
PHYSICAL REVIEW FLUIDS 4, 063601 (2019)

Slightly deformable Darcy drop in linear flows

Y.-N. Young,1 Yoichiro Mori,2 and Michael J. Miksis3

1Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA

3Department of Engineering Sciences and Applied Mathematics, Northwestern University,
Evanston, Illinois 60208, USA

(Received 12 October 2018; published 5 June 2019)

A two-phase flow model is developed to study the small deformation of a poroelastic
drop under linear flows. Inside the drop a deformable porous network characterized by
an elastic modulus is fully immersed in a viscous fluid. When the viscous dissipation of
the interior fluid phase is negligible (compared to the friction between the fluid and the
skeleton), the two-phase flow is reduced to a poroelastic Darcy flow with a deformable
porous network. At the interface between the poroelastic drop and the exterior viscous
Stokes flow, a set of boundary conditions are derived by the free-energy-dissipation
principle. Both interfacial slip and permeability are taken into account and the permeating
flow induces dissipation that depends on the elastic stress of the interior solid. Assuming
that the porous network has a large elastic modulus, a small-deformation analysis is
conducted. A steady equilibrium is computed for two linear applied flows: a uniaxial
extensional flow and a planar shear flow. By exploring the interfacial slip, permeability,
and network elasticity, various flow patterns about these slightly deformed poroelastic
drops are found at equilibrium. The linear dynamics of the small-amplitude deviation of the
poroelastic drop from the spherical shape is governed by a nonlinear eigenvalue problem,
and the eigenvalues are determined.
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I. INTRODUCTION

Flow in porous media is of significant relevance to many research areas, ranging from turbulent
transport through porous media in geophysics and filtration in hydrology to cell and tissue
mechanics in biomechanical engineering. A great deal of effort has been devoted to the modeling of
pressure-driven fluid flow, thermal convection and propagation of sound waves in porous media, and
the fluid pressure in water-filled connective tissues such as the cornea. Depending on the specific
applications, the porous structures either may be treated as rigid and nondeformable (as in hydrology
of filtration) or may deform as their dynamics is coupled to the fluid flow around them (as in tissue
mechanics). Here we focus on the latter case.

In many applications, the porous flow is in the Stokes regime where the inertia is negligible. For
a Stokes flow going through a nondeformable porous medium, homogenization analysis shows that
on macroscopic scales (much larger than the average pore size) such a porous flow is simplified to a
Darcy flow [1]. The viscous stress in the fluid is negligible after homogenization, and the dominant
force balance is between the pressure gradient and a frictional force between the viscous fluid and
the rigid porous frame. In solid mechanics this frictional force is derived from a dissipative potential
assumed for the solid-fluid interaction (see [2] and references therein). A similar homogenization
analysis also predicts a Brinkman flow (viscous stress is comparable to both the pressure gradient
and the frictional force) when the solid volume fraction is less than 5% (porosity is greater
than 95%).
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When the porous structure (skeleton phase) is deformable and the pore space is completely filled
with a viscous fluid, the mechanics of the skeleton is inevitably intertwined with the hydrodynamics
of the viscous fluid. For example, the pore space increases when fluid is injected to expand the
skeleton, while compressing the skeleton will drive fluid out as the pore space shrinks. In the
presence of an external pressure jump, MacMinn et al. focused on the coupling between the interior
fluid flow and the deformation of a nonlinear elastic porous structure [47]. They reported both
small and large deformations of the poroelastic structures using various elastic models. In particular,
they studied the one-dimensional dynamic evolution from an initial configuration towards a steady
equilibrium.

While in geophysics the pressure-driven Darcy flow inside a poroelastic skeleton is of great
relevance, in biophysics the poroelastic flows inside the cell are either driven by or coupled with the
exterior viscous fluid flow [3–6]. Two-phase flow models have been derived to capture the coupled
dynamics between a poroelastic flow and the external viscous fluid flow [7–10]. In these models, the
viscous dissipation in the fluid phase may be comparable to the pressure gradient, and this coupling
can be further complicated by ion transport in the porous medium flow [8].

Cogan and Keener developed a two-phase flow model for the cellular cytosol dominated by
viscous dissipation of the deformable skeleton (which depends on the rate of strain) and independent
of the elastic energy (which depends on the strain) [7]. A similar two-phase flow model is
constructed for the cellular cytosolic flow [9,10], where the immersed boundary method is used
to calculate the extra stress in the skeleton and no explicit boundary conditions for the velocity field
are provided. Mori et al. constructed a two-phase flow model to incorporate the electrochemical
mechanics of a polyelectrolytic fluids such as the cytosol [8]. Focusing on the variational analysis
of the governing equations in the mean-field framework, their dynamical model consists of an
interfacial slip and an interfacial permeability that characterize the transport of fluid in the transition
region around the interface between the porous flow and the viscous flow.

One of the salient features of these two-phase flow models is that both phases share a pressure
field that amounts to the averaged spherical (isotropic) part of the microscopic stresses [11]. In each
phase the extra (or additional) stress beyond the pressure may consist of shear or elastic stresses
depending on the constitutive laws for each phase.

Theoretical analyses on the behavior and properties of a fully saturated (pore space completely
filled with fluid) poroelastic or poroviscoelastic network have been conducted for either the Biot sys-
tem (where the inertia of the poroelastic and/or poroviscoelastic skeleton may be important [2,12])
or a similar Darcy poroelastic flow [13–17]. Modeled as a two-phase flow, the existence of an
equilibrium solution (essential for mathematical analysis but often assumed without justification [2])
in the poroelastic flow can be guaranteed using the free-energy-minimization principle [8]. Mori
et al. illustrated that boundary conditions at the interface between a poroelastic fluid and a viscous
Newtonian fluid can be obtained from minimizing the elastic free energy of the porous frame. In
this work we will utilize the same minimization principle to derive velocity boundary conditions
that behave consistently as the fluid volume fraction (porosity) goes to zero.

Without resorting to the free-energy-dissipation principle, it is tedious to find effective boundary
conditions near the surface of such heterogeneous materials. This is because, at the interface
between a porous Darcy medium and a viscous Stokes flow, there is a transient region of
Brinkman flow where the viscous dissipation is in balance with the pressure gradient and friction
forces [18]. As a result, the standard techniques of homogenization break down in this region
and careful asymptotics [18–21] is required to derive (from first principle) the boundary condition
that encompasses the well-known Navier slip boundary condition [22–24] and many other similar
boundary conditions in previous works [3,25–40].

Motivated by the physical complexity and mathematical richness of a poroelastic fluid when it is
driven by or strongly coupled with viscous fluid flow as in the cellular cytosol, in this work we use a
two-phase flow model to investigate the small deformation of a poroelastic drop under linear flows,
i.e., flows where the fluid velocity depends linearly on the spatial coordinates. The hydrodynamics
of a viscous drop in linear flows has been well studied as a classic paradigm in fluid mechanics,
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where the drop shape dynamics is characterized by the viscosity contrast and the capillary number,
which is the ratio of flow strength to surface tension [41,42]. Under a linear flow a viscous drop
with a large surface tension deforms slightly from the spherical shape, and the small-deformation
theory [42] predicts a steady equilibrium that has been validated by comparison with experiments
and numerical simulations [41].

The motion of a spherical nondeformable porous drop freely suspended in a Stokes flow has been
investigated [43–46]. The surface tension, essential for a spherical (or nearly spherical) viscous drop
under linear flows, is replaced by the rigidity of the interior skeleton that is sufficiently strong to
maintain a spherical shape with permeability on the interface. Thus the boundary conditions for a
nondeformable porous drop are continuity of velocity (both tangential and normal components) and
normal stress, different from those of a nondeformable viscous drop where the normal velocity of
the drop surface has to vanish in equilibrium [42]. With the rigid skeleton fully saturated (pore space
completely filled with fluid), the drag coefficient and total force are computed as a function of the
interior porosity in various flowing conditions such as a streaming flow, uniaxial extensional flow,
and a planar shear flow. In addition, the migration of a spherical porous drop in a planar shear flow
or near a flat fluid interface has also been investigated [45].

The lack of theoretical study conducted on the hydrodynamics of a deformable porous drop
under linear flows may be partly due to the lack of boundary conditions on the interface between
a poroelastic flow and a Stokes flow. The nonlinear coupling between the skeleton and the viscous
fluid also adds another layer of difficulty to such theoretical study. Both factors contribute to the
numerical design of an immersed boundary treatment of the skeleton-fluid interactions [9,10].

In this work we focus on the hydrodynamics of a deformable poroelastic drop suspended in
a viscous Stokes flow under two flowing conditions: a uniaxial extension flow and a planar shear
flow. We focus on these two special linear flows here, but our formulation is valid for any extensional
viscous flow. By a poroelastic drop we refer to a finite volume that contains an elastic skeleton fully
saturated with a viscous fluid. Specifically, we assume that the skeleton pore space is filled with the
same viscous fluid as the exterior fluid; thus exterior and interior fluid viscosities are the same and
there is no surface tension on the interface.

In Sec. II we formulate the two-phase flow model for a poroelastic flow coupled to a Stokes flow
through the boundary defined by the edge of the skeleton phase. In the most general formulation
the governing equations for the interior fluid phase are the Brinkman equations where the viscous
stress in the fluid is kept together with the pressure gradient and a frictional force between the
fluid and the skeleton. After discussing the scalings for our problem we will specialize the general
model to the Darcy flow case where the viscous fluid stress is small and negligible (compared to the
pressure gradient and the frictional force) in the poroelastic drop. In Sec. II B we derive the boundary
conditions on the drop by free-energy-dissipation principle. Our boundary conditions differ from
those in [8] in that the tangential component of the velocity boundary conditions is the generalized
Navier slip boundary conditions. Using these boundary conditions and focusing on a poroelastic
Darcy drop, in Sec. III we investigate how a poroelastic Darcy drop undergoes small deformation
when it is immersed in a uniaxial extensional flow and a planar shear flow. In particular, we calculate
the flow pattern and examine how the boundary conditions and poroelasticity affect the flow in and
around the drop.

II. FORMULATION

Our problem is to study the dynamics of a poroelastic drop immersed in a Stokesian fluid acted
upon by an applied flow. Let �I represent the region of the drop, �E the region of the exterior Stokes
fluid, and �t the interface between the poroelastic drop and the Stokesian fluid that evolves with
time t (see Fig. 1). Inside the poroelastic drop there are two phases: a skeleton phase (subscript s)
and a fluid phase (subscript f ). The skeleton phase is confined within �I , while the fluid may
permeate in or out of the boundary �t . Cartesian coordinates centered at the initial drop center will
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FIG. 1. Shown on the left is a sketch of a poroelastic drop (in �I ) immersed in a Stokesian fluid (in �E ).
Inside the drop there is a fluid phase (subscript f ) and a skeleton phase (subscript s) which is bounded by
the deformable interface �t . Here n̂ is the outward normal, β is the interfacial slip coefficient, and η is the
interfacial permeability. On the right is a uniaxial extensional flow in the far field (top) and a planar shear flow
in the far field (bottom).

be denoted by (x, y, z) and spherical coordinates by (r, θ, φ), where θ ∈ [0, π ] is the polar angle
and φ ∈ [0, 2π ] is the azimuthal angle.

A. Two-phase flow model

We start by assuming that a soft poroelastic drop is freely suspended in a Newtonian viscous
fluid with the velocity V and pressure P satisfying the incompressible Stokes equations

μ∇2V − ∇P ≡ ∇ · 2μE − ∇P = 0, (1)

∇ · V = 0, (2)

where μ is the viscosity of the exterior fluid and E ≡ [∇V + (∇V)T ]/2 is the strain rate tensor of
the exterior fluid. Inside the drop a deformable elastic skeleton is assumed to be fully hydrated, filled
with the same viscous fluid of viscosity μ as the outside. The mixture of the elastic skeleton and
the interior viscous fluid is coarse grained into a two-phase flow, with the skeleton phase of volume
fraction φs, the fluid phase of volume fraction (porosity or void fraction) φ f , and φ f + φs = 1.

Conservation of the interior fluid and skeleton phases gives

∂φ f

∂t
+ ∇ · (φ f v f ) = 0, (3)

∂φs

∂t
+ ∇ · (φsvs) = 0, (4)

with v f the fluid velocity and vs = dus/dt the skeleton velocity, computed from taking the time
derivative of the skeleton displacement us. We note that in general the flow field in each phase is not
necessarily incompressible (∇ · v f �= 0 and ∇ · vs �= 0) when the fluid volume fraction (porosity
or void fraction) φ f has its own dynamics and may vary in space [11]. However, adding Eqs. (3)
and (4), we identify an average local velocity q ≡ φ f v f + (1 − φ f )vs that is incompressible:

∇ · q = ∇ · [φ f v f + (1 − φ f )vs] = 0. (5)
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Denoting the extra stress [11] in the skeleton phase by σs and defining the strain rate tensor of the
interior fluid phase as e f ≡ 1

2 [∇v f + (∇v f )T ], the governing equations for the mixture of viscous
fluid and poroelastic skeleton within the drop are [7,8,11,47]

∇ · [φ f (2μe f )] − φ f ∇p + F s→ f = 0, (6)

∇ · (φsσs) − φs∇p + F f →s = 0, (7)

where F s→ f is the force from the skeleton to the fluid and F f →s = −F s→ f is the antiforce from
the fluid to the skeleton. Homogenization theory of a nondeformable porous medium filled with
a viscous Stokes flow (zero Reynolds number) [1] shows that these forces simplify the friction
between the interior fluid and the skeleton (when there is no mechanochemical process involved).
In this work we assume that it is appropriate to generalize this drag force in a nondeformable porous
medium to a frictional force in a deformable porous medium as

F s→ f = −ξφ f φs(v f − vs) = −F f →s, (8)

where ξ is the drag coefficient assumed to be constant.
In general, the extra stress σs (beyond the pressure in the skeleton phase) consists of both

a viscous stress σv (which depends on the gradient of the rate of strain vs) and an elastic
stress σe (which depends on the gradient of the displacement us of the elastic skeleton) [7,8,48]:
σs = σv (∇vs) + σe(∇us). In this work we ignore the viscous stress of the skeleton (σv = 0).

For the elastic stress σe we adopt linear elasticity

σe = � tr(ε)I + (M − �)ε, (9)

where the strain

ε = 1
2 [∇us + (∇us)T ] (10)

is assumed to be of small magnitude, suitable for the small-deformation analysis. In Eq. (9) M is
the p-wave modulus and � is the Lamé first parameter. In general, M > � and the Poisson ratio of
the elastic skeleton is ν ≡ �/(M + �). A consequence of the small-strain assumption is that the
deformation gradient tensor (in Eulerian frame)

F ≡ (I − ∇us)−1 ≈ I + ∇us. (11)

The corresponding fluid volume fraction (porosity) φ f can be expressed as

φ f − φ0

1 − φ0
≈ ∇ · us ∼ ε 	 1, (12)

where φ0 is the uniform fluid volume fraction distribution prior to the perturbation.
In this work we focus on cases where the viscous fluid outside the poroelastic drop is the same as

the interior viscous fluid that fills up the space in the deformable elastic skeleton, and thus there is
no surface tension on �t . In this two-phase flow formulation the interior pressure p is determined by
enforcing the incompressibility constraint in Eq. (5). As a result, the pressure gradient is weighted
to give the force in Eqs. (6) and (7). Such a formulation is consistent with previous work [7,8,11],
where the volume fractions are outside (instead of inside) the gradient operator. As will be shown
in Sec. II B, the boundary conditions consistent with the free-energy-dissipation principle can be
derived if the pressure gradient is weighted. No such consistent boundary conditions can be found
if the volume fractions are inside the gradient operator.

B. Boundary conditions

The boundary conditions at the interface between two homogeneous phases are usually derived
by enforcing the conservation of mass and continuity of stress across the interface. This will be
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done here, but these conditions are not sufficient for our multiphase drop. The difficulty is because
we are connecting a single-phase region with a two-phase region and we are considering only the
macroscopic scale of the drop, i.e., the pore scale dynamics is coarse grained in the biphasic model.
The free-energy-dissipation principle will be used to derive the additional boundary conditions.

Ignoring the surface tension, the interface �t here is the boundary that encloses all the elastic
skeleton in �I . Defined as such, the boundary �t moves with velocity v�t determined only by the
skeleton phase of the interior since the fluid phase is permeable to the boundary. Thus, instead of
the usual kinematic boundary condition where the time derivative of �t is equal to the normal
component of the fluid velocity evaluated on �t , our first boundary condition is the kinematic
condition for a permeable interface with a skeleton inside:

vs|�t · n̂ = v�t . (13)

Conservation of fluid mass at the interface �t demands that the mass of fluid leaving the
poroelastic drop in the normal direction from �I balances the mass of fluid entering the region
�E . Since the fluids are incompressible and the same in both regions we find that

(V − vs)|�t · n̂ = φ f (v f − vs)|�t · n̂. (14)

Continuity of stress at the interface requires the total stress balance

[−2μE + PI + φ f (2μe f ) + φsσs − pI]|�t · n̂ = 0. (15)

Hou et al. [32] derived a similar boundary condition when the flow Reynolds number is sufficiently
large for the momentum flux term to be important in the stress balance. This term can be ignored
in the low-Reynolds-number (Stokes flow) limit we are working in. Equations (14) and (15) are not
sufficient to find a unique solution to the problem.

In order to find the additional boundary conditions, we begin by integrating the product of V, v f ,
and vs = dus/dt with Eqs. (1), (6), and (7), respectively, over the whole region � = �E + �I . We
use (2)–(4) and apply the divergence theorem to find

0 =
∫

�E

V · [∇(2μE) − ∇P]d3x +
∫

�I

v f · {∇[φ f (2μe f )] − φ f ∇p − ξφ f φs(v f − vs)}d3x

+
∫

�I

vs · [∇ · (φsσs) − φs∇p + ξφ f φs(v f − vs)]d3x (16)

=
∫

�t

−V · (2μE − PI) · n̂ ds +
∫

�t

u f · [φ f (2μe f ) − φ f pI]n̂ ds

+
∫

�t

vs · (φsσs − φs pI)n̂ ds − I�E − I�I − IE , (17)

where

I�E =
∫

�E

2μE : ∇V d3x, (18)

I�I =
∫

�I

φ f (2μe f ) : ∇v f + ξφ f φs‖v f − vs‖2d3x, (19)

IE =
∫

�I

φsσe(∇us) : ∇vsd
3x. (20)

Here we have assumed that the surface integrals along the outer boundary of �E are zero. This
would be true for an applied flow where at this outer boundary the pressure balances the applied
strain or for a flow where V tends to zero. After integration by parts, Eq. (17) shows that the sum
of the three surface integrals on �t and the two volume integrals I�E and I�I must be equal to the
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volume integral IE , which has been shown to be equal to the rate of change of an elastic free energy
Eelas [8],

IE = dEelas

dt
=

∫
�t

−V · (2μE − PI) · n̂ ds +
∫

�t

v f · [φ f (2μe f ) − φ f pI]n̂ ds

+
∫

�t

vs · (φsσs − φs pI)n̂ ds − I�E − I�I , (21)

where

Eelas =
∫

�I

φsWelas(F)d3x, with σe(us) = ∂Welas(F)

∂F
FT , (22)

where φsWelas is elastic energy per unit volume and F is the gradient of deformation tensor defined
in Eq. (11). Derivation of the identity IE = dEelas/dt can be found in [8,49,50]. It is straightforward
to show that the volume integrals are positive definite, thus one way to ensure dEelas/dt < 0 is to
choose boundary conditions such that the right-hand side of Eq. (21) is negative. The minimal-free-
energy principle [49,50] and this observation can then be used to derive the boundary conditions.
We note that if the volume fractions are inside the gradient operator in Eqs. (6) and (7) [∇(φ f p)
instead of φ f ∇p], then after integration by parts there will be a volume integral that is not positive
definite and no boundary conditions can be chosen to satisfy the free-energy-dissipation principle.

Focusing on the surface integrals, we denote the velocities relative to the skeleton velocity vs by
a bar, i.e.,

V = V − vs, v f = φ f (v f − vs); (23)

the surface integrals in Eq. (21) are thus recast as∫
�t

−(V + vs)(2μE − PI)n̂ +
(

v f

φ f
+ vs

)
[φ f (2μe f ) − φ f pI]n̂ + vs(φsσs − φs pI)n̂ ds

=
∫

�t

vs · [−2μE + PI + φ f (2μe f ) + φsσs − pI]n̂ ds

+
∫

�t

−V · (2μE − PI)n̂ + v f · (2μe f − pI)n̂ ds. (24)

Using the stress boundary condition (15), we find that the second line in Eq. (24) is zero. We note
that when the drop interior is a single fluid phase (φ f = 1 and φs = 0), the integral in the last line in
Eq. (24) vanishes because of velocity continuity V = v f . In the more general cases in which φ f ∈
(0, 1) and the drop interior consists of two phases, more boundary conditions need to be derived
from the integral in the last line in Eq. (24).

To proceed further, we decompose V and v f into the parallel (subscript ‖) and perpendicular
(subscript ⊥) to the interface �t as

V = V⊥ + V‖, v f = v f ⊥ + v f ‖. (25)

Conservation of fluid mass from Eq. (14) gives V⊥ = v f ⊥. To make the normal velocity component
of the last line in (24) negative definite, a simple choice is to choose η > 0 such that

V⊥ = η{n̂ · (2μE − PI − 2μe f + pI)|�t · n̂}n̂. (26)

For the tangential component, choices for V‖ and v f ‖ must be made based on the condition that
the integral in the last line in Eq. (24) must be seminegative definite. One way to achieve that is
the following generalized Navier slip (which is found at the boundary between a Stokes flow and a
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permeable Darcy medium [22,24]):

V‖ = β(μE|�t · n̂)‖, (27)

v f ‖ = −β(μe f |�t · n̂)‖. (28)

Note that in the Darcy flow limit of small viscous stress, Eq. (28) will naturally disappear as the last
term in the surface integral in the last line in Eq. (24) vanishes.

In summary, the boundary conditions for V, v f , and vs are given by (14), (15), (26), and (27).
For future reference these can be collected here as

[(V − vs) − φ f (v f − vs)]|�t · n̂ = 0, (29)

(V − vs)|�t · n̂ = ηn̂ · [(2μE − PI) − (2μe f − pI)]|�t · n̂, (30)

(V − vs)|�t · t̂ = βn̂ · μE|�t · t̂, (31)

φ f (v f − vs)|�t · t̂ = −βn̂ · μe f |�t · t̂, (32)

n̂ · [(2μE − PI) − (φsσs + φ f (2μe f ) − pI)]|�t · n̂ = 0, (33)

t̂ · {2μE − [φsσs + φ f (2μe f )]}|�t · n̂ = 0, (34)

where σs = σe is the linear elastic stress given in Eq. (9). Here η > 0 is an interfacial permeability
and β > 0 is an interfacial slip coefficient. Equations (31) and (32) are consistent with the slip
boundary condition derived by Angot et al. [18], and it is shown to be compatible with models
previously derived for different configurations [18]. For a permeable moving boundary, the normal
component of the total stress is from the fluid pressure and the shear component must vanish;
this implies that both the normal and shear components of the effective stress must vanish.
Equations (33) and (34) are for the stress balance at the boundary (more general than either per-
meable or impermeable boundaries) between a two-phase flow and a viscous Stokes flow. These are
similar to the stress balance at the boundary between a polyelectrolyte gel and a Stokes flow in [8].

C. External linear flow field

For later reference it will be helpful to recall that for axisymmetric incompressible flows around
a fluid drop there exists a stream function ψe for the exterior fluid flow

Vr = − 1

r2 sin θ

∂ψe

∂θ
, Vθ = 1

r sin θ

∂ψe

∂r
, Vφ = 0. (35)

Here we will compare the flow around a viscous drop and a Darcy drop in both a planar shear flow
and a uniaxial extensional flow. For a uniaxial extensional flow the far-field fluid velocity is

V → −E (x, y,−2z) = −Exî − Eyĵ + 2Ezk̂ as r → ∞, (36)

where E is the extension rate and î, ĵ, and k̂ are unit vectors in Cartesian coordinates. For a planar
shear flow, the far-field fluid velocity is

V → γ̇ (y, 0, 0) = γ̇ yî as r → ∞, (37)

where γ̇ is the shear rate of the background planar shear flow. We will apply the two-phase model
to a slightly deformable porous drop.

D. Scaling and nondimensionalization

Here we will discuss the scaling of some of our parameters and introduce dimensionless variables
into Eqs. (1)–(8) and boundary conditions in Eqs. (29)–(34). The characteristic length scale is given
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by the drop radius l0. The characteristic timescale is given by te ≡ ξ l2
0 /M (based on the elastic

modulus and friction coefficient) and the characteristic pressure is M. Note that this allows us to
define a characteristic velocity ve ≡ M/ξ l0. It should be recalled that a basic assumption to justify
the use of the two-phase flow model as used here is that the average pore size a0 is much smaller than
l0, i.e., a0/l0 	 1. In the scaling below we will assume a0 = 0.1–1 μm and 10 μm � l0 � 1 mm,
which is consistent with the two-phase flow modeling.

The effective media theory [1] provides a simple estimate for the drag coefficient as ξ ∼ μ/a2
0.

The range for ξ can be computed as 109 kg/m3 s � ξ � 1015 kg/m3 s, where the lower bound
corresponds to a porous medium (with average pore size a0 = 0.1–1 μm) filled with water (μ =
10−3 Pa s). The upper bound corresponds to the articular cartilage in normal human knee [51–54].
Neglecting the rearrangement of solid phase due to the flow near the boundary, we may estimate
the interfacial permeability as η ∼ 1/l0ξ and obtain the range of η as 10−10 m2 s/kg � η �
10−4 m2 s/kg. We note that the water permeability constant for a biological cellular membrane is of
the order 10−10 m2 s/kg (see [55] and references therein).

The Lamé coefficients are often between KPa (for hydrogels) and MPa (for articular cartilage)
with a Poisson ratio around 0.2. The interfacial slip β is proportional to the average pore size
for hydrophilic surfaces [22]: β ∼ a0/l0 	 1. For hydrophobic surfaces (or surfaces treated with
hydrophobic agents) the slip length can be much larger than the pore size [56–58]. In this work we
will explore a wide range of β and η and examine their effects on the flow around a deformable
poroelastic drop. Finally, note that for a poroelastic drop of radius l0 = 10 μm filled with articulate
cartilage, te ∼ 0.1 s and ve ∼ 100 μm/s.

The dimensionless parameters for the poroelastic drop are �̄ = �/M, ᾱe = μve/Ml0 = μ/ξ l2
0 ,

slip coefficient β̄ = βμ/l0 = ᾱeβM/ve, and permeability η̄ = ηM/ve. For the extension flow the
dimensionless extension rate is Ē = Eξ l2

0 /M, and for the simple shear flow the dimensionless shear
rate is ¯̇γ = γ̇ ξ l2

0 /M. These are just the ratios of the timescales of the applied flow (1/γ̇ and 1/E )
to te. Our analysis assumes a small deformation of the elastic skeleton. This assumption is valid for
small applied flow where our analysis is applicable, but it is also valid for a poroelastic drop with
strong bending moduli under large applied flow. Thus, without loss of generality, we will set Ē = 1
and ¯̇γ = 1.

As noted earlier, our plan is to focus on the Darcy flow limit within the drop. This means that
the viscous fluid stress is small in the poroelastic drop and will be neglected in Eqs. (1)–(8). The
resultant dimensionless equations (after dropping the bar) for the Darcy-Stokes system are

αe∇2V − ∇P = 0, (38)

∇ · V = 0, (39)

−φ f ∇p − φ f φs(v f − vs) = 0, (40)

∇ · (φsσe) − φs∇p + φsφ f (v f − vs) = 0, (41)

∂φ f

∂t
+ ∇ · (φ f v f ) = 0, (42)

φ f + φs = 1, ∇ · (φ f v f + φsvs) = 0. (43)

The corresponding dimensionless boundary conditions on the interface �t are

[(V − vs) − φ f (v f − vs)]|�t · n̂ = 0, (44)

(V − vs)|�t · n̂ = ηn̂ · [(2αeE − PI) − (−pI)]|�t · n̂, (45)

(V − vs)|�t · t̂ = βn̂ · E|�t · t̂, (46)
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n̂ · [(2αeE − PI) − (φsσe − pI)]|�t · n̂ = 0, (47)

t̂ · [2αeE − φsσe]|�t · n̂ = 0. (48)

In this work we focus on the Darcy regime where the viscous dissipation in Eq. (6) is negligible
compared to the pressure gradient and the friction force. As stated in Sec. I, the fluid flow through
and around a Darcy medium has been previously investigated without considering the effects of
both the external viscous stress and the deformation of the porous network in the medium, which
is the focus of the present work. When the viscous dissipation is retained the governing equations
are for the flow through a deformable Brinkman medium, which is more appropriate for low solid
volume fraction [1] φs � 5%.

Here we neglect the surface tension and focus on the Darcy regime, where a deformable Darcy
drop is freely suspended in (i) a uniaxial extensional flow and (ii) a planar shear flow. We focus on
the physical regime where the elastic skeleton deforms slightly to contribute to the shape deviation
of the drop from a sphere.

In such a small-deformation limit the volume fraction of the elastic skeleton deviates very little
from the original distribution. To elucidate the salient features of slip and permeability effects on the
hydrodynamics of a soft poroelastic drop, we conduct a small-deformation analysis on a poroelastic
drop of (nearly) an initially uniform porosity φ0, and the nearly spherical drop shape is supported
by a skeleton of large elastic modulus. The effects of nonuniform volume fraction (porosity) on
the dynamics of an elastic poroelastic skeleton in one dimension is the main focus of the work
by MacMinn et al. [47]. It is a nontrivial extension to incorporate the nonuniform porosity into
the small-deformation analysis. Based on results from MacMinn et al. [47], we expect to rely
on numerical computations as analytical solutions may not be readily available for a system of
boundary value problems with variable coefficients.

Finally, we remark that in the limit of infinitely large network elastic moduli, the network be-
comes rigid (nondeformable) and both the displacement and the rate of strain vanish. Consequently,
fewer boundary conditions are needed in this nondeformable limit, and early works have focused on
the balance of normal stress and continuity of the normal component of the fluid velocity [33,46,59].

III. SMALL DEFORMATION OF A POROELASTIC DARCY DROP

In this section we investigate the flow around a poroelastic drop with large bending moduli such
that the elastic skeleton (and hence the drop interface) undergoes small deformation from the initial
spherical shape. On the interface �t ,

r = 1 + δr(t, θ, φ) = 1 + us · r̂, |δr| = |us · r̂| 	 1. (49)

For a viscous drop in a flow, strong surface tension (small capillary number) ensures that the small
deformation in Eq. (49) is possible, and the drop responds linearly under a general linear flow [42].
For a poroelastic drop, however, the nonlinear relationship between the solid phase flow field vs and
the deformation us requires us to assume further that the flow strength is small such that

vs = dus

dt
= ∂us

∂t
+ (vs · ∇)us ≈ ∂us

∂t
. (50)

In the literature many researchers adopted the above approximation in their modeling of a biphasic
poroelastic fluid [48,51,60,61]. Here we will assume that such an approximation is sufficient to
capture the small deformation of a poroelastic drop under a linear flow. In our small-deformation
analysis, the volume fractions φ f and φs are assumed to be initially homogeneous with φ f ≈ φ0. The
deviation from the initial homogeneous distribution is related to the divergence of the displacement
field in Eq. (12). Outside the poroelastic drop the linear Stokes flow is coupled to the interior
poroelastic flow via the boundary conditions evaluated at the unperturbed spherical interface in
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the small-deformation framework. This way the governing equations are a linear system that can
still be solved using separation of variables.

From Eqs. (40)–(43) the linearized Darcy equations and the governing equations for stress
balance in the solid phase are

−φ0∇p − φ0(1 − φ0)

(
v f − ∂us

∂t

)
= 0, (51)

∇ · [(1 − φ0)σe(us)] − ∇p = 0, (52)

∇ · [φ0v f + (1 − φ0)vs] = 0. (53)

The general solution for the above linear equations takes the form

⎛
⎝vf

vs

p

⎞
⎠ =

⎛
⎝v̂ f

v̂s

p̂

⎞
⎠ + eωt

⎛
⎝vf,1

vs,1

p1

⎞
⎠, (54)

where the circumflex denotes the steady equilibrium solution and the subscripts 1 denotes the
exponential components that vary with time at an exponential rate ω. In the following we will
solve for both the steady equilibrium and the eigenvalue ω. Note that since in the small-deformation
limit vs = v̂s + eωt vs,1 ∼ ∂us/∂t , we can write us = ûc(t ) + eωt us,1, where now ûc(t ) can depend
linearly on t .

A. Steady equilibrium

Within the small-deformation regime, a viscous drop with a large surface tension (small capillary
number) reaches a steady shape under linear flows. Similarly for a nearly spherical poroelastic drop
with a large network rigidity, we assume that it reaches a steady shape under linear flows. At steady
equilibrium the normal component of the skeleton velocity vs evaluated at the steady drop interface
is zero.

The tangential components of the network velocity, on the other hand, depends on the exterior
flow condition: Under a uniaxial extensional flow the tangential network velocity is zero at steady
equilibrium, while under a planar shear flow the tangential network velocity is a rigid-body rotation
due to the rotational component of the far-field shear flow. For the linear shear flow, the network
rotates due to the vorticity in the shear flow. This network rotation is a rigid-body rotation that does
not cause any viscous dissipation. However, as we will shown in Sec. III C, there is a nontrivial
elastic stress in the skeleton phase in balance with the pressure gradient due to such rotation.

B. Uniaxial extension flow

First we identify the steady equilibrium solution for a Darcy drop under a uniaxial extensional
flow specified by Eq. (36). At steady equilibrium, the general solutions for the drop interior take the
form

p̂ = − 7

10
(1 − φ0)(1 − �)d1r2[1 + 3 cos(2θ )], (55)

ûs · r̂ =
(

−3(5 − 2�)

25
d1r3 − d2r − 2�

7 + 3�
d3r3

)
[1 + 3 cos(2θ )], (56)

ûs · θ̂ =
(

3(6 − �)

25
d1r3 + d2r + 1

3
d3r3

)
sin(2θ ), (57)
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FIG. 2. Shown on the left is an illustration of a slightly deformed poroelastic drop under a uniaxial
extensional flow, with φ0 = 0.5, � = 1/3, and αe = 0.005. The black dashed line is the original spherical drop
shape. The thick red solid line is the equilibrium drop shape. Here (β, η) = (0, 0). On the right are streamlines
in the first quadrant for two sets of (β, η) as labeled.

and v̂s = 0 in the case of a uniaxial extensional flow. Here r̂ and θ̂ are unit vectors in the r and θ

directions. The solution for the exterior Stokes flow is

ψ̂e =
(

r3 − A1

2
− A2

2r2

)
cos θ sin2 θ, (58)

P̂e = − αe

2r3
A1[1 + 3 cos(2θ )], (59)

where ψe is the stream function and Pe is the pressure for the external fluid. Altogether there
are five coefficients (A1, A2, d1, d2, and d3) to be determined by the five boundary conditions in
Eqs. (44)–(48). We focus on parameter combinations that pertain to the small-deformation assump-
tion. The expressions for the five coefficients are given in Appendix B.

Figure 2 is a two-dimensional cross section (x-z plane) of the equilibrium drop shape from the
steady linear solutions in Eqs. (56) and (57) with � = 1/3, αe = 5 × 10−3, and φ0 = 0.5. On the
x-z plane, the uniaxial extensional flow (36) converges along the vertical (x) axis and diverges
along horizontal (z) axis, as indicated by the arrows outside the drop. Starting from a spherical
shape (dashed curve), the drop is compressed along the x axis and stretched along the z axis to
the equilibrium shape (thick solid curve). The magnitude of radial displacement is defined as the
maximum deformation as illustrated.

Despite the similarity in the deformed shape between a poroelastic drop and a viscous drop (see
Fig. 14 in Appendix A), the flow inside the drop is very different: For a viscous drop the exterior
extension flow goes around the drop and an interior flow of four vortices is induced. The strength of
the interior flow is inversely proportional to the viscosity contrast. The larger the interior viscosity,
the smaller the flow strength, as shown in Fig. 14. For a poroelastic drop the interior flow depends
on the interfacial permeability η. When the interfacial permeability η = 0, there is no flow inside
the drop and the extension flow goes around the drop as shown on the left in Fig. 2. This is similar
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FIG. 3. Radial displacement (ûs · r̂) of a poroelastic drop in a uniaxial extensional flow, with � = 1/3,
φ0 = 0.5, and αe = 0.005. (a) Radial displacement versus β for three values of η as labeled. (b) Radial
displacement versus η for three values of β as labeled.

to the large viscosity ratio limit case of Fig. 14(c). For nonzero interfacial permeability the flow can
go into the drop around the pole and an interior flow develops as shown on the right in Fig. 2, where
the gradient of the stream function is discontinuous on the boundary because η �= 0.

The streamlines in Fig. 14(c) (calculated from a MATLAB subroutine streamslice) show that
the flow penetrates the drop around x = 1 (pole) and leaves the drop around z = 1 (equator). We
note that, in the small-deformation framework, the velocity boundary conditions are evaluated at the
unperturbed shape (r = 1, dashed curve in Fig. 2). The deformed shape is a consequence of such a
solution, which does not satisfy the boundary conditions on the deformed drop shape (thick curves
in Fig. 2). Following the arrows of streamlines inside the drop from the pole to the equator, we
observe that the flow turns more along the tangent along the drop boundary as it exits the drop. We
also observe that, as η increases from 0.1 to 100, there is more flow going through the drop, while a
slightly smaller radial displacement is found.

Figure 3 shows the magnitude of equilibrium radial displacement plotted against β [Fig. 3(a)]
and η [Fig. 3(b)] with � = 1/3, αe = 0.005, and φ0 = 0.5. For these parameter values, the
radial displacement appears to depend only weakly on β, as shown in Fig. 3(a). Note how the
displacement asymptotes to an equilibrium value with increasing β and η. Note also how increasing
the permeability η decreases the displacement. The slip effect on the equilibrium drop deformation
under an extension flow has been investigated in various contexts: For a viscous drop the interfacial
slip is found to always reduce the equilibrium drop deformation [62]. For a viscoelastic drop in a
viscoelastic medium, the interfacial slip is found to increase the drop deformation [63]. Here we
observe that the poroelastic drop behaves more like a viscoelastic drop when it comes to the slip
effect on the drop deformation.

Figure 4 shows the inflow in the first quadrant defined as

1

2

∫ 2π

0

∫ π/2

0
|V|�t · r̂| sin θ dθ dφ, (60)

where the integral without the absolute sign would vanish due to symmetry of the perturbation,
and hence the combination of factor 1

2 and the absolute value sign gives the net inflow, which is
exactly equal to the outflow in the first quadrant. We observe that the net inflow increases with both
interfacial slip and permeability.

Figure 5 illustrates the effects of φ0 on the radial displacement [Fig. 5(a)] and the inflow
[Fig. 5(b)] at equilibrium. As φ0 → 0 the drop interior becomes an elastic network (of large bending
moduli) that deforms slightly in response to the exterior flow. When φ0 → 1 the drop interior is
nearly filled with fluid and will undergo very large deformation as there is no surface tension to
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FIG. 4. Inflow into a poroelastic drop in a uniaxial extensional flow as a function of (a) η and (b) β, with
� = 1/3, αe = 0.005, and φ0 = 0.5.

resist deformation due to the exterior flow. As a result, we focus on the range of φ0 ∈ [0, 0.5] where
the equilibrium radial displacement is in the small-deformation regime. Figure 5(b) shows the φ0

variation of inflow for three values of η with β = 0. Consistent with results in Fig. 4, we observe
that the inflow increases significantly with η from curve 3 (η = 1) to curve 2 (η = 5) and eventually
plateaus to curve 1 for a very large value of η. Similar behavior with η is observed for nonzero β.

C. Planar shear flow

Figure 6 is an illustration of a drop in a planar shear flow with polar angle θ and azimuthal angle
φ defined as labeled. A planar shear flow consists of a straining (compression and elongation) and a
(rigid-body) rotation. For a poroelastic drop in a planar shear flow the interior equilibrium solution
takes the form

p̂ = 1

2
d1r2 sin2 θ sin(2φ), (61)

ûs · r̂ =
(

1

7(1 − �)(1 − φ0)
d1r3 + d3r + 2�

7 + 3�
d4r3

)
sin2 θ sin(2φ), (62)

FIG. 5. Variation of (a) radial displacement and (b) inflow with respect to porosity φ0, with � = 1/3 and
αe = 0.005. The interfacial slip β = 0 for the results in (b).
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FIG. 6. Shown on the left is an illustration of a poroelastic drop in a planar shear flow V = (γ̇ y, 0, 0) and
on the right decomposition of a planar shear flow into a straining component and a rotational component.

ûs · θ̂ =
(

5

21(1 − �)(1 − φ0)
d1r3 + d3r + 1

3
d4r3

)
sin θ cos θ sin(2φ), (63)

ûs · φ̂ =
[
− r

2
t +

(
5

21(1 − �)(1 − φ0)
d1r3 + d3r + 1

3
d4r3

)
cos(2φ)

]
sin θ, (64)

where r̂, θ̂, and φ̂ are unit vectors in the r, θ , and φ directions, respectively. Note that now Eq. (64)
has a linear term −r

2 t . This linear term represents a rotation of the deformable elastic network
induced by the external planar shear flow under the small-deformation framework. Within the
small-deformation framework, such a linear temporal variation of ûs · φ̂ should be understood as
a rotation along φ̂ on the unperturbed shape (a unit sphere.) The corresponding network rotation
velocity at equilibrium is v̂s = −r/2 sin θ φ̂, which is a rigid-body rotation and does not cause any
viscous dissipation. Such rotation is also present in a viscous drop under a planar shear flow. We
note that in the steady equilibrium solution (p̂ and ûs in the above equations) the components with
a di dependence contribute to the elastic stress that is in balance with the pressure gradient.

The general solution for the exterior Stokes flow takes the form

V̂ · r̂ = 1

20r4
(6C3 + 5C1r2 + 10r5) sin2 θ sin(2φ), (65)

V̂ · θ̂ = 1

20r4
(−2C3 + 5r5) sin(2θ ) sin(2φ), (66)

V̂ · φ̂ = − 1

10r4
[5(2C4r2 + r5) + (2C3 − 5r5) cos(2φ)] sin θ, (67)

P̂ = αe

2r3
C1 sin2 θ sin(2φ). (68)

The coefficient C4 is zero, as expected from the small-deformation analysis of a viscous drop in a
planar shear flow. Altogether there are five coefficients (d1, d3, d4, C1, and C3) to be determined
from seven boundary conditions [Eqs. (44)–(48) in three dimensions], from which there are only
five linearly independent equations (similar to the small-deformation analysis of a viscous drop).
The coefficients are listed in Appendix C.

Figure 7(a) visualizes the flow around a poroelastic drop under a shear flow with no interfacial
slip β = 0 and interfacial permeability η = 0. In this case the displacement field is independent of
the z coordinate and we illustrate the flow and deformation on the x-y plane. As in Sec. III B, the
small-deformation velocity field satisfies the boundary conditions on the unperturbed spherical drop
surface.

For β = 0 and η = 0, we expect the streamlines to circle around the unperturbed spherical drop
[thick dashed curve in Fig. 7(a)]. The thick solid curve is the x-y cross section of the equilibrium
drop shape. The thin dash-dotted line is the elongation axis of a simple shear flow (see Fig. 6).
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FIG. 7. Flow around a slightly deformable poroelastic drop under a simple shear flow with φ0 = 0.5,
� = 1/3, αe = 0.01, and (β, η) = (0, 0). (a) Cross section on the x-y plane where the shear flow lies. The black
dashed curve is the initial spherical drop shape and the thick red solid curve is the equilibrium deformation.
The diagonal dash-dotted curve is the elongation axis in the shear flow (see Fig. 6). (b) Three-dimensional
rendition of ûs · r̂. The color bar represents the magnitude of the radial displacement.

In comparison with the flow around or in a viscous drop under a simple shear flow shown in
Fig. 15 of Appendix A, we observe that the rotation of the network enhances the vorticity inside a
poroelastic drop and the interior flow is more similar to a viscous drop with high interior viscosity.

Figure 7(b) is the contour plot of the radial displacement on the deformed poroelastic drop and the
color bar is for the magnitude of the radial displacement. Figure 8 shows the other two components
of the displacement field [the θ component in Fig. 8(a) and the φ component in Fig. 8(b)]. Note that
for the φ component we only plot the time-independent component of the displacement. We observe
that both ûs · r̂ and ûs · θ̂ reach maxima along the elongation axis.

As we increase the interfacial slip from β = 0 in Fig. 7 to β = 102 with η = 0, we find
no significant difference in the flow pattern in Fig. 9(a). However, a different flow pattern is
observed when the interfacial permeability is increased to η = 10 in Fig. 9(b). When the interfacial
permeability η �= 0 fluid flow (streamlines) can go through the drop [the unperturbed shape denoted
by thick dashed curves in Fig. 9(b)]. As a result of the permeating fluid flow, the vorticity inside
the drop takes an ellipsoidal shape. In addition, we observe a recirculation zone around the x axis
separating the upstreaming flow from downstreaming flow.

Figure 10 shows the radial displacement evaluated at the unperturbed drop surface (r = 1) as
a function of interfacial slip [Fig. 10(a)] or interfacial permeability [Fig. 10(b)] with φ0 = 0.5,
� = 1/3, and αe = 0.005. As in the previous extensional flow case, the displacement asymptotes to

FIG. 8. Flow around a slightly deformable poroelastic drop under a simple shear flow with φ0 = 0.5,
� = 1/3, αe = 0.01, and (β, η) = (0, 0). (a) Three-dimensional rendition of ûs · θ̂. (b) Three-dimensional
rendition of ûs · φ̂. The color bar represents the magnitude of the displacement.
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FIG. 9. Illustration of a slightly deformed poroelastic drop under a uniaxial extensional flow. The
black dashed line is the original spherical drop shape. The red solid line is the equilibrium drop shape.
Arrows between the two shapes indicate the equilibrium displacement field ûs evaluated at r = 1 with
(a) (β, η) = (102, 0) and (b) (β, η) = (103, 10).

a constant value with increasing β and decreases with increasing η. Figure 11 shows the inflow in
the first quadrant defined in Eq. (60) for the planar shear flow case. We observe that the net inflow
increases with both slip and permeability, similar to the case of uniaxial extensional flow. For the
same values of the dimensionless parameters (αe, �, β, and η) the extension flow gives rise to larger
inflow than the simple shear flow.

Figure 12 illustrates the effects of φ0 on the equilibrium radial displacement [Fig. 12(a)] and the
inflow [Fig. 12(b)] for a poroelastic drop in a simple shear flow. Comparing with results for the
extension flow, we find that the radial displacement magnitude is smaller for the simple shear flow
case with a similar trend in their dependence on both β and η.

D. Linear dynamics

Similar to the case of a slightly deformable viscous drop in linear flows, the steady equilibrium
solution for a slightly deformed poroelastic drop is obtained from solving a nonhomogeneous
equation. For a viscous drop in linear flows, the kinematic boundary condition gives rise to a
first-order differential equation for the deformation amplitude that asymptotes exponentially to the
steady equilibrium. There is only one decay rate for a viscous drop and it depends only on the
viscosity ratio between internal and external viscous fluids. This is not the case for a poroelastic
drop where the kinematic boundary condition is not sufficient for determining the linear dynamics

FIG. 10. Radial displacement (ûs · r̂) evaluated at r = 1 with � = 1/3, αe = 0.005, and φ0 = 0.5.
(a) Radial displacement versus β for three values of η as labeled. (b) Radial displacement versus η for three
values of β as labeled.
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FIG. 11. Inflow into the first quarter of a poroelastic drop in a planar shear flow plotted against (a) interfa-
cial permeability η and (b) interfacial slip β, with � = 1/3, φ0 = 0.5, and αe = 0.005.

characterized by a linear growth rate ω. Instead, the homogeneous component of the general solution
in Eq. (54) produces a nonlinear eigenvalue problem for ω.

The time-dependent linear solutions for a poroelastic drop in a uniaxial extensional flow and
a planar shear flow are given in Appendixes D and E, respectively. The two functions g1 and g2

satisfy differential equations with variable coefficients. See the Supplemental Material in [64] for
these differential equations. Assuming Frobenius series, we obtain the series solutions for g1 and g2

with coefficients that depend on the eigenvalue ω,

g1(r) = r5 + 2ω̄

99
r7 + 5ω̄2

20 592
r9 + ω̄3

514 800
r11 + · · · , (69)

g2(r) = 28

ω̄
r3 − 1

3
r5 − ω̄

198
r7 − ω̄2

20 592
r9 − ω̄3

3 088 800
r11 + · · · , (70)

where ω̄ ≡ ω/φ0. For the uniaxial extensional flow case, the coefficients (a1, a2) in Eqs. (D6)
and (D7) can be expressed in terms of (α1, α3, α5). For the planar shear flow case, the coefficients
(c1, c3) in Eqs. (E7)–(E10) can be eliminated as well. For both uniaxial and shear flow, the resultant
system of linear equations for (α1, α3, α5) is thus a nonlinear eigenvalue problem for ω:

A

⎛
⎝α1

α3

α5

⎞
⎠ = ωB(ω)

⎛
⎝α1

α3

α5

⎞
⎠. (71)

Solutions of Eq. (71) for ω describe the linear dynamics of a poroelastic drop in the small-
deformation limit. Identical matrices A and B are obtained for both the uniaxial extensional flow

FIG. 12. Variation of (a) radial displacement and (b) inflow with respect to porosity φ0, with � = 1/3 and
αe = 0.005. The interfacial slip β = 0 for the results in (b).
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FIG. 13. Eigenvalue ω as a function of φ0 with � = 1/3, αe = 10−2, and (a) (β, η) = (0, 0),
(b) (β, η) = (102, 0), and (c) (β, η) = (0, 10).

and the planar shear flow: This is consistent with the small-deformation dynamics of a viscous drop
in linear flows. This means that the same eigenvalues are expected for both the uniaxial extensional
flow and the planar shear flow. See the Supplemental Material in [64] for the characteristic equations
in matrix form.

Figures 13 show the first three eigenvalues from solving the nonlinear eigenvalue problem in
Eq. (71) for three cases with different combination of β and η. For all these results, sufficient terms
in the power series for g1 and g2 are used to guarantee convergence in finding the eigenvalue ω.
For all three combinations of (β, η), we calculate the eigenvalues for φ0 ∈ (0, 0.5) where the small
deformation assumption is valid. Our computation also shows that all eigenvalues of Eq. (71) are
negative, implying that the steady equilibrium solutions that we found are stable. This is similar to
the case of a slightly deformable viscous drop stabilized by a strong surface tension.

IV. CONCLUSION AND ONGOING RESEARCH

In this work we developed a two-phase flow model for a poroelastic fluid that consists of an
elastic network fully immersed in a viscous fluid. This model is equivalent to the incompressible
Brinkman equations when the network is rigid and does not move in the reference frame. If the
viscous dissipation in the poroelastic fluid is subdominated by the pressure gradient force and
the friction force, our two-phase flow model is reduced to Darcy flow with a deformable network
phase. Appropriate boundary conditions at the boundary between the biphasic poroelastic fluid and
a viscous Stokes flow were derived by the free-energy-dissipation principle.

Applying this model to the small-deformation dynamics of a poroelastic drop under linear flows,
we were able to find steady equilibrium solutions and examine the effects of interfacial slip and
permeability on the radial displacement and the flow around the drop. Under a uniaxial extensional
flow, nonzero interfacial permeability gives rise to an interior flow, coming into the drop along
the compression axis and leaving the drop along the extension axis. Under a planar shear flow,
the network rotates with the vorticity in the shear flow. Such a rigid-body rotation is the dominant
interior flow at a steady equilibrium in the absence of permeability. Different flow patterns develop
around the drop more due to the interfacial slip than permeability. In general, we find that the radial
displacement decreases with increasing interfacial permeability, while interfacial slip enhances the
radial displacement.

The kinematic boundary condition for a poroelastic drop governs the interface moving with the
normal component of the network velocity at the interface. This renders the eigenvalue problem
nonlinear and we were able to compute the first three eigenvalues. We found that the eigenvalues
are the same for both extensional and shear flow, and all the eigenvalues are real and negative. These
are similar to the small-deformation dynamics of a viscous drop in linear flows.

In the small-deformation limit we assumed that the unperturbed volume fraction for the fluid
phase is homogeneous. This simplification avoids the complication of having to solve a linear
system of variable-coefficient boundary value equations. In addition, this simplification greatly
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reduces the porosity dependence on the volume fraction. Based on results from MacMinn et al. [47],
a nonhomogeneous initial volume fraction and a more complicated porosity may not alter the linear
dynamics and steady equilibria significantly.

Although our two-phase flow model does not capture the complexity of many biological
poroelastic fluids of interest, one expectation is that this approach can be generalized to consider
more complex situations such as the swelling and drying due to chemical reaction, polyelectrolytic
properties of the solvents in gel-like solutions, and the nonlinear elastohydrodynamics when the
displacement amplitude is large. These are all promising directions that can be applied to our
model to after our small-deformation results are validated by comparing against direct numerical
simulation results. The small-deformation analysis on a soft Brinkman drop (which may be more
appropriate for low volume fraction φs < 5%; see the derivations in [1]) in linear flows is left for
future work.
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APPENDIX A: VISCOUS DROP IN LINEAR FLOW

For comparison, here we show the equilibrium solution of a viscous drop in both a uniaxial
extension flow and a simple shear flow. The strong surface tension (small capillary number Ca 	 1)
balances the viscous stress under a fluid flow. The equilibrium small-deformation solutions are
available in the literature and here we used the equilibrium solution from [42] for the following
figures.

Under a uniaxial extension flow U∞ = E (x, y,−2z), the small-deformation solution is symmet-
ric around the z axis and we show the equilibrium drop shape and flow in the y-z plane in Fig. 14. The
interior flow pattern consists a pair of dipole vortices of strength that decreases with the increasing
viscosity ratio.

For a viscous drop under a simple shear flow U∞ = γ̇ (y, 0, 0) the drop shape depends on both θ

and φ. Here we show the small-deformation solution in the z = 0 plane in Fig. 15. We observe that
the strength of flow around the y = 0 axis increases as the interior fluid viscosity increases.

FIG. 14. Cross section (x = 0 plane) of a viscous drop in a uniaxial extension flow. The black dashed curve
is the original spherical shape and the thick red solid curve is the equilibrium drop shape with Ca = 0.1. The
viscosity ratio (interior to exterior) is (a) 10−2, (b) 1, and (c) 103.
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FIG. 15. Cross section (z = 0 plane) of a viscous drop in a simple shear flow. The black dashed curve is
the original spherical shape and the thick red solid curve is the equilibrium drop shape with Ca = 0.1. The
viscosity ratio (interior to exterior) is (a) 10−2, (b) 1, and (c) 103.

APPENDIX B: STEADY EQUILIBRIUM UNDER A UNIAXIAL EXTENSIONAL FLOW

For a poroelastic drop at the steady equilibrium under a uniaxial extensional flow, the coefficients
are

d1 = − 50(4β + 1)η

7(1 − �)(5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0)
, (B1)

d2 = Nd2

Dd2

, (B2)

Nd2 = 15(40βη�φ0 − 40βη� + 24βηφ0 − 24βη − 72β�φ0 − 56βφ0

+ 13η�φ0 − 13η� − 48η�φ0 + 6ηφ0 − 6η − 24�φ0 − 14φ0), (B3)

Dd2 = (1 − �)(12� + 7)(φ0 − 1)(5βηφ0 − 5βη − 48βηφ0 − 10βφ0

+ 2ηφ0 − 2η − 24ηφ0 − 4φ0),

d3 = Nd3

Dd3

, (B4)

Nd3 = 9(3� + 7)(−32βη�φ0 + 32βη� − 32βηφ0 + 32βη + 280βφ0

− 8η�φ0 + 8η� + 27ηφ0 − 27η − 560ηφ0),

Dd3 = 7Dd2 ,

A1 = 10(βηφ0 − βη + 16βηφ0 − 2βφ0 + ηφ0 − η − 8ηφ0 − 2φ0)

5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0
, (B5)

A2 = − 6(16βηφ0 + ηφ0 − η − 12ηφ0 − 2φ0)

5βηφ0 − 5βη − 48βηφ0 − 10βφ0 + 2ηφ0 − 2η − 24ηφ0 − 4φ0
. (B6)

APPENDIX C: STEADY EQUILIBRIUM UNDER A PLANAR SHEAR FLOW

For a poroelastic drop at the steady equilibrium under a planar shear flow, the coefficients are

C1 = − 10[βη(φ0 − 1) + 16βηφ0 − 2φ0(β + 4η) + η(φ0 − 1) − 2φ0]

5βη(φ0 − 1) − 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1) − 4φ0
, (C1)

C3 = 5[16βηφ0 + η(φ0 − 1) − 12ηφ0 − 2φ0]

5βη(φ0 − 1) − 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1) − 4φ0
, (C2)
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d1 = 10(4β + 1)η(φ0 − 1)

−5βη(φ0 − 1) + 48βηφ0 + 2φ0(5β + 12η) − 2η(φ0 − 1) + 4φ0
, (C3)

d3 = Nd3

Dd3

, (C4)

Nd3 = −5[2(20βη�(φ0 − 1) + 12βη(φ0 − 1) − 12�φ0 − 7φ0]

− 8φ0[9β� + 7β + 6η�) + η(13� + 6)(φ0 − 1)],

Dd3 = (1 − �)(12�+ 7)(φ0 − 1)[5βη(φ0 − 1) − 48βηφ0 − 2φ0(5β + 12η) + 2η(φ0 − 1) − 4φ0],

d4 = 3(3� + 7)[32βη(� + 1)(φ0 − 1) − 280φ0(β − 2η) − η(27 − 8�)(φ0 − 1)]

7Dd3

. (C5)

APPENDIX D: LINEAR SOLUTIONS UNDER A UNIAXIAL EXTENSIONAL FLOW

The displacement field is given by

us,1 · r̂ = h0(r)

3
[1 + 3 cos(2θ )]eωt , (D1)

us,1 · θ̂ = h1(r) sin(2θ )eωt (D2)

and the flow field is given by

p1 = 1 − φ0

12r
{[8(1 + ωμs)h0 + 2(1 + � + ωμs)rh′

0]

+ [12(1 + ωμs)h1 − 2(1 − � + ωμs)rh′
1 − 2(1 − � + ωμs)r2h′′

1]}[1 + 3 cos(2θ )]eωt , (D3)

h0 = α1r + α3r3 + α5g1(r), (D4)

h1 = −α1r − 5

3
α3r3 + α5g2(r), (D5)

ψe,1 =
(

a1

2
− a2

2r2

)
cos θ sin2 θeωt , (D6)

P1 = − αe

2r3
a1[1 + 3 cos(2θ )]eωt . (D7)

APPENDIX E: LINEAR SOLUTIONS UNDER A PLANAR SHEAR FLOW

The displacement field is given by

us,1 · r̂ = f0(r) sin2 θ sin(2φ)eωt , (E1)

us,1 · θ̂ = f1(r)

2
cos(2θ ) sin(2φ)eωt , (E2)

us,1 · φ̂ = f1(r) sin θ cos(2φ)eωt (E3)

and the flow field is given by

p1 = 1 − φ0

4r
{[8(1 + ωμs) f0 + 2(1 + � + ωμs)r f ′

0]

− [12(1 + ωμs) f1 − 2(1 − � + ωμs)r f ′
1 − 2(1 − � + ωμs)r2 f ′′

1 ]}[1 + 3 cos(2θ )]eωt , (E4)
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f0 = α1r + α3r3 + α5g1(r), (E5)

f1 = α1r + 5

3
α3r3 − α5g2(r), (E6)

V1 · r̂ = 1

20r4
(c3 + 5c1r2) sin2 θ sin(2φ)eωt , (E7)

V1 · θ̂ = − 1

10r4
c3 sin(2θ ) sin(2φ)eωt , (E8)

V1 · φ̂ = − 1

10r4
[10c4r2 + 2c3 cos(2φ)] sin θeωt , (E9)

P1 = αe

2r3
c1 sin2 θ sin(2φ)eωt . (E10)

[1] R. E. Caflisch and J. Rubinstein, Lectures on the Mathematical Theory of Multi-phase Flow (New York
University Press, New York, 1986), Chap. 6.

[2] J. M. Carcione, in Handbook of Geophysical Exploration: Seismic Exploration, edited by K. Helbig and
S. Treitel (Pergamon Press, Oxford, 2001), Chap. 7.

[3] W. M. Lai, J. S. Hou, and V. C. Mow, A triphasic theory for the swelling and deformation behaviors of
articular cartilage, J. Biomech. Eng. 113, 245 (1991).

[4] P. M. Pinsky, Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel
intrastromal inlay, Invest Ophthalmol. Vis. Sci. 55, 3093 (2014).

[5] X. Chen, S. J. Petsche, and P. M. Pinsky, A structural model for the in vivo human cornea including
collagen-swelling interaction, J. R. Soc. Interface 12, 20150241 (2015).

[6] P. M. Pinsky and X. Cheng, A constitutive model for swelling pressure and volumetric behavior of highly-
hydrated connective tissue, J. Elast. 129, 145 (2017).

[7] N. G. Cogan and J. P. Keener, The role of the biofilm matrix in structural development, Math. Med. Biol.
21, 147 (2004).

[8] Y. Mori, H. Chen, C. Micek, and M.-C. Calderer, A dynamic model of polyelectrolyte gels, SIAM J. Appl.
Math. 73, 103 (2013).

[9] W. Strychalski, C. A. Copos, O. L. Lewis, and R. D. Guy, A poroelastic immersed boundary method with
applications to cell biology, J. Comput. Phys. 282, 77 (2015).

[10] W. Strychalski and R. D. Guy, Intracellular pressure dynamics in blebbing cells, Biophys. J. 110, 1168
(2016).

[11] D. A. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15, 261 (1983).
[12] R. Burridge and J. B. Keller, Poroelasticity equations derived from microstructures, J. Acoust. Soc. Am.

70, 1140 (1981).
[13] E. Holland and R. E. Showalter, Poro-visco-elastic compaction in sedimentary basins, SIAM J. Math.

Anal. 50, 2295 (2018).
[14] F. A. Morales and R. E. Showalter, A Darcy-Brinkman model of fractures in porous media, J. Math. Anal.

Appl. 452, 1332 (2017).
[15] L. Bociu, G. Guidoboni, R. Sacco, and J. T. Webster, Analysis of nonlinear poro-elastic and poro-visco-

elastic models, Arch. Ration. Mech. Anal. 222, 1445 (2016).
[16] H. T. Banks, K. Bekele-Maxwell, L. Bociu, M. Noorman, and G. Guidoboni, Sensitivity analysis in poro-

elastic and poro-visco-elastic models with respect to boundary data, Q. Appl. Math. 4, 697 (2017).
[17] M. Verri, G. Guidoboni, L. Bociu, and R Sacco, The role of structural viscoelasticity in deformable

porous media with incompressible constituents: Applications in biomechanics, Math. Biosci. Eng. 15,
939 (2018).

063601-23

https://doi.org/10.1115/1.2894880
https://doi.org/10.1115/1.2894880
https://doi.org/10.1115/1.2894880
https://doi.org/10.1115/1.2894880
https://doi.org/10.1167/iovs.13-13844
https://doi.org/10.1167/iovs.13-13844
https://doi.org/10.1167/iovs.13-13844
https://doi.org/10.1167/iovs.13-13844
https://doi.org/10.1098/rsif.2015.0241
https://doi.org/10.1098/rsif.2015.0241
https://doi.org/10.1098/rsif.2015.0241
https://doi.org/10.1098/rsif.2015.0241
https://doi.org/10.1007/s10659-016-9616-z
https://doi.org/10.1007/s10659-016-9616-z
https://doi.org/10.1007/s10659-016-9616-z
https://doi.org/10.1007/s10659-016-9616-z
https://doi.org/10.1093/imammb/21.2.147
https://doi.org/10.1093/imammb/21.2.147
https://doi.org/10.1093/imammb/21.2.147
https://doi.org/10.1093/imammb/21.2.147
https://doi.org/10.1137/110855296
https://doi.org/10.1137/110855296
https://doi.org/10.1137/110855296
https://doi.org/10.1137/110855296
https://doi.org/10.1016/j.jcp.2014.10.004
https://doi.org/10.1016/j.jcp.2014.10.004
https://doi.org/10.1016/j.jcp.2014.10.004
https://doi.org/10.1016/j.jcp.2014.10.004
https://doi.org/10.1016/j.bpj.2016.01.012
https://doi.org/10.1016/j.bpj.2016.01.012
https://doi.org/10.1016/j.bpj.2016.01.012
https://doi.org/10.1016/j.bpj.2016.01.012
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1121/1.386945
https://doi.org/10.1121/1.386945
https://doi.org/10.1121/1.386945
https://doi.org/10.1121/1.386945
https://doi.org/10.1137/17M1141539
https://doi.org/10.1137/17M1141539
https://doi.org/10.1137/17M1141539
https://doi.org/10.1137/17M1141539
https://doi.org/10.1016/j.jmaa.2017.03.063
https://doi.org/10.1016/j.jmaa.2017.03.063
https://doi.org/10.1016/j.jmaa.2017.03.063
https://doi.org/10.1016/j.jmaa.2017.03.063
https://doi.org/10.1007/s00205-016-1024-9
https://doi.org/10.1007/s00205-016-1024-9
https://doi.org/10.1007/s00205-016-1024-9
https://doi.org/10.1007/s00205-016-1024-9
https://doi.org/10.1090/qam/1475
https://doi.org/10.1090/qam/1475
https://doi.org/10.1090/qam/1475
https://doi.org/10.1090/qam/1475
https://doi.org/10.3934/mbe.2018042
https://doi.org/10.3934/mbe.2018042
https://doi.org/10.3934/mbe.2018042
https://doi.org/10.3934/mbe.2018042


YOUNG, MORI, AND MIKSIS

[18] P. Angot, B. Goyeau, and J. A. Ochoa-Tapia, Asymptotic modeling of transport phenomena at the interface
between a fluid and a porous layer: Jump conditions, Phys. Rev. E 95, 063302 (2017).

[19] P. Angot, G. Carbou, and V. Peron, Asymptotic study for Stokes-Brinkman model with jump embedded
transmission conditions, Asymptotic Anal. 96, 223 (2016).

[20] P. Angot, On the well-posed coupling between free fluid and porous viscous flows, Appl. Math. Lett. 24,
803 (2011).

[21] J. A. Ochoa-Tapia, Momentum transfer at the boundary between a porous medium and a homogeneous
fluid—II. Comparison with experiment, Int. J. Heat Mass Transf. 38, 2647 (1995).

[22] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30,
197 (1967).

[23] D. R. Hewitt, J. S. Nijjer, M. G. Worster, and J. A. Neufeld, Flow-induced compaction of a deformable
porous medium, Phys. Rev. E 93, 023116 (2016).

[24] M. L. Bars and M. G. Worster, Interfacial conditions between a pure fluid and a porous medium:
Implications for binary alloy solidification, J. Fluid Mech. 550, 149 (2006).

[25] P. G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math. 2, 93
(1971).

[26] G. Neale and W. Nader, Creeping flow relative to permeable spheres, Chem. Eng. Sci. 28, 1865 (1973).
[27] G. Neale and W. Nader, Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel

flows within a channel and a bounding porous medium, Can. J. Chem. Eng. 52, 475 (1974).
[28] I.-S. Liu, On chemical potential and incompressible porous media, J. de Mecan. 19, 327 (1980).
[29] S. Haber and R. Mauri, Boundary conditions for Darcy’s flow through porous media, Int. J. Multiphase

Flow 9, 561 (1983).
[30] A. F. Mak, The apparent viscoelastic behavior of articular cartilage—The contributions from the intrinsic

matrix viscoelasticity and interstitial fluid flows, J. Biomech. Eng. 108, 123 (1986).
[31] V. C. Mow, M. H. Holmes, and W. M. Lai, Fluid transport and mechanical properties of articular cartilage:

A review, J. Biomech. 17, 377 (1984).
[32] J. S. Hou, M. H. Holmes, W. M. Lai, and V. C. Mow, Boundary conditions at the cartilage-synovial fluid

interface for joint lubrication and theoretical verifications, J. Biomech. Eng. 111, 78 (1989).
[33] E. I. Saad, Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: Effect

of stress jump condition, Meccanica 48, 1747 (2013).
[34] E. I. Saad and M. S. Faltas, Slow motion of a porous sphere translating along the axis of a circular

cylindrical pore subject to a stress jump condition, Transp. Porous Med. 102, 91 (2014).
[35] E. I. Saad, Axisymmetric motion of a porous sphere through a spherical envelop subject to a stress jump

condition, Meccanica 51, 799 (2016).
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