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Dynamics of gravity-driven viscoelastic films on wavy walls
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The linear stability and nonlinear dynamics of viscoelastic liquid films flowing down
inclined surfaces with sinusoidal topography are investigated. The Oldroyd-B constitutive
model is used and numerical solutions of a long-wave nonlinear evolution equation for
the film thickness, introduced by Dávalos-Orozco [L. A. Dávalos-Orozco, Stability of
thin viscoelastic films falling down wavy walls, Interfacial Phenom. Heat Transfer 1,
301 (2013)], provide insight into the influence of elasticity and wall topography on the
nonlinear film dynamics, while Floquet analysis of the linearized evolution equation is
used to study the onset of linear instability. Focusing initially on inertialess films (with
zero Reynolds number), linear stability results are organized into three regimes based on
the wall wavelength. For sufficiently short and sufficiently long wall wavelengths, the onset
of instability is not tangibly affected by the topography. There is however an intermediate
range of wavelengths where, as the wall wavelength is increased, the critical Deborah
number for the onset of instability first decreases (topography is destabilizing) and then
increases sufficiently for topography to be stabilizing (relative to the flat wall). Solutions
to a perturbation amplitude equation indicate that the character of the instability changes
substantially within this intermediate range; topography induces streamwise variations in
the base-state velocity at the free surface which couple with perturbations and substantially
influence the instability growth rate. Very similar trends are observed for Newtonian films
and variations in the critical Reynolds number. Simulations of the full nonlinear evolution
equation produce a broad range of nonlinear states including traveling waves, time-periodic
waves, and chaos. Perturbations to the film generally saturate at higher amplitudes for cases
with larger linear growth rates, e.g., with increasing Deborah number or for a destabilizing
wall wavelength, and topography introduces finer temporal scales in the dynamics. The
qualitative influences of inclination and inertia on the nonlinear dynamics are shown to be
simply related to the influence of elasticity using analytical linear stability results for the
flat-wall case.

DOI: 10.1103/PhysRevFluids.4.063305

I. INTRODUCTION

Gravity-driven liquid film flows are relevant to a number of important industrial applications and
coating processes. These processes generally require careful control of the film thickness, process
speed, and final material properties [1]. Accordingly, the dynamics of films on flat surfaces has
been extensively studied. Early investigators found that gravity-driven Newtonian films become
linearly unstable if the Reynolds number is sufficiently large [2], and the subsequent development
of nonlinear waves from this inertial instability has also been a topic of substantial interest (see [3]
as well as the reviews in [4,5]). There has been a specific focus on the dynamics of long nonlinear
waves in flows with large surface tension where the governing equations can be substantially
simplified using the Benney, integral boundary-layer (IBL), and weighted-residual approximations.
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In many practical applications, the film is viscoelastic, and early studies investigated the linear
stability of viscoelastic gravity-driven films using second-order fluid models for the stress [6–8].
These studies found that elasticity enhanced inertial instability; however, second-order models
assume that a representative fluid relaxation time is small relative to a characteristic timescale
of the flow (i.e., a Deborah number De should satisfy De � 1) and are best suited for steady or
quasisteady (slow) flows [9]. The Oldroyd-B constitutive model is better suited for unsteady shear
flows with substantial viscoelastic effects, and subsequent linear stability studies using this model
(or the closely related upper-convected Maxwell model) confirmed the destabilizing influence of
viscoelasticity and also revealed that an elastic instability may be present if the Deborah number
is sufficiently large (even when the Reynolds number is zero) [10–14]. Viscoelastic analogs to
the Benney [15–17] and IBL [18] equations have also been derived and analyzed, and numerical
simulations of both the Newtonian and viscoelastic Benney equations indicate that a variety of
nonlinear states including traveling waves and chaos may be excited (see [19] and Sec. V). Dandapat
and Gupta [15] and Joo [16] utilized second-order fluid and four-constant Oldroyd constitutive
models, respectively (the latter produces weak shear thinning unlike the second-order and Oldroyd-
B models), and focused on the modification of nonlinear inertial waves by viscoelasticity. Kang and
Chen [17] noted that viscoelastic effects are likely to be dominant in very thin films and focused
on the dynamics associated with elastic instability. They used the Oldroyd-B model, carried out
an asymptotic expansion to second order, and then investigated the weakly nonlinear dynamics
generated by their evolution equation and the corresponding bifurcation structure. Here we also
use the Oldroyd-B model and focus on elastic instability (results with finite Re are also included),
though we truncate our expansion at first order. The Oldroyd-B model has been widely used in
studies of shear flows of dilute polymeric solutions and can be derived from a kinetic theory in
which the polymer molecules are modeled as noninteracting Hookean elastic dumbbells [20]. It
is a simple model that reasonably describes significant viscoelastic effects in shear flows of dilute
highly elastic liquids at moderate shear rates (e.g., memory effects and a finite streamwise normal
stress). At higher shear rates, a few important weaknesses emerge. The Oldroyd-B model produces
a shear-independent viscosity and a constant first normal-stress coefficient and does not capture
the shear-thinning behavior exhibited by most fluids of interest. Other general weaknesses include
the development of unphysically large tensile stresses in extensional flows (since linear Hookean
springs can stretch indefinitely), zero transverse normal stress components in simple shear flow,
and the assumption of a single representative fluid relaxation time. Despite these shortcomings, the
model’s relative simplicity and analytical tractability make it well suited for theoretical studies of
elastic instabilities in viscoelastic shear flows with small or moderate shear rates [21].

Protective coatings are often required on devices with uneven surfaces, and even nominally flat
walls often have surface imperfections which introduce perturbations into films and influence the
quality of the final polymer coating [22]. Thus it is important to consider film flow on walls with
topography, and in this work we investigate the stability and dynamics of gravity-driven viscoelastic
films on sinusoidally varying surfaces (Fig. 1). A number of studies have investigated the influence
of sinusoidal topography on film stability and dynamics for Newtonian films (see, e.g., [23–28]),
while power-law [29] and weakly viscoelastic (Walters-B) [30] films have also been considered.
The power-law model produces a shear-dependent viscosity which is relevant for concentrated
polymeric solutions and melts which are both typically strongly shear thinning. The power-law
model does not however include memory effects or generate normal stresses in simple shear flows.
In contrast, Oldroyd-B fluids do exhibit these important viscoelastic effects but do not exhibit shear
thinning (or thickening). The Walters-B model is an example of a second-order model and as noted
above is best suited for quasisteady flows where viscoelastic effects are weak. Taken together, these
studies of Newtonian and non-Newtonian films utilize a variety of approaches and a broad range of
parameters, and stabilization due to topography was observed in [24,27,29], while [25,28] found that
destabilization could also occur for some wall wavelengths. Of particular relevance to the present
work is Ref. [31], where an Oldroyd-B fluid was considered, and the viscoelastic Benney equation
(VBE) introduced in [17] was modified to account for the wall deformation. Numerical simulations
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FIG. 1. Schematic of Oldroyd-B liquid film flowing down an inclined topography.

of this nonlinear evolution equation with spatially localized time-harmonic forcing were used to
show that topography could be stabilizing for appropriately chosen wall deformations. Here we
use this modified VBE as a starting point and (i) use Floquet analysis to systematically analyze its
linear stability while also exploring the detailed elastic instability mechanism and (ii) use extensive
numerical simulations of the full evolution equation to investigate the nonlinear states which develop
from the linear instability. These linear stability results provide a clear picture of the influence of
sinusoidal wall topography on long-wave elastic instability and provide a framework for designing
optimal wall deformations for a given application. Along similar lines, the nonlinear simulation
results provide qualitative guidance for interpreting laboratory observations of unsteady viscoelastic
film flows over topography.

This paper is organized as follows. In Sec. II we discuss the mathematical formulation of the
nonlinear partial differential equation governing the evolution of the film thickness for viscoelastic
film flow on walls with topography. In Sec. III we show the construction of the steady state both
numerically and analytically (for the case where the wall deformation amplitude is small) and then
present linear stability results obtained using Floquet analysis in Sec. IV. In Sec. V we use numerical
simulations of the full nonlinear evolution equation to explore the unsteady dynamics of this flow.
We summarize in Sec. VI.

II. FORMULATION

In this section we outline the derivation of the modified VBE introduced in [31]. A few
intermediate steps are omitted as the basic approach is very similar to the derivation of the
well-known Benney equation [32]. We consider the evolution of long waves on a film with thickness
h(x1, t ) overlying a wall with surface s(x1, t ) inclined at an angle θ as shown in Fig. 1. We start from
the dimensionless Navier-Stokes equations for two-dimensional incompressible flow modified with
a polymer stress term to account for the influence of viscoelasticity,

∂u j

∂x j
= 0, (1a)

Re

(
∂ui

∂t
+ u j

∂ui

∂x j

)
+ ∂ p

∂xi
= Fi + β

∂2ui

∂x j∂x j
+ (1 − β )

∂a ji

∂x j
, (1b)

where ui is velocity, p is pressure, (1 − β )ai j/Re is the polymer stress, Fi represents the force
due to gravity with (F1, F2) = (3,−3Ct ), and the density ρ is uniform and constant. Additionally,
Re = uN hN/ν is the Reynolds number, β = νs/ν is the ratio of the solvent and solution viscosities,
and Ct = cotθ is an inclination parameter. These parameters have been formed using the Nusselt
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flat film thickness hN and bulk velocity uN , which is related to gravity g and kinematic viscosity ν

through uN = g sin θh2
N/3ν. The polymer stress is obtained from the Oldroyd-B constitutive model,

∂ai j

∂t
+ uk

∂ai j

∂xk
− aik

∂u j

∂xk
− ak j

∂ui

∂xk
= 1

De

(
∂ui

∂x j
+ ∂u j

∂xi
− ai j

)
, (2)

where De = λuN/hN is the Deborah number, λ is a characteristic polymer relaxation time, and
the Deborah number will be restricted to be O(1). This constraint leads to simplifications to the
upper-convected derivative in (2) which are necessary for analytical progress. As noted in the
Introduction, the Oldroyd-B model has a few well-known limitations (see, e.g., [33]) which are more
pronounced at larger values of De, and with De ∼ O(1) we expect the model to capture important
qualitative trends associated with streamwise normal stresses and memory effects connected to the
stress history of the fluid. We require ui = 0 at the wall and enforce continuity of tangential and
normal stress at the free surface (see the Appendix). Using the no-slip condition and the continuity
equation, the kinematic condition for the free surface can be written as

∂h

∂t
+ ∂q

∂x1
= 0, q =

∫ h+s

s
u1dx2. (3)

The normal stress condition introduces a surface tension parameter (an inverse Bond number)
S = γ /μuN . This parameter is assumed to be large, S ∼ O(1/ε2), and we also assume that the
wall deformation varies slowly such that

htypical/L = ε � 1, (4)

where htypical is a “typical” film thickness and L is the deformation wavelength. These assumptions
lead to a focus on waves varying slowly in both the streamwise direction and time. Introducing
the slow variables t̃ = εt and x̃1 = εx1, the dependent variables are expanded in powers of ε (see
the Appendix). Substituting this expansion into the governing equations and boundary conditions
and solving the resulting equations at O(1) and O(ε), the kinematic condition [up to O(ε2)] can be
written as

∂h

∂t
+ ∂

∂x1

[
h3 + 6

5
Reh6 ∂h

∂x1
− Ct h

3 ∂ (h + s)

∂x1
+ 1

3
Sh3 ∂3(h + s)

∂x3
1

+ 3Dh4 ∂h

∂x1

]
= 0, (5)

where we have reverted to the physical variables x1 and t . Further details on this derivation
are provided in the Appendix. The first term within the brackets in Eq. (5) arises due to the
shear generated by the combination of the no-slip condition and gravitational forcing along the
x1 direction; the second to fourth terms represent the effects of inertia, inclination, and surface
tension, respectively, and the fifth term represents the influence of elasticity with D ≡ De(1 − γ ).
This equation matches the evolution equation introduced in [31] (after accounting for differences
in nondimensionalization), and for the case of a flat wall with s = 0 and Re = 0, we recover the
VBE derived by [17] up to O(ε) (and again after accounting for their nondimensionalization). The
derivation of Eq. (5) assumes that Ct , Re � 1/ε; for Newtonian fluids, the numerical solutions of
this equation have been shown to be very close to numerical solutions of the full Navier-Stokes
equations up to Re ≈ 5 [19,34].

Equation (5) is valid for general slowly varying topography; however, for simplicity, we will only
consider sinusoidal wall profiles with wavelength L and amplitude δ/2:

s(x1) = 1
2δ cos(κx1), κ = 2π/L. (6)

The steepness δ/L is an important parameter in the discussion below and is required to be O(ε) or
smaller.
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Polymer stress

We can infer that the influence of viscoelasticity is destabilizing from Eq. (5) (see Sec. IV), and a
fuller view of this influence and the importance of the streamwise normal stress can be obtained by
examining the coupling between the polymer stress components and the film thickness. Elasticity
enters Eq. (5) via the O(ε) x1-momentum equation, and using the Oldroyd-B equation we find

∂a(0)
11

∂ x̃1
= −36 De

[(
∂h

∂ x̃1
+ ∂s

∂ x̃1

)
(x2 − s) − ∂s

∂ x̃1
h

]
+ 36 De

∂h

∂ x̃1
h, (7a)

∂a(1)
12

∂x2
= 36 De

[(
∂h

∂ x̃1
+ ∂s

∂ x̃1

)
(x2 − s) − ∂s

∂ x̃1
h

]
− 27 De

∂h

∂ x̃1
h. (7b)

It is the sum of these terms which appears in the momentum equation, and after substantial
cancellations, we arrive at a fairly simple result which is x2 independent and strongly dependent
on streamwise variations in the film thickness:

∂a(0)
11

∂ x̃1
+ ∂a(1)

12

∂x2
= 9

2
De

∂ (h2)

∂ x̃1
. (8)

This result represents competition between the streamwise-normal and shear components of the
polymer stress. Crucially, the magnitude of the normal stress is larger, and overall, elasticity
“pushes” fluid in the streamwise direction towards local maxima in the film thickness and away from
local minima. This then is clearly a destabilizing effect and is very similar to the description of the
long-wave linear elastic instability mechanism in gravity-driven films on flat walls presented in [14].
Equations (7) and (8) also indicate that the wall topography s directly influences the individual
polymer stress components, but it is only via the film thickness h that the topography affects the
overall influence of elasticity on the film dynamics.

III. STEADY STATE

Steady-state film profiles provide important insight into the response of the film flow to wall
topography and are also needed for linear stability calculations. The computation of these profiles
is considerably more complicated than the flat-wall case where we simply have h0 = 1. Setting the
flux to q = q0 = 1, the governing equation is

h3
0 + 6

5
Reh6

0
dh0

dx1
+ 3Dh4

0
dh0

dx1
− Ct h

3
0

d

dx1
(h0 + s) + 1

3
Sh3

0
d3

dx3
1

(h0 + s) = q0 = 1, (9)

and we will only consider periodic solutions. Generally, this equation must be solved numerically,
and following the formulation of Tseluiko et al. [28], steady states are computed after first writing
Eq. (9) as a system of first-order nonautonomous ordinary differential equations on the domain
[0, L] with f1 = h0, f2 = dh0/dx1, f3 = d2h0/dx2

1, and

df1

dx1
= f2,

df2

dx1
= f3,

df3

dx1
= 3

S f 3
1

[
1− f 3

1 −
(

6

5
Re f 6

1 +3D f 4
1

)
f2+Ct f 3

1

(
f2+ ds

dx1

)]
− d3s

dx3
1

.

(10)

Periodic boundary conditions are implemented as fi(0) = fi(L), i = 1, 2, 3, and Eq. (10) is solved
using the MATLAB suite bvp4c [35], which is an iterative adaptive-mesh boundary-value-problem
solver that uses finite-difference discretizations. We only consider steady states with fixed volume
flow rates (q0 = 1); however, a reasonable alternative is to fix the average film height (or equiva-
lently the total volume of fluid). The former case is typically used in experiments, while the latter
has been frequently used in stability studies and nonlinear simulations of films on topography [36].
Tseluiko et al. [28] considered both approaches in their study of inertial instabilities on films over
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topography and found qualitatively similar results for the critical Reynolds number. Preliminary
calculations for viscoelastic films with fixed fluid volumes (not shown here) show qualitatively
similar results for the critical Deborah number; however, further investigation of the fixed-volume
case would be a useful complement to the present study.

Asymptotic solution

The results presented below largely correspond to cases where the amplitude of the wall
deformation is small. In such cases, an approximate analytical solution for the steady-state film
thickness can be found using asymptotic expansions. The steady-state surface elevation F (x1) =
h0(x1) + s(x1) is expanded as

F (x1) = 1 + δF1(x1) + O(δ2), (11)

and after substituting this expansion into Eq. (10), F1 can be found in a straightforward manner
using Fourier transforms (see [37]):

F1(x1) = A1 cos(κx1 − φ1),

A1 = 1

2

√
9 + κ2V 2

9 + κ2(V − Pκ )2
,

φ1 = −arctan

(
3κPκ

9 + κ2V (V − Pκ )

)
. (12)

The influences of elasticity and inertia are condensed into a single parameter V , while Pκ contains
the effects of surface tension and inclination

V = 6
5 Re + 3D, Pκ = Ct + 1

3κ2S. (13)

The bulk of the results presented below correspond to cases where Pκ > V , and with our chosen
parameter values, numerical calculations indicate that Pκ typically controls the profile shapes.
Taking the extreme case V = 0, we see that the amplitude of free-surface oscillations A1 decreases
as any one of κ , S, and Ct is increased. The selective damping of higher-wave-number oscillations
by surface tension is expected, and here we see that inclination has a similar effect, though the
relative importance of the inclination angle decreases as the topography wave number increases.

Steady-state results for inertialess films with D = 0.2 and Ct = 1 are shown in Fig. 2. With a
fixed wall amplitude δ = 0.2, the free surface is relatively flat for the smaller wall wavelengths and
tends to synchronize with the wall at larger wavelengths [Fig. 2(a)]. The influence of the amplitude
δ can be accounted for by normalizing the free-surface height with Fnorm = [F (x1) − 1]/δ + 1.
From the asymptotic results above, we expect this normalized height to be independent of the wall
amplitude if L and S are fixed, and numerical results shown in Fig. 2(b) confirm this expectation. In
the next section, it will be useful to compare results with the steepness δ/L held fixed. Steady-state
results for δ/L = 0.2 are summarized in Figs. 2(c) and 2(d). Asymptotic solutions are also included
here, and there is good agreement between analytical results and numerical solutions to the full
equations (9). For relatively small wall wavelengths, the free surface flattens due (primarily) to
surface tension, and at large wavelengths the film thickness tends towards a constant x1-independent
value. At intermediate wavelengths, both the normalized amplitude and the phase difference change
substantially as the film transitions from a flat free surface to a sinusoidal profile which is in phase
with the wall. Reducing the surface tension produces a shift towards shorter wavelengths. Below
we consider flows with 0 � D � 1 and 0 � Re � 2.5 and the trends shown in Fig. 2 are observed
throughout this parameter space.
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FIG. 2. Influence of sinusoidal wall on the steady state for Re = 0, D = 0.2, and Ct = 1. Numerical
solutions (S = 300) are shown for (a) interface profiles for fixed wall amplitude δ = 0.2 and (b) normalized
interfacial profiles Fnorm for fixed wall wavelength L = 25. Numerical and analytical solutions (S = 100, 200,
and 300) with fixed wall steepness δ/L = 0.02 and varying wall wavelength L are shown for the (c) amplitude
of Fnorm and (d) phase difference between the interface and the wall [same legend as in (c)].

IV. LINEAR STABILITY

We now examine the influence of sinusoidal topography on the linear stability of computed
steady film profiles. After presenting the problem formulation, we move on to numerical results with
a focus on inertialess flows (Re = 0). For flat walls, elastic instability is present when D > 1/3Ct

(discussed below), and the question then is, how does topography with a given wavelength L and
amplitude δ modify this critical elasticity? We will principally consider wavelengths in the range
5 � L � 60 and amplitudes δ � 1. The surface tension will be set to S = 100, 200, or 300, and
these choices ensure both that the wall topography exerts a nontrivial influence on the flow stability
and that the modeling assumptions required for Eq. (5) are satisfied. The physical mechanisms
underlying the topography-induced changes to Dcrit are also discussed in detail. This discussion
centers on a disturbance energy equation obtained from our linearized kinematic condition which
allows us to isolate the influence of topography on the elastic instability.

A. Formulation

The formulation of the linear problem begins with the addition of a small perturbation to the
steady state

h(x1, t ) = h0(x1) + η(x1, t ). (14)
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Substituting this expression into Eq. (5) and linearizing gives

∂η

∂t
= L[η] = − ∂

∂x1

(
b0η + b1

∂η

∂x1
+ b2

∂3η

∂x3
1

)
, (15)

where b0(x1), b1(x1), and b2(x1) are periodic functions of the steady state and wall topography:

b0(x1) = 3h2
0 +

(
36

5
Reh5

0 + 12Dh3
0

)
∂h0

∂x1
− 3Ct h

2
0
∂ (h0 + s)

∂x1
+ Sh2

0
∂3(h0 + s)

∂x3
1

,

b1(x1) = 6

5
Reh6

0 + 3Dh4
0 − Ct h

3
0, b2(x1) = 1

3
Sh3

0. (16)

For a flat wall (s = 0), the steady state is h0 = 1, and linear stability analysis is straightforward.
Introducing normal modes η(x1, t ) = η̂ exp[i(kx1 − ωt )] + c.c., the growth rate is

ωi = k2
(

6
5 Re + 3D − Ct − 1

3 k2S
)
, (17)

where ω = ωr + iωi. The phase speed is cph = ωr/k = 3 and instability occurs when

V = 6
5 Re + 3D > Ct + 1

3 k2S. (18)

We see that elasticity and inertia are destabilizing, whereas surface tension and reduction of
inclination (increase of Ct ) are stabilizing. Equivalent expressions for the growth rate in inertialess
flow were given in [14,17] with the former also neglecting surface tension. These results apply to
long waves, and [12] presented results for instabilities with O(1) wave numbers.

With a sinusoidal wall, we can analyze the stability problem by utilizing Floquet theory and
assuming perturbations take the form

η(x1, t ) = exp(σ t + ikx1)g(x1) + c.c., (19)

where k ∈ [−π/L, π/L] and g(x1) is L periodic. Substituting Eq. (19) into (15) gives an eigenvalue
problem

Lk[g] = σg, (20)

where Lk[g] = exp(−ikx1)L[exp(ikx1)g] and each Lk acts over the finite domain of size L. The
eigenvalue spectrum of L, �(L), is the union over all k,

�(L) =
⋃

k∈[−π/L,π/L]

�(Lk ). (21)

After solving for the base flow, a series of eigenvalue problems corresponding to different values
of k are solved in MATLAB. Specifically, we vary k in the range [−π/L, π/L] with increments of
π/50L. Cases with k = 0 and k = π/L correspond to the fundamental and subharmonic modes,
respectively; however, we find that other “detuned” modes are typically the most unstable [see
Fig. 5(b)]. Temporal instability is present when the real part of σ is positive for one or more values
of k [σr = Re(σ ) > 0]. We have validated our results via comparisons with [28] for several values
of Reynolds number with D = 0, and the overall approach used here is very similar to that used
by Tseluiko et al. [28]. The main differences are that their study considered Newtonian fluids and
allowed for spatiotemporal instability.

B. Numerical results

Computed results indicate that the influence of wall topography can be stabilizing or destabilizing
depending on the details of the deformation. Eigenspectra for D = 0.32, S = 300, Ct = 1, and
L = 15 are shown in Fig. 3(a) for δ = 0, 0.15, and 0.3. The flat-wall case is stable, and introducing a
wall deformation with sufficiently large amplitude destabilizes the film flow via a Hopf bifurcation.
Increasing the amplitude further introduces instability over a broader range of wave numbers while
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Im Im

Re Re

FIG. 3. Linear stability results, with S = 300, Ct = 1, and Re = 0, for eigenspectra for (a) D = 0.32 and
L = 15 and (b) D = 0.4 and L = 25 [same legend as in (a)].

also increasing the growth rates. The opposite trend is seen when L = 25 and D = 0.4 [Fig. 3(b)].
The flat-wall case is now linearly unstable and wall deformations tend to stabilize the flow. Similar
trends are seen in calculations of the critical elasticity parameter Dcrit [Fig. 4(a)]. For the two
smaller wavelengths shown, topography reduces Dcrit and is destabilizing (instability occurs when
D > Dcrit), whereas the topography is stabilizing for L = 25 and L = 40. Again increasing the
deformation amplitude increases the influence of the topography; however, as can be seen in the
figure, the sensitivity to the amplitude is very much dependent on the wall wavelength. A clearer
view of these trends is found by simultaneously varying the wall wavelength and amplitude such
that δ/L is held fixed. This constrains the slope of the wall topography, and the results for Dcrit

with S = 300 and Ct = 1 are shown in Fig. 4(b) for δ/L = 0.01, 0.015, and 0.02. The figure shows
there is an intermediate range of wavelengths 10 � L � 40 where the flow stability is particularly
sensitive to topography. Within this intermediate range, topography initially exhibits a destabilizing
influence reducing the critical Deborah number by more than 25% when L = 16 and δ = 0.32.
As the wavelength increases there is a rapid shift and topography becomes stabilizing, increasing
Dcrit by more than 40% for the parameters shown. For wavelengths outside this range (both longer
and shorter), the neutral curves are relatively insensitive to the wall deformation and, for these
deformation amplitudes, Dcrit remains close to its flat-wall value. The full eigenvalue spectra for
three different wall wavelengths are shown in Fig. 5(a) along with the spectrum for the flat-wall

FIG. 4. Influence of topography on Dcrit , with S = 300, Ct = 1, and Re = 0. Individual curves correspond
to (a) fixed wall wavelength L and (b) fixed wall steepness δ/L.
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Im

Re

FIG. 5. Linear stability results, with S = 300, Ct = 1, and Re = 0, for (a) eigenspectra for D = 0.5 and
δ/L = 0.02 and (b) effective wave number for the most destabilizing mode [same legend as in 4(b)].

case. Here δ/L = 0.02, D = 0.5, and all cases shown are linearly unstable. The qualitative trends
are similar to those seen for Dcrit for 15 � L � 24. There is a clear reduction in the growth rate as
the wavelength increases, and the influence of topography shifts from destabilizing to stabilizing.

The most-unstable (or least-stable) modes correspond to particular values of the wave number
k; however, these wave numbers do not provide a full picture of a mode’s streamwise dependence
which is of the form exp(ikx1)g(x1). An effective wave number can be computed by applying a
Fourier transform (x1 → k̂) and then extracting the wave number at which the amplitude of the
Fourier transform is maximum. These wave numbers k̂max are shown in Fig. 5(b) with D = 0.5.
For flat walls, k̂max = √

3/(2S)(6/5Re + 3D − Ct ), and topography substantially modifies the
instability wavelength in the intermediate range of wall wavelengths. Within the destabilizing range
of wall wavelengths, the instability wavelengths are reduced, while in the stabilizing range, the
wavelengths are substantially increased. Similar trends are observed for the effective wave numbers
of neutral waves computed with D = Dcrit (not shown).

Influence of inclination angle and surface tension

The results above all correspond to fixed values of the inclination (Ct = 1) and surface tension
parameters (S = 300). Similar qualitative trends are observed when these parameters are varied. As
discussed earlier, the critical elasticity parameter for a flat wall is Dcrit = Ct/3, so a flat vertical
wall (Ct = 0) is linearly unstable with any nonzero Deborah number, and reducing the inclination
angle from 90◦ has a simple stabilizing effect. This stabilizing influence is also present for walls
with topography as can be seen in Fig. 6(a), where Dcrit curves shift upward as Ct is increased.
Figure 6(a) additionally shows that there is typically a particular wavelength where the critical
elasticity is approximately independent of δ and equal to its flat-wall value. It appears likely that
the base-state phase difference plays an important role (see discussion below); however, we have
not been able to pinpoint the physical mechanism responsible for this behavior. These results also
suggest that it is surface tension that dictates the range of wall wavelengths that influences Dcrit .
Indeed, the results shown in Fig. 6(b) confirm that the intermediate range of wavelengths is sensitive
to S. Decreasing S shifts this range to smaller wavelengths and also reduces the magnitude of the
influence of the wall topography. This shift is connected to trends in the base state shown in Fig. 2(d).
There we see that decreasing the surface tension results in a more rapid “transition” from a flat
free surface to one that is sinusoidal and synchronized with the wall. In Fig. 6(c), Dcrit is plotted
against the base-state phase difference rather than L, and this removes the shift, which indicates it
is the influence of S on the base-state phase difference which dictates the range of L where Dcrit is
sensitive to the wall topography. The magnitude of this sensitivity is related linearly to S. This can
be seen in Fig. 6(d), where plotting the scaled critical elasticity Dcrit,scaled = (Dcrit − 1/3)/(S/100)
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FIG. 6. Influence of Ct and S on Dcrit , with Re = 0 and δ/L = 0.02, for (a) S = 300; (b) Ct = 1; (c) Ct = 1,
Dcrit vs base-state phase difference φ; and (d) Ct = 1, Dcrit,scaled vs base-state phase difference φ.

against the phase difference nearly collapses the three curves. These results also show that with the
addition of wall topography, surface tension no longer has a simple stabilizing effect and in fact can
be destabilizing for certain wall wavelengths.

C. Influence of topography on instability mechanism

A number of studies have examined the linear instability mechanisms of gravity-driven films
on flat walls (see, e.g., [13,14,38,39]). Huang and Khomami [14] in particular provided a broad
discussion of both inertial and elastic instability mechanisms in single and multilayer gravity-driven
films. Their analysis of elastic instability in single-layer film flow utilized three different approaches.
First, long-wave analysis was used to show that elastic stresses tend to push fluid horizontally toward
regions beneath crests in the perturbed free surface, thus driving instability. This description is very
similar to our discussion of the influence of elasticity in Sec. II. Their second approach was based on
analysis of a disturbance energy equation and again highlighted the importance of elastic stresses.
Specifically, it was found that elastic stresses acting at the free surface were primarily driving the
instability. Finally, they examined the phase difference between the perturbed free surface and the
disturbance vorticity and verified that instability arises as this phase difference becomes positive.
This corresponds to a positive induced vertical perturbation velocity at the crest of the disturbed free
surface, which is a destabilizing mechanism highlighted in our discussion below.

The aim here is to elucidate how this elastic instability mechanism is modified by wall
topography. Our analysis utilizes a disturbance energy equation which is derived starting from
the general linearized kinematic condition applied at the undisturbed free surface x2 = s + h0 [this
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follows directly from the linearization of (3)],

∂η

∂t
+

[
ũ1| f0

∂

∂x1
(h0 + s) + ū1| f0

∂η

∂x1

]
= ũ2| f0 + ∂ ū2

∂x2

∣∣∣∣
f0

η, (22)

where the velocity has been decomposed as ui = ūi + ũi and f0 indicates that a variable should
be evaluated at x2 = h0 + s. General expressions for the velocities u(0)

i (x2, h(x1); s(x1)) and
u(1)

i (x2, h(x1); s(x1)) were obtained during the derivation of the VBE (see the Appendix), and u(2)
2

can be found from the continuity equation ∂u(2)
2 /∂x2 = −∂u(1)

1 /∂x1. The base-state velocities ūi are
obtained by substituting h = h0 into these expressions, and the perturbation velocities ũi are then
found by substituting Eq. (14) into the general expressions for the velocities, subtracting the base
state, and finally discarding terms which are O(|η|2) or smaller. Defining η̂ such that η = η̂ + η̂∗,
Eq. (22) can then be rearranged into an energylike equation for |η̂|2,

∂

∂t

∫ L

0
|η̂|2dx1 = − 2

∫ L

0

[
Re(û1| f0 η̂

∗)
∂

∂x1
(h0 + s)

]
dx1

+ 2
∫ L

0

[
Re(û2| f0 η̂

∗) + ∂ ū2

∂x2

∣∣∣∣
f0

|η̂|2
]

dx1 −
∫ L

0
ū1| f0

∂|η̂|2
∂x1

dx1, (23)

with ûi defined such that ũi = ûi + ûi
∗. From (19) we have η̂ = exp(σ t + ikx1)g(x1), and then letting

ûi| f0 = exp(σ t + ikx1)vi(x1), Eq. (23) can be restated as

σr = P1 + P2 + P3, (24a)

P1 = − 1

G

∫ L

0

[
Re(v1g∗)

∂

∂x1
(h0 + s)

]
dx1, (24b)

P2 = 1

G

∫ L

0

(
Re(v2g∗) + ∂ ū2

∂x2

∣∣∣∣
f0

|g|2
)

dx1, (24c)

P3 = − 1

G

∫ L

0

1

2
ū1

∣∣∣∣
f0

∂|g|2
∂x1

dx1 = − 1

G

∫ L

0

1

2

∂ ū2

∂x2

∣∣∣∣
f0

|g|2dx1, (24d)

where G = ∫ L
0 |g|2dx1. For a flat wall, P1 and P3 are zero and (24a) reduces to

σr = 1

G

∫ L

0
Re(v2g∗)dx1. (25)

The growth rate then tends to be large when vertical velocity perturbations and the free-surface
perturbation are in phase with each other. This is a well-established picture of interfacial instability
and is consistent with the Huang-Khomami [14] description of elastic (and inertial) instability driven
by vorticity perturbations inducing upward motion at the crests (and downward motion at troughs)
of the perturbed free surface.

With sinusoidal walls, the base-state free surface f0(x1) is no longer flat, and it is helpful to
consider the perturbation velocity and displacement in the direction normal to f0 (see Fig. 7). Let
ψ be the angle between this normal and the x2 direction as indicated in the figure. The normal
component of the perturbation velocity at the free surface is ũn = ũ1| f0+ηsinψ + ũ2| f0+ηcosψ . Since
tanψ = −df0/dx1, this can be rearranged as ũn = cosψ (−ũ1| f0+ηdf0/dx1 + ũ2| f0+η ) [cf. Eq. (22)].
Then, defining vn such that ũn| f0+η = vn exp(σ t + ikx1) + c.c., it follows that

P1 + P2 = 1

G

∫ L

0
Re(vng∗

n)

[
1 +

(
df0

dx1

)2
]

dx1, (26)
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FIG. 7. Illustration of (local) destabilization driven by ũn at x2 = f0 + η (ũn is the component of the
perturbation velocity normal to the base-state free surface).

where gn = gcos ψ is the projection of g in the normal direction and we have used 1/cos2ψ =
1 + (df0/dx1)2. Noting that (df0/dx1)2 ∼ O(ε2), we see that for thin films instability is enhanced
when gn and vn are in phase with each other, and the combined effect of P1 and P2 can be interpreted
as a generalization of (25) for thin-film flows with wall topography. The third term P3 is related to
the streamwise advection of the free-surface perturbation by the base state velocity ū1| f0 . For flat
walls, ū1| f0 is constant and the resulting simple translation of the perturbation has no effect on the
growth rate (P3 = 0). With the introduction of topography, the streamwise variation of ū1| f0 leads
to local stretching and compression of η in the streamwise direction. The global effect of these
deformations on the growth rate can be interpreted using the second integral in (24d) (obtained
using integration by parts). Comparing this integral with P2, we see that when P3 < 0, it directly
counteracts any destabilization driven by ũ2 at the perturbed free surface.

The influence of the three P terms is illustrated in Fig. 8(a), which shows the decomposition of
σr for the most-unstable mode with D = 0.5, δ/L = 0.02, and varying L. The growth rate follows
the general trend seen for Dcrit in Figs. 4(b) and 6 above. Initially, at smaller wall wavelengths,
the instability is unaffected by topography. Surface tension tends to “flatten” the steady-state free
surface, and as a result, P1, ∂ ū2/∂x2, and P3 all tend to be small and the perturbation dynamics
near the free surface remain essentially the same as in the case of a flat wall. For large wavelengths
(L � 40), the instability mechanism again matches results for a flat wall. At these wavelengths,
the steady-state film thickness tends towards a constant value, so the integrand in (24b) becomes
πδ/L Re(v1g∗) sin(κx1). Integration over a wall period will only be nonzero if Re(v1g∗) contains
nonzero Fourier components with wave numbers ±κ . In practice, for the parameters considered
here, these components for the most unstable waves tend to be small, and thus for larger values

Re

FIG. 8. Decomposition of maximum growth rate max[Re(σ )] of elastic instability R = 0 for various wall
wavelengths, with S = 300 and δ/L = 0.02, for (a) D = 0.5 and Ct = 1.0 and (b) D = 1 and Ct = 2.0 [same
legend as in (a)].
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Re

FIG. 9. Decomposition of growth rate, corresponding to the most-unstable mode at 0.005+ Dcrit ,
max[Re(σ )crit], with Ct = 1, S = 300, and δ/L = 0.02, for the (a) destabilizing wall with L = 15 (Dcrit = 0.25)
and (b) stabilizing wall with L = 25 [Dcrit = 0.47, same legend as in (a)].

of L, P1 tends to be small. The third term P3 also goes to zero at larger wavelengths, and this
behavior can be understood by examining ∂ ū1/∂x1 since P3 will be zero when ū1 is constant as in
the flat-wall case. Taking h0 = 1, we find that ∂ ū1/∂x1 = δπ2/L cos(κx1)(3/LCt + 4π2/L3S), and
the discussion of the integrand for P1 can be applied here as well. Also note that if δ/L is held fixed
and L is increased (as in Fig. 8), then the amplitude of ∂ ū1/∂x1 will tend to decrease. The most
interesting behavior is again in the intermediate range 10 � L � 40. Within this range, topography
substantially modifies the perturbation field near the free surface. There is “improved” alignment
between gn and ũn, as indicated by the larger values of P1 + P2 relative to the growth rate for the
flat wall case. However, this is balanced by the stabilizing influence of P3. Ultimately, there is a
complex balance which leads to a destabilizing influence for 10 � L � 19 and a stabilizing effect
for 19 � L � 40. Generally, instability is still driven by perturbation elastic stresses; however, these
results indicate that the coupling between these stresses, the free surface, and velocity changes
tangibly. These qualitative trends remain the same when the inclination angle and elasticity are
varied [Fig. 8(b)]. Furthermore, these trends are qualitatively similar but smaller in magnitude at
smaller S (not shown). Figure 9 focuses on the most unstable mode at Dcrit + 0.005 and tracks its
growth rate and the P terms as the Deborah number is varied. This provides further insight into the
influence of topography near the onset of instability (it is difficult to track the neutral mode, which
is why the most unstable mode at Dcrit + 0.005 has been chosen). For both wavelengths, the growth
rate increases with D; however, the relatively small values of P1 and P2 delay the onset of instability
for L = 25. The rate of increase of the growth rate is higher for L = 25 and with sufficiently large
D, this case has a higher growth rate than both the flat wall and L = 15 cases. It follows that the
descriptions above of wall wavelengths as stabilizing or destabilizing should only be applied near
the onset of linear instability.

D. Inertial instability

The qualitative trends shown in Fig. 4(a) have also been observed in studies of Newtonian film
flows on sinusoidal walls [25,26,28], which showed that topography could increase or reduce the
critical Reynolds number. Here we present linear stability results which allow direct comparisons
between Newtonian and inertialess (elastic) flows. With a flat wall, inertia and elasticity enter the
linearized equations (17) as the sum 6/5 Re + 3D, and an inertialess flow with D = D0 exhibits
identical linear dynamics to a Newtonian flow with Re = 5/2D0. This formal equivalence between
the effects of inertia and elasticity is no longer present when topography is introduced; however,
the numerical results in Fig. 10 show strong qualitative agreement between Dcrit and 2/5 Recrit for
a range of values of S and Ct . In fact, there is clear quantitative agreement over a broad range of
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FIG. 10. Linear stability results, with δ/L = 0.02, for critical inertial (for D = 0) (—) and elastic (for
Re = 0) (- - -) instability for various values of (a) S with Ct = 1 and (b) Ct with S = 300.

parameters with differences appearing at larger wavelengths and smaller inclinations. The influence
of topography is stronger (destabilizing) for the Newtonian cases in this parameter range, and the
Recrit curves only return to their flat-wall values at very large wavelengths, which are not shown in
the figure. The decomposition of the growth rate (24), shown in Fig. 11, follows the same qualitative
trends discussed for elastic instabilities above. Streamwise variations of the base state at the free
surface induced by topography again play a key role in modifications to the most-unstable and
neutral modes within an intermediate range of wall wavelengths.

V. NONLINEAR DYNAMICS

A number of studies have investigated the evolution of nonlinear waves on thin films overlying
both flat and sinusoidal walls. Oron and Gottlieb [19] provided a systematic numerical study of the
Benney equation subject to periodic boundary conditions and reported stationary and time-periodic
traveling waves as well as nonstationary waves (which constantly change their shape with time).
Trifonov [40] performed a numerical investigation of the Navier-Stokes equations for Newtonian
fluids to specifically obtain traveling-wave solutions and compared flow over sinusoidal walls
to that over a flat wall. At the lowest Reynolds number considered in that study, Re = 20/3
[Ct = cot(10◦) ≈ 5.67 and S = 6.62], the free-surface disturbance for a flat wall consisted of

Re

FIG. 11. Decomposition of growth rate for Newtonian films with D = 0, Ct = 1, S = 300, and δ/L = 0.02
for the (a) most-unstable mode with Re = 1.25 and varying L and (b) near-neutral mode with L = 25 and
varying Re.
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asymmetric nonlinear humps characterized by a relatively sharp front and a long smooth tail.
Introduction of a sinusoidal wall (δ/L = 0.4) modified these disturbances to include finer spatial
scales: Shorter waves overlaid the humps, so these modified traveling waves were doubly periodic
in space. Similar waves had been observed earlier in the experiments of Reck and Aksel [41].
Oron and Heining [24] derived a weighted-residual IBL model and also simulated unsteady films
on sinusoidal walls. They identified a range of nonlinear states similar to those observed for flat
walls. Dávalos-Orozoco [27] investigated the Benney equation forced with a time-periodic, spatially
localized pressure perturbation. The perturbations excited by this forcing were suppressed when
the steady-state free surface consisted of deep valleys; therefore, suitable wall wavelengths could
be chosen that stabilized the flow. This approach was applied to Oldroyd-B fluids in [31], which
showed that elastic instability could be similarly suppressed. However, the nonlinear dynamics of
the disturbance evolution have not been fully characterized for the VBE.

Here we present results from extensive numerical simulations of the VBE (5) and provide a
broad view of the influence of sinusoidal topography on the nonlinear states generated by elastic
instability. We will compare results for flat walls with sinusoidal walls with L = 15, 25, and 150
which correspond to destabilizing, stabilizing, and neutral (growth rate is unaffected) wavelengths.
The results below illustrate the influence of elasticity and topography on the bifurcation structure
and amplitudes of nonlinear waves on viscoelastic films.

A. Numerical method

We consider the evolution of the film thickness h(x1, t ) and in particular the perturbation ζ (x1, t ),
where h = h0(x1) + ζ , with h0 the precomputed steady state. The initial perturbation is

ζ (x1, 0) = 10−3 cos

(
2πx1

L

)
exp

(
− ln 2

L2
Gauss

x2
1

)
, LGauss = LD

15
, (27)

where L is again the wall wavelength, LD = NperiodsL is the length of the computational domain, and
we will set LD = 150 and δ = 0.02 (for flat walls, we set L = LD). We use a pseudospectral approach
where spatial derivatives are calculated using fast Fourier transforms, and the time integration is
performed using MATLAB’s multistep variable-order solver ode15s [35]. The code has been validated
via comparisons with linear stability computations and by reproducing results for Newtonian films
on flat walls in Ref. [19]. The analysis of our numerical results focuses on the perturbation energy

E (t ) = 1

LD

∫ LD

0
ζ (x1, t )2dx1, (28)

and we use maps of its local extrema E∗ to (partially) characterize the nonlinear dynamics. A similar
approach was used in [42].

B. Inertialess films

We begin with a flat wall and set S = 300, Ct = 1, and Re = 0. Linear instability first occurs
for this finite-size computational domain at Dcrit = 0.39 (with wave number k = 2π/150), and the
evolution of the energy at four supercritical values of D is shown in Fig. 12(a). Initially, there
is a very short transient adjustment where the energy decreases as linearly stable components of
the initial perturbation rapidly decay. Following this adjustment, there is clear exponential growth.
Eventually, the perturbation saturates due to nonlinearity and we see three nonlinear states which can
be characterized by their temporal dynamics: (i) traveling waves (D = 0.55 and 0.75, characterized
by a constant energy level) and (ii) period-1 (D = 0.85) and (iii) period-2 (D = 0.65) solutions. The
latter two states arise via period-doubling subharmonic bifurcations (see Sec. V C). Also, the mean
energy level of the final nonlinear state increases with elasticity. The spatiotemporal evolution of the
nonlinear states beyond the initial transient time ttransient = 2 × 105 for D = 0.55 and D = 0.85 is
shown in Figs. 13(a) and 13(e), respectively. Here the major streamwise translational component
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FIG. 12. Evolution of disturbance energy for Ct = 1, S = 300, Re = 0, LD = 150, and δ/L = 0.02 for (a) a
flat wall with varying D and (b) different walls with D = 0.55.

of the perturbation is removed by transforming the streamwise direction x to a moving frame,
x − c · τ , where c ≈ 3 and τ = t − (ttransient + t0). The parameter t0 is set to align the solutions
for illustrative purposes. The traveling-wave solution in Fig. 13(a) has a characteristic shape similar
to that observed in [40]. The time-periodic (period-2) evolution of the perturbation for D = 0.85
can also be observed in Fig. 13(e).

Now we move on to the effect of sinusoidal topography. Replacing the flat wall with a L = 150
sinusoidal wall has no tangible effect on the linear dynamics [Sec. IV and Fig. 12(b)]; however,
the nonlinear state exhibits finer temporal scales for both D = 0.55 and D = 0.85. The latter can
be observed both in the energy plots (at large times) shown in Figs. 14(a) and 14(b) and in the
space-time plots in Fig. 13 [compare Fig. 13(b) with Fig. 13(a) and Fig. 13(f) with Fig. 13(e)]. This
effect can also be described geometrically: The attractor for the flat wall dynamics is modified into a
higher-dimensional object for the L = 150 sinusoidal wall as shown in the three-dimensional (3D)
(E − dE/dt − d2E/dt2) phase portraits in Figs. 14(c) and 14(d). A traveling wave (represented
by a point attractor in the energy phase space) for D = 0.55 is modified into a period-1 solution
(a single loop in the 3D phase space), and the period-1 solution for D = 0.85 becomes modulated
by smaller waves resulting in the formation of dense trajectories on the surface of a torus in the
3D phase space and suggesting quasiperiodic dynamics. These changes are distinct from those
reported by Trifonov [40] where traveling-wave solutions acquired additional spatial periods with
the introduction of the sinusoidal wall. Results for L = 15 and 25 are also included in Fig. 12(b). We
see that the stabilizing wall (L = 25) has a smaller growth rate and saturates at a lower mean energy
relative to the flat wall, while the destabilizing wall (L = 15) results correspond to a larger growth
rate and a higher mean energy. These smaller-L cases also produce fine temporal scales similar to
those observed for L = 150. The nonlinear states are quasiperiodic at D = 0.55 and 0.85 for both
these walls, and the amplitude of fluctuations (Fig. 13) as well as the mean E [Figs. 12(b) and 14(b)]
of the nonlinear state of the disturbance decrease as we move from L = 15 to L = 25. Reducing the
surface tension to S = 100 results in more irregular temporal dynamics and increases the amplitude
of ζ as shown in the spatiotemporal evolution of the nonlinear state for the flat wall with D = 0.85
in Fig. 15(a). Here the temporal evolution is chaotic for the flat wall as also shown in the E–t plot
in Fig. 15(b). Again, the introduction of topography produces finer temporal scales [Fig. 15(b)].
For S = 100, the L = 10 sinusoidal wall lies in the linearly destabilizing regime [Fig. 6(b)] and in
Fig. 15(b) we see the difference in mean E for different walls. Compared to the L = 150 sinusoidal
wall, the solution for the L = 10 wall has higher mean E in the time period shown and finer scales.
For a linearly stabilizing L = 15 wall for S = 100 [Fig. 6(b)] we observe a lower mean E and
quasiperiodic behavior (not shown).
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FIG. 13. Spatiotemporal evolution of the perturbations ζ , for Ct = 1, S = 300, Re = 0, LD = 150, and
δ/L = 0.02 [τ = t − (t0 + 2 × 105)], with D = 0.55, for (a) flat (t0 = 25 and c = 3.022), (b) L = 150 (t0 = 20
and c = 3.021), (c) L = 15 (t0 = 33.5 and c = 2.964), and (d) L = 25 (t0 = 45 and c = 3.081) sinusoidal
walls, and with D = 0.85, for (e) flat (t0 = 0 and c = 3.025), (f) L = 150 (t0 = 31 and c = 3.023), (g) L = 15
(t0 = 137.5 and c = 2.969), and (h) L = 25 (t0 = 35 and c = 3.051) sinusoidal walls.

C. Energy maps

A broader view of the combined influence of elasticity and topography on the nonlinear dynamics
is obtained by constructing energy maps as shown in Fig. 16 for S = 100, 200, and 300 for Ct = 1
and 0.4 � D � 0.85. Each point in these plots represents a local extremum of the energy, E∗, i.e.,
the value of E at dE/dt = 0. This corresponds to Poincaré sections in the E − dE/dT energy
phase plane [42]. For a particular D, a distinct individual point on these energy maps represents
a traveling wave, multiple but countable points represent period-1 (two points), period-2 (four
points), or higher-periodic solutions, and a dense set of points represents a quasiperiodic or chaotic
attractor. The flat-wall solutions for S = 300 in Fig. 16(a) have several bifurcations that separate
traveling-wave, period-1, and period-2 solutions. The overall structure of the map remains largely
the same when the flat wall is replaced with an L = 150 sinusoidal wall [Fig. 16(b)]; however, closer
inspection of the L = 150 results shows that there is a higher density of points in the maps and this
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FIG. 14. Temporal evolution of E of the saturated nonlinear state for Ct = 1, Re = 0, S = 300, LD = 150,
and δ/L = 0.02 with (a) D = 0.55 and (b) D = 0.85 and their representation in 3D energy phase space in
(c) and (d), respectively (for 0 � t − 2 × 105 � 5 × 104) for flat ( ) and L = 150 ( ) sinusoidal walls.
In (b) E for L = 15 (destabilizing wall, , top curve) and L = 25 (stabilizing wall, , bottom curve)
sinusoidal walls are also shown.

corresponds to the introduction of finer temporal scales that were discussed above for D = 0.55 and
0.85. This effect can be seen more clearly in Figs. 16(e) and 16(f), where results for the flat wall
and L = 150 sinusoidal wall are plotted together. Reducing the surface tension to S = 200 and 100
(with the energy maps in Fig. 16 shifted up by factors of 10 and 100, respectively) tends to produce
higher values of E∗ and earlier transitions to time-periodic or nonstationary dynamics with chaotic
dynamics appearing for the flat-wall case. Energy maps for linearly destabilizing walls (L = 15 for

FIG. 15. Dynamics of the saturated nonlinear state for Ct = 1, Re = 0, S = 100, LD = 150, D = 0.85,
and δ/L = 0.02: (a) spatiotemporal evolution of the perturbation ζ (x, τ = t − 2 × 105) for the flat wall and
(b) temporal evolution of E [same legend as in Fig. 14(b) but without the stabilizing wall; the destabilizing
wall corresponds to L = 10].
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FIG. 16. Maps of the extrema of E (t ) with Re = 0, Ct = 1, LD = 150, and δ/L = 0.02 for (a) flat, (b) L =
150, (c) destabilizing (L = 15 for S = 200 and 300 and L = 10 for S = 100), and (d) stabilizing (L = 25 for
S = 200 and 300 and L = 15 for S = 100) sinusoidal walls at S = 100, 200, and 300 (the first two maps are
shifted up by a factor of 10a with a labeled on each curve). The superposition of flat ( ) and L = 150 (×)
sinusoidal wall maps with S = 300 is plotted for (e) 0.45 � D � 0.55 and (f) 0.78 � D � 0.85.

S = 200 and 300 and L = 10 for S = 100) are shown in Fig. 16(c), and there is an increase in E∗
relative to the flat wall, while for linearly stabilizing walls (L = 25 for S = 200 and 300 and L = 15
for S = 100) a decrease in E∗ relative to the flat wall is observed [Fig. 16(d)].

As discussed in Sec. IV, the elastic instability is observed for flat walls when D − Ct/3 > 0.
Varying Ct , we find that energy maps tend to align for a broad range of parameters when E∗ is
plotted against D − Ct/3 as shown in Fig. 17. For L = 150, the dynamics at larger Ct (shallower
inclination) is more chaotic [see Fig. 17(b)], whereas for L = 15 and 25 the dynamics is very similar
for the three inclinations shown [see Figs. 17(c) and 17(d)]. Relative to the flat wall, the qualitative
effects of L = 150, destabilizing (L = 15), and stabilizing (L = 25) walls are similar for all three
values of Ct with the introduction of finer scales, an increase in mean E∗, and a decrease in mean
E∗, respectively.
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FIG. 17. Maps of the extrema of E (t ) with Re = 0, S = 300, LD = 150, and δ/L = 0.02 for (a) flat, (b) L =
150, (c) L = 15, and (d) L = 25 sinusoidal walls for Ct = 0.5, 1, and 2 (the latter two maps are shifted up by a
factor of 10a with a labeled on each curve).

D. Influence of inertia

We compare finite-Re and inertialess cases using an approach similar to that used when varying
Ct . As noted in Sec. IV, for flat walls, inertia and elasticity contribute to the linear dynamics in
the combination V/3 = D + 2/5 Re, and we will use this parameter to “align” the following three
cases: (i) Re = 0 and D varying, (ii) D = 0 and Re varying, and (iii) D and Re both varying with
D = 2/5 Re. We set S = 300, Ct = 1, and LD = 150 and vary the wall wavelength as before. The
corresponding energy maps are shown in Fig. 18. First, we note that the parameter V does tend
to align the maps, and clear qualitative similarities are observed for D � 0.6 for each of the four
topographies shown. At larger D, clear differences can be seen. For example, inertia delays the
second bifurcation for the flat-wall and L = 150 cases, while bringing it forward to smaller values
of V when L = 25. These maps also show that the effect of replacing a flat wall with an L = 150
sinusoidal wall for the finite-Re cases is very similar to the inertialess-elastic case [Fig. 18(a) vs
Fig. 18(b)]. The effect of destabilizing (L = 15) and stabilizing (L = 25) walls on the nonlinear
dynamics is also similar to the inertialess cases as shown in Figs. 18(c) and 18(d).

VI. CONCLUSION

The influence of sinusoidal wall topography on the linear stability and nonlinear dynamics of
thin gravity-driven viscoelastic films has been analyzed using the modified viscoelastic Benney
equation introduced by [31]. Steady-state and linear stability results were organized into three
regimes based on the wall wavelength L. For shorter wall wavelengths, surface tension tends to
flatten the steady-state free surface, and linear stability results are similar to those found for flat
walls. At intermediate wavelengths, both steady state and linear stability calculations show much
greater sensitivity to wall deformation. As L is increased within this regime, topography initially
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FIG. 18. Maps of the extrema of E (t ) with S = 300, Ct = 1, LD = 150, and δ/L = 0.02 for (a) flat, (b) L =
150, (c) L = 15, and (d) L = 25 sinusoidal walls for D = V/3, V/6, and 0 (the remaining contribution to
V/3 = D + 2/5 Re is from inertia Re and the latter two maps are shifted up by a factor of 10a with a labeled
on each curve).

exerts a destabilizing influence; however, increasing L further leads to a rapid change and the
topography tends to stabilize the flow. At still larger wavelengths, the steady-state film thickness
tends towards a constant value and topography ceases to affect the stability results. A decomposition
of the growth rate into three components was developed from the linearized equations, and applying
this decomposition within the intermediate range of wavelengths showed that the flat-wall instability
mechanism was substantially modified by topography. The streamwise velocity perturbation at the
free surface (particularly the component normal to the base-state free surface) enhances instability,
while streamwise variations in the streamwise base-state velocity (coupled with the free-surface
perturbation) tend to stabilize the flow. The details of the balance between these effects lead to
the initial destabilization followed by stabilization observed within the intermediate range as L is
increased. It was also shown that appropriately scaled results for Newtonian films exhibited very
similar trends.

Nonlinear simulations generally showed that more-unstable cases (e.g., flows with higher D or a
destabilizing wall wavelength) saturated at higher average values of the energy E . A broad range of
nonlinear states was observed including traveling waves, time-periodic waves, quasiperiodic waves,
and chaos. Topography was shown to introduce finer temporal scales and increase the dimension of
the underlying attractor. The influences of inclination and inertia were partly explained by relying
on linear stability results for flat walls, and increasing surface tension was shown to reduce linear
growth rates, shift the range of influential wall wavelengths to larger values of L, reduce the average
E of saturated nonlinear states, and produce more regular dynamics.

We are not aware of experiments which these results can be directly compared to; however,
Shaqfeh et al. [12] provided a thorough discussion of the dimensional fluid and flow parameters that
correspond to viscoelastic films which could be produced in a laboratory setting (and reasonably
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modeled with the Oldroyd-B equation). This discussion can be applied directly to the present study
with the further restriction of a large surface tension. We then expect the results presented here
to most readily apply to gravity-driven films of dilute polymeric solutions with thicknesses of the
order of 10−4 m. In many practical cases, the working fluid is either a concentrated solution or a
polymer melt and more complicated constitutive models should then be considered. Additionally,
nonsinusoidal wall topographies are also of interest, and important steps in these directions have
already been taken (see, e.g., [43–45]). The present study and the trends highlighted here provide a
foundation for further progress in the analysis of these more complex flows.
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APPENDIX: FURTHER DETAILS ON FORMULATION

In this Appendix we provide details on the steps leading from the initial asymptotic expan-
sion (A1) to the final nonlinear evolution equation (5). The dependent variables are expanded as

(ui, p, ai j ) = (
u(0)

i , p(0), a(0)
i j

) + ε
(
u(1)

i , p(1), a(1)
i j

) + ε2
(
u(2)

i , p(2), a(2)
i j

) + O(ε3), (A1)

and these variables are functions of x̃1, x2, and t̃ only. The continuity equation at leading order gives
u(0)

2 = 0, and substituting the expansion into the Oldroyd-B equations [while assuming De ∼ O(1)],
the polymer stresses are found to be

a(0)
11 = 2 De

(
∂u(0)

1

∂x2

)2

, a(0)
12 = ∂u(0)

1

∂x2
, a(0)

22 = 0, (A2a)

a(1)
12 = ∂u(1)

1

∂x2
− De

(
∂2u(0)

1

∂x2∂ t̃
+ u(0)

1

∂2u(0)
1

∂x2∂ x̃1
+ u(0)

2

∂2u(0)
1

∂x2
2

+ 2
∂u(0)

1

∂ x̃1

∂u(0)
1

∂x2

)
. (A2b)

These results are then substituted into the momentum equations (at the appropriate order), which
can then be integrated across the film. At the free surface, the needed boundary conditions are
obtained by substituting the expansion (A1) into the full normal stress and tangential stress boundary
conditions, which are

p = 1

1 + (∂ f /∂x1)2

{
β

[
2
∂u1

∂x1

(
∂ f

∂x1

)2

−
(

∂u1

∂x2
+ ∂u2

∂x1

)
∂ f

∂x1
+ 2

∂u2

∂x2

]}

+ (1 − β )

[
a11

(
∂ f

∂x1

)2

− 2a12
∂ f

∂x1
+ a22

]
− S

∂2 f /∂x2
1

[1 + (∂ f /∂x1)2]3/2
, (A3a)
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2

∂ f
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∂u2

∂x2
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(
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∂ f

∂x1

)2
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{
(a22 − a11)

∂ f

∂x1
+ a12

[
1 −

(
∂ f

∂x1
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= 0, (A3b)

where f = h + s. Using the resulting conditions to complete the integration of the momen-
tum equations across the film, we arrive at the needed expressions for the velocity and
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pressure

u(0)
1 = −3

2
(x2 − s)2 + 3(x2 − s)h, (A4a)

u(1)
1 = 9 Re

[
1

24
[(x2 − s)4 − 4h3(x2 − s)]h − 1

6
[(x2 − s)3 − 3h2(x2 − s)]h2

]
∂h

∂ x̃1

+ 1

2

[
3Ct

∂ (h + s)

∂ x̃1
− Sε2 ∂3(h + s)

∂ x̃3
1

− 9Dh
∂h

∂ x̃1

]
[(x2 − s)2 − 2h(x2 − s)], (A4b)

u(1)
2 = −3

2

∂ (h + s)

∂ x̃1
(x2 − s)2 + 3

∂s

∂ x̃1
h(x2 − s), (A4c)

p(0) = −3Ct [x2 − (h + s)] − Sε2 ∂2(h + s)

∂ x̃2
1

. (A4d)

Note that we have assumed Re � 1/ε, so at leading order, inertial effects are neglected, leading to a
parabolic streamwise velocity profile (A4a). The streamwise velocities from Eqs. (A4a) and (A4b)
are used to obtain the volume flow rate

q(x1, t ) = h3 + 6

5
Reh6 ∂h

∂x1
+ 3Dh4 ∂h

∂x1
− Ct h

3 ∂ (h + s)

∂x1
+ 1

3
Sh3 ∂3(h + s)

∂x3
1

, (A5)

where we have now moved back to the original streamwise coordinate x1. Substituting Eq. (A5)
into the kinematic condition (3), we obtain the nonlinear evolution equation for the film surface (5).
This equation retains terms up to O(ε), as is common in studies using the Benney equation and
close variants. The stabilizing influence of surface tension enters the equation at this order, and
in its absence, discontinuous shocklike solutions are expected to develop [3] for linearly unstable
configurations. The assumption of S ∼ 1/ε2 ensures that (i) a regularizing effect is present and (ii)
viscoelastic and inertial effects can be retained for De, Re ∼ O(1). Equivalent assumptions were
made in [17,31].

[1] S. J. Weinstein and K. J. Ruschak, Coating flows, Annu. Rev. Fluid Mech. 36, 29 (2004).
[2] C.-S. Yih, Stability of liquid flow down an inclined plane, Phys. Fluids 6, 321 (1963).
[3] S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer Science +

Business Media, New York, 2011), Vol. 176.
[4] H. Chang, Wave evolution on a falling film, Annu. Rev. Fluid Mech. 26, 103 (1994).
[5] R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81, 1131

(2009).
[6] A. T. Listrov, On the stability of the flow of a viscoelastic fluid down an inclined plane, J. Appl. Mech.

Tech. Phys. 6, 67 (1965).
[7] A. S. Gupta, Stability of a visco-elastic liquid film flowing down an inclined plane, J. Fluid Mech. 28, 17

(1967).
[8] A. S. Gupta and L. Rai, Note on the stability of a visco-elastic liquid film flowing down an inclined plane,

J. Fluid Mech. 33, 87 (1968).
[9] A. Morozov and S. E. Spagnolie, in Complex Fluids in Biological Systems: Experiment, Theory, and

Computation, edited by S. Spagnolie, Biological and Medical Physics, Biomedical Engineering (Springer,
New York, 2015), Chap. 1, pp. 3–52.

[10] A. S. Gupta and L. Rai, Stability of an elastico-viscous liquid film flowing down an inclined plane, Math.
Proc. Cambridge Philos. Soc. 63, 527 (1967).

[11] W. Lai, Stability of an elastico-viscous film flowing down an inclined plane, Phys. Fluids 10, 844 (1967).

063305-24

https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1063/1.1706737
https://doi.org/10.1063/1.1706737
https://doi.org/10.1063/1.1706737
https://doi.org/10.1063/1.1706737
https://doi.org/10.1146/annurev.fl.26.010194.000535
https://doi.org/10.1146/annurev.fl.26.010194.000535
https://doi.org/10.1146/annurev.fl.26.010194.000535
https://doi.org/10.1146/annurev.fl.26.010194.000535
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1007/BF00913387
https://doi.org/10.1007/BF00913387
https://doi.org/10.1007/BF00913387
https://doi.org/10.1007/BF00913387
https://doi.org/10.1017/S0022112067001879
https://doi.org/10.1017/S0022112067001879
https://doi.org/10.1017/S0022112067001879
https://doi.org/10.1017/S0022112067001879
https://doi.org/10.1017/S0022112068002375
https://doi.org/10.1017/S0022112068002375
https://doi.org/10.1017/S0022112068002375
https://doi.org/10.1017/S0022112068002375
https://doi.org/10.1017/S0305004100041475
https://doi.org/10.1017/S0305004100041475
https://doi.org/10.1017/S0305004100041475
https://doi.org/10.1017/S0305004100041475
https://doi.org/10.1063/1.1762198
https://doi.org/10.1063/1.1762198
https://doi.org/10.1063/1.1762198
https://doi.org/10.1063/1.1762198


DYNAMICS OF GRAVITY-DRIVEN VISCOELASTIC FILMS …

[12] E. S. G. Shaqfeh, R. G. Larson, and G. H. Fredrickson, The stability of gravity driven viscoelastic film-
flow at low to moderate Reynolds number, J. Non-Newtonian Fluid Mech. 31, 87 (1989).

[13] K. Chen, The onset of elastically driven wavy motion in the flow of two viscoelastic liquid films down an
inclined plane, J. Non-Newtonian Fluid Mech. 45, 21 (1992).

[14] C.-T. Huang and B. Khomami, The instability mechanism of single and multilayer Newtonian and
viscoelastic flows down an inclined plane, Rheol. Acta 40, 467 (2001).

[15] B. S. Dandapat and A. S. Gupta, Long waves on a layer of a visco-elastic fluid down an inclined plane,
Rheol. Acta 17, 492 (1978).

[16] S. W. Joo, The stability and nonlinear flow developments of a viscoelastic draining film with shear
thinning, J. Non-Newtonian Fluid Mech. 51, 125 (1994).

[17] F. Kang and K. P. Chen, Nonlinear elastic instability of gravity-driven flow of a thin viscoelastic film
down an inclined plane, J. Non-Newtonian Fluid Mech. 57, 243 (1995).

[18] S. Saprykin, R. J. Koopmans, and S. Kalliadasis, Free-surface thin-film flows over topography: Influence
of inertia and viscoelasticity, J. Fluid Mech. 578, 271 (2007).

[19] A. Oron and O. Gottlieb, Nonlinear dynamics of temporally excited falling liquid films, Phys. Fluids 14,
2622 (2002).

[20] R. B. Bird, R. C. Armstrong, O. Hassager, and C. F. Curtiss, Dynamics of Polymeric Liquids (Wiley, New
York, 1977), Vol. 2.

[21] E. S. Shaqfeh, Fully elastic instabilities in viscometric flows, Annu. Rev. Fluid Mech. 28, 129 (1996).
[22] L. E. Stillwagon and R. G. Larson, Leveling of thin films over uneven substrates during spin coating,

Phys. Fluids A 2, 1937 (1990).
[23] A. Wierschem, C. Lepski, and N. Aksel, Effect of long undulated bottoms on thin gravity-driven films,

Acta Mech. 179, 41 (2005).
[24] A. Oron and C. Heining, Weighted-residual integral boundary-layer model for the nonlinear dynamics of

thin liquid films falling on an undulating vertical wall, Phys. Fluids 20, 082102 (2008).
[25] Y. Y. Trifonov, Stability of a viscous liquid film flowing down a periodic surface, Int. J. Multiphase Flow

33, 1186 (2007).
[26] S. J. D. DAlessio, J. P. Pascal, and H. A. Jasmine, Instability in gravity-driven flow over uneven surfaces,

Phys. Fluids 21, 062105 (2009).
[27] L. A. Dávalos-Orozco, Nonlinear instability of a thin film flowing down a smoothly deformed surface,

Phys. Fluids 19, 074103 (2007).
[28] D. Tseluiko, M. G. Blyth, and D. T. Papageorgiou, Stability of film flow over inclined topography based

on a long-wave nonlinear model, J. Fluid Mech. 729, 638 (2013).
[29] C. Heining and N. Aksel, Effects of inertia and surface tension on a power-law fluid flowing down a wavy

incline, Int. J. Multiphase Flow 36, 847 (2010).
[30] R. Usha and B. Uma, Long waves on a viscoelastic film flow down a wavy incline, Int. J. Non-Linear

Mech. 39, 1589 (2004).
[31] L. A. Dávalos-Orozco, Stability of thin viscoelastic films falling down wavy walls, Interfacial Phenom.

Heat Transfer 1, 301 (2013).
[32] D. J. Benney, Long waves on liquid films, J. Math. Phys. 45, 150 (1966).
[33] R. B. Bird and J. M. Wiest, Constitutive equations for polymeric liquids, Annu. Rev. Fluid Mech 27, 169

(1995).
[34] T. R. Salamon, R. C. Armstrong, and R. A. Brown, Traveling waves on vertical films: Numerical analysis

using the finite element method, Phys. Fluids 6, 2202 (1994).
[35] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18, 1 (1997).
[36] C. Pozrikidis, Effect of surfactants on film flow down a periodic wall, J. Fluid Mech. 496, 105 (2003).
[37] D. Tseluiko, M. G. Blyth, D. T. Papageorgiou, and J.-M. Vanden-Broeck, Viscous electrified film flow

over step topography, SIAM J. Appl. Math. 70, 845 (2009).
[38] M. K. Smith, The mechanism for the long-wave instability in thin liquid films, J. Fluid Mech. 217, 469

(1990).
[39] R. E. Kelly, D. A. Goussis, S. P. Lin, and F. K. Hsu, The mechanism for surface wave instability in film

flow down an inclined plane, Phys. Fluids A 1, 819 (1989).

063305-25

https://doi.org/10.1016/0377-0257(89)80015-1
https://doi.org/10.1016/0377-0257(89)80015-1
https://doi.org/10.1016/0377-0257(89)80015-1
https://doi.org/10.1016/0377-0257(89)80015-1
https://doi.org/10.1016/0377-0257(92)80059-7
https://doi.org/10.1016/0377-0257(92)80059-7
https://doi.org/10.1016/0377-0257(92)80059-7
https://doi.org/10.1016/0377-0257(92)80059-7
https://doi.org/10.1007/s003970100166
https://doi.org/10.1007/s003970100166
https://doi.org/10.1007/s003970100166
https://doi.org/10.1007/s003970100166
https://doi.org/10.1007/BF01534276
https://doi.org/10.1007/BF01534276
https://doi.org/10.1007/BF01534276
https://doi.org/10.1007/BF01534276
https://doi.org/10.1016/0377-0257(94)85008-9
https://doi.org/10.1016/0377-0257(94)85008-9
https://doi.org/10.1016/0377-0257(94)85008-9
https://doi.org/10.1016/0377-0257(94)85008-9
https://doi.org/10.1016/0377-0257(94)01333-D
https://doi.org/10.1016/0377-0257(94)01333-D
https://doi.org/10.1016/0377-0257(94)01333-D
https://doi.org/10.1016/0377-0257(94)01333-D
https://doi.org/10.1017/S0022112007004752
https://doi.org/10.1017/S0022112007004752
https://doi.org/10.1017/S0022112007004752
https://doi.org/10.1017/S0022112007004752
https://doi.org/10.1063/1.1485766
https://doi.org/10.1063/1.1485766
https://doi.org/10.1063/1.1485766
https://doi.org/10.1063/1.1485766
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1063/1.857669
https://doi.org/10.1063/1.857669
https://doi.org/10.1063/1.857669
https://doi.org/10.1063/1.857669
https://doi.org/10.1007/s00707-005-0242-2
https://doi.org/10.1007/s00707-005-0242-2
https://doi.org/10.1007/s00707-005-0242-2
https://doi.org/10.1007/s00707-005-0242-2
https://doi.org/10.1063/1.2969410
https://doi.org/10.1063/1.2969410
https://doi.org/10.1063/1.2969410
https://doi.org/10.1063/1.2969410
https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.004
https://doi.org/10.1063/1.3155521
https://doi.org/10.1063/1.3155521
https://doi.org/10.1063/1.3155521
https://doi.org/10.1063/1.3155521
https://doi.org/10.1063/1.2750384
https://doi.org/10.1063/1.2750384
https://doi.org/10.1063/1.2750384
https://doi.org/10.1063/1.2750384
https://doi.org/10.1017/jfm.2013.331
https://doi.org/10.1017/jfm.2013.331
https://doi.org/10.1017/jfm.2013.331
https://doi.org/10.1017/jfm.2013.331
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.002
https://doi.org/10.1016/j.ijnonlinmec.2004.01.004
https://doi.org/10.1016/j.ijnonlinmec.2004.01.004
https://doi.org/10.1016/j.ijnonlinmec.2004.01.004
https://doi.org/10.1016/j.ijnonlinmec.2004.01.004
https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.10
https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.10
https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.10
https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.10
https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1146/annurev.fl.27.010195.001125
https://doi.org/10.1146/annurev.fl.27.010195.001125
https://doi.org/10.1146/annurev.fl.27.010195.001125
https://doi.org/10.1146/annurev.fl.27.010195.001125
https://doi.org/10.1063/1.868222
https://doi.org/10.1063/1.868222
https://doi.org/10.1063/1.868222
https://doi.org/10.1063/1.868222
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1017/S0022112003006359
https://doi.org/10.1017/S0022112003006359
https://doi.org/10.1017/S0022112003006359
https://doi.org/10.1017/S0022112003006359
https://doi.org/10.1137/080721674
https://doi.org/10.1137/080721674
https://doi.org/10.1137/080721674
https://doi.org/10.1137/080721674
https://doi.org/10.1017/S0022112090000805
https://doi.org/10.1017/S0022112090000805
https://doi.org/10.1017/S0022112090000805
https://doi.org/10.1017/S0022112090000805
https://doi.org/10.1063/1.857379
https://doi.org/10.1063/1.857379
https://doi.org/10.1063/1.857379
https://doi.org/10.1063/1.857379


SHARMA, RAY, AND PAPAGEORGIOU

[40] Y. Trifonov, Nonlinear waves on a liquid film falling down an inclined corrugated surface, Phys. Fluids
29, 054104 (2017).

[41] D. Reck and N. Aksel, Experimental study on the evolution of traveling waves over an undulated incline,
Phys. Fluids 25, 024103 (2013).

[42] P. K. Ray, J. C. Hauge, and D. T. Papageorgiou, Nonlinear interfacial instability in two-fluid viscoelastic
Couette flow, J. Non-Newtonian Fluid Mech. 251, 17 (2018).

[43] M. Pavlidis, Y. Dimakopoulos, and J. Tsamopoulos, Steady viscoelastic film flow over 2D topography: I.
The effect of viscoelastic properties under creeping flow, J. Non-Newtonian Fluid Mech. 165, 576 (2010).

[44] M. Pavlidis, G. Karapetsas, Y. Dimakopoulos, and J. Tsamopoulos, Steady viscoelastic film flow over 2D
topography: II. The effect of capillarity, inertia and substrate geometry, J. Non-Newtonian Fluid Mech.
234, 201 (2016).

[45] M. Pradas, D. Tseluiko, C. Ruyer-Quil, and S. Kalliadasis, Pulse dynamics in a power-law falling film,
J. Fluid Mech. 747, 460 (2014).

063305-26

https://doi.org/10.1063/1.4984005
https://doi.org/10.1063/1.4984005
https://doi.org/10.1063/1.4984005
https://doi.org/10.1063/1.4984005
https://doi.org/10.1063/1.4790434
https://doi.org/10.1063/1.4790434
https://doi.org/10.1063/1.4790434
https://doi.org/10.1063/1.4790434
https://doi.org/10.1016/j.jnnfm.2017.11.004
https://doi.org/10.1016/j.jnnfm.2017.11.004
https://doi.org/10.1016/j.jnnfm.2017.11.004
https://doi.org/10.1016/j.jnnfm.2017.11.004
https://doi.org/10.1016/j.jnnfm.2010.02.017
https://doi.org/10.1016/j.jnnfm.2010.02.017
https://doi.org/10.1016/j.jnnfm.2010.02.017
https://doi.org/10.1016/j.jnnfm.2010.02.017
https://doi.org/10.1016/j.jnnfm.2016.06.011
https://doi.org/10.1016/j.jnnfm.2016.06.011
https://doi.org/10.1016/j.jnnfm.2016.06.011
https://doi.org/10.1016/j.jnnfm.2016.06.011
https://doi.org/10.1017/jfm.2014.176
https://doi.org/10.1017/jfm.2014.176
https://doi.org/10.1017/jfm.2014.176
https://doi.org/10.1017/jfm.2014.176

