbles, the radial profiles are discontinuous at the front and do not
demonstrate features such as the gas volume fraction rebound behind the front or the gradual
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transition of the profiles ahead of the front. Therefore, the location of the collapse wave front for the
homogeneous mixture case is determined from the gas volume fraction via

RF(t ) = arg max
r

∣∣∣∣∂ᾱ2

∂t
(r, t )

∣∣∣∣, (22)

which detects the discontinuity in ᾱ2. The front trajectory and speed, shown in Fig. 6 by the curves
labeled “mixture,” are qualitatively similar to the ones of the resolved simulation. However, the
front speed is underestimated starting from t = 150 μs, and the deviation grows in time reaching
about 50 m/s at t = 250 μs. The temporal evolution of the pressure and the velocity at the front
are included in Fig. 8. The values observed with the homogeneous mixture approach are about 30%
lower compared to the resolved simulation.

In summary, our results indicate that the front trajectory and speed observed in the simulation
with large numbers of bubbles are well captured by Mørch’s ordinary differential equation and the
present homogeneous mixture approach. The evolution of the pressure and the velocity near the
front matches the theoretical relations and in turn validates the present numerical results.

IV. BUBBLE DYNAMICS

Next, the evolution of the bubbles in the cloud is examined. Their collapse behavior as well as
the microjets leading to their deformation are investigated.

A. Bubble collapses

The shape of the bubbles is implicitly described by the gas-volume-fraction field α2, which is
sampled at a frequency of 0.63 MHz. The center xBi (t ) and the equivalent radius RBi (t ) of bubble i
are calculated as

xBi (t ) = 1

VBi (t )

∫
�Bi

α2x dV, (23)

RBi (t ) =
[

3

4π
VBi (t )

]1/3

, (24)

where

VBi (t ) =
∫

�Bi

α2 dV (25)

is the bubble volume. The integration is performed over a spherical domain �Bi concentric with the
bubble center of the previous time sample and with a radius equal to the initial bubble radius RBi (0).
In order to improve the accuracy of peak detection, the function RBi (t ) is interpolated in time with
a cubic spline.

Figure 9 shows the evolution of the equivalent bubble radius for a few bubbles selected at various
radial locations. All curves are normalized by the initial bubble radius. A bubble starts to collapse
once it is overtaken by the inward-propagating wave. Figure 9 illustrates that the strength of the
collapses, expressed, e.g., in terms of smaller collapse times and stronger bubble compression,
increases with decreasing distance to the cloud center. In the vicinity of the center of the cloud,
bubbles collapse in a highly nonlinear fashion (see right column of Fig. 9), whereas they oscillate
in the periphery of the cloud (see left column of Fig. 9).

B. Microjet formation

The evolving pressure gradient along the bubble surface leads to the formation of a localized
liquid jet of high velocity, which notably deforms the bubble and eventually pierces though it.
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FIG. 9. Temporal evolution of equivalent radius of selected bubbles at various radial locations r =
40.0, 33.0, 26.0, 19.0, 12.0, and 5.0 mm. All curves are normalized by the corresponding initial bubble
radius.

Following Ref. [59], the tip xtipi
of the microjet associated with bubble i is identified as the location

of minimum curvature on the bubble surface. Here the interface is represented by the isosurface
α2 = 0.5 of the gas-volume-fraction field. The curvature of any isocontour of α2 can be calculated
from the gas-volume-fraction field via κ = −∇ · ∇α2

|∇α2| .
Figure 10 illustrates the evolution of the microjet for three bubbles. The relative location of the

tip, xtip,i − xBi , as well as the bubble radius RBi are displayed as a function of time. Additionally,
bubble shapes are shown for selected time instants. At the beginning of the collapse process,
the bubble surface is largely spherical and possesses a positive curvature. Therefore, the distance
between the location of minimum curvature and the bubble center is approximately equal to the
equivalent radius, but the location itself is not well defined and thus bounces from one point to
another. Once the microjet starts to form, the curvature changes its sign. The location of minimum
curvature then identifies the tip of the microjet. The microjet deforms the bubble into a caplike shape
until it pierces through the bubble on the opposite surface; see Fig. 10. At this time, the distance
between the location of minimum curvature and the bubble center again approximately equals the
equivalent radius. Hence, the characteristic quantities of the microjets are evaluated during the time
interval [ttip,i, timp,i] for which ∣∣xBi − xtip,i

∣∣ < 0.75RBi (26)

TABLE I. Microjet parameters of selected bubbles.

Bubble r [mm] θ [deg] utip [m/s] RB(0) [mm] −ṘB,min [m/s] ϕ [deg] |û⊥
bulk|

1 41.9 9.8 13.4 0.58 3.9 50.6 0.005
2 41.4 49.4 14.6 0.66 3.3 22.9 0.293
3 34.1 12.6 64.1 1.14 14.7 92.5 0.148
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FIG. 10. Temporal evolution of microjets for three selected bubbles. Trajectory of microjet tip relative to
the bubble center (solid lines), linear fit (dashed lines), and equivalent radius (black solid line). All quantities
are normalized by the corresponding initial radius. Fitting range [ttip,i, timp,i] (vertical solid lines), collapse wave
arrival tF (vertical dashed line), and intervals of 10 μs with corresponding isolines of α2 = 0.5 at the bottom
(vertical dotted lines).
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FIG. 11. Bubble surface with microjet velocity utip,i and bulk velocity indicator ûbulk,i as well as their
projections u⊥

tip,i and û⊥
bulk,i onto a plane perpendicular to the radial direction.

holds. As observed in Fig. 10, the relative trajectory xtip,i − xBi of the tip of the microjet travels with
approximately a constant velocity within this interval. The microjet velocity utip,i is defined by the
time derivative of a linear fit of xtip,i − xBi in the time interval [ttip,i, timp,i]. In order to obtain reliable
statistics, the fitting range is required to comprise at least six samples in time (i.e., has duration of
at least 10 μs) and the root-mean-square error of the fitting has to be below 0.1 RBi (0). Due to the
limited data sampling frequency and the complexity of the microjet tip trajectories, not all bubbles
satisfy these requirements. Such bubbles are excluded from the subsequent analysis of the microjets,
leaving about 7500 bubbles (i.e., 60% of the bubbles) for further evaluation. The time interval that
contains the microjet analyses for all bubbles is described by the interval [tM,s, tM,e], where

tM,s = min
i

(ttip,i ), (27)

tM,e = max
i

(timp,i ) (28)

are the start and end times, respectively. The microjet interval is highlighted in Fig. 3 with a gray
shaded region. We note that the end time tM,e is before the time of minimum cloud volume tC.
Furthermore, Appendix A shows that the bubbles are sufficiently resolved during that time interval
to guarantee at most 10.0 ± 5.2% error in the microjet velocity magnitudes relative to a grid with
twice the resolution.

As reported in preceding studies on cloud collapse dynamics [9,18], the microjets point towards
the core of the cloud. As shown in the present work, the axes of these microjets are not perfectly
aligned with the radial direction xC − xBi (0) from the initial bubble center to the cloud center. The
inclination angle θi denotes the angle between the radial direction and the direction of the microjet
velocity corresponding to bubble i as illustrated in Fig. 11. A microjet with θi = 0◦ is directed
towards the cloud center. Values of the inclination angle for bubbles shown in Fig. 10 are given
in Table I, where the microjet of bubble “2” is distinguished by stronger inclination. Figure 12
depicts a scatter plot of the inclination angle θi versus the radial distance r. All scatter plots shown
in this subsection also contain the moving average and the standard deviation computed with a
window length equal to 10% of the corresponding horizontal axis range. The bubbles selected
in Fig. 10 are also marked. Furthermore, Fig. 12 depicts the probability density function (PDF)
of the inclination angle. The average inclination angle for the present cloud collapse process is
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FIG. 12. (a) Microjet inclination angle θi depending on radial location. Moving average of the data (dashed
line) is shown. Color shades indicate the standard deviation. (b) PDF of the inclination angle.

13.2◦. Furthermore, 90% of the bubbles exhibit an inclination angle smaller than 24◦. Local mean
values of the inclination angle range from 10◦ at r = 45 mm to 18◦ at r = 26 mm. As a result, the
microjet inclination angle increases slightly towards the cloud center indicating a weak dependence
on the collapse wave speed, which strongly depends on r. Very large inclination angles in the
range of 35◦ to 61◦ are observed for 1% of the bubbles. Closer examination of these microjets
reveals that the microjet inclination is affected by the surrounding bubbles. Figure 13 shows the
neighborhood of a bubble with an inclination angle of 50◦. The microjet is inclined towards one
specific neighboring bubble that has a significantly larger size than the considered bubble as well as
all the other bubbles in its vicinity. This observation suggests that the microjet inclination mainly
depends on the geometrical arrangement of the bubbles. Larger bubbles have a stronger influence
on the liquid flow. Assuming potential flow away from the bubbles, the velocity in the surrounding

FIG. 13. Neighborhood of a small bubble (red) with a large inclination angle of 50◦ that is attracted towards
a significantly larger bubble nearby (brown).
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FIG. 14. PDF of angle ϕi between u⊥
tip,i and û⊥

bulk,i.

liquid is given by [60]

u(x, t ) =
nB∑
j=1

R2
B j

ṘB j∣∣x − xB j

∣∣3

(
x − xB j

)
. (29)

Furthermore, the bubble compression rate ṘB j in Eq. (29) is taken to be constant and negative,
leading to a nondimensional bulk velocity

ûbulk,i =
nB∑

j = 1
j �= i

−R2
B j

(0)∣∣xBi (0) − xB j (0)
∣∣3

[
xBi (0) − xB j (0)

]
(30)
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FIG. 15. (a) Angle ϕi between u⊥
tip,i and û⊥

bulk,i depending on inclination angle θi and (b) inclination angle
depending on the magnitude |û⊥

bulk,i|. Moving average of the data (dashed line) is shown. Color shades indicate
the standard deviation.
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−ṘB,min [m/s]

u
ti

p
[m

/
s]

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

20

40

60

80

1 2

3

RB(0) [mm]

u
ti

p
[m

/s
]

(c)

10 20 30 40 50 60

20

40

60

80

1 2

3

θ [deg]

u
ti

p
[m

/s
]

(d)

FIG. 16. Microjet tip velocity depending on (a) microjet initiation time ttip,i, (b) bubble compression rate
−ṘBi,min, (c) bubble initial radius RBi (0) and (d) inclination angle θi. Moving average of the data (dashed line)
is shown. Color shades indicate the standard deviation.

at the center xBi of bubble i. Equation (30) provides an estimation for the bulk flow direction and its
strength which is purely based on the initial geometrical arrangement. The assumption of constant
ṘB j does not exactly hold for cloud collapses since the bubbles behind the collapse front compress
but remain at rest ahead of it. Therefore, Eq. (30) characterizes only the flow velocity perpendicular
to the radial direction, which is governed by the arrangement of bubbles along the collapse front.
To examine the influence of the bulk flow induced by the collapse of the surrounding bubbles
on the microjet direction, utip,i and ûbulk,i are projected onto a plane perpendicular to the radial
direction. The resulting velocity components are marked by the additional superscript (·)⊥ and are
also schematically represented in Fig. 11. The angle between u⊥

tip,i and û⊥
bulk,i is denoted ϕi. The

PDF of ϕi as well as scatter plots of ϕi versus θi and θi versus the magnitude |û⊥
bulk,i| of the projected

bulk velocity are shown in Figs. 14 and 15, respectively. For 68% of the bubbles, ϕi is smaller than
45◦, which demonstrates that the microjets are inclined towards the direction of the bulk liquid flow
around the bubble. This angle reduces with increasing inclination. The mean value of ϕi is 45◦ for
θi = 10◦ and 25◦ for θi = 40◦. Moreover, a positive correlation between the inclination angle θi and
the magnitude of the projected component of the bulk flow indicator |û⊥

bulk,i| is observed.
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Figure 16 displays scatter plots of the microjet velocity magnitude depending on various
quantities. The velocity magnitude of the microjets increases with their time of initiation. For
instance, the mean value amounts to 10 m/s for ttip = 80 μs and to 50 m/s for ttip = 250 μs. This
behavior is consistent with the acceleration of the collapse wave and the growth of the pressure at
the front. One of the fastest microjets is observed for bubble “3” included in Fig. 10 and Table I.
The scatter plot of the microjet velocity magnitude versus the initial bubble radius RB(0) shows that
larger bubbles exhibit faster microjets. The mean value rises from 20 to 40 m/s for bubbles with an
initial radius between 0.5 and 1.2 mm. Another quantity relevant to the collapse strength of a bubble
is the peak compression rate −ṘBi,min which is evaluated within the time interval [ttip,i, timp,i]. A
positive correlation of the compression rate with the magnitude of the microjet velocity is observed
in Fig. 16. In contrast, the inclination angle θi does not affect the magnitude of the microjet
velocity. The analyzed relations reveal that the microjet velocity is influenced by both parameters of
individual bubbles (e.g., the initial bubble radius) and macroscopic parameters of the cloud collapse
(e.g., the collapse front speed). However, the overall large dispersion of these relations indicates the
influence of further factors such as the spatial configuration of the surrounding bubbles.

V. CONCLUSIONS

We have presented the results from state-of-the-art simulations of the collapse of a spherical
cloud of 12 500 gas-filled bubbles, corresponding to a gas volume fraction of 4.9%. This cloud
composed by many small bubbles allows for proper averaging over the global system and enables
a large sample count for reliable statistics on the scale of the bubbles. To capture the dynamics of
the bubbles, i.e., their interactions and deformations, a diffuse interface finite volume method that
represents the bubbles on the computational grid has been applied.

Starting from a macroscopic point of view, we have examined the collapse process, which starts
at the surface of the cloud and then propagates inward focusing in the core of the cloud. We have
calculated spherical averages of the gas-volume fraction, pressure, and velocity-magnitude fields
and have identified the collapse wave front. The collapse wave front advances in accordance with
Mørch’s ordinary differential equation and a homogeneous mixture approach. In contrast to these
models, the detailed simulation discloses the thickness of the collapse wave front, which is of the
order of a few bubble diameters. Furthermore, we have examined the bubbles individually. We have
analyzed their collapse behavior and have used their deformation to recover the microjets. Our
investigations have revealed that the microjets do in general not exactly point towards the cloud
center. For the present cloud configuration, they are inclined to an angle up to 50◦ with respect to
the radial direction. Closer examinations have demonstrated the correlation between this inclination
and the bubble distribution in the vicinity of the microjets. For the velocity at the tip of the microjet,
we have observed correlations with the radial location and the size of the bubble from which the
microjet has been extracted.
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APPENDIX A: GRID RESOLUTION ASSESSMENT

In this Appendix, we show convergence results for the macroscopic and microscopic scales that
are involved in the collapse process of a cloud of gas bubbles. We start with a scaling argument for
the variables that determine the dynamics of the problem in order to arrive at expressions which
allow us to select a proper cloud configuration to perform the study with a reduced computational
budget. The following variables are included in the scaling argument:

(1) Liquid and gas densities ρk with k ∈ {1, 2}
(2) Liquid and gas sound speeds ck with k ∈ {1, 2}
(3) Initial bubble and liquid pressure pC in the sphere defining the cloud (refer to Sec. II C)
(4) Initial gas volume fraction of the cloud αC

(5) Initial cloud and mean bubble radii RC and R̄B, respectively
The mean bubble radius R̄B is defined in Eq. (11).
We nondimensionalize the variables following the approach presented in Ref. [61], where

a physically significant quantity q is written as q = q∗q̃ with q∗ its characteristic dimensional
value and q̃ its nondimensional value. The problem is further simplified by the following two
assumptions:

(1) The inertia of the gas is neglected (ρ2 	 ρ1),
(2) The liquid is treated as incompressible (c1 → ∞).
We set ρ̃1 = 1.0, c̃2 = 1.0, R̃B = 1.0 and obtain the following characteristic values:

ρ∗ = ρ1

ρ̃1
= 1000.0 kg/m3, c∗ = c2

c̃2
=

√
γ2 pC

ρ2
= 374.2 m/s, R∗ = R̄B

R̃B
= 0.7 × 10−3 m.

(A1)

The remaining nondimensional numbers for the cloud radius, pressure and gas volume fraction are
then obtained by

R̃C = RC

R∗ , p̃ = p

p∗ , αC, (A2)

respectively, where the characteristic pressure p∗ = pC is obtained from c∗ = √
γ2 p∗/ρ2 and p is a

reference pressure. We estimate the characteristic timescale of the bubble dynamics with t∗
B ∼ 1/ fB,

where the bubble oscillation frequency fB is given by

fB = 1

2π R̄B

√
3γ2 p

ρ1
; (A3)

see Ref. [62]. By substituting scaled variables we obtain

t∗
B ∼ 1

fB
∼ R̄B

√
ρ1

ρ2

ρ2

p
∼ R∗

c∗ R̃B

√
1

p̃
[s]. (A4)

For the macroscopic timescale of the cloud collapse, t∗
C, we estimate the front speed ṘF ∼√

p/[ρ1(1 − αC)αC] based on Eq. (17) and proceed similarly as above:

t∗
C ∼ RC

ṘF
∼ RC

√
ρ1

ρ2

ρ2

p
(1 − αC)αC ∼ R∗

c∗ R̃C

√
(1 − αC)αC

p̃
[s]. (A5)

The ratio of the two timescales yields

t∗
C

t∗
B

∼ R̃C

R̃B

√
(1 − αC)αC ∼

√
βC, (A6)
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TABLE II. Overview of altered simulation parameter for the resolution assessment study.

Case nB RC [mm] RB,avg [mm] αC [%] t∗
C/t∗

B

Production run 12 500 45 0.69 4.9 13.9
Grid refinement 400 9 0.64 15.2 4.6

which is identical to the result shown in Ref. [13]. Estimates for the characteristic microjet tip
velocity and front speed are obtained from Eqs. (A4) and (A5), respectively:

u∗
tip ∼ R∗

t∗
B

∼ c∗ 1

R̃B

√
p̃ [m/s], (A7)

Ṙ∗
F ∼ R∗

t∗
C

∼ c∗ 1

R̃C

√
p̃

(1 − αC)αC
[m/s]. (A8)

We choose a simulation setup for the resolution assessment based on Eqs. (A7) and (A8). Velocity
microscales are retained by configuring a bubble cloud with an identical log-normal distribution for
the bubble radii as well as preserving the pressure ratio p̃ based on a reference pressure p = p∞;
refer to Sec. II C. Taking into account a reduced computational budget, the cloud radius RC and gas
volume fraction αC cannot be preserved. Changing these parameters will affect only the macroscopic
scales for which convergence is achieved faster, even on coarse grids. For these reasons, we use a
bubble cloud with radius RC = 9 mm and nB = 400 bubbles, which yields a gas volume fraction
of αC = 15.2%. All other parameters remain unchanged and correspond to their definitions in
Secs. II A and II C. Table II shows the simulation parameters that are changed for the resolution
assessment. The computational cost is further reduced by a symmetry approximation such that
only one octant of the full computational domain is simulated. Symmetry boundary conditions are
used for boundaries that intersect the cloud, where the remaining boundary conditions are identical
to Sec. II C. The center of bubbles that initially intersect one of the symmetry planes has been
shifted onto the intersecting plane such that the bubble is initially symmetric with respect to that
plane. The cloud in the octant is then extracted from the full cloud. Figure 17 shows the temporal
evolution of the gas volume V2/V2(0) and the average kinetic energy Ekin,C/Ekin,C,peak within the
cloud corresponding to the grid refinement parameter shown in Table II. The cloud collapse time
for this configuration is tC = 115.9 μs; a 2.97 times faster collapse compared to the time reported
in Sec. III A. In contrast, Eq. (A5) estimates a 3.01 times faster cloud collapse time. Furthermore,
Fig. 17 shows the result for the simulation using the aforementioned symmetry approximation,
which results in a slightly faster cloud collapse time. The difference stems from the mirroring of the
random cloud in the octant on the symmetry planes, which does not exactly match the full random
cloud in the remaining octants. The resulting relative error in the cloud collapse time is 3.8% and
does not affect the order of magnitude of the macroscopic timescale. The reduction in computational
cost clearly outweighs the small error incurred by this approximation. Microscopic scales, described
by Eq. (A4), remain in the same order of magnitude for all clouds presented in the paper.

Three grid resolutions G−, G0, and G+ are used, where G0 corresponds to the initial bubble
resolution described in Sec. II C. The resolution on the coarse grid G− is half of G0 and the resolution
on the fine grid G+ is twice the resolution of G0. Table III shows the three grids used for the
resolution assessment including the number of cells N along each edge of the octant and the initial
number of cells per radius for the smallest and largest bubbles in the cloud. Due to the symmetry
assumption, the cloud is centered at the domain origin with domain extents 3RC × 3RC × 3RC for
the x, y, and z coordinates, respectively. Figure 18 compares the temporal evolution of the gas
volume V2/V2(0) and the average kinetic energy Ekin,C/Ekin,C,peak within the cloud for the three
different resolutions. Geometric quantities such as the gas volume already converge on the coarse
grid G−. Only a weak grid dependence is identified during the postcollapse of the cloud where small
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FIG. 17. Temporal evolution of (a) gas volume V2/V2(0) and (b) average kinetic energy Ekin,C/Ekin,C,peak

within the cloud. Full cloud simulation (black dashed lines) and reduced domain approximation with symmetry
boundaries (red solid lines).

length scales are dominant. Stronger grid dependence is observed for velocity and quantities that
depend on it. This dependence is mainly restricted to the region after the minimum cloud volume has
been reached due to its sensitivity on numerical diffusion at smaller scales. The analyses presented
in this paper do not depend on data after tC and, therefore, are not critical. During the cloud collapse
we observe convergence for the integral of kinetic energy on grid G0. The reduced cloud used for this
grid refinement study consists of 62 bubbles where 49 bubbles (79%) satisfy the quality criteria for
the microjet evaluation on all three grids; see Sec. IV B. The characteristic quantities are evaluated
within the time interval [ttip,i, timp,i] for bubble i. The start and end time that covers the microjet
analyses for all bubbles, tM,s and tM,e, respectively, are furthermore shown in Table III for each grid;
refer to Eqs. (27) and (28).

1. Characteristic microjet quantities

Figure 19 shows the microjet velocity magnitudes and the inclination angles computed on the
three different resolutions. The data for G+ are sorted in increasing order, while the data for
G0 and G− are shown relative to that sort order. The gray shaded region in Fig. 18 highlights
the interval [tM,s, tM,e], which corresponds to the time range of the displayed data in Fig. 19.
Table IV shows absolute errors relative to the fine grid G+ for the microjet velocity magnitude utip,i,
inclination angle θi and the fit range [ttip,i, timp,i] averaged over all bubbles. The microjet velocity
magnitudes on the production grid G0 are within a 10.0 ± 5.2% error margin relative to the fine
grid G+. The errors reported in Table IV suggest that only a marginal accuracy improvement can
be achieved when doubling the resolution of the production run and does not justify the 16-fold
increase in computational cost that is associated with it in regard to the scope of our analyses.

TABLE III. Grid resolutions used for the refinement study.

Grid N RB,min/h RB,max/h tM,s [μs] tM,e [μs]

G− (coarse) 448 8 14 42.3 103.6
G0 (production) 896 16 28 40.3 98.4
G+ (fine) 1792 33 57 39.9 98.8
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FIG. 18. Temporal evolution of (a) gas volume V2/V2(0) and (b) average kinetic energy Ekin,C/Ekin,C,peak

within the cloud for the three resolutions shown in Table III. The gray shaded area corresponds to the time
interval of the data displayed in Fig. 19.

Moreover, microjet velocity magnitudes are between 10 m/s and 60 m/s; see Figs. 16 and 19. These
characteristic velocities relate to the length scale imposed by the mean bubble radius R̄B defined in
Eq. (11). Based on these quantities, as well as the kinematic viscosity ν = 1.0 × 10−6 m2/s for
water, we expect Reynolds numbers in the range 7000–42 000. Similarly, the Weber number is in
the range of 972–35 000 based on a surface tension coefficient of 0.072 N/m for air-water systems.
Both of these ranges justify the neglect of viscous and surface tension forces, respectively.

Figure 20 shows the temporal evolution of the normalized bubble radius RB/RB(0) as well as
the normalized interface thickness [dI − dI(0)]/dI(0) for the collapse of a single air bubble in water

FIG. 19. (a) Microjet velocity magnitude utip,i and (b) microjet inclination angle θi of individual bubbles
i for the three resolutions shown in Table III. Both quantities clearly indicate convergence towards the finest
grid G+.
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TABLE IV. Absolute errors averaged over all bubbles relative to the fine grid G+.

Grid utip,i [m/s] θi [deg] ttip,i [μs] timp,i [μs] TB,i [μs]

G− (coarse) 13.0 ± 8.6 6.4 ± 4.1 1.7 ± 0.9 11.1 ± 6.4 0.41 ± 0.46
G0 (production) 3.2 ± 1.6 2.4 ± 2.0 1.0 ± 1.1 2.7 ± 1.8 0.24 ± 0.21

[31]. The interface thickness is defined by

dI = Rθ=0.1 − Rθ=0.9 (A9)

based on two equivalent bubble radii. These radii are associated with the 0.1- and 0.9-
isocontours of the gas-volume-fraction field α2. The equivalent bubble radius is defined by Rθ =
h 3
√

3/(4π )
∑nc

l=1 χθ and uses a shifted phase indicator function χθ with threshold value θ , which is
given by χθ = 1 if α2 > θ and χθ = 0 otherwise. In the definition of Rθ , h denotes the cell size and
nc the number of grid cells. We use the Keller-Miksis [63] solution as a reference for the validation
of our numerical results in Fig. 20(a). Numerical solutions based on Eqs (1)–(5) are obtained on two
grid resolutions that correspond to the resolution of the smallest and largest bubbles in our present
12 500 bubble cloud. We further emphasize the influence of the “K-div,” term which corresponds to
the source term K∇ · u in Eq. (5). Including the K-div term in the model improves the accuracy of
the numerical result considerably, even at rather low resolutions. A similar trend is observed in the
evolution of the interface thickness in Fig. 20(b). The thickness of the interface increases strongly
when the bubble reaches its minimum radius for simulations that do not include the K-div term in
the model, while an approximate linear increase of the interface thickness is observed for the case
including the K-div term. This linear increase can be attributed almost exclusively to numerical
diffusion. A recent study [64] further extends this analysis by including a pressure-disequilibrium
model applied to spherical single-bubble collapse.

FIG. 20. Collapse of a single air bubble in water at different resolution. (a) Evolution of bubble radius RB

and (b) evolution of interface thickness dI. Extracted from Ref. [31].
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FIG. 21. Temporal evolution of (a) equivalent radius RB/RB(0) and (b) average bubble pressure pBi of
selected bubbles at radial locations r = 8.0, 6.0, and 4.0 mm for the three resolutions shown in Table III. The
vertical lines indicate the end of the microjet evaluation interval tM,e (vertical dash-dotted line) and the time
of minimum cloud volume tC (vertical dotted line), respectively. First and second minimum locations of the
equivalent radius are indicated for G− (circles), G0 (diamonds), and G+ (squares).

2. Collapse period and bubble pressure

Figure 21 shows the temporal evolution the equivalent bubble radius, Eq. (24), and average
bubble pressure for three selected bubbles. The computation of the average bubble pressure follows
the same approach used for the bubble center xBi in Eq. (23). It is defined by

pBi (t ) = 1

VBi (t )

∫
�Bi

α2 p dV, (A10)

where the bubble volume VBi (t ) is defined in Eq. (25). Data for the three resolutions described in
Table III are included in each plot. The location of the first and second minima of the equivalent
bubble radius is not sensitive to the grid resolution. This observation is in correspondence with the
previous statement regarding geometric quantities. The bubble collapse period TB is derived from
the equivalent bubble radius and is associated with a 1.8 ± 1.7% error margin on grid G0 relative
to the fine grid G+. Absolute error values averaged over all bubbles are shown in Table IV. The

TABLE V. L2 error measures for RBi and pBi averaged over all bubbles. The values correspond to the time
intervals [0, tM,e] and [tM,e, tC], respectively, expressed as percentage error relative to the fine grid G+.

Grid L2(RBi ; 0, tM,e) L2(RBi ; tM,e, tC) L2(pBi ; 0, tM,e) L2(pBi ; tM,e, tC)

G− (coarse) 1.1 ± 0.4 3.3 ± 1.6 4.9 ± 1.6 15.7 ± 10.0
G0 (production) 0.6 ± 0.09 2.8 ± 0.9 2.4 ± 0.5 13.2 ± 5.8
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FIG. 22. Initial pressure field on a slice through the cloud center. (a) Simplification used in the paper at
t = 0 μs, (b) solution of ∇2 p = 0 at t = 0 μs, (c) evolved pressure field at t = 14 μs with initial condition (a),
and (d) evolved pressure field at t = 14 μs with initial condition (b). Blue corresponds to 0.1 MPa and red to
1.0 MPa.

fluctuating error of the evolving quantities RBi (t ) and pBi (t ) is measured by

L2(y; ts, te) =
√

1

te − ts

∫ te

ts

∣∣∣∣y − y+
y+

∣∣∣∣
2

dt, (A11)

where y(t ) is the subject function and y+(t ) a reference associated with the fine grid G+. We use a
cubic spline interpolant to obtain a representation for y and approximate the integral in Eq. (A11)
with a fourth-order Simpson quadrature. The data for the cubic spline interpolant is sampled at
2.53 MHz. Table V shows error measures based on Eq. (A11) evaluated for two time intervals
[0, tM,e] and [tM,e, tC], which correspond to the interval of microjet analyses and region of peak
pressure in the cloud, respectively. Values for tM,e are shown in Table III. The interval of the microjet
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evluation [tM,s, tM,e] and tC are further highlighted in Fig. 21. The equivalent bubble radius RBi

has converged in both regions of interest with a relative error of 2.8 ± 0.9% in the peak pressure
region of the cloud, averaged over all bubbles. This is consistent with the error associated to the
collapse period TB reported above. The average bubble pressure pBi has similarly converged during
the microjet evaluation interval with a relative error of 2.4 ± 0.5% averaged over all bubbles, while
during the interval of peak pressure in the cloud the measured relative error is 13.2 ± 5.8%. We
note that the pressure averages discussed in Sec. III B propagate through both of these regions of
interest and are associated with at most 13.2 ± 5.8% relative error during the final stage of the
cloud collapse. This peak error is in the same order as the error measured for the microjet velocity
magnitudes but occurs during the second interval of interest, while the error associated with the
microjets occurs in the first interval. For the magnitude of the pointwise maximum pressure ppeak,
reported in Sec. III A, we evaluate the local maximum measure L∞(pBi ; tM,e, tC) = 38.1 ± 22.6% on
grid G0, averaged over all bubbles. The large local error is mainly due to deviation in local pressure
magnitude, not dislocation in time; see also Fig. 21(b). We report on the pointwise maximum
pressure to orient the reader about its appearance in time; we do not elaborate on it further.

APPENDIX B: PRESSURE INITIAL CONDITION

This Appendix demonstrates the validity of the simplified pressure initial condition introduced
in Sec. II C; see also Ref. [18]. For this assessment, we consider a small cloud with 10 bubbles
at similar resolution as the production cloud presented in this paper. Figure 22 shows the initial
pressure distribution on a slice through the cloud center for the simplified approach and an initial
pressure field that satisfies the Laplace equation ∇2 p = 0 with Dirichlet boundary conditions at
the bubble walls and domain boundaries. The initial pressure is 0.1 MPa inside the bubbles and
1.0 MPa in the far field. The problem is evolved using nonreflecting, characteristic-based boundary
conditions [44–46] at the domain boundaries for both cases; see Sec. II C. Figure 22 further
compares the pressure field after 14 μs corresponding to 2400 iterations. At this point, the simplified
initial pressure has relaxed towards the Laplace reference with a relative error of 0.6 ± 0.8%.

Figure 23 shows the evolution of the equivalent bubble radius RBi and the average bubble pressure
pBi ; see Eqs. (24) and (A10), respectively, for each of the 10 bubbles in the cloud. A slight delay in
time is observed for the case of the simplified initial condition due to the initial pressure relaxation
around the bubbles in the cloud. This process does not introduce artificial pressure oscillations. The

FIG. 23. Temporal evolution of individual bubbles. (a) Equivalent bubble radius RBi and (b) average bubble
pressure pBi for bubble i. Solid lines correspond to the reference that initially satisfies ∇2 p = 0; symbols
correspond to the solution obtained using the simplified initial pressure condition described in Sec. II C.
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most important characteristics, such as time of minimum gas volume in the cloud, the individual
time of minimum bubble volumes as well as time and magnitude of peak pressures are all preserved.
This shows that the average and local features are not affected by the choice of a simplified initial
pressure field, as its relaxation towards the pressure obtained for a field that initially satisfies the
Laplacian takes place well before the fast scales of the cloud collapse appear. However, the induced
relaxation time for the simplified case causes a very slight delay in the overall cloud collapse, but
local bubble dynamics are not altered as shown by the temporal evolution of the bubble volume and
average bubble pressure in Fig. 23. This confirms the validity of the simplified initial condition for
the pressure field, originally introduced in Ref. [18]. A similar approximation has been verified for
a single-bubble collapse in Ref. [31].
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