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The method of regularized Stokeslets, based on the divergence-free exact solution to the
equations of highly viscous flow due to a spatially smoothed concentrated force, is widely
employed in biological fluid mechanics. Many problems of interest are axisymmetric,
motivating the study of the azimuthally integrated form of the Stokeslet which physically
corresponds to a ring of smoothed forces. The regularized fundamental solution for the
velocity (single-layer potential) and stress (double-layer potential) due to an axisymmetric
ring of smoothed point forces, the regularized ringlet, is derived in terms of complete
elliptic integrals of the first and second kind. The relative errors in the total drag and
surrounding fluid velocity for the resistance problem on the translating, rotating unit
sphere, as well as the condition number of the underlying resistance matrix, are calculated;
the regularized method is also compared to three-dimensional regularized Stokeslets
and the singular method of fundamental solutions. The velocity of Purcell’s toroidal
swimmer is calculated; regularized ringlets enable accurate evaluation of surface forces
and propulsion speeds for nonslender tori. The benefits of regularization are illustrated
by a model of the internal cytosolic fluid velocity profile in the rapidly growing pollen
tube. Actomyosin transport of vesicles in the tube is modeled using forces immersed in the
fluid, from which it is found that transport along the central actin bundle is essential for
experimentally observed flow speeds to be attained. The effect of tube growth speed on the
internal cytosolic velocity is also considered. For axisymmetric problems, the regularized
ringlet method exhibits a comparable accuracy to the method of fundamental solutions
while also allowing for the placement of forces inside of the fluid domain and having more
satisfactory convergence properties.
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I. INTRODUCTION

The Stokes equations for incompressible flow at zero Reynolds number are used extensively to
model the viscous-dominated regime of microscale flows, particularly biological flows associated
with cilia-driven transport, and the motility and feeding of flagellated cells such as bacteria,
spermatozoa, algae, and choanoflagellates. For an overview, see Ref. [1]. The fundamental solution
of the Stokes flow equation, which corresponds to the flow driven by a single spatially concentrated
force, is often referred to as the Oseen tensor or Stokeslet. The linearity of the Stokes flow equations
enables the construction of solutions to problems involving moving boundaries with complex
geometry through integral sums of Stokeslets, forming the basis for the method of fundamental
solutions, slender body theory, and boundary integral methods. The latter numerical method has the
principle major advantage of avoiding the need to mesh the fluid volume, which has enabled highly
accurate and efficient simulation of biological flow systems for several decades [2–4]. Indeed, more
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approximate methods based on line distributions of Stokeslets and higher-order singularities also
enabled major progress in this area before the present era of computationally intensive research. For
a review see the earlier work of Chwang, Wu, and co-workers [5], who also explore a wide range of
applications as part of a series of papers on low-Reynolds-number flow [6–10].

Nevertheless, two implementational issues arise with methods based on singular solutions. The
first is that boundary integrals of solutions with a 1/r-type singularity can be technically complex
to evaluate on or near the boundary. Line integrals associated with models of slender bodies such
as cilia and flagellar are “more singular” and can require careful distinction between the inside
and outside of the body. Moreover, there are cases in which immersed forces due to, e.g., many
suspended moving particles are desired to be modeled by an immersed volumetric force. Cortez
et al. developed the method of regularized Stokeslets [11,12] based on the exact divergence-free
solution to the Stokes flow equations due to a concentrated but spatially smoothed (regularized)
force. This approach has enabled the use of Stokeslet methods in a wider range of applications,
such as those in which an inducing force is present in the interior of the fluid domain (as either a
point in R2 or a point or curve in R3).

While conceptually elegant, the standard implementation of the method of regularized Stokeslets
is computationally expensive, motivating the development of boundary element discretization [13],
line integration [14], and meshless interpolation [15] among other approaches. Many diverse
biological flow problems of interest exhibit rotational symmetry, examples including spherical
squirmer swimmers [16], the conceptual toroidal swimmer of Purcell [17], and cytosolic flow in
elongating pollen tubes [18]. Thus motivated, in this paper we study axisymmetric Stokes flows in
which the singular and regularized Stokeslets can be integrated azimuthally to yield an axisymmetric
ring of point forces. The singular solution to this problem is already known [19]; the regularized
solution, which we term the regularized ringlet, is newly derived. This solution forms the basis for
an efficient axisymmetric method of regularized Stokeslets.

We begin in Sec. II by introducing the singular and regularized Stokeslets and review their
application in solving the resistance problem for a rigid body translating in a viscous fluid. The
derivation of the regularized ringlet is given in Sec. II A, with the analytical solution following in
Sec. II B. The double-layer potential, relevant to bodies undergoing volume-changing deformation,
is considered in Sec. II C, with analytical evaluation of the azimuthal integral in the double-layer
potential given in Appendix D. A brief description of the computational efficiency of the method
of regularized ringlets is given in Sec. II D, with a more thorough analysis in Appendix G. Possible
modifications to the method using a different choice of cutoff function (for regularization) are
considered in Sec. II E. In Sec. III, the method of regularized ringlets is applied to simple test cases
such as the resistance problem for the translating (Sec. III A) and rotating (Sec. III B) sphere. The
case of Purcell’s toroidal swimmer [17,20] is also considered (Sec. III C), in which the method of
regularized ringlets enables the calculation of propulsion speeds which are in excellent agreement
with analytical results for both slender and nonslender tori. We then present a study of fluid flow in
the angiosperm pollen tube in Sec. IV, an illustrative example highlighting the benefits of being able
to apply smoothed forces inside the fluid (two prominent features of regularization). The velocity
profiles we obtain for cytosolic flow in the tube are a close match to experimental results and provide
fresh insight into the organization of the tube’s internal transport systems. In Sec. V we conclude
with a summary of results and a discussion of future work.

II. SINGULAR AND REGULARIZED STOKESLET SOLUTIONS

For the viscous-dominated very-low-Reynolds-number flow associated with microscopic length
scales and slow velocities, incompressible Newtonian flow is well approximated by the steady
Stokes flow equations

μ∇2u = ∇p − F, (1)

∇ · u = 0, (2)
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where μ is dynamic viscosity, p the pressure, u the velocity, and F the applied force per unit volume.
In the case of a singular force of the form F(x0) = gpδ(x0 − x) for arbitrary point force gp, arbitrary
point x at which the singularity is located, and where δ is the Dirac delta function, the fundamental
solution [21,22] for u (using Einstein summation convention here and throughout this paper) is
given by

ui(x0) = 1

8πμ
Si j (x0, x)gp

j, (3)

where

Si j (x0, x) = δi j

|x0 − x| + (x0,i − xi )(x0, j − x j )

|x0 − x|3 (4)

is known as the Stokeslet (with δi j the Kronecker delta).
The singularity in the Stokeslet solution can be eliminated without loss of incompressibility

by regularization of the force F, as described by Cortez et al. [11,12]. The Dirac δ function is
replaced with F(x0) = gpφε(x0 − x), where φε is a radially symmetric, smooth cutoff function
with the property

∫
R3 φε(x)dx = 1. This is in essence applying the force over a small ball, varying

smoothly from a maximum at its center to approximately zero sufficiently far away, instead of using
an infinite point force as in the classical Stokeslet solution. The numerical parameter ε dictates the
radius of support of the force, and as ε → 0 the classical solution is recovered. Solutions for u using
regularized Stokeslets differ from those found using the singular Stokeslet only near the point where
the force is applied. Following Cortez et al. [12], we take

φε(x0 − x) = 15ε4

8π (|x0 − x|2 + ε2)7/2
, (5)

which yields

Sε
i j (x0, x) = δi j

|x0 − x|2 + 2ε2

(|x0 − x|2 + ε2)3/2
+ (x0,i − xi )(x0, j − x j )

(|x0 − x|2 + ε2)3/2
. (6)

By considering a solid body D moving through the fluid, it can be shown that∫
R3

ui(x)φε(x0 − x)dV (x) = 1

8πμ

∫
∂D

Sε
i j (x0, x)ga

jdS(x), (7)

where ga is the force per unit area exerted by the body surface (denoted by ∂D) on the surrounding
fluid [12]. Equation (7) is exact; replacing the left-hand side with the velocity ui(x0) such that

ui(x0) = 1

8πμ

∫
∂D

Sε
i j (x0, x)ga

jdS(x) (8)

introduces an error O(εp), where p = 1 on or near the body surface and p = 2 sufficiently far away.
Discretizing Eq. (8) using N Stokeslets on the surface of the solid body D enables the

approximation of the fluid velocity at any point x0 via a numerical quadrature formula

ui(x0) = 1

8πμ

N∑
n=1

Sε
i j (x0, xn)ga

n, jWn, (9)

where ga
n, j denotes the jth component of the force per unit area applied at the point xn (a Stokeslet

location) and Wn is the quadrature weight associated with the nth particle. The value of Wn is
dependent on the geometry of the body surface ∂D and in the work of Cortez et al. has units of
area.
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FIG. 1. Stokeslet ring in the (x, y) view. Note that the fluid point (open circle) and points on the ring (closed
circle) do not necessarily both lie in the plane of the page (i.e., z = z0 is not required).

A. Derivation of the regularized ringlet

Consider a specific case of Eq. (8) using a cylindrical (r, θ, z) coordinate system in which the
body D exhibits rotational symmetry about the z axis. This symmetry enables analytical integration
azimuthally, reducing the surface discretization to a line discretization and increasing accuracy.
In doing so, we are effectively placing rings of regularized Stokeslets at positions xn = (rn, θ, zn)
for n = 1, . . . , N and θ ∈ [0, 2π ) (see Fig. 1 for a diagram of a single ring). This is analogous to
covering the surface of the body in strips instead of the patches used in a standard three-dimensional
(3D) Cartesian discretization. With a surface parametrization x(s, θ ), where 0 � s � � denotes arc
length and 0 � θ � 2π , the boundary integral equation (8) reads

ui(x0) = 1

8πμ

∫
∂D

Sε
i j (x0, x)ga

j (x)dS(x) = 1

8πμ

∫ �

s=0

(∫ 2π

θ=0
Sε

i j (x0, x(s, θ ))ga
j (s, θ )r(s)dθ

)
ds.

(10)
Converting to cylindrical polar coordinates, we introduce the transformation matrix

	(θ ) =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠. (11)

Letting indices i, j, k and α, β, γ correspond to Cartesian and cylindrical polar bases, respectively
(such that i = 1, 2, 3 and α = 1, 2, 3 correspond to x, y, z and r, θ, z, respectively, with Einstein
summation convention employed for both sets), it follows that ga

j = 	 jα (θ )ga
α . Assuming that

velocity is evaluated at fluid point x0 = (r0, θ0, z0) in cylindrical polar coordinates, it further follows
that ui = 	iα (θ0)uα . Recognizing that 	−1 = 	T , substitution of the cylindrical forms of the
velocity and force vectors into Eq. (10) thus yields

uα (r0, θ0, z0) = 	αi(θ0)ui(x0, y0, z0)

= 1

8πμ
	αi(θ0)

∫ �

0

∫ 2π

0
Sε

i j (x0, x(s, θ ))	 jβ (θ )ga
β (s)r(s)dθ ds. (12)

Under the assumption of axisymmetry, it is sufficient to only consider cases y0 = θ0 = 0. This re-
sults in the Cartesian x-z and the cylindrical polar r-z planes coinciding such that the transformation
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matrix with θ0 = 0 simply yields the identity matrix (written as δαi = 1 when α = i and 0 otherwise
in the summation) and Eq. (12) reduces to

uα (r0, z0) = 1

8πμ

∫ �

0
ga

β (s)

[
δαir(s)

∫ 2π

0
Sε

i j (x0, x(s, θ ))	 jβ (θ )dθ

]
ds (13)

= 1

8πμ

∫ �

0
ga

β (s)Rε
αβ (x0, x(s))ds, (14)

in which the ringlet kernel

Rε
αβ (x0, x(s)) := δαir(s)

∫ 2π

0
Sε

i j (x0, x(s, θ ))	 jβ (θ )dθ (15)

is implicitly defined. Unlike the Stokeslet which has the symmetric property Sε
i j (x0, x) ≡ Sε

i j (x, x0),
ordering of arguments in the ringlet is important; the first and second arguments in Rε

αβ (x0, x)
denote the fluid point and ring location, respectively, with the ring radius r(s) being the crucial
nonsymmetric term.

The various terms in the Stokeslet Sε
i j can be evaluated in cylindrical polar coordinates via

x0,1 − x1 = r0 − r cos θ, (16)

x0,2 − x2 = −r sin θ, (17)

x0,3 − x3 = z0 − z, (18)

|x0 − x|2 = (r0 − r cos θ )2 + (r sin θ )2 + (z0 − z)2. (19)

The resulting form of each Sε
i j is given in Appendix A and used in the evaluation of Rε

αβ in
Eq. (15). These integrals Rε

αβ yield the regularized fundamental solution for an axisymmetric ring of
concentrated force (the regularized ringlet). Analytical evaluation reveals that Rε

rθ = Rε
zθ = Rε

θr =
Rε

θz = 0 such that the rotational problem for ga
θ decouples from ga

r and ga
z . The remaining nonzero

Rε
αβ yield the equations(

ur (x0)

uz(x0)

)
= 1

8πμ

∫ �

0

[
Rε

rr (x0, x(s)) Rε
rz(x0, x(s))

Rε
zr (x0, x(s)) Rε

zz(x0, x(s))

](
ga

r (s)
ga

z (s)

)
ds (20)

and

uθ (x0) = 1

8πμ

∫ �

0
Rε

θθ (x0, x(s))ga
θ (s)ds. (21)

Utilizing Eqs. (20) and (21) in tandem models axisymmetric problems with or without azimuthal
rotation, in which the fluid experiences a constant force in each principal direction (r̂, θ̂, ẑ) at points
along which the ringlet is located. This could be used, for example, to model the flow around a
mobile axisymmetric body rotating about an axis defined by its direction of translation.

Approximating the integrals in Eqs. (20) and (21) numerically using a series of N rings yields a
system of equations of the form

(
ur (x0)

uz(x0)

)
= 1

8πμ

N∑
n=1

[
Rε

rr (x0, xn) Rε
rz(x0, xn)

Rε
zr (x0, xn) Rε

zz(x0, xn)

](
ga

r (xn)

ga
z (xn)

)
wn, (22)

uθ (x0) = 1

8πμ

N∑
n=1

Rε
θθ (x0, xn)ga

θ (xn)wn, (23)
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where ga
r (xn), ga

θ (xn), and ga
z (xn) are the radial, azimuthal, and axial components of the forces per

unit area applied at ringlet location xn, respectively, and wn is the quadrature weight associated with
xn for numerical integration over s. The quantity wn has units of length unlike its counterpart Wn in
the work of Cortez et al. (units of length squared). It is also possible to combine the force per unit
area ga and quadrature weight wn into a force per unit length gl such that Eqs. (22) and (23) can
alternatively represent the fluid velocity induced by a series of rings.

By considering the fluid velocity at each individual ringlet location, an invertible system can be
produced. In the zero-azimuthal-velocity case (uθ ≡ 0), this takes the block matrix form

Gl = 8πμ

[
Rε

rr Rε
rz

Rε
zr Rε

zz

]
︸ ︷︷ ︸

Rε

−1

U, (24)

where

Gl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gl
r (x1)

...

gl
r (xN )

gl
z(x1)

...

gl
z(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ur (x1)
...

ur (xN )

uz(x1)
...

uz(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

and

Rε
αβ =

⎡
⎢⎢⎢⎢⎣

Rε
αβ (x1, x1) Rε

αβ (x1, x2) · · · Rε
αβ (x1, xN )

Rε
αβ (x2, x1) Rε

αβ (x2, x2) · · · Rε
αβ (x2, xN )

...
...

. . .
...

Rε
αβ (xN , x1) Rε

αβ (xN , x2) · · · Rε
αβ (xN , xN )

⎤
⎥⎥⎥⎥⎦. (26)

Hence the forces needed to induce a given prescribed velocity in the fluid may be found (the
resistance problem). This works for both a series of translating rings and a translating axisymmetric
body, with the force per unit length gl essentially absorbing both the force per unit area ga and the
quadrature weight wn in the latter case. Inclusion of azimuthal flow involves the formulation of a
similar invertible system for Eq. (23) which can be solved separately.

B. Analytical evaluation of the regularized ringlet

The nonzero elements of the regularized ringlet can be expressed in the form

Rε
rr (x0, xn) = rn{−r0rnI0 + [2τ − (z0 − zn)2]I1 − 3r0rnI2}, (27)

Rε
rz(x0, xn) = rn(z0 − zn)(r0I0 − rnI1), (28)

Rε
zr (x0, xn) = rn(z0 − zn)(−rnI0 + r0I1), (29)

Rε
zz(x0, xn) = rn{[τ + (z0 − zn)2 + ε2]I0 − 2r0rnI1}, (30)

Rε
θθ (x0, xn) = rn[r0rnI0 + (τ + ε2)I1 − 3r0rnI2], (31)

063102-6



REGULARIZED STOKESLET RINGS: AN EFFICIENT METHOD …

in which τ := r2
0 + r2

n + (z0 − zn)2 + ε2 and

In :=
∫ 2π

0

cosn θ

(τ − 2r0rn cos θ )3/2
dθ (32)

= 4k3

(4r0rn)3/2

∫ π/2

0

(2 cos2 θ − 1)n

(1 − k2 cos2 θ )3/2
dθ, (33)

with k2 := 4r0rn/(τ + 2r0rn). Equation (33) is found by using the double-angle formula for cos θ

as well as symmetry arguments about π/2. Following the example of Pozrikidis [19], the integrals
In can be computed by first expanding the numerator of the integrand in Eq. (33) to obtain a series
of polynomial integrals with respect to cos θ . Letting

I ′
n := 2n

(
4k3

(4r0rn)3/2

) ∫ π/2

0

cos2n θ

(1 − k2 cos2 θ )3/2
dθ, (34)

it follows that

I0 = I ′
0, I1 = I ′

1 − I0, I2 = I ′
2 − 2I ′

1 + I0. (35)

The individual integrals I ′
n can be expressed in terms of complete elliptic integrals of the first and

second kind, which are respectively defined

F = F (k) :=
∫ π/2

0

dθ

(1 − k2 sin2 θ )1/2
, E = E (k) :=

∫ π/2

0
(1 − k2 sin2 θ )1/2dθ. (36)

The solutions for each I ′
n (as can be found in Sec. 2.58 of Ref. [23]) are given by

I ′
0 = 4k3

(4r0rn)3/2

(
1

1 − k2
E

)
, (37)

I ′
1 = 8k3

(4r0rn)3/2

(
1

k2(1 − k2)
E − 1

k2
F

)
, (38)

I ′
2 = 16k3

(4r0rn)3/2

(
2 − k2

k4(1 − k2)
E − 2

k4
F

)
, (39)

from which it follows that

I0 = 4k3

(4r0rn)3/2

(
1

1 − k2
E

)
, (40)

I1 = 4k3

(4r0rn)3/2

(
2 − k2

k2(1 − k2)
E − 2

k2
F

)
, (41)

I2 = 4k3

(4r0rn)3/2

(
k4 − 8k2 + 8

k4(1 − k2)
E − 4(2 − k2)

k4
F

)
. (42)

Substitution of Eqs. (40)–(42) into Eqs. (27)–(31) yields the complete solution for the regularized
ringlet

Rε
rr (x0, xn) = k

r0rn

(
rn

r0

)1/2[
[τ + (z0 − zn)2]F + 4r2

0r2
n − τ [τ + (z0 − zn)2]

τ − 2r0rn
E

]
, (43)

Rε
rz(x0, xn) = k

z0 − zn

r0

(
rn

r0

)1/2[
F + 2r2

0 − τ

τ − 2r0rn
E

]
, (44)

Rε
zr (x0, xn) = −k

z0 − zn

(r0rn)1/2

[
F + 2r2

n − τ

τ − 2r0rn
E

]
, (45)
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Rε
zz(x0, xn) = 2k

(
rn

r0

)1/2[
F + (z0 − zn)2 + ε2

τ − 2r0rn
E

]
, (46)

Rε
θθ (x0, xn) = k

r0rn

(
rn

r0

)1/2[
(2τ − ε2)F + 8r2

0r2
n + τ (ε2 − 2τ )

τ − 2r0rn
E

]
. (47)

The solutions given by Eqs. (43)–(47) can be readily evaluated except when r0 = 0 or rn = 0. In
the limit as rn → 0 (zero ring radius), all Rε

αβ → 0. In the limit as r0 → 0 (central fluid point),
both Rε

zr and Rε
zz tend to finite values while Rε

rr, Rε
rz, Rε

θθ → 0. This behavior is described in detail in
Appendix B. Streamlines for the flow induced by the regularized ringlet with associated unit forces
in both r̂ and ẑ directions are given in Appendix C.

The form of the ringlet solutions Rε
αβ is similar to those for the ring of singular Stokeslets (as

detailed by Pozrikidis in [19] with the exception of the newly derived R0
θθ )

R0
rr (x0, xn) = k

r0rn

(
rn

r0

)1/2[[
r2

0 + r2
n + 2(z0 − zn)2

]
F

− 2(z0 − zn)4 + 3(z0 − zn)2
(
r2

0 + r2
n

) + (
r2

0 − r2
n

)2

(z0 − zn)2 + (r0 − rn)2
E

]
, (48)

R0
rz(x0, xn) = k

z0 − zn

r0

(
rn

r0

)1/2[
F + r2

0 − r2
n − (z0 − zn)2

(z0 − zn)2 + (r0 − rn)2
E

]
, (49)

R0
zr (x0, xn) = −k

z0 − zn

(r0rn)1/2

[
F − r2

0 − r2
n + (z0 − zn)2

(z0 − zn)2 + (r0 − rn)2
E

]
, (50)

R0
zz(x0, xn) = 2k

(
rn

r0

)1/2[
F + (z0 − zn)2

(z0 − zn)2 + (r0 − rn)2
E

]
, (51)

R0
θθ (x0, xn) = k

r0rn

(
rn

r0

)1/2[
2
[
r2

0 + r2
n + (z0 − zn)2

]
F

− 4(z0 − zn)4 + 4(z0 − zn)2
(
r2

0 + r2
n

) + 2
(
r2

0 − r2
n

)2

(z0 − zn)2 + (r0 − rn)2
E

]
, (52)

and in the limit as ε → 0 our solutions are equivalent to their singular counterparts. This can be
verified by substitution of ε = 0 into Rε

αβ and is a result of the cutoff function φε approaching a δ

distribution as ε → 0.
Equations (20), (21), and (43)–(47) provide the solution (to within regularization error) for

the fluid velocity at any point due to the drag force per unit area on the surface of a generalized
axisymmetric body. Using Eqs. (22) and (23) in place of (20) and (21) yields the numerical solution
based on discretization over the arc length s. In the case of a single ring, removing the integral over
s and replacing the force per unit area ga with a force per unit length gl yields the solution for the
fluid velocity induced by the force acting along the ring in 3D space.

C. Double-layer potential

A more complete formulation of Eq. (7) for the fluid velocity induced by a translating body D is
given by∫
R3

u j (x)φε(x0 − x)dV (x) = 1

8πμ

∫
∂D

Sε
i j (x0, x)ga

i (x)dS(x) + 1

8π

∫
∂D

ui(x)T ε
i jk (x0, x)nk (x)dS(x),

(53)
where the first and second integrals on the right-hand side are known as the single-layer potential
and the double-layer potential (DLP), respectively. The stress tensor T ε

i jk present in the DLP is given
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by

T ε
i jk (x0, x) = −6

(x0,i − xi )(x0, j − x j )(x0,k − xk )

(|x0 − x|2 + ε2)5/2

− 3ε2 (x0,i − xi )δ jk + (x0, j − x j )δik + (x0,k − xk )δi j

(|x0 − x|2 + ε2)5/2
. (54)

The DLP can be neglected for problems in which the condition
∫
∂D u · n̂ dS = 0 is satisfied (see

[19], Chap. 2.3), which is the case throughout this paper. However, we provide the expressions for
the DLP in Appendix D, which may be of value for future studies of systems in which the condition∫
∂D u · n̂ dS = 0 is violated (e.g., bubbles).

D. Efficiency and computational speed

A thorough comparison of the efficiency of the method of regularized ringlets with regularized
Stokeslets for 3D problems with axisymmetry is given in Appendix G, with the results summarized
here.

Two separate computational costs can be identified for solving resistance problems in Stokes
flow: the cost associated with constructing the resistance matrix Rε (or Sε) and that associated
with subsequent inversion of this matrix while finding a solution to the system of linear equations
relating fluid velocity and force. For zero-azimuthal flow, Rε is a matrix of size 2N × 2N whereas
Sε is of size 3N × 3N . It might be expected that the cost of constructing Rε is thus smaller than
that of Sε for a given number of nodes N , but in practice this is not the case; the additional cost of
computing complete elliptic integrals F (k) and E (k) for all combinations of points (xm, xn) ∀ m, n ∈
1, . . . , N , as well as Rε

αβ not sharing an easy-to-encode common form for different combinations of
α, β ∈ {r, z} in the same manner as Sε

i, j for i, j ∈ {x, y, z}, means that it typically takes 10%–20%
longer to construct Rε than Sε. However, the cost of constructing resistance matrices is generally
insignificant compared to the cost of inversion for any number of nodes of practical use. In further
testing, we found that solving a linear system X = A\b (with A representing either Rε or Sε) was
approximately three times faster using Rε than Sε for any given N (for all values of N tested). This
performance advantage is further enhanced by the fact that (as shown in Appendix E) solutions
for the resistance problem on the translating unit sphere using N nodes with regularized ringlets
are consistently more accurate than solutions found using 3N2/2 nodes with regularized Stokeslets,
suggesting that a drastic reduction in computational time can be achieved by using regularized
ringlets for axisymmetric Stokes flow problems.

E. Other choices of cutoff function

The cutoff function used as part of the regularized Stokeslet (and thus the regularized ringlet)
in this paper is not a unique choice; others can be used, as detailed by Cortez et al. [11,12].
In particular, for certain applications it may be preferable to use a cutoff function with compact
support (as opposed to the infinitely supported function used here). Examples of compactly
supported cutoff functions φε(r) in the literature [24,25] are typically polynomial functions of
the parameter r∗ = r/ε for 0 � r∗ � 1 and 0 otherwise, yielding regularized Stokeslet solutions
which are similarly polynomial for 0 � r∗ � 1 and revert to the classical Stokeslet outside of this
range. Analytical azimuthal integration of a regularized Stokeslet deriving from such a compactly
supported cutoff function is thus straightforward, consisting solely of integration of powers of
trigonometric functions for 0 � r∗ � 1 and yielding the classical solution of Pozrikidis [19] for a
ring of Stokeslets otherwise. With minor modifications, the method presented in this paper can thus
be easily adapted to derive and utilize a regularized ringlet using a cutoff function with compact
support.
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TABLE I. Relative errors in the drag calculation for the resistance problem on the translating unit sphere.

ε N = 25 N = 51 N = 101 N = 201 N = 401

0.01 −1.4689 × 10−2 −2.0609 × 10−3 1.6439 × 10−3 2.4053 × 10−3 2.5104 × 10−3

0.005 −2.4754 × 10−2 −7.2086 × 10−3 −1.1116 × 10−3 7.6816 × 10−4 1.2056 × 10−3

0.001 −4.7242 × 10−2 −1.8774 × 10−2 −7.0948 × 10−3 −2.3160 × 10−3 −5.1183 × 10−4

III. SIMPLE EXAMPLES AND TEST CASES

In Sec. II the expression for the regularized fundamental solution for an axisymmetric ring of
concentrated forces, the regularized ringlet, was derived. In the following, we demonstrate the
validity of the method through application to simple cases of motion.

The first two cases concern the translation and rotation of the unit sphere in a Stokesian fluid,
treated independently in Secs. III A and III B, respectively. In Sec. III C a more complicated example
is considered: the propulsion of Purcell’s toroidal swimmer [17,20], powered by tank treading of the
torus surface. In considering these different cases, it is shown that the method of regularized ringlets
can be used to model the surface motion of axisymmetric bodies in each principal direction r̂, θ̂,
and ẑ in a cylindrical coordinate system.

A. Translating unit sphere

The validity of the regularized ringlet method is illustrated by solving the resistance problem for
the translating unit sphere. Given a prescribed surface velocity (−ẑ), Eq. (14) yields a Fredholm first
kind integral equation for the unknown force distribution [15]. The method of regularized ringlets
(implemented here via MATLAB) can be used to solve this problem.

The sphere is parametrized in the r-z plane by p = cos ϕ r̂ + sin ϕ ẑ for ϕ ∈ [−π/2, π/2] and
then discretized as

ϕn = π
n − 1/2

N
− π

2
for n = 1, . . . , N. (55)

The velocity boundary condition u = −ẑ is prescribed at each xn := p(ϕn), and the resulting linear
system is solved to yield the required force densities gl at each of these locations. The total drag
exerted by the fluid on the sphere is then calculated as

−
N∑

n=1

∫ 2π

θ=0
gl

z(xn)r(xn)dθ = −2π

N∑
n=1

r(xn)gl
z(xn), (56)

which is compared with the Stokes law value of 6π . The relative errors are given for various values
of N and regularization parameter ε in Table I alongside the condition number of the resistance
matrix Rε in Table II.

TABLE II. Condition numbers of the resistance matrix Rε for the resistance problem on the translating unit
sphere.

ε N = 25 N = 51 N = 101 N = 201 N = 401

0.01 4.6282 × 101 1.5857 × 102 7.1602 × 102 7.0167 × 103 4.0767 × 105

0.005 3.3089 × 101 9.6186 × 101 3.1303 × 102 1.4181 × 103 1.3947 × 104

0.001 1.9973 × 101 4.9332 × 101 1.2386 × 102 5.7653 × 102 1.0449 × 103
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For given N , excessively small ε results in the drag error becoming nonmonotonic. For given ε,
increasing N eventually ceases to result in a further reduction in the relative error. This is often the
case with regularized Stokeslet methods (see, e.g., Figs. 15 and 16 and Refs. [12,26]).

A thorough comparison of our results for the translating unit sphere with those of Cortez et al.
[12] can be found in Appendix E, in which it is found that using just N ringlets yields consistently
more accurate solutions than using 3N2/2 regularized Stokeslets in a standard 3D discretization
of the sphere surface. A comparison to results obtainable using the axisymmetric method of
fundamental solutions (a singular Stokeslet method) is given in Appendix F, in which the relative
error in the fluid velocity is also discussed. In general, although the singular method can be tuned
to give smaller relative errors in either the fluid velocity or total drag separately, it cannot do so
simultaneously; regularized ringlets display more satisfactory convergence properties and are the
more effective method to minimize errors in both fluid velocity and total drag.

B. Rotating unit sphere

The solution for the steady motion of a Stokesian fluid surrounding a solid sphere rotating
uniformly about a central axis is well known and can be found in, e.g., [27]. If the sphere rotates
around its z axis in an (r, θ, z) cylindrical coordinate system with an angular velocity � = ω0ẑ, the
resulting angular velocity of the fluid is given by ω = (a/γ )3ω0θ̂, where γ = √

r2 + z2. This can
be written in terms of the linear velocity (more readily usable in the Stokeslet formulas) over the
entire domain as

u =
{

r
(

a
γ

)3
ω0θ̂ ∀ γ � a

rω0θ̂ ∀ γ < a,
(57)

where γ � a corresponds to the surrounding fluid velocity and γ < a to the solid body rotation of
the sphere, respectively. The zero-Reynolds-number torque on this sphere is given by

T = −8πμa3�, (58)

the derivation of which can be found in [28]. This torque is associated with a drag force per unit
area on the surface of the sphere given by f = −3μω0(r/a)θ̂ = −ga, as detailed in Appendix H.
The force per unit length used in the method of regularized ringlets thus takes the form

gl
θ =

(
3πμ

N

)(
r

a

)
ω0, (59)

although for the resistance problem this is not prescribed.
The sphere surface is again parametrized in the r-z plane by p = cos ϕ r̂ + sin ϕ ẑ for ϕ ∈

[−π/2, π/2], discretized using N ringlets at locations xn. Letting ω0 = −1, the velocity u(xn) =
−r(xn)θ̂ is prescribed at each xn and the resistance matrix is constructed to yield the required force
densities gl at each of these locations. The torque is then calculated as

−
N∑

n=1

∫ 2π

θ=0
gl

θ (xn)r2(xn)dθ = −2π

N∑
n=1

r2(xn)gl
θ (xn), (60)

in which r(xn) is squared since the torque is a moment, the product of distance and force. Comparing
to the value 8π , relative errors are given for various values of N and regularization parameter ε in
Table III alongside the condition number of the resistance matrix Rε

θ in Table IV. These results are
similar to those of the translating unit sphere, although for given ε and N the relative error in the
drag is generally slightly larger and the condition number of the resistance matrix slightly smaller
than for the results using the same ε and N on the translating unit sphere.
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TABLE III. Relative errors in the drag calculation for the resistance problem on the rotating unit sphere.

ε N = 25 N = 51 N = 101 N = 201 N = 401

0.01 −6.6820 × 10−2 −1.3919 × 10−2 3.1012 × 10−3 7.1409 × 10−3 7.5502 × 10−3

0.005 −1.0168 × 10−1 −3.3360 × 10−2 −7.2206 × 10−3 1.5183 × 10−3 3.5556 × 10−3

0.001 −1.7339 × 10−1 −7.5656 × 10−2 −3.0238 × 10−2 −1.0422 × 10−2 −2.6879 × 10−3

C. Purcell’s toroidal swimmer

The torus is the simplest geometry capable of describing self-propelled organisms [29]. Purcell’s
toroidal swimmer [17,30] describes one such organism, the geometry of which can be seen in
Fig. 2. Inward rotation of the torus surface produces a net force in the direction of motion of
the outermost surface (against which the torus is propelled). The magnitude of this net force (and
resultant propulsion speed of the torus) is dependent on the speed with which the surface of the
torus rotates as well as the slenderness of the torus. It has been suggested that this mechanism
could describe how a DNA miniplasmid could be turned into a self-propelled nanomachine [31].
Three modes of locomotion were considered by Leshansky and Kenneth [20], corresponding to
tank treading of (a) an incompressible surface, in which the tangential surface velocity is largest
on the inner surface, (b) a weakly compressible surface, in which the tangential surface velocity is
constant, and (c) a highly compressible surface, in which the tangential surface velocity is largest on
the outer surface. In the following, we restrict ourselves to looking at the case of constant tangential
surface velocity.

The torus geometry is reduced to a single slenderness parameter s0 = b/a, where b and a refer
to the major and minor radii of the torus, respectively. The torus surface is parametrized in terms of
angle η ∈ [0, 2π ) in the r-z plane such that ds = adη and η = 0 corresponds to the outermost radial
point on the surface of the torus, traversed in the counterclockwise direction. For the free swimming
torus, the rigid body translation U and rotation u(s) of the torus surface ∂D are related to the force
per unit area ga exerted by the torus on the surrounding fluid by

Uα (x0) + u(s)
α (x0) = 1

8πμ

∫ �

s=0
Rε

αβ (x0, x)ga
β (s)ds ∀ x0 ∈ ∂D (61)

subject to the condition of zero net force in the ẑ direction,∫
∂D

ga
z (x)dS(x) = 0, (62)

where s is the arc length parametrization of the cross section of the torus surface ∂D in the r-z
plane. We note that the additional free swimming conditions of zero net force in r̂ and zero total
moment (as outlined by Phan-Thien et al. [2]) are automatically satisfied by axisymmetry and
ga

θ ≡ 0, respectively.
The propulsion speed U := |U| of the rotating torus for any given value of s0 and rotation speed

u(s) := |u(s)| can be determined by considering two separate situations: one in which motion is

TABLE IV. Condition numbers of the resistance matrix Rε
θ for the resistance problem on the rotating unit

sphere.

ε N = 25 N = 51 N = 101 N = 201 N = 401

0.01 7.7965 2.1678 × 101 7.1174 × 101 3.4925 × 102 4.2212 × 103

0.005 6.2313 1.5492 × 101 4.2389 × 101 1.4119 × 102 6.9613 × 102

0.001 4.4051 9.5164 2.1792 × 101 5.4064 × 101 1.4690 × 102
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η
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b

u(s)u(s)

s

r

z

−U−U

FIG. 2. Geometry of the toroidal swimmer, whose cross section in the r-z plane is given by the dashed
lines. Rotation around the z axis produces the complete torus. The torus moves with velocity U in the direction
opposing outer surface motion (such that, in the given frame of reference in which the torus remains stationary,
the surrounding fluid appears to move with velocity −U). Redrawn from Ref. [20].

purely translational in the ẑ direction (the toroidal glider with U = ẑ and u(s) ≡ 0) and one in which
motion is purely rotational (the anchored toroidal pump with U ≡ 0 and u(s) = η̂, where η̂ is the
unit vector whose direction varies over s, pointing tangential to the surface in the counterclockwise
direction at all points). The glider and pump have associated force distributions ggld and gpmp,
respectively. Using the regularized ringlet, surface motions can be prescribed [Figs. 3(a) and 4(a)] in

1 1.5 2 2.5 3

-1.5
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(b)

FIG. 3. (a) Surface velocity (broadwise translation of the torus) and (b) associated force distribution of a
toroidal glider with slenderness parameter s0 = 2.
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FIG. 4. (a) Surface velocity (counterclockwise surface rotation of the torus) and (b) associated force
distribution of an anchored toroidal pump with slenderness parameter s0 = 2.

order to compute the associated force distributions [Figs. 3(b) and 4(b)] responsible for producing
each motion. For the toroidal glider the radial force is assumed to be zero (ggld

r ≡ 0); hence

Ur (x0) = 1

8πμ

∫ 2π

η=0
Rε

rz(x0, x)ggld
z (x)a dη = 0 ∀ x0 ∈ ∂D, (63)

Uz(x0) = 1

8πμ

∫ 2π

η=0
Rε

zz(x0, x)ggld
z (x)a dη = 1 ∀ x0 ∈ ∂D, (64)

which, after solving for the unknown force distribution ggld
z , yields the net axial force in the ẑ

direction

Ggld =
∫

∂D
ggld

z (x)dS(x), (65)

which is nonzero. For the anchored toroidal pump the surface velocity is given by u(s) = η̂ =
(− sin η, cos η) in (r, z) coordinates. It follows that

u(s)
r (x0) = 1

8πμ

∫ 2π

η=0
Rε

rβ (x0, x)gpmp
β (η)a dη = − sin η ∀ x0 ∈ ∂D, (66)

u(s)
z (x0) = 1

8πμ

∫ 2π

η=0
Rε

zβ (x0, x)gpmp
β (η)a dη = cos η ∀ x0 ∈ ∂D, (67)

from which it can be determined that the net axial ẑ force is given by

Gpmp =
∫

∂D
gpmp

z (η)dS(x). (68)

By linearity of the Stokes flow equations we may subtract the gliding solution from the pump
solution to rewrite the system in the form

u(s)
r (x0) = 1

8πμ

∫ 2π

η=0
Rε

rβ (x0, x)ga
β (η)a dη ∀ x0 ∈ ∂D, (69)
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FIG. 5. Scaled propulsion speed U/u(s) versus slenderness parameter s0 using different numerical schemes.
The solid line shows the regularized ringlet solution using N = 100 rings (method derived in this paper). The
dashed line shows the rotlet solution as detailed in [20]. The crosses denote values of the exact series solution,
obtained from Fig. 7 of Ref. [20] using MATHWORKS’ grabit function [32] in MATLAB.

−Gpmp

Ggld
+ u(s)

z (x0) = 1

8πμ

∫ 2π

η=0
Rε

zβ (x0, x)ga
β (η)a dη ∀ x0 ∈ ∂D, (70)

where ga = gpmp − (Gpmp/Ggld)ggld
z ẑ and the net force is equal to∫

∂D
ga

z (η)dS(x) = 0, (71)

as required for the free swimmer. The propulsion velocity of the swimming torus is thus given by
U = −(Gpmp/Ggld)ẑ, opposing the direction of outer surface motion. The propulsion speed U is
dependent on both the rotation speed u(s) and the slenderness ratio s0, so both Ggld and Gpmp must
be recomputed whenever one of these parameters is changed. However, Leshansky and Kenneth
[20] were able to show that the propulsion speed depends linearly on the rotation speed such that by
considering the scaled propulsion speed U/u(s) it is only necessary to vary s0 to be able to consider
all possible propulsion speeds resulting from a given constant rotational surface velocity.

Our results for the scaled propulsion velocity found using a discretization of the torus surface
using N = 100 regularized ringlets are compared with those obtained by Leshansky and Kenneth
[20], who tackled the same problem using a line distribution of rotlets at the torus centerline
(inaccurate as s0 → 1) and an exact series solution via expansion in toroidal harmonics (Fig. 5).
Of particular note, in the limit as s0 → 1, it is found that using N = 100 rings with ε = 0.01 in
the regularized ringlet method yields a scaled propulsion velocity of 0.6684, representing just a
0.513% error when compared to the series solution value of 0.665. This error can be reduced to less
than 0.1% by using N = 1000 rings, at which point the value of the scaled propulsion velocity as
calculated by the method of regularized ringlets is 0.6656. This is a significant improvement over
the solution found using a line distribution of rotlets, in which the error is greater than 1% for all
s0 � 6.

In addition to giving values for the scaled propulsion speed that are in excellent agreement with
the series solution of Leshansky and Kenneth [20], the regularized ringlet solution also provides the
force required at each point on the torus surface to produce the swimming motion. The series and
rotlet solutions do not yield this information, with the propulsion speed instead being calculated
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(a) (b)

FIG. 6. (a) Streamlines and (b) magnitude of fluid velocity in the region surrounding the force-free toroidal
swimmer with slenderness parameter s0 = 2, undergoing uniform counterclockwise surface rotation with unit
angular velocity. The torus propagates in the direction −ẑ and the frame of reference moves with the swimmer.

according to the net drag force on the toroidal glider in these methods. This, in combination with
Figs. 3(a) and 3(b), highlights why the centerline rotlet solution is inaccurate for small values of
s0; as slenderness decreases, the difference between the magnitude of the force required at the
innermost and outermost surfaces to produce rigid body translation of the torus grows large. In
Fig. 3(b) (in which s0 = 2), the drag force on the outer surface is approximately 5.7 times larger
than that on the inner surface. The constant centerline force associated with the rotlet cannot account
for this discrepancy, whereas the full discretization of the torus surface using regularized ringlets
can.

Figures 6(a) and 6(b) show the streamlines and magnitude of the fluid velocity in a region
near the force-free toroidal swimmer with slenderness parameter s0 = 2, undergoing uniform
counterclockwise surface rotation with unit angular velocity. This results in propagation of the
torus in the direction −ẑ. Fluid passing through the central hole of the torus is caught in closed
streamlines, in agreement with the results of Leshansky and Kenneth [20].

IV. CYTOSOLIC FLOW IN THE POLLEN TUBE: AN ILLUSTRATIVE EXAMPLE
OF THE BENEFITS OF REGULARIZATION

In Sec. III, the method of regularized ringlets was applied to simple cases of motion to illustrate
validity and applicability. These canonical examples demonstrate the use of ringlets in situations
with moving boundaries. However, perhaps the most important feature of the regularized method is
the ability to place source points directly in the fluid, in which case the regularized ring represents
a curve in 3D space. The regularization parameter ε can then be used to control the spreading of the
force (the size of the region over which it is applied). This is useful in situations in which the exact
location at which a force is applied in a fluid is unknown or when a force is applied over a large
area. In the following, these features of regularization are explored in more detail by considering the
example of fluid flow in the angiosperm pollen tube. A more extensive study of the biomechanics
of pollen tube growth (with a particular focus on the transport and distribution of elements of the
cytoplasm) is beyond the scope of the present paper.
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Ωsym

Ωgrw

Ωbas

Ωimp

‘empty’ endocytic vesicles

‘full’ exocytic vesicles

FIG. 7. Suggested mechanism for transport of vesicles in the pollen tube, showing actin bundles (thick
interior lines) and dense apical actin fringe running parallel to the peripheral wall, as well as pooling of apical
vesicles and shape of the inverted vesicle cone (shaded area). The direction of vesicle movement along actin
bundles is given by arrows. The location of each of the four boundaries of the domain is also shown. Image not
drawn to scale.

A. Brief overview of the pollen tube

The pollen tube, a cellular protuberance originating from the pollen grain, is a vital component
of the fertilization process in plants. Responsible for the delivery of sperm cells from the pollen
grain to the ovule, the tube may have to grow over 30 cm in length at speeds in excess of 1 cm h−1

[33,34]. This rapid elongation of the tube occurs via tip growth, with expansion localized close to
the apical region of the cell [35]. To prevent rupture, new cell membrane and cell wall material
must be targeted to the sites of highest expansion. Spherical vesicles in the cytosolic region act
as the delivery vectors for this material [18] and are carried by motor myosin proteins along actin
filaments in a process referred to as actomyosin transport. These actin filaments, arranged in bundles
in the periphery and center of the tube, are oriented in such a way that full peripheral vesicles travel
towards the growing apex where they secrete their contents into the wall. In order to maintain the
correct ratio of structural components, empty vesicles (comprised mostly of membrane) are also
secreted by the wall back into the cytoplasm, where it is hypothesized that they are picked up by
myosin on the central actin bundle and travel away from the apex. The combined movement of these
vesicles induces a flow in the cytosol, known as cytoplasmic streaming or cyclosis, which further
aids in the cycling of vesicles towards and away from the apical region. In this section we show how
the method of regularized ringlets can efficiently produce a complete model of cytosolic flow in the
pollen tube in a manner deriving directly from physical principles.

B. Mathematical model

1. Geometry and boundary conditions

The typical geometry of the tube (for cylindrical coordinates in the r-z plane) along with the
two vesicle populations and actin bundles can be seen in Fig. 7, in which the static cylindrical
shank is joined to a growing apical hemispherical cap. The boundary of the domain is split into
four sections: the symmetry boundary �sym running down the centerline of the tube, the static
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FIG. 8. Growth velocity of the apical boundary, normal to the cell surface and varying from a maximum
at the extreme apex to zero at the point where the apical hemisphere joins the adjacent shank. Velocities are
scaled by the speed of vesicles on actin (1 μm s−1), with lengths scaled by the radius of the tube (8.13 μm).

impermeable peripheral wall �imp, the growing apical hemisphere �grw, and the artificial basal
boundary �bas (where the computational domain is truncated).

The Reynolds number for fluid flow in the pollen tube can be evaluated using the typical flow
speed (approximately 1 μm s−1), tube radius (approximately 8.13 μm), and kinematic viscosity of
water (approximately 106 μm2 s−1) to find Re ≈ 10−5, firmly in the regime of Stokes flow. Although
pollen tube growth is typically oscillatory, acceleration and deceleration are small compared to
growth speed itself. This enables the use of the steady Stokes equations.

Since the cytosolic flow is induced by the actomyosin transport of vesicles along cytoskeletal
actin bundles, forces must be applied inside the computational domain. Singular Stokeslet methods
typically do not allow for this unless the surfaces of individual vesicles are discretized, but their
small size (approximately 100-nm radius) compared to the typical length scale of the problem and
their large number density make this impractical. One solution is to use the method of regularized
ringlets instead, placing rings in series along the centerline of the peripheral actin bundle with the
parameter ε being used to control the bundle thickness.

The boundary conditions for the fluid velocity u are given by

u = ug on �grw,

u = 0 on �imp,

ur = ∂uz/∂r = 0 on �sym,

(72)

in accordance with the assumptions of tip growth and axisymmetry. No restriction is placed on u
on the artificial boundary �bas. For the growth velocity ug in the hemispherical apex, the normal
displacement growth assumption of Dumais et al. [36] is employed to define

ug = ug(ϕ) := vg sin ϕ(cos ϕ, sin ϕ), (73)

where ϕ is the angle between the outward-pointing surface normal and the positive r axis (varying
from 0 at the point where the hemisphere joins the shank to π

2 at the extreme apex) and vg is the
growth speed of the tube. An example of how the growth of the boundary varies over the apical
hemisphere can be seen in Fig. 8, where the maximum growth speed vg is equal to 0.1 m s−1 and
the wall velocity in the adjacent shank (not pictured) is equal to zero.
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FIG. 9. Geometric elements of the mathematical model for the pollen tube, adapted from the information
in Fig. 7. Here PAB and CAB refer to the peripheral actin bundle and central actin bundle, respectively, with
the CAB thickness half that of the PAB by axisymmetry. Image not drawn to scale in ẑ.

2. Actin bundle model

A section of the pollen tube is modeled ranging from the extreme apex to a point equal to six
tube radii distal where the domain is artificially truncated. In dimensionless values, the extreme
apex is thus given by (r, z) = (0, 6), with z = 0 being the distal truncation line. The central line
of axisymmetry is given by r = 0, with r = 1 denoting the peripheral boundary in the shank. The
hemispherical apex is the upper-right quarter circle of radius 1, centered at (0,5). The peripheral
actin bundle (PAB) is considered adjacent to the pollen tube wall, with its width equal to one-
fifth of the pollen tube radius (0.2) and extending at an angle ϕ = π/5 into the apical hemisphere
(see Fig. 9) in accordance with the confocal microscopy imaging of Lovy-Wheeler et al. [37]. The
central actin bundle (CAB) is located further away from the apex than the PAB and is modeled
with a reduced thickness (half that of the PAB) in cylindrical coordinates to account for the central
axisymmetry of the tube.

By placing rings of regularized Stokeslets in series along the centerline of the PAB, it is possible
to carefully select an appropriate value for the regularization parameter ε such that the region
over which the majority of the force distribution is applied is roughly the same as the bundle
thickness. The same procedure is employed for the CAB, only with individual regularized Stokeslets
rather than ringlets since the centerline coincides with r = 0. Using ε = 0.05, it is found that
approximately 93% of the total applied force is contained within a region of radius 0.1, which
corresponds well to the approximate thickness of the actin bundles. This is shown in Fig. 10, where
r̂ = |x0 − xn| and the maximal value of φε has been scaled to 1 for the sake of clarity. Smaller values
of ε result in an even larger percentage of the total force being contained within 0 � r̂ � 0.1 but are
increasingly skewed towards r̂ = 0.

We note that our modeling ignores the presence of a third F-actin structure, the short actin bundles
observed in the extreme apex [38]; these bundles are transient and significantly less dense than
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FIG. 10. Controlled spreading of force distribution using φε with ε = 0.05.

the thick peripheral and central actin bundles. Further, due to their proximity to the growing tube
wall, any effect that these short actin bundles may have on the fluid velocity is likely insignificant
compared to the effect of the growth of the wall.

3. Frames of reference

In each of the velocity profiles to be produced, cytosolic velocities are prescribed along the actin
bundles in accordance with values taken from the spatiotemporal image correlation spectroscopy
(STICS) analysis of Bove et al. [33]. This is done under the assumption that the large-scale directed
movement of vesicles must be a consequence of cytosolic flow (induced by the smaller-scale
movement of individual vesicles along actin). The fluid velocity is defined in terms of two different
coordinate systems: the static laboratory frame where uL = (ur, uz ) and the moving tip frame
with uT = (ur, uz − vg). The laboratory frame represents the fluid velocity relative to a stationary
observation point (in which uL · n̂ �= 0 on �grw due to boundary growth), whereas the tip frame
represents the fluid velocity relative to the growing tip (resulting in a static domain with uT · n̂ at
all boundary points except on �bas). The steady geometry of the domain for the advancing tip frame
means that uT satisfies the steady Stokes equations, from which it follows that uL is also a solution
[since the two differ by the uniform flow field (0, vg) only].

4. Two model scenarios for comparison

In Sec. IV C 1, we investigate the role of the CAB in vesicle transport. Fluid velocity is prescribed
on the PAB only [see Fig. 11(a)] in order to compare the resultant central fluid velocity to
experimental results. The centerline of the PAB is modeled using the union of the straight line
extending from (r, z) = (0.9,−2) to (0.9,5) and the curve (r, z) = (0.9 cos ϕ, 5 + 0.9 sin ϕ) for
ϕ ∈ [0, π/5]. The regularized ringlet placement is extended to z = −2 to ensure the velocity profile
at z = 0 is consistent with the rest of the tube. The fluid velocity on the straight line is given by
(ur, uz ) = (0, 0.5) with the fluid velocity on the curve being tangential and of constant magnitude,
that is, (ur, uz ) = 0.5(sin ϕ, cos ϕ) for ϕ ∈ [0, π/5]. On the peripheral wall (again extended to
z = −2), the velocity is 0 in the shank and prescribed according to the growth speed vg of the tube
in the apical hemisphere using the velocity function ug(ϕ) = vg sin ϕ(cos ϕ, sin ϕ) for ϕ ∈ [0, π/2].
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FIG. 11. Dimensionless schematic diagrams for situations considered in (a) Sec. IV C 1 and (b) Sec. IV C 2.
Thick lines denote locations on which velocity is prescribed in each case.

In Sec. IV C 2, the velocity of the growing boundary is varied in order to determine the effect
of the growth speed of the tube on the cytosolic velocity. Fluid velocity is prescribed on each of
the PAB, the CAB, and the growing boundary accordingly [see Fig. 11(b)]. Fluid velocity along the
PAB is kept constant at 0.5 μm s−1 based on the observation that cytoplasmic streaming rates are
typically independent of pollen tube growth rates [39]. The fluid velocity on the centerline of the
central actin bundle, given by r = 0 for −2 � z � 4, is also prescribed. It is assumed that vesicles
are sufficiently closely packed on this bundle that the fluid velocity at its center can be approximated
by the speed of vesicles on actin (1 μm s−1), giving (ur, uz ) = (0,−1). Since these node locations
are at r = 0, standard regularized Stokeslets must be used here.

A regularization parameter of ε = 0.05 is chosen in all cases and the ringlets are linearly spaced
a distance approximately 0.025 apart, resulting in a smooth velocity profile. The flow velocity for
z < 3 (not pictured) always matches the flow velocity at z = 3 almost exactly, with no further change
occurring in the ẑ direction.

C. Results

1. Role of the central actin bundle

The CAB has long been hypothesized to aid in the removal of vesicles from the apical region,
but direct observation of vesicle transport along actin is often hindered by the small size of vesicles
(typically below the resolution limit of conventional confocal microscopes). Higher resolution
imaging methods such as evanescent wave microscopy have been used to observe long-range vesicle
movement (presumably a result of actomyosin transport) in the periphery of the tube [40], but the
limited penetration depths available in these methods (less than or equal to 400 nm) do not allow
for imaging of the central region. Spatiotemporal image correlation spectroscopy analysis suggests
a way of determining whether the central bundle participates in vesicle transport. Directed vesicle
movement in the periphery of the tube is not seen to exceed speeds of approximately 0.5 μm s−1,
smaller than the approximately 0.8 μm s−1 observed in the center [33]. By using the method of
regularized ringlets and prescribing fluid velocity only along the PAB, where |uT | = 0.5 μm s−1

and the tube boundary with apical growth speed vg = 0.1 μm s−1, the resulting fluid velocity in the
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FIG. 12. Dimensionless magnitude and direction of apical cytosolic flow in (a) the laboratory frame and
(b) the tip frame, calculated using the prescribed velocity of magnitude 0.5 μm s−1 on the peripheral actin
bundle, as well as a prescribed normal velocity with maximum magnitude equal to the growth speed 0.1 μm s−1

at the apical boundary. Velocities are scaled by the speed of vesicles on actin (1 μm s−1), with lengths scaled
by the radius of the tube (8.13 μm).

center should provide further insight insight into whether the central bundle participates in vesicle
transport.

The results of this investigation can be seen in Fig. 12, with both laboratory [Fig. 12(a)] and tip
[Fig. 12(b)] frames shown. The shape of the velocity profile in Fig. 12(a) is in excellent agreement
with the STICS analysis of Bove et al. [33], with a wider band of basal flow through the center than
apical flow in the periphery. However, despite an arguably exaggerated prescribed peripheral fluid
velocity of 0.5 μm s−1, fluid velocity in the center does not achieve speeds of 0.8 μm s−1. This
is a strong indication that the CAB must also participate in the transport of vesicles, particularly
considering that that our current implementation of the Stokes equations does not account for
variations in local fluid viscosity (known to be larger in the presence of filamentous actin networks
[41], reducing the fluid velocity induced by any given force). The increased flow speed through
the center of the tube can be easily accounted for by inclusion of additional drag from actomyosin
vesicle transport (known to reach speeds of up to 2 μm s−1 [39,42]) along the CAB, with the largest
velocities being observed at the very center as a result of the reduced cytosolic volume in this region.

2. Influence of growth speed

We now turn our attention to the effect of tube growth speed on the cytosolic velocity profile.
Three additional velocity profiles are produced, based on three different growth speeds for the tube
(0, 0.1, and 0.2 μm s−1). These speeds (approximately) correspond to that of a static tube, the typical
growth rate cited in Bove et al. [33], and the average growth rate measured by Vidali et al. [39] for
the Lilium longiflorum species. Fluid velocity is prescribed along the PAB (|uT | = 0.5 μm s−1), the
CAB (uz = −1 μm s−1), and the tube boundary (vg = 0, 0.1, 0.2 μm s−1), in each case.

Figures 13(a)–13(c) show the velocity profiles for each of these three tube growth speeds in
the laboratory frame. Significant differences can be seen between the three profiles, in both the
magnitude and direction of the fluid velocity. In particular, at larger growth speeds there is a wider
band of cytosolic flow in the positive ẑ direction in the peripheral region and the central band of
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FIG. 13. Dimensionless magnitude and direction of apical cytosolic flow in (a)–(c) the laboratory frame and
(d)–(f) the tip frame, calculated using prescribed velocities of magnitude 0.5 and 1 μm s−1 on the peripheral
and central actin bundles, respectively, as well as a prescribed normal velocity with maximum magnitude equal
to the growth speed (a) and (d) 0 μm s−1, (b) and (e) 0.1 μm s−1, and (c) and (f) 0.2 μm s−1, at the apical
boundary. Velocities are scaled by the speed of vesicles on actin (1 μm s−1), with lengths scaled by the radius
of the tube (8.13 μm).

basal flow is both narrower and of a reduced magnitude. This is an expected consequence of mass
conservation, since in a tube with a faster growth speed more fluid must flow towards the apical
region to fill the increasing space.

Figures 13(d)–13(f) show the velocity profiles for each of these three tube growth speeds in
the tip frame. Here the growth speed of the tube has been subtracted from the ẑ component of
the fluid velocity for each corresponding velocity profile in the laboratory frame. Interestingly, the
differences between the velocity profiles are significantly less pronounced in this frame of reference.
Differences in the magnitude of the fluid velocity still persist, but the overall shapes of the profiles
bear a striking similarity. The persistent shape of the velocity profiles seen in Figs. 13(d)–13(f) could
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help explain the observed similarities in the distribution of the apical vesicle population and other
elements of the cytoplasm across multiple pollen tube species and throughout different phases of
oscillatory growth.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the regularized fundamental solution for the velocity (single-layer potential) and
stress (double-layer potential) due to an axisymmetric ring of smoothed point forces (the regularized
ringlet) was derived, expanding on the work of Cortez et al. [11,12]. The velocity solution, written
in the form of complete elliptic integrals of the first and second kind, tends to the singular solution
of Pozrikidis [19] in the limit as the regularization parameter ε tends to zero.

For the resistance problem on the translating and rotating unit sphere, the method of regularized
ringlets was shown to produce small relative errors in drag calculations and small condition numbers
for the underlying resistance matrices. Further testing in the case of the translating unit sphere shows
that the regularized ringlet performs favorably compared to the traditional method of regularized
Stokeslets in terms of both accuracy (Appendix E) and speed (Appendix G) and that it possesses
more satisfactory convergence properties than the singular ringlet (Appendix F).

The applicability of the regularized ringlet to fluid flow problems involving body surface motion
in the r̂ direction (perpendicular to the line of axisymmetry) was established in the example
of Purcell’s toroidal swimmer. Using the regularized ringlet method, we were able to reproduce
Leshansky and Kenneth’s [20] results for the scaled propulsion velocity of the toroidal swimmer,
propelled by surface tank treading against the direction of motion of its outer surface. Our results
show a significant improvement over the asymptotic solution found by integrating a centerline
distribution of rotlets in the limit as slenderness decreases (s0 → 0). The use of regularized ringlets
also yields the drag force at all points on the torus surface for the toroidal swimmer, information
that is not readily available using the series or rotlet solutions.

One limitation of the method derived in this paper concerns applicability to multibody Stokes
flow problems, in which regularized ringlets can only be employed if the motion of all bodies is
restricted to a single line of axisymmetry. When this is not the case, the resulting nonconstant force
distribution around the central line of axisymmetry of each individual body means that analytical
ringlet evaluation is not possible. The method could not, for example, be employed to model the
interactions between multiple swimming tori for all of the cases considered in a recent paper
by Huang and Fauci [43] (in which the standard method of regularized Stokeslets is used). We
do note however that Huang and Fauci’s optimal configuration for toroidal swimmers (in terms
of translational velocity and energy efficiency) consists of a corotating pair with a common line
of axisymmetry, a situation that regularized ringlets can model very effectively. The effectiveness of
the method of regularized ringlets in modeling this corotating toroidal pair, suggested as a potential
design for motile nanomachines [43], highlights the possible future usage of the method in the
modeling of other efficient forms of axisymmetric motion.

In order to elucidate the further benefits of regularization, we studied the case of cytosolic flow
in the growing pollen tube. Here the inducing drag force is the result of the directed actomyosin
transport of vesicles inside the fluid, making application of singular Stokeslet methods particularly
challenging. Since the area over which the force is applied is also relatively large (and somewhat
indeterminate), being able to use the regularization parameter ε to control the spreading of the force
is also vital to the solution.

Using the regularized ringlet solution for the steady Stokes equations, we were able to show that
it is highly likely that the central actin bundle plays a role in the removal of vesicles from the apical
pool. This has long been hypothesized, with vesicle movement through the central region seen to
reach speeds of up to 2 μm s−1 [33] (similar to those of actomyosin transport), but direct evidence
has been lacking. Fluid velocity profiles based on drag induced by actomyosin transport of vesicles
along the peripheral bundle alone show that cytosolic flow in the central region does not reach these
speeds, strongly suggesting that actomyosin transport takes place on the central actin bundle.
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During further investigation, we were able to show that the shape of the cytosolic velocity
profile relative to the moving tip is largely independent of the growth speed of the tube (under
the assumption that the actin profile is able to keep up with the advancing tip). This provides
some insight into how the tube is able to consistently orient its internal architecture across multiple
pollen tube species and in spite of changes in growth speed during different phases of oscillatory
growth. Future work on the pollen tube can be done by using the cytosolic velocity profiles we
have produced in tandem with an advection-diffusion-reaction equation for the spatiotemporal
distribution of vesicles in the pollen tube. Investigating the conditions necessary to produce the
inverted vesicle cone almost universally observed in the apex of the angiosperm pollen tube yields
results concerning the appropriate values for different parameters pertaining to tube growth. We
believe that the regularized Stokeslet ring method will be of benefit to further studies in the fluid
dynamics of axisymmetric growth and beyond.
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APPENDIX A: REGULARIZED STOKESLETS IN CYLINDRICAL COORDINATES
FOR RINGLET EVALUATION

The expressions Sε
i j (x0, x) for the fluid point x0 = (r0, 0, z0) and ring point xn = (rn, θ, zn) in

cylindrical coordinates are

Sε
11 = 1

r̂3
ε

[2(r0 − rn cos θ )2 + (rn sin θ )2 + (z0 − zn)2 + 2ε2],

Sε
12 = 1

r̂3
ε

[−(r0 − rn cos θ )(rn sin θ )],

Sε
13 = 1

r̂3
ε

[(r0 − rn cos θ )(z0 − zn)],

Sε
21 = 1

r̂3
ε

[−(r0 − rn cos θ )(rn sin θ )],

Sε
22 = 1

r̂3
ε

[(r0 − rn cos θ )2 + 2(rn sin θ )2 + (z0 − zn)2 + 2ε2],

Sε
23 = 1

r̂3
ε

[−(rn sin θ )(z0 − zn)],

Sε
31 = 1

r̂3
ε

[(r0 − rn cos θ )(z0 − zn)],

Sε
32 = 1

r̂3
ε

[−(rn sin θ )(z0 − zn)],

Sε
33 = 1

r̂3
ε

[(r0 − rn cos θ )2 + (rn sin θ )2 + 2(z0 − zn)2 + 2ε2], (A1)

in which r̂ε = [(r0 − rn cos θ )2 + (rn sin θ )2 + (z0 − zn)2 + ε2]1/2.
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APPENDIX B: EVALUATING THE LIMITING BEHAVIOR OF Rε
αβ

To understand the behavior of Rε
αβ as rn, r0 → 0, it is easiest to consider Rε

αβ in the form

Rε
rr (x0, xn) = rn{−r0rnI0 + [2τ − (z0 − zn)2]I1 − 3r0rnI2}, (B1)

Rε
rz(x0, xn) = rn(z0 − zn)(r0I0 − rnI1), (B2)

Rε
zr (x0, xn) = rn(z0 − zn)(−rnI0 + r0I1), (B3)

Rε
zz(x0, xn) = rn{[τ + (z0 − zn)2 + ε2]I0 − 2r0rnI1}, (B4)

Rε
θθ (x0, xn) = rn[r0rnI0 + (τ + ε2)I1 − 3r0rnI2], (B5)

in which

I0 = 4k3

(4r0rn)3/2

(
1

1 − k2
E

)
, (B6)

I1 = 4k3

(4r0rn)3/2

(
2 − k2

k2(1 − k2)
E − 2

k2
F

)
, (B7)

I2 = 4k3

(4r0rn)3/2

(
k4 − 8k2 + 8

k4(1 − k2)
E − 4(2 − k2)

k4
F

)
, (B8)

with τ = r2
0 + r2

n + (z0 − zn)2 + ε2 and k2 := 4r0rn/(τ + 2r0rn). Evaluating limk→0 In for each n ∈
{0, 1, 2} and substituting these into Eqs. (B1)–(B5) yields the desired results for limrn→0 Rε

αβ and
limr0→0 Rε

αβ .
The first step in evaluating these limits is to observe that from the definition of k, it follows that

k → 0 as either r0 → 0 or rn → 0 (or both). Further, noting that

lim
k→0

4k3

(4r0rn)3/2
= lim

k→0

4
( 4r0rn

τ+2r0rn

)3/2

(4r0rn)3/2
= 4

τ 3/2
, (B9)

in which the value of τ as k → 0 depends on whether r0 → 0 or rn → 0 (or both), it is observed that
I0, I1, and I2 contain a common finite term outside of the large parentheses. Evaluating the remaining
parts of I0, I1, and I2 in the limit as k → 0 requires employing the power series expansions of the
complete elliptic integrals [23] such that

F (k) = π

2

(
1 + 1

4
k2 + 9

64
k4 + · · ·

)
, (B10)

E (k) = π

2

(
1 − 1

4
k2 − 9

64
k4 + · · ·

)
. (B11)

Letting E ∼ π/2, it follows that

lim
k→0

(
1

1 − k2
E

)
= π

2
. (B12)

Similarly, letting E ∼ π
2 (1 − 1

4 k2) and F ∼ π
2 (1 + 1

4 k2), it can be found that

lim
k→0

(
2 − k2

k2(1 − k2)
E − 2

k2
F

)
= 0. (B13)
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Finally, using E ∼ π
2 (1 − 1

4 k2 − 9
64 k4) and F ∼ π

2 (1 + 1
4 k2 + 9

64 k4) yields

lim
k→0

(
k4 − 8k2 + 8

k4(1 − k2)
E − 4(2 − k2)

k4
F

)
= −π

8
. (B14)

Compiling all of the above gives

I0 → 2π/τ 3/2, I1 → 0, I2 → −π/2τ 3/2 as k → 0, (B15)

which upon substitution into the expressions for Rε
αβ yields

lim
rn→0

Rε
αβ ≡ 0, (B16)

lim
r0→0

Rε
rr = lim

r0→0
Rε

rz = lim
r0→0

Rε
θθ = 0, (B17)

lim
r0→0

Rε
zr = −2πr2

n (z0 − zn)/τ 3/2, (B18)

lim
r0→0

Rε
zz = 2πrn(τ + (z0 − zn)2 + ε2)/τ 3/2. (B19)

APPENDIX C: FLUID FLOW INDUCED BY UNIT RINGLET FORCES

Figure 14 shows the fluid velocity induced by a ringlet located at (r, z) = (0.5, 0.5) with
associated unit force in the r̂ and ẑ directions, both under free-space conditions [Figs. 14(a) and
14(c)] and in the presence of a cylindrical wall at r = 1 [Figs. 14(b) and 14(d)], with the wall also
represented by Stokes ringlets. In the presence of the bounding wall, closed streamlines and toroidal
eddies are observed.

APPENDIX D: EVALUATING THE DOUBLE-LAYER POTENTIAL

Recall the form of the double-layer potential

(DLP)i = 1

8π

∫
∂D

uj (x)T ε
i jk (x0, x)nk (x)dS(x), (D1)

in which the stress tensor T ε
i jk is given by

T ε
i jk (x0, x) = −6

(x0,i − xi )(x0, j − x j )(x0,k − xk )

(|x0 − x|2 + ε2)5/2

− 3ε2 (x0,i − xi )δ jk + (x0, j − x j )δik + (x0,k − xk )δi j

(|x0 − x|2 + ε2)5/2
. (D2)

As with the Stokeslet Sε
i j in the single-layer potential, the stress tensor T ε

i jk can be expressed in
cylindrical coordinates via

x0,1 − x1 = r0 − rn cos θ, (D3)

x0,2 − x2 = −rn sin θ, (D4)

x0,3 − x3 = z0 − zn, (D5)

|x0 − x|2 = (r0 − rn cos θ )2 + (rn sin θ )2 + (z0 − zn)2 (D6)
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FIG. 14. Fluid flow induced by unit force on ringlet placed at (r, z) = (0.5, 0.5). (a) and (b) show axial
force, with (c) and (d) showing radial force. A no-slip bounding wall is present at r = 1 in cases (b) and (d).

and the Cartesian and cylindrical forms of the flow vector u are related via uj = 	 jβuβ in which

	(θ ) =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠. (D7)

Recalling that the azimuthal component of the normal to an axisymmetric body is zero, the
transformation from polar to Cartesian coordinates is ni = �iαnα , where

�(θ ) =
⎛
⎝cos θ 0 0

sin θ 0 0
0 0 1

⎞
⎠. (D8)

Let

Qαβγ = rδαi

∫ 2π

0
	 jβT ε

i jk�kγ dθ (D9)
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such that

(DLP)α = 1

8π

∫ L

0
Qαβγ uβnγ ds. (D10)

For fixed α, nonzero elements of Qαβγ are given by

Qα11 = rnδαi

∫ 2π

0

(
T ε

i11 cos2 θ + T ε
i12 sin θ cos θ + T ε

i21 sin θ cos θ + T ε
i22 sin2 θ

)
dθ,

Qα13 = rnδαi

∫ 2π

0

(
T ε

i13 cos θ + T ε
i23 sin θ

)
dθ,

Qα21 = rnδαi

∫ 2π

0

(−T ε
i11 sin θ cos θ − T ε

i12 sin2 θ + T ε
i21 cos2 θ + T ε

i22 sin θ cos θ
)
dθ,

Qα23 = rnδαi

∫ 2π

0

(−T ε
i13 sin θ + T ε

i23 cos θ
)
dθ,

Qα31 = rnδαi

∫ 2π

0

(
T ε

i31 cos θ + T ε
i32 sin θ

)
dθ,

Qα33 = rnδαi

∫ 2π

0

(
T ε

i33

)
dθ (D11)

such that each Qαβγ is a linear sum of terms of the form

〈〈•〉〉i jk := rn

∫ 2π

0
T ε

i jk • dθ. (D12)

Letting

Jm,n := rn

∫ 2π

0

sinm θ cosn θ

(τ − 2r0rn cos θ )5/2
dθ, (D13)

in which Jm,n = 0 for m odd, each of the necessary 〈〈•〉〉i jk can be written as

〈〈cos2 θ〉〉111 = −(
6r3

0 + 9ε2r0
)
J0,2 + (

18r2
0 rn + 9ε2rn

)
J0,3 − 18r0r2

nJ0,4 + 6r3
nJ0,5,

〈〈sin θ cos θ〉〉112 = (
3ε2rn + 6r2

0rn
)
J2,1 − 12r0r2

nJ2,2 + 6r3
nJ2,3,

〈〈sin2 θ〉〉122 = −3ε2r0J2,0 + 3ε2rnJ2,1 − 6r0r2
nJ4,0 + 6r3

nJ4,1,

〈〈cos θ〉〉113 = −3(z0 − zn)
[(

2r2
0 + ε2

)
J0,1 − 4r0rnJ0,2 + 2r2

nJ0,3
]
,

〈〈sin θ〉〉123 = 6rn(z0 − zn)(r0J2,0 − rnJ2,1),

〈〈1〉〉133 = [6(z0 − zn)2 + 3ε2](−r0J0,0 + rnJ0,1);

〈〈sin θ cos θ〉〉211 = (
3ε2rn + 6r2

0rn
)
J2,1 − 12r0r2

nJ2,2 + 6r3
nJ2,3,

〈〈sin2 θ〉〉212 = −3ε2r0J2,0 + 3ε2rnJ2,1 − 6r0r2
nJ4,0 + 6r3

nJ4,1,

〈〈cos2 θ〉〉221 = −3ε2r0J0,2 + 3ε2rnJ0,3 + 6r3
nJ2,3 − 6r0r2

nJ2,2,

〈〈sin θ cos θ〉〉222 = 9ε2rnJ2,1 + 6r3
nJ4,1,

〈〈sin θ〉〉213 = 6rn(z0 − zn)(r0J2,0 − rnJ2,1),

〈〈cos θ〉〉223 = −3ε2(z0 − zn)J0,1 − 6r2
n (z0 − zn)J2,1;

〈〈cos2 θ〉〉311 = −3(z0 − zn)
[(

2r2
0 + ε2

)
J0,2 − 4r0rnJ0,3 + 2r2

nJ0,4
]
,
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〈〈sin θ cos θ〉〉312 = 6r0rn(z0 − zn)J2,1 − 6r2
n (z0 − zn)J2,2,

〈〈sin2 θ〉〉322 = −3ε2(z0 − zn)J2,0 − 6r2
n (z0 − zn)J4,0,

〈〈cos θ〉〉313 = [6(z0 − zn)2 + 3ε2](−r0J0,1 + rnJ0,2),

〈〈sin θ〉〉323 = [6rn(z0 − zn)2 + 3rnε
2]J2,0,

〈〈1〉〉333 = −[6(z0 − zn)3 + 9ε2(z0 − zn)]J0,0. (D14)

Using the double-angle formulas for sin and cos, we are able to express Jm,n purely in terms of even
powers of cos such that

Jm,n = λ(2m)
∫ π/2

0

(2 cos2 θ − 1)n(1 − cos2 θ )m/2 cosm θ

(1 − k2 cos2 θ )5/2
dθ for m even, (D15)

where λ = rn(k/
√

r0rn)5/8 = 4rn(
√

τ + 2r0rn)−5. Note that the upper limit of integration was first
reduced by application of the double-angle formulas, followed by the even parity of the resulting
integrand about π/2. If we further define

Cm = λ

∫ π/2

0

cos2m θ

(1 − k2 cos2 θ )5/2
dθ,

then expanding Eq. (D15) for the relevant values of m and n yields

J0,0 = +C0,

J0,1 = −C0 + 2C1,

J0,2 = +C0 − 4C1 + 4C2,

J0,3 = −C0 + 6C1 − 12C2 + 8C3,

J0,4 = +C0 − 8C1 + 24C2 − 32C3 + 16C4,

J0,5 = −C0 + 10C1 − 40C2 + 80C3 − 80C4 + 32C5;

J2,0 = 4(+C1 − C2),

J2,1 = 4(−C1 + 3C2 − 2C3),

J2,2 = 4(+C1 − 5C2 + 8C3 − 4C4),

J2,3 = 4(−C1 + 7C2 − 18C3 + 20C4 − 8C5);

J4,0 = 16(+C2 − 2C3 + C4),

J4,1 = 16(−C2 + 4C3 − 5C4 + 2C5), (D16)

in which the integrals Cm can be expressed in terms of complete elliptic integrals of the first and
second kind (F and E , respectively) with elliptic modulus k as

C0 = λ

3(1 − k2)

(
−F + 2(2 − k2)

1 − k2
E

)
,

C1 = λ

3k2(1 − k2)

(
−F + 1 + k2

1 − k2
E

)
,

C2 = λ

3k4(1 − k2)

(
(2 − 3k2)F + 2(2k2 − 1)

1 − k2
E

)
,

C3 = λ

3k6(1 − k2)

(
(8 − 9k2)F − 3k4 − 13k2 + 8

1 − k2
E

)
,
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C4 = λ

3k8(1 − k2)

(
(16 − 16k2 − k4)F − 2k6 + 4k4 − 24k2 + 16

1 − k2
E

)
,

C5 = λ

15k10(1 − k2)

(
128 − 120k2 − 9k4 − 4k6)F − 8k8 + 11k6 + 27k4 − 184k2 + 128

1 − k2
E

)
.

(D17)

APPENDIX E: TRANSLATING UNIT SPHERE

Following the example of Cortez et al. [12], consider the translating unit sphere with velocity
u = −ẑ. The sphere is parametrized and discretized in the same manner as in Sec. III A. Assuming
the sphere experiences zero-azimuthal spin, the fluid velocity at any point x0 can be approximated
using the N ringlets via Eq. (22). Using intervals of equal size, the quadrature weight associated
with numerical integration over p is simply wn = π

N ∀ n. Now considering the velocity evaluated at
the location of each ring in the r-z plane yields a system of equations which can be written in matrix
form

U = 1

8Nμ

[
Rε

rr Rε
rz

Rε
zr Rε

zz

]
Ga, (E1)

as outlined in Eqs. (24)–(26). By setting

ga
r (xi ) = 0, ga

z (xi ) = 3μ

2a
U ∀ i = 1, . . . , N, (E2)

where μ, a, and U are the fluid viscosity, sphere radius, and sphere speed (in z), respectively, the
classical solution for Stokes flow

ur (xi ) = 0, uz(xi ) = U ∀ i = 1, . . . , N, (E3)

should follow. Note that this calculation is independent of the value of μ by cancellation (besides
the implicit requirement that Re = UL/μ � 1 for the Stokes equations to be valid) and that we use
a = 1 and U = −1 as described in the outline of the problem.

The first test involves using N = 50 regularized rings so that the grid size is given by π/50 ≈
0.065. This is chosen such that the minimum distance between adjacent rings in the axisymmetric
discretization of the sphere surface is approximately the same as the distance between adjacent
points in the discretization of Cortez et al. using 3N2/2 regularized Stokeslets. The regularization
parameter ε is varied between 0.005 and 0.1, and the error in the �2 norm for the z component of the
flow field is recorded in each case. This error is defined as

|uz + 1|2 :=
√∑N

i=1[uz(xi ) + 1]2

N
. (E4)

Division by N is necessary for the sake of comparison of errors with later tests where the value of
N will change in order to alter the grid size. Initial results using regularized ringlets are shown in
Fig. 15 and are favorable compared to those using regularized Stokeslets. The regularized ringlet
method appears to be optimal for a lower value of ε than the regularized Stokeslet method, with
a minimal error found at ε ≈ 0.015 with our method and ε ≈ 0.025 with that of the regularized
Stokeslet, as well as being slightly more accurate for almost all values of ε tested. Interestingly, the
magnitude of the errors using the two methods briefly appear to coincide near the point at which the
regularized Stokeslet error is minimized.

The second test involves varying the grid size for a fixed value of ε = 0.01. Regularized ringlet
results are shown in Fig. 16 and again compare very favorably to results using regularized Stokeslets.
For larger grid sizes our errors are significantly reduced compared to those found using regularized
Stokeslets. This is at least in part a result of the ringlet method being better suited to handling the
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FIG. 15. Plot of �2 errors for various values of ε using N = 50 regularized Stokeslet rings in our
discretization of the sphere surface (solid line), plotted against data taken from Ref. [12] (dashed line).

small value of ε = 0.01. With both methods, the error eventually stops decreasing as the grid size
tends towards zero since in this regime the regularization error dominates.

The final test again looks at the effect of varying the value of ε on the magnitude of the numerical
error, this time using N = 124 ringlets for a grid size approximately equal to 0.026 [note that we do
not use N = 125 ringlets to avoid placing a ring at the point (r, z) = (1, 0), which would result in a

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
This paper
Ref. [12]

FIG. 16. Plot of �2 errors for different grid sizes (N = 25, 50, 100, 200, 400) in our regularized ring
discretization of the sphere surface using fixed ε = 0.01 (solid line), plotted against data taken from Ref. [12]
(dashed line).
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FIG. 17. Plot of �2 errors at surface point (a) (r, z) = (1, 0) and (b) (r, z) = (1.5, 0) for various values of ε

using N = 124 regularized Stokeslet rings in our discretization of the sphere surface (solid line), plotted against
data taken from Ref. [12] (dashed line).

singular velocity when ε = 0]. The velocity error is compared at two distinct points: (r, z) = (1, 0)
lying on the surface of the sphere and (r, z) = (1.5, 0) lying a distance of half the sphere radius
away. Ringlet results are shown in Figs. 17(a) and 17(b) and once more match regularized Stokeslet
results very closely. The magnitude of the error is linear with respect to ε on the surface of the
sphere and quadratic a sufficient distance away.

APPENDIX F: COMPARISON TO SINGULAR SOLUTIONS

Regularized solutions for Stokes flow have the advantage of being simple to implement and
readily usable without needing to worry about the presence of singularities in the computational
domain. This does not mean that singular solutions cannot be used however; so long as the
appropriate care is taken to deal with the singularities in some way, singular solutions can also yield
excellent results. The method of fundamental solutions [22,44] is a popular choice for implementing
singular Stokeslet solutions, in which a fictitious boundary is placed outside of the computational
domain and adjacent to the physical boundary of the problem considered. Stokeslets (or source
points) are placed on this fictitious boundary and are associated with collocation points (typically
of an equal number) on the physical boundary, with the force density for each Stokeslet being
calculated using the resistance matrix such that the physical boundary conditions are satisfied. What
the appropriate distance between the fictitious and physical boundaries should be is difficult to
determine a priori, and in some sense this distance can be regarded as a regularization parameter for
the singular problem [45]. If the separation distance is too small, the proximity between the Stokeslet
singularities and the physical boundary may lead to inaccurate solutions, whereas if the distance
is too large the resistance matrix may become ill-conditioned [46]. In some cases, placement of
the fictitious boundary may also be constrained by the geometry of the problem itself, leading to
solutions that are far from optimal. The difficulty in balancing all of these factors is one of the
reasons for the popularity of regularized methods.

In the case of the axisymmetric ring of singular Stokeslets, some interesting behavior occurs in
the limit as the source and collocation points coincide. In this limit, k tends to unity, from which it
follows that F → ∞ and E → 1 in Eqs. (48)–(52). By employing the asymptotic expansion F ≈
− ln r̂ + · · · in which r̂ = |x0 − xn|, we find that R0

θθ ≈ 2R0
rr ≈ 2R0

zz ≈ −4 ln r̂ + · · · which all tend
to infinity as r̂ → 0 but at a significantly slower rate than the individual Stokeslet (approximately
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FIG. 18. Comparison of the magnitude of the singularities present in the Stokeslet (squares) and the
Stokeslet ring (circles) in the limit as the source and collocation point coincide.

equal to r̂−1). The matrix elements R0
rz and R0

zr are similarly divergent but typically take values in
the range [−1, 1]. Figure 18 shows a comparison of the magnitude of the singularities as r̂ → 0 for
R0

rr, R0
zz ≈ −2 ln r̂ (circles) versus S0

i j ≈ 2r̂−1 for i = j (squares). A log-log plot must be employed
due to the speed with which the Stokeslet singularity increases for small r̂.

As a result of the slow rate with which the singularity in the axisymmetric Stokeslet ring
approaches infinity, the method of fundamental solutions can be employed with a separation distance
between the fictitious and physical boundaries that is several orders of magnitude smaller than
is possible using individual Stokeslets. This allows for the discovery of accurate solutions with a
well-conditioned underlying resistance matrix. We illustrate this by once again conducting MATLAB

simulations for the resistance problem on the translating unit sphere (velocity −ẑ) using both
regularized and singular Stokeslet rings.

As before, the sphere is parametrized in two dimensions using the arc segment p = cos ϕ r̂ +
sin ϕ ẑ for ϕ ∈ [−π/2, π/2] with N = 400 points placed along its length at locations xn. For the
method regularized ringlets, these xn denote ringlet locations. The velocity u(xn) = −ẑ is prescribed
at all ringlet locations and the resistance matrix is constructed to yield the required force densities
gl (xn). The condition number of the resistance matrix Rε is determined using the cond function in
MATLAB. The analytical solution for the drag on the unit sphere with unit velocity −ẑ is known to
be equal to (3/2)ẑ, so the mean relative error for the calculation of the force term resulting from the
resistance matrix is given by

e
(
ga

z

) = 1

N

N∑
n=1

∣∣∣∣ga
z (xn) + 3/2

−3/2

∣∣∣∣, (F1)

in which we recall that ga is the force per unit area exerted by the sphere on the fluid and
so has opposite sign to the drag. The fluid velocity at the near- and far-field locations (r, z) =
(0, 1.1), (0, 1.5) is evaluated using the force densities ga according to Eq. (22). The relative error in
these velocities is given by

e(1.1) =
∣∣∣∣uz(0, 1.1) + 1315/1331

−1315/1331

∣∣∣∣, e(1.5) =
∣∣∣∣uz(0, 1.5) + 23/27

−23/27

∣∣∣∣, (F2)
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TABLE V. Accuracy of the method of regularized ringlets for various values of the regularization parameter
ε in the resistance problem on the translating unit sphere. Columns refer to relative errors in total drag on the
sphere e(ga

z ), fluid velocity at the point (r, z) = (0, 1.1) denoted by e(1.1) and analogous error at (0,1.5), and
finally the condition number of the underlying resistance matrix.

ε e(ga
z ) e(1.1) e(1.5) Condition No.

0.1 5.3 4.0 × 10−3 1.7 × 10−2 1.1 × 1019

0.05 1.8 × 10−2 2.5 × 10−3 8.4 × 10−3 8.6 × 1015

0.025 9.7 × 10−3 1.4 × 10−4 4.1 × 10−3 2.9 × 1010

0.01 4.3 × 10−3 5.8 × 10−4 1.6 × 10−3 4.2 × 105

0.005 2.5 × 10−3 2.2 × 10−4 7.6 × 10−4 1.4 × 104

0.0025 2.1 × 10−3 2.3 × 10−4 1.1 × 10−4 2.8 × 103

0.001 2.5 × 10−3 1.0 × 10−3 7.4 × 10−4 1.0 × 103

based on the analytical solution given by Cortez et al. [12]. Table V shows a summary of the results
obtained for each of these four metrics for various values of regularization parameter ε.

For the method of fundamental solutions, let xn denote collocation points on the sphere surface; N
source points are placed at positions xs = (1 − 10−b) · xc, where b is a parameter that represents the
separation distance between the physical and fictitious boundaries (Fig. 19). The velocity u(xn) =
−ẑ is prescribed at all collocation points and the resistance matrix is constructed to yield the required
force densities gl (xs) at each source point. The accuracy and applicability of the method is measured
using the same four metrics as for the method of regularized ringlets. Table VI shows a summary
of results for various values of separation distance 10−b, analogous to the results in the regularized
case from Table V.

Similar results are achievable using both methods, although the singular method generally yields
more well-conditioned resistance matrices and can produce relative errors of a smaller magnitude
for the drag calculation and fluid velocities. It should however be noted that it is not possible to
minimize each error in the singular calculation concurrently [as the smallest values for e(1.1) and
e(1.5) are generally associated with larger values for the condition number and e(ga

z )]. Despite
axisymmetry enabling a drastic reduction of the separation distance for the singular problem,
the question of what distance is considered optimal still persists. This is not an issue for the
regularized ringlet, in which case each error achieves a minimal value for similar values of ε

(≈0.0025–0.005). For excessively small ε (<0.05), the error becomes nonmonotonic as is often
the case with regularized Stokeslet methods (see, e.g., Fig. 15 and Refs. [12,26]). The same is also
true for small b in the singular case. For both regularized and singular methods, reduction of the

z

r

10−b

collocation points
(physical boundary)

source points
(fictitious boundary)

FIG. 19. Schematic diagram for implementation of the method of fundamental solutions on the unit sphere
using singular rings in the r-z plane. Separation distance 10−b is exaggerated for the sake of clarity.
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TABLE VI. Accuracy of the method of fundamental solutions using singular ringlets for various values
of the separation distance 10−b in the resistance problem on the translating unit sphere. Columns refer to
relative errors in total drag on the sphere e(ga

z ), fluid velocity at the point (r, z) = (0, 1.1) denoted by e(1.1)
and analogous error at (0,1.5), and finally the condition number of the underlying resistance matrix.

b e(ga
z ) e(1.1) e(1.5) Condition No.

1 4.8 × 101 1.5 × 10−13 3.5 × 10−14 1.1 × 1019

2 1.6 × 10−2 1.6 × 10−6 3.8 × 10−7 9.5 × 106

3 4.3 × 10−3 9.5 × 10−4 6.3 × 10−4 2.5 × 103

4 5.4 × 10−4 3.0 × 10−3 2.5 × 10−3 4.4 × 102

5 7.3 × 10−3 5.1 × 10−3 4.6 × 10−3 2.4 × 102

6 9.4 × 10−3 7.2 × 10−3 6.7 × 10−3 1.6 × 102

7 1.1 × 10−2 9.3 × 10−3 8.8 × 10−3 1.2 × 102

regularization parameter ε or b always appears to result in a reduction of the condition number of
the resistance matrix.

Although the singular method can be tuned to give smaller relative errors in either the fluid
velocity or total drag separately, it cannot do so simultaneously; regularized ringlets display more
satisfactory convergence properties and are the more effective method to minimize errors in both
fluid velocity and total drag.

APPENDIX G: MEASURING COMPUTATIONAL SPEED

Table VII shows a comparison of the computational times tR and tS (measured in seconds),
associated with constructing the 2N × 2N ringlet matrix Rε (in the zero-azimuthal-velocity fluid
case) and the 3N × 3N Stokeslet matrix Sε, respectively. The increase in computational time for
computing Rε is a result of needing to compute the complete elliptic integrals F (k) and E (k) for all
combinations of ring locations (xm, xn) ∀ m, n ∈ 1, . . . , N , which requires the construction of two
further 2N × 2N matrices E and F . The computational time needed for this isolated operation te
is also listed in Table VII. The total additional time needed to construct Rε is modest, typically
between 10% and 20% of the time needed for Sε.

The computational time associated with F and E (and by extension Rε) can be reduced by
evaluating F (k) and E (k) to a lower degree of accuracy; the MATLAB function ellipke(k,TOL)
calculates F (k) and E (k) to the accuracy defined by TOL, which has a default value of 2−52 ≈
2.2 × 10−16 (double-precision accuracy). This is a far greater accuracy than we are typically able to
achieve using regularized Stokeslet methods, suggesting a larger value of TOL will suffice.

We note that by consideration of the size of the matrices involved and the typically small value
of te, we should hypothetically be able to achieve tR = (4/9)tS + te < tS for any given value of N . In
practice, this is not the case. The elements Sε

i j for i, j ∈ {1, 2, 3} share a common form that enables
them to be encoded in matrix form Sε very efficiently. The same is not true of the elements Rε

αβ for
α, β ∈ {r, z} and hence why tR > tS ∀ N in Table VII.

TABLE VII. Comparison of computational time for evaluating elliptic integrals as well as constructing ring
matrix Rε and Stokeslet matrix Sε using varying numbers of nodes.

Time (s) N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 N = 6000

te 0.1029 0.4100 0.9208 1.6228 2.5303 3.6553
tR 0.2863 1.1182 2.4406 4.4124 6.9682 9.9643
tS 0.2380 0.9396 2.1676 3.7562 6.0355 8.9524
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TABLE VIII. Computational time associated with solving the linear system X = A\b for varying sizes of
matrix A and vector b.

Time (s) N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 N = 6000

tN 0.0178 0.1119 0.2986 0.6377 1.2263 2.0053
t2N 0.1018 0.7139 2.0614 5.1004 9.3121 15.7495
t3N 0.2978 2.3084 6.7434 15.1372 30.0496 50.7495

Inclusion of azimuthal flow (such that an additional N × N matrix must be constructed for Rε
θ )

incurs an additional cost of small value, approximately equal to (tR − te)/4 for any given value of N .
We divide by 4 under the assumption that the cost associated with constructing the additional N ×
N matrix Rε

θ is one-quarter of the cost associated with constructing the zero-azimuthal 2N × 2N
matrix Rε.

The true value of working with ringlets can be seen by evaluating the cost of inverting the
matrices Rε

θ and Rε versus Sε (as is necessary in the resistance problem for evaluating the force
associated with a given boundary velocity). These matrices are of size N × N , 2N × 2N , and
3N × 3N , respectively. We investigate the cost of solving a linear system X = A\b in which A
and b are an M × M matrix and an M × 1 vector of normally distributed random data, respectively,
with M ∈ {N, 2N, 3N}. We denote the time taken to solve this system by tN , t2N , and t3N in each
case. The results are given in Table VIII, in which it is clear to see that t3N is significantly larger
than the sum of tN and t2N for all values of N tested. In practice, this means that using a 3D Stokeslet
implementation with Sε for solving an axisymmetric resistance problem will always be significantly
more costly than our 2D ringlet implementation with Rε and Rε

θ .
As well as producing smaller resistance matrices with a reduced associated computational cost

for a given number of nodes, our axisymmetric ringlet method also requires far fewer nodes in order
to achieve the same level of accuracy as the traditional regularized Stokeslet method. In Appendix E
it was shown that for the case of the translating unit sphere the axisymmetric discretization of the
sphere surface with N rings produces results that are consistently more accurate than the traditional
3D patch discretization using 3N2/2 nodes. The result using 1000 ringlets in two dimensions
(computational time approximately equal to 0.1 s) thus corresponds to using 1 500 000 regularized
Stokeslets in three dimensions (computational time approximately equal to 500 days, extrapolating
from data in Table VIII and assuming that t3N ∝ N2.6 such that doubling N corresponds to a sixfold
increase in t3N ), a drastic improvement in computational efficiency.

APPENDIX H: FORCE CALCULATION FOR THE ROTATING SPHERE

The expression for the torque on the rotating sphere in a Stokesian fluid is given by

T = −8πμa3�, (H1)

the derivation of which can be found in [28]. This torque is associated with a drag force per unit
area on the surface of the sphere given by f = −3μω0(r/a)θ̂, which can be verified by considering
the identity

T =
∫∫

S
x × f dS, (H2)

where S denotes the sphere surface. Multiplication by ẑ yields

−8πμa3ω0 = ẑ ·
∫∫

S
x × f dS. (H3)
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In cylindrical coordinates, we have

ẑ · (x × f ) = ẑ · {(rr̂ + θ θ̂ + zẑ) × [−3μω0(r/a)θ̂]} = −3μω0(r/a)ẑ · (rẑ − zr̂) = −3μω0(r2/a).
(H4)

Converting to a spherical system (r, θ, ϕ) in which θ denotes the azimuthal angle and ϕ the polar
angle, we substitute r2 = a2 sin2 ϕ and dS = a2 sin ϕ dθdϕ such that

ẑ ·
∫∫

S
x × f dS = −3μa3ω0

∫ 2π

θ=0

(∫ π

ϕ=0
sin3 ϕ dϕ

)
dθ = −6πμa3ω0

∫ π

ϕ=0
sin3 ϕ dϕ

= −6πμa3ω0
4

3
= −8πμa3ω0, (H5)

as required.
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