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Investigation of shear rates of rolling adhesion on leukocytes
with bending of microvilli
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An advanced leukocyte model based on a lattice-Boltzmann lattice-spring model (LLM)
and an adhesive dynamics (AD) is presented. In principle, the model can deal with not only
extensional and compressional but also bending deformation of microvilli of of leukocytes.
In this work, the model is applied to investigate how different flow shear rates affect
bending deformation of the microvilli and related physical properties. It is demonstrated
that at each given flexural stiffness, adhesive bond force, rolling velocity, contact area,
number of bonds, and bending deformation increase as the shear rate increases. At
each given shear rate, the bending angles of microvilli increase as the flexural stiffness
decreases. Therefore, the adhesive bond force, contact area, and number of bonds increase
and result in a decrease in cell rolling velocity. The degree of the decrease depends on
both shear rate and flexural stiffness. In addition, a bonding and debonding process for
individual microvilli is observed and explored from a bending angular point of view.
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I. INTRODUCTION

It has been widely acknowledged that further understanding of cell adhesion (e.g., leukocyte
rolling adhesion) can help us gain more knowledge about the causes of relevant diseases and may
lead to more effective treatments and diagnoses for diseases. Cell adhesion plays important roles in
various in vivo and in vitro binding applications. For example, chimeric antigen receptor T-cells rely
on binding to cancer cells, under various shear rates, in order to slow or halt potential cancer growth
[1,2]. A more general example is leukocytes rolling along the inflammation-activated vascular
endothelium in blood flow, which is a part of the human immune response. This rolling process
is mediated by selectin-ligand bonds, such as P-selectin–P-selectin glycoprotein ligand-1 (PSGL-1)
bonds. Many experimental and numerical studies have confirmed that the dynamics of adhesion
are mainly mediated by the physical chemistry of adhesion molecules, such as the association
and dissociation rates of adhesion bonds [3,4], selectin-ligand density, and the local circulatory
environment including flow shear rate [3,5].

In the earliest attempts of simulation, leukocytes were modeled by rigid spheres. However, cellu-
lar material properties such as cell deformation play a crucial role in the dynamics of cell adhesion.
Khismatullin and Truskey [6,7] first used a compound viscoelastic drop to model neutrophils and
monocytes to investigate the effects of cell deformability in a parallel-plate flow chamber. Almost
at the same time, Jadhav et al. [8] used a neo-Hookean membrane as a leukocyte, coupled with the
immersed boundary method (IBM), to investigate the influence of cell deformability on leukocyte
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rolling adhesion. Their results indicated that cells with deformations roll much slower and are
relatively more stable than those without deformation in shear flow, and the results were consistent
with the experimental findings [9,10]. Since then numerous simulation studies continue to address
the process of cell deformation during cellular adhesion [11–16].

Another critical cellular property is microvillus deformation. Microvilli are fingerlike projections
on the surface of leukocytes. Since most adhesion molecules (e.g., PSGL-1) are located at the
tips of microvilli, microvillus deformation also affects cellular adhesion. Hence, several simulation
studies were performed to examine the influence of the extensional deformation of microvilli on the
dynamics of cell adhesion. Khismatullin and Truskey [6] combined the microvillus spring with the
receptor-ligand bond spring to express the total extensional deformation of microvilli and adhesive
bonds. Later Caputo and Hammer [17] improved Hammer and Apte’s pioneering adhesive dynamics
(AD) [3] by using an elastic spring and a viscous model to approximate the microvilli elastic and
viscous responses to a small force and a large force, respectively. A linear elastic extensional model
was used for the small force, while a nonlinear plastic extensional model was created for the large
force in a tether regime discovered experimentally by Shao et al. [18]. Pawar et al. [19] further
improved Caputo and Hammer’s model by replacing the hard spherical body with a deformable
neo-Hookean membrane. Recently Pospieszalska et al. combined the existing model for microvillus
tether formation with a Kelvin-Voigt viscoelastic model for microvillus extension [20,21]. However,
these studies were limited to microvillus extensional deformation, set flexural stiffness essentially
equal to zero, and did not consider the bending or compressional deformation.

In fact, when a force tangential to the cell surface is exerted on a leukocyte microvillus, it will be
bent. This phenomenon was observed in experiments [22]. Similar to the extensional deformation
of microvilli, the bending of microvilli due to their flexibility can potentially influence the binding
between selectins and ligands. Munn et al. [23] suggested that when microvilli are flattened along
the cell surface, the receptors at the bases of microvilli (instead of at the tips of microvilli) may
obtain additional adhesion with ligands on the endothelial cells or on the ligand-coated substrate.
While Pospieszalska et al. first simulated the pivoting of microvilli around their bases, they did
not address the flexural stiffness of microvilli [20,21]. Based on the importance of flexibility in
microvilli, Yao and Shao [24,25] experimentally measured the flexural stiffness of the microvilli
on lymphocytes and neutrophils under small deformation of the microvilli. They reported that
the values of the flexural stiffness of lymphocyte and neutrophil microvilli are 4 pN/μm and
7 pN/μm, respectively [24,25]. Simon et al. [26] conducted another experiment to measure the
flexural stiffness of neutrophil microvilli under a large deformation (0.5–1 μm) and found that the
flexural stiffness is 5 pN/μm.

To take account of the bending effects of microvilli, employing the measured data of microvillus
flexural stiffness identified by Yao and Shao [24,25], Wu and Qi [27] recently used the immersed
boundary lattice-Boltzmann lattice-spring model (LLM) combined with adhesive dynamics sim-
ulations [3] to study the roles of flexural stiffness in cell rolling and adhesion at a shear rate of
γ = 50 s−1. The results showed that the flexural stiffness has a profound effect on rolling velocity
and adhesion bonding force. In their studies, they decomposed each individual adhesion bonding
force into two local coordinate-based components: parallel (for extension) and perpendicular (for
bending). Their findings revealed that the increasing total local coordinate-based adhesion bonding
force is mainly due to an increase in the perpendicular component. The flexibility of microvilli aids
not only in expediting contact frequency with the substrate, but also in flattening of microvilli once
the contact is established. As a result, the flexibility facilitates the formation of adhesive bonds,
confirming the speculation of Munn et al. [23].

Unlike the previous work where the shear rate is fixed, now we focus on how different shear
rates affect the bending deformation of microvilli, adhesive forces, and rolling velocities. This
information is not currently available in literature to the best of our knowledge. IWe show that rolling
velocity increases as either the shear rate or flexural stiffness of microvilli increases. However, the
net velocity increase due to the flexural stiffness is larger in a large shear rate range than in a smaller
shear rate range.
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FIG. 1. A microvillus is modeled by a spring with its end fixed at the base node i on the cell surface. The
tip node j can be extended or compressed with respect to the base node i. In addition, the vector r ji can be
bent with respect to vector rki to have a bending angle θki j , where the node k is always located on the extension
portion of the line connecting the mass center CM to the base node i.

The same method as that used by Wu and Qi [27] is adopted in the present work. This method
comprises five numerical models: (1) lattice-Boltzmann method (LBM) for the Navier-Stokes
flow [28–37]; (2) coarse-grained cell model (CGCM) for the viscoelastic leukocyte membrane
[13,38–41]; (3) lattice spring model (LSM) for the flexible microvilli [42]; (4) immersed boundary
method (IBM) for the fluid-cell interactions [43]; and (5) adhesive dynamics (AD) for stochastic
binding between P-selectin and PSGL-1 [3]. A summery of the method with each model is presented
in detail in the next section and in the Appendix. The method can deal with not only extensional and
compressional but also bending deformation of microvilli of cells.

II. COMPUTATION METHOD

A lattice-Boltzmann LLM [27,42,44–46] combined with the AD is employed. In this method,
the LBM is used as a fluid solver to simulate the Navier-Stoke flows, the CGCM [38] is utilized to
simulate motion of leukocytes, and the LSM [27] is exploited to mimic the deformation of microvilli
while the fluid-solid interactions are treated by IBM. Further, the AD is employed to obtain the
adhesive bonding forces between leukocytes and selectin-coated substrates. The LBM, IBM, and
CGCM are presented in detail in the Appendix.

A. Lattice spring model

Wu and Qi [27] applied the LSM [42] to mimic the deformation of the leukocyte microvilli. As
shown in Fig. 1, a microvillus is modeled by a spring (vector r ji) with its end fixed at the base
grid i on the cell surface and with the other end j as the microvillus tip. Note that the base grids in
the LSM are also the solid grids in the CGCM. There are two types of deformation of microvilli.
First, the tip grid j of the spring can be extended or compressed with respect to the base grid i. The
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potential energy between grids i and j responsible for the spring extension or compression U s
ji is

given by

U s
ji = 1

2 kmv
s (r ji − r0 ji )

2, (1)

where r ji and r0 ji are the instantaneous and initial microvillus lengths, respectively, and kmv
s is the

extensional spring constant. Note that each microvillus has the same initial length (i.e., r0 ji = Lmv ,
where Lmv = 0.35 μm is the average experimental value of the microvillus length).

Second, vector r ji can be bent with respect to vector rki to have a bending angle θki j , where k is
always located on the extension portion of the line connecting the mass center CM to the base grid
i. The line is called the angular baseline (the dashed line in Fig. 1) and is used for the measurement
of the bending angle only. Assume that the cell body is spherical initially, then the baseline is
overlapped with the radius of the sphere. As the spherical cell is deformed under flow shear forces,
it may become, for example, an ellipsoid, and the baseline is gradually separated from the radius
of the sphere. Thus, the villus angle with respect to the radius of the sphere equal to zero becomes
nonzero with respect to the baseline of the ellipsoid, and even the villi orientation is fixed in space.
Therefore, the cell deformation itself causes a change of the angle. Further, hydrodynamic and
adhesive forces may cause additional change of angle. This latter portion is purely bending by
villus itself. rki is the baseline, and there is an ignored force on point k since the mass of the cell is
much larger than that of microvillus. The energy due to the bent bond U a

ki j is written by

U a
ki j = 1

2 kmv
a (θki j − θ0ki j )

2, (2)

where kmv
a is the angular spring constant, and θ0ki j represents the equilibrium angle, as shown in

Fig. 1. The elastic forces due to the extensional and bending deformation are calculated from the
negative gradient of the sum of U a

ji and U s
ki j with respect to solid grids i and j.

Base on previous experimental measurements and numerical studies [9,24–26], the extensional
stiffness and flexural stiffness of the microvilli are 152–1340 pN/μm and 4–7 pN/μm, respectively.
The extensional stiffness KE is directly equal to the spring constant kmv

s , while the flexural stiffness
K is defined by a ratio of the force on the microvillus to the corresponding deflection, and it is
related to the angular spring constant by K = kmv

a /L2
mv [27]. All parameters used in the LSM are

given in Tables I and II.

B. Adhesive dynamics

The AD was first presented in a simulation of leukocyte adhesion to endothelial cells by Hammer
and Apte [3]. This method uses the stochastic Monte Carlo method coupled with kinetics models to
simulate the formation and rupture of the receptor-ligand bond.

The kinetics model used in this study is the Dembo model [47], where the forward and reverse
rates for the receptor-ligand bond are written as

k f = k0
f exp

[
−σts(l − l0)2

2KBT

]
, (3)

kr = k0
r exp

[
(σb − σts)(l − l0)2

2KBT

]
, (4)

where k0
f and k0

r are the unstressed reaction rates; l and l0 are the stretched and unstressed
equilibrium bond lengths, respectively; σb and σts are the spring constants in the bound and transition
states, respectively; KB is the Boltzmann constant; and T is the absolute temperature. The adhesive
force Fb, acting on the receptor-ligand bond, is assumed to follow the Hookean spring model, which
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TABLE I. The simulation dimensional parameters used in this study.

Parameter Definition Value (Experimental range) Reference

ρ f Fluid density 1000 kg/m3 [48]
μ f Fluid dynamic viscosity 0.0012 N · s/m2 [48]
h Lattice spacing 0.5326 μm –
δt Lattice unit of time 0.1512 μs –
γ Shear rate 100, 200, 300, 400 s−1 [8]
DW BC Leukocyte diameter 7.5 μm [49]
ρW BC Leukocyte density 1077 kg/m3 [20]
Y Leukocyte membrane Young’s modulus 300 μN/m [8]
μ0 Leukocyte membrane shear stress 76.4 μN/m –
kC Leukocyte membrane bending rigidity 3aJ [39]
ηm Leukocyte membrane shear viscosity 0.7 μN · s/m [39,41]
Lmv Microvillus length 0.35 μm [18]
KE Microvillus extensional stiffness 1340 pN/μm (152–1340 pN/μm) [7,14]
Kexp Experimental microviilus flexural stiffness 7 pN/μm (4–7 pN/μm) [24–26]
K Microviilus flexural stiffness 0.1Kexp, Kexp, 10Kexp –
k0

f Unstressed forward rate 1 s−1 [50]
k0

r Unstressed reverse rate 1 s−1 [50]
σb Bond spring constant 1.0 mN/m [51]
σts Transition state spring constant 0.98 mN/m [51]
l0 Equilibrium bond length 100 nm [8,11]
KB Boltzmann constant 13.8 yJ · K−1 –
T Absolute temperature 310 K [8]

Number of PSGL-1 mol/microvillus 16 [20]
P-selectin site density 150/μm2 [10,52]

can be written as

Fb = σb(l − l0)l̂, (5)

where l̂ is the unit vector between the positions of the receptor-ligand pair.
The probability Pf of formation of a new bond and the probability Pr of rupture of an existing

bond in a time interval �t are given by

Pf = 1 − exp(−kon�t ) (6)

and

Pr = 1 − exp(−kr�t ), (7)

respectively, where kon = k f AL(nL − nb), AL is the local surface area on the ligand-coated substrate
accessible to each receptor, and (nL − nb) is the density of the unbound ligand. In the time interval
�t , two random numbers Prand1 and Prand2 between 0 and 1 are generated. A new bond is formed
under the condition Pf > Prand1. On the other hand, an existing bond is ruptured when Pr > Prand2.
The time interval �t of 10 μs is used, as suggested in Ref. [20], to simulate leukocyte rolling for a
period of 3 s. All parameters used in the AD are presented in Tables I and II.

III. RESULTS AND DISCUSSION

A. Simulation setup

In this study, the leukocyte rolling processes in flows are simulated at different shear rates of γ =
100–400 s−1, as shown in Fig. 2. The simulation box is 32 × 46 × 32, where a fluid grid spacing
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TABLE II. The simulation dimensionless parameters used in this study.

Parameter Definition Value

LBM
ρ f Fluid density 1
ν f Fluid kinematic viscosity 0.64
γ Shear rate (1.512, 3.024, 4.536, 6.048) × 10−5

(Nx, Ny, Nz ) Simulation box (32, 48, 32)
(se, sε, sπ , sν, st , sq ) Relaxation rates (0.41, 0.41, 0.41, 0.41, 1.67, 1.67)
(α f , β f , γ f ) Three free parameters in the MRT (3,−5.5, −0.5)

CGCM
Np Number of solid nodes 714
ρW BC Leukocyte density 1.077
Y Leukocyte membrane Young’s modulus 0.0454
μ0 Leukocyte membrane shear stress 0.0116
kC Leukocyte membrane bending rigidity 0.0016
(ηT , ηC ) dissipative parameters (1.9896 × 10−4, 6.6321 × 10−5)
m Exponent in power law 6
kF FENE coefficient 2.298 × 10−3

kA Global area constant 0.294
kD Local area constant 0.00589
kV Volume constant 0.294
kB Bending coefficient 0.00185
RC Cutoff radius of the repulsive potential 0.055
σR Well depth of the repulsive potential 0.05
εR Distance where repulsive potential equals zero 2 × 10−5

LSM
Nmv Number of microvilli 714
Lmv Microvillus length 0.6571
kmv

s Microvillus spring constant 0.203
kmv

a Microviilus angle constant (4.58 × 10−5, 4.58 × 10−4, 4.58 × 10−3)

AD
k0

f Unstressed forward rate 1.51287 × 10−7

k0
r Unstressed reverse rate 1.51287 × 10−7

σb Bond spring constant 0.151495
σts Transition state spring constant 0.14998
l0 Equilibrium bond length 0.1877
KBT Thermal energy 2.2858 × 10−6

P-selectin site density 43
�t Time interval for adhesion determination 1000
ALnL Number of PSGL-1 accessible to each receptor 5

is 5.326 × 10−7 m, and a simulation time step is 1.512 × 10−7 s. A whole leukocyte consists of
714 solid grids for the cell membrane (and also for the microvilli bases), another 714 solid grids
for the microvilli tips, and 714 springs for the microvilli. The average membrane particle spacing
is 5.326 × 10−7 m, the same as the fluid grid spacing. Two substrates are placed at the bottom
and top of the simulation box in the Z direction. The bottom substrate is at rest and coated with
P-selectin at a density of 150/μm−2. A velocity of γ Hs is imposed on the top substrate, where Hs

is the distance between the two substrates, and γ is the shear rate that varies from 100 to 400 s−1.
Periodic boundary conditions are imposed in the X and Y directions. Other simulation parameters
are given in Table I. All results in this work, except the behaviors of individual microvilli, are
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FIG. 2. Simulation configuration.

calculated by a statistical ensemble average of five repeated independent runs. The Reynolds number
is Re ∈ [1.172 × 10−3, 4.688 × 10−3], and therefore the inertial effect can be neglected.

B. Comparison

The resolution test is carried out by using two different sizes of simulation boxes of coarse grids
of 32 × 46 × 32 and of fine grids of 48 × 72 × 48 at the same conditions. The time step unit is 2.25
times smaller and the grid length unit is 1.51 times smaller for the fine grids than for the coarse
grids. The simulation results are collected and compared in Table III. The average rolling velocity,
number of bonds, contact area, and deformation index have similar results and the difference can be
ignored, indicating that the coarse grids are satisfactory, and they are used in this work.

A leukocyte rolling on a P-selectin-coated substrate is simulated at a flow shear rate ranging from
γ = 100 s−1 to 400 s−1. Here the flexural stiffness of microvilli is set to the experimental value
identified by Yao and Shao [24,25]. The simulation results of the average translational velocity of
the leukocyte, as a function of shear rate, are compared with those reported by Jadhav et al. [8]
in Fig. 3(a). Also, the simulation results of the deformation index, defined as leukocyte end-to-end
length L divided by leukocyte height H , and the simulation results of the contact area, between
the leukocyte and selectin-coated substrate, are compared with those produced by Jadhav et al. [8]
in Figs. 3(b) and 3(c), respectively. These results agree with the previously published data in this
given range of shear rates. The difference can be attributed to distinct numerical models, various
simulation constants, and the stochastic nature of the receptor-ligand interaction.

The results include not only the rolling velocity, deformation index, and contact area of
leukocytes but also their stop-and-go motion, which is one of the distinctive characteristics of
leukocyte rolling. The instantaneous velocity of the leukocyte as a function of time is shown in
Fig. 4(a) for the case of the shear rate of γ = 100 s−1 and in Fig. 4(b) for the case of the shear
rate of γ = 400 s−1, in which the stop-and-go behavior of the leukocyte rolling is observed. The

TABLE III. The results of the coarse and fine grids are compared at the same condition of γ = 400 s−1.

Coarse grid Fine grid

Simulation box 32 × 48 × 32 48 × 72 × 48
Grid length unit (μm) 0.536 0.355
Unit time step (s) 1.513 × 10−7 6.721 × 10−8

Average rolling velocity (μm/s) 3.01 ± 0.23 2.86 ± 0.25
Number of bonds 348.75 ± 6.18 343.25 ± 20.12
Contact area (μm2) 26.53 ± 0.31 26.24 ± 1.61
Deformation index (L/H ) 1.199 ± 0.003 1.194 ± 0.009
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(a) (b) (c)

FIG. 3. The comparisons between the present simulation results and those of the previously published data
from other groups for (a) the translational velocity, (b) the deformation index (L/H ), and (c) the contact area.

comparison between Figs. 4(a) and 4(b) indicates that shorter time pauses and more frequent peaks
with increasing shear rate are consistent with the previous finding by Pappu and Bagch [11].

C. Shear rates on rolling velocity

To study the effects of flexural stiffness of the microvilli of a leukocyte or cell on adhesive
dynamics, the flexural stiffness varies at two different levels of Kexp, and 10Kexp, where Kexp =
7 pN/μm is taken from the experimental data [24,25], while the extensional stiffness is fixed at
KE = 1340 pN/μm, which is adopted from Refs. [7,14], for all simulations in this work. In this way,
the attention is focused on bending deformation only, not on extension, which has been extensively
studied by others [17,19,21]. In this study, the shear rate systematically varies at four different levels:
γ = 100 s−1, 200 s−1, 300 s−1, and 400 s−1 at each of the given levels of flexural stiffness.

First, the effects of flexural stiffness of microvilli on the leukocyte rolling velocity at different
shear rates are probed. The results of an ensemble average of the translational velocity as a function
of shear rate at different levels of flexural stiffness is plotted in Fig. 5(a). It is shown that both the
flexural stiffness and shear rate have significant effects on the rolling velocity.

At each of the given levels of flexural stiffness, the rolling velocity increases as the shear rate
increases since a larger shear force drives cells to move faster and simultaneously induces a larger
number of bonds [see Fig. 5(b)] and an expanded contact area [see Fig. 5(c)]. The bonds and contact
area dynamically respond to the external shear force. The results indicate that the slopes of the
rolling velocity curves are larger in the large shear rate range than in the small shear rate range,

FIG. 4. The instantaneous velocity as a function of time at the shear rates of (a) 100 s−1 and (b) 400 s−1.
The magnified drawings represent the instantaneous velocity within a 1-s period.
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(a) (b) (c)

FIG. 5. The simulation results of (a) the average translational velocity, (b) number of bonds, and (c) the
contact area as a function of a shear rate at two different levels of the flexural stiffness of microvilli. The shear
rate is varied from γ = 100 s−1 to 400 s−1 at each level of flexural stiffness.

revealing that the rolling velocity increases faster in the large shear rate range than in the small
shear rate range. On the contrary, the slopes of curves of the number of bonds and the contact areas
are smaller in the large shear rate range than in the small shear rate range. As expected, the contact
areas and the number of bonds are developed more slowly at the large shear rate range, so that the
rolling velocity increases faster.

At a given shear rate, the rolling velocity increases as the flexural stiffness of the microvilli
increases or as the flexibility of microvilli decreases, because the microvilli with a larger flexural
stiffness have a smaller bending deformation and are likely to be oriented more vertically on the cell
surface. Thus, the contact area and number of bonds between the cell and the substrate all become
smaller, making the cell roll faster, as compared to cells with more flexible microvilli. The results
of the number of bonds and the contact areas are shown in Figs. 5(b) and 5(c), where the number of
bonds and the contact areas dramatically decrease as the flexural stiffness increases.

It is observed that the degree of the increase in the rolling velocity due to the flexural stiffness
depends on the shear rate. The rolling velocity increases from 3.29 μm/s to 5.59 μm/s at the shear
rate of γ = 400 s−1, while the velocity increases from 1.31 μm/s to 1.41 μm/s at the shear rate
of γ = 100 s−1. The net increase in rolling velocity due to the flexural stiffness is approximately
20 times larger at γ = 400 s−1 than at γ = 100 s−1, although they have the same levels of flexural
stiffness. Therefore, the increase of rolling velocity due to stiffness of microvilli is much more
sensitive to a large shear rate than a low shear rate.

Next, the results of the deformation index as a function of the shear rate are given in Fig. 6. The
figure shows that at each of the given levels of flexural stiffness, the deformation index increases
as the shear rate increases. The deformation index increases by 9%–11% when the shear rate
increases from γ = 100 s−1 to γ = 400 s−1. However, at each of the given shear rates, when the
flexural stiffness is greatly varied from K = Kexp to K = 10Kexp, the deformation index has only
1% variation, illustrating that the cell bulk deformation is more sensitive to the shear rate than the
flexural stiffness. In other words, the bulk cell deformation depends strongly on the shear rate and
weakly on the flexural stiffness.

For the purpose of visualization, the animations of leukocyte rolling at shear rates of γ = 100 s−1

and 300 s−1 are presented in movie S1 and movie S2 in the Supplemental Material [53].
Subsequently, Fig. 7 illustrates the instantaneous velocity of leukocyte as a function of time at

two different levels of the flexural stiffness of microvilli at the shear rate of γ = 300 s−1. In order to
characterize translation movement, two types of regimes are defined: rolling and vibrating regimes.
When the white blood cell (WBC) instantaneous velocity is larger than 25 μm/s, it is called a
rolling regime, and when the instantaneous velocity is between 5 μm/s and 25 μm/s, it is called a
vibrating regime. The rolling and vibration regimes correspond to a high peak and low peak period,
respectively, in Fig. 7. The average number of the rolling peaks after the first bonding are 44.4 and
103.8 for K = Kexp and K = 10Kexp, respectively; the average number of vibrating peaks are 236.8
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FIG. 6. The simulation results of the deformation index at two different levels of the flexural stiffness of
microvilli at the shear rates from 100 s−1 to 400 s−1.

and 229.4; and the average pause time, defined by the duration between two rolling peaks, is 0.15 s
and 0.08 s. These quantified data show that the WBCs with larger flexural stiffness stay longer in a
rolling regime than in a vibrating regime and that the WBCs with the more flexible microvilli have
more frequent vibrating fluctuations during the adhesion process. It is suggested that the bending of
microvilli shortening the distance between P-selection on the wall and PSGL-1 on microvilli tips
results in more bonding and debonding.

D. Shear rate on bond forces

A total adhesive bond force is based on the global coordinates of X, Y, and Z and defined by

Fbond =
〈∑

i

F i
b

〉
, (8)

FIG. 7. The instantaneous velocity at microvillus flexural stiffness of (a) Kexp and (b)10Kexp at the shear
rate of γ = 300 s−1. The magnified drawing presents the instantaneous velocity in a 0.1-s period.
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FIG. 8. The simulation results of the Y component of the total adhesive bond force as a function of shear
rate at two different levels of flexural stiffness.

where i denotes the ith bond. The Y component of the total adhesive bond force Fbond
Y is in the

opposite direction of the fluid flows and resists the cell translation. The results of the Y component
as a function of the shear rate at different levels of flexural stiffness are plotted in Fig. 8.

It is shown that the bond forces are strongly influenced not only by shear rates but also by
the flexural stiffness of microvilli. At each given level of the flexural stiffness, the Y-component
force increases monotonically in the negative direction with the shear rate. This occurs because
the adhesive bond force should be balanced by the hydrodynamic shear force, which drives the
cell to move; thus a larger shear rate induces a larger responding adhesive bond force. In other
words, the bond force strongly depends on the shear rate at each level of the flexural stiffness. At
a given shear rate, the cell with the larger flexural stiffness has smaller adhesive forces and should
roll faster, as consistently displayed in Fig. 5. The adhesive force increases as the flexural stiffness
decreases. The net increase in adhesive forces due to the flexibility of the microvilli is larger in a
large shear rate range than in a smaller shear rate range in general, because the larger shear rate may
cause more bending deformation of microvilli, which are oriented to be more flattened with the cell
surface, allowing a larger contact area and bonding probability. We will come back to the bending
deformation in next section. It is clear that an interplay of the roles between the flexural stiffness
and flow shear rate determines the final total bond force. The cell motions in the X and Z directions
are negligibly small and not interesting, and the force components in the X and Z directions are not
needed to be shown in this paper.

E. Bending deformation of microvilli

In order to examine the influence of the flexural stiffness of microvilli on their bending
deformation, an angular distribution function f (θ ) of the microvilli is defined by

f (θ ) = 1

πn

∑
i

δ(θ − θi ), (9)

where n is the total number of the bonded microvilli, and θi is the bending angle of the ith bonded
microvillus. The angular distribution function is utilized to describe the probability of finding a
microvillus at an angle of θ per unit angle.

The results of an ensemble average of the angular distribution function 〈 f (θ )〉, as a function of
the bending angle at two different levels of the flexural stiffness, are displayed and compared in
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(a) (b) (c) (d)

FIG. 9. The simulation results of the angular distribution of the microvilli at two different levels of the
microvillus flexural stiffness at shear rates of (a) 100 s−1, (b) 200 s−1, (c) 300 s−1, and (d) 400 s−1.

Fig. 9, at each of the four different shear rates, where red solid and blue dash-dot lines represent the
data sets corresponding to K = Kexp and 10Kexp, respectively. It is shown that the flexural stiffness
has an important impact on the bending deformation of microvilli. For example, for the case of the
shear rate of γ = 100 s−1, two curves of the angular distribution function are compared in Fig. 9(a).
One sharp peak appears on the curve of the larger flexural stiffness of K = 10Kexp. This peak value
is as high as 0.85 and is located near the angle of zero, evidencing that most microvilli are oriented in
the direction perpendicular to the cell surface or along the angular baseline. As the flexural stiffness
reduces to a lower level of K = Kexp, two peaks are observed: one peak with a value of 0.16 is located
at 0 < θ < 1/9π , and the other with a value of 0.21 is located at 4/9π < θ < 5/9π , indicating that
as the flexural stiffness decreases, the bending angle increases, and the microvilli tend to be flattened
on the cell surface. A similar behavior is observed at every given shear rate. It is pointed out that
for a given flexural stiffness, the peak becomes lower and wider and shifts to the side of the angle
of θ = π/2 as the shear rate increases, suggesting that more microvilli are moved from the angular
baseline direction to their perpendicular direction.

F. Bending behavior of individual microvillus

To closely monitor the process of bonding formation at the microscopic scale of a single
microvillus during cell rolling, two individual microvilli are selected, and their bending angles as
a function of time are recorded as a sample. Figure 10 depicts the angles of the two individual
microvilli as a function of time, where the yellow solid lines and blue dotted lines represent the
duration involved in bonded and nonbonded states, respectively. Each figure also includes both
the side and bottom views of the leukocyte. For the bottom view, the red marker specifies the

FIG. 10. The bending angle as a function of time for (a) the single microvillus initially located near the
center of the contact area at γ = 400 s−1 and (b) the single microvillus initially located near the center of the
contact area at γ = 100 s−1. The stiffness of the microvillus is fixed at the experimental value.
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particularly selected single microvillus (e.g., microvilli no. 1 and 2), and the black points denote
the other microvilli. Microvillus no. 1 is initially located near the center of the contact area, while
no. 2 is initially located near the right edge of the contact area. The shear rate γ = 400 s−1 is applied
on microvilli no. 1, and the shear rate γ = 100 s−1 is imposed on no. 2.

The variation of the bending angle of microvillus no. 1 is shown in Fig. 10(a) as the microvillus
moves from the center to the left edge of the contact area during the rolling process. In the
initial period (t < 0.12 s), there is nonbonding involved (blue dotted line). The microvillus stands
vertically on the cell surface with a very small bending angle and then is quickly bent with a large
angle and flattened with the surface. Soon after that, a receptor-ligand bond is developed and formed
at t = 0.12 s. As the leukocyte continues to roll, the angle of the microvillus first decreases and then
increases. Finally, the bond is broken at t = 2.17 s, and the microvillus becomes vertical again
with a small bending angle when the microvillus moves to the left edge of the contact area. This
nonbonding, bonding, and debonding process corresponds to the stop-and-go motion. The bending
behavior of microvillus no. 2, moving to the edge of the contact area during the rolling process, is
shown in Fig. 10(b). A bond is formed on the vertical microvillus at t = 1.31 s. Unlike no. 1, the
bending angle decreases monotonically, and this microvillus becomes more vertical with the cell
surface when it migrates to the center of the contact area. The major difference is that the bending
angles of no. 2 are smaller most time, as expected, due to the smaller shear rate γ = 100 s−1. The
rupture of bonding is observed in microvillus no. 1 only. Finally, for visualization purpose, two
movies are available in the Supplemental Material [53].

IV. CONCLUSIONS

The details of the LLM, including LBM, IBM, CGCM, and AD, are presented in this paper. This
method can treat not only extensional and compressional but also bending deformation of microvilli
of a leukocyte or cell in flows. In order to study the effects of shear rates on bending deformation
of microvilli of leukocytes, in the simulations the shear rate is varied at four different levels and
the flexural stiffness of the microvilli is varied at different levels for each given level of the shear
rate. The cell rolling velocity, adhesive bond force, number of bonds, contact area, bending angular
distribution, and cell deformation index are computed. An angular distribution function is used to
analyze the bending deformation of microvilli.

Several interesting behaviors are revealed from simulations:
(1) At each of the given levels of the flexural stiffness of microvilli, their bending angles, total

adhesive bond force, number of bonds, contact area, deformation index, and cell rolling velocity
increase as the shear rate increases since a larger external shear hydrodynamic force drives cells to
move faster and simultaneously induces a larger adhesive force.

(2) At each given shear rate, the bending angles of microvilli increase as their flexural stiffness
decreases, and the microvilli become more flattened on cell surface. Therefore, the contact area,
number of bonds, and adhesive force increase, resulting in a decrease in rolling velocity. The degree
of the decrease in rolling velocity depends on both the shear rate and flexural stiffness. The net
decrease in the rolling velocity due to flexibility of the microvilli is larger in in a large shear rate
range than in the smaller shear rate range. It is clear that the interplay of roles between shear rate
and flexural stiffness determines final adhesive bond force and rolling velocity.

(3) The bulk cell deformation depends strongly on the shear rate and weakly on the flexural
stiffness of microvilli.

(4) The bonding and debonding process as a function of instant time is observed for individual
microvillus in term of bending angle.

The above information may enhance understanding of effects of shear rate on adhesion of WBCs.
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APPENDIX

1. Lattice-Boltzmann method

The motion of Newtonian fluid is governed by the continuity and Navier-Stokes equations as

∇ · u = 0, (A1)

ρ f

[
∂u
∂t

+ (u · ∇u)

]
= −∇p + μ∇2u + F , (A2)

where u is the fluid velocity, ρ f the fluid density, p the pressure, μ the fluid dynamic viscosity,
and F the force source term. In this study, the partial differential equations [Eqs. (A1) and (A2)]
are not solved directly. Instead, the LBM is used to obtain fluid flow behavior. Previous work has
demonstrated that the solution of the LBM is equivalent to that of the Navier-Stokes equations when
the Mach number is smaller than 0.3 [30]. Importantly, the kinetic nature of the LBM makes it more
suitable for simulating the multicomponent flows such as blood [54–58]. More features of the LBM
can be found in previous studies [35].

The multiple-relaxation-time (MRT) lattice Boltzmann equation [59] in a D3Q19 lattice model
with a forcing term is used and expressed as

f (x + eiδt, t + δt ) − f (x, t ) = −M−1S[m(x, t ) − meq(x, t )] + δtM−1F̂, (A3)

where f (x, t ) and m(x, t ) are the fluid distribution functions at position x and time t in the velocity
and moment spaces, respectively; meq denotes the equilibrium distribution function in moment
space; δt represents the time interval; ei is the discrete velocity set where i ∈ {0, 1, 2, . . . , 18} are
the discrete directions; S is the diagonal collision matrix; M is the transformation matrix (given in
the Appendix of Ref. [59]) which transfers the distribution functions from the velocity space into
the moment space; and F̂ is the moment of the forcing term in the moment space.

In the D3Q19 model, the discrete velocity set ei is written as

ei =

⎧⎪⎨⎪⎩
(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1–6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7–18

, (A4)

and the diagonal collision matrix S is written as

S = (0, se, sε, 0, sq, 0, sq, 0, sq, sν, sπ , sν, sπ , sν, sν, sν, st , st , st ), (A5)

while shear and bulk viscosities are given by

ν = 1

3

(
1

sν

− 1

2

)
δt, (A6)

ζ = 2

9

(
1

se
− 1

2

)
δt, (A7)

where sν is related to the shear viscosity. As suggested by Pan et al. [60], the other relaxation rates
are set as se = sε = sπ = sν and st = sq = 8 · 2−sν

8−sν
.

The distribution functions in the moment space m and the corresponding equilibria meq are
written by

m = (ρ f , e f , ε f , jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx, tx, ty, tz )T , (A8)
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meq = ρ f (1,−11 + 19u2, α f + β f u2, ux,−2

3
ux, uy,−2

3
uy, uz,

− 2

3
uz, 3u2

x − u2,
γ f peq

xx

ρ
, u2

y − u2
z ,

γ f peq
ww

ρ
, uxuy, uyuz, uzux, 0, 0, 0)T , (A9)

where e f and ε f represent energy and energy squared, jx,y,z are components of the momentum, qx,y,z

are components of the heat flux, pxy,yz,zx are the symmetric and traceless strain-rate tensor, πxx,ww

are the fourth-order moments and tx,y,z are the third-order moments [59], u2 = u2
x + u2

y + u2
z denotes

the fluid velocity squared, and the three parameters α f = 3, β f = −11
2 , and γ f = −1

2 are chosen.
Furthermore, according to the work by Guo et al. [61,62], the moment of the forcing term in the

moment space F̂ can be written as

F̂ = (
I − 1

2 S
)
MF, (A10)

where I is the unity matrix, F = (F 0, F 1, . . . , , F 18)
T

, and

F i = ωi

[
ei · F

c2
s

+ uF :
(
eiei − c2

s I
)

c4
s

]
, (A11)

where F is the body force, cs =
√

1
3 is the sound speed, and ωi is the weight associated with the

lattice model and defined by

ωi =

⎧⎪⎨⎪⎩
1
3 i = 0
1
18 i = 1 − 6
1
36 i = 7 − 18

. (A12)

The fluid velocity u is given by

ρ f u =
∑

i

fiei + 1

2
δtF. (A13)

All parameters used in the LBM are given in Tables I and II.

2. Immersed boundary method

In the LBM, the fluid particles are in regular Eulerian grids, whereas the solid particles are in
Lagrangian grids. Therefore, a solid grid may not coincide with its adjacent fluid grids. The IBM is
used to achieve nonslip boundary condition in the fluid-solid interfaces. For the purpose, a discrete
Dirac delta function δD is taken to interpolate the fluid velocity at the position of a solid boundary
grid from its surrounding fluid grids. The discrete Dirac delta function [43] is written as

δD(�r) =
{

1
64h3

(
1 + cos π�x

2h

)(
1 + cos π�y

2h

)(
1 + cos π�z

2h

) |�r| � 2h

0 |�r| > 2h
, (A14)

where h is the fluid grid spacing and �r = (�x,�y,�z) is the distance between the positions of
the solid boundary grid and its surrounding fluid grids.

To present the IBM, the solid boundary domain � and fluid boundary domain � are defined. The
solid boundary domain � is constituted by all the solid grids on the surface, and the fluid boundary
domain � is defined as a spherical volume of a radius of 2h centered at a solid boundary grid
position rb. The unforced fluid velocity u∗ at rb is represented by

u∗(rb, t ) =
∫

�

u∗(r, t )δD(r − rb)dr, (A15)
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where r is a variable and goes all the positions of the fluid grids in the fluid domain � during the
integration. Due to the no-slip boundary condition, the forced fluid velocity u(rb, t ) should be equal
to the solid velocity Ub(rb, t ) as

u(rb, t ) = u∗(rb, t ) + δt
F (rb, t )

ρ f
= Ub(rb, t ), (A16)

where F is the fluid-solid interaction force exerted on the fluid. Therefore, the interaction force F
exerted on the fluid at the solid boundary position can be expressed by

F (rb, t ) = ρ f [Ub(rb, t ) − u∗(rb, t )]

δt
. (A17)

Thus, the interaction force acting on the solid grids by the surrounding fluid is given by

FH (rb, t ) = −F (rb, t ). (A18)

The discrete Dirac delta function is utilized again to distribute the interaction force F (rb, t ) to the
surrounding fluid grids by

F(r, t ) =
∫

�

F (rb, t )δD(r − rb) drb, (A19)

where F(r, t ) is the distributed body force and can be used in Eq. (A11).

3. Coarse-grained cell model

A leukocyte can be simulated by a coarse-grained cell model (CGCM), presented by Fedosov
et al. [38], in which the leukocyte is assumed to be a spherical membrane. The membrane is
considered as a two-dimensional triangulated network. An open source MATLAB mesh generator
presented by Persson et al. [63] was used in this study for creating meshes.

In the triangulated network, Np denotes the number of solid grids, Nb the number of edges, and
Ne the number of triangles. Four types of potential energies are calculated between solid grids. The
total potential energy of the membrane can be written as

U total = U in-plane + U area + U volume + U bending. (A20)

The in-plane potential energy term U in-plane has several formulas constituted by two-body and
three-body energies. In this study, an edge is considered as a nonlinear spring, whose energy is
constituted by the combination of the finitely extensible nonlinear elastic (FENE) and power-law
(PL) potential energies, as

U in-plane =
Nb∑
j

−1

2
kF R2

0 ln

[
1 −

(
r

R0

)2
]

+ kP

(m − 1)rm−1
m > 0 and m �= 1, (A21)

where kF is a constant coefficient of the FENE potential, R0 and r are the maximum and instant
distances between two solid grids, respectively, kP is the coefficient of the PL potential energy, and
m is the exponent of the power law. Apparently, U in-plane is only a two-body energy of a nonlinear
spring.

The area conservation and volume conservation energies, U area and U volume, are the three-body
energies, which exist in a triangle constituted by three neighboring solid grids. The area and volume

063101-16



INVESTIGATION OF SHEAR RATES OF ROLLING ADHESION …

conservation energies are defined as

U area = kA
(
A − Atot

0

)2

2Atot
0

+
Ne∑
j

kD
(
Aj − A0

j

)2

2A0
j

, (A22)

U volume = kV
(
V − V tot

0

)2

2V tot
0

, (A23)

where kA, kD, and kV are the global area, local area, and volume constraint constants, respectively.
The term A and V represent the instantaneous entire area and volume, respectively, while Atot

0 and
V tot

0 are the initial total area and volume and A0
j and Aj are the initial and instantaneous local area of

the jth triangle.
Furthermore, the bending energy U bending exists between two adjacent triangles (four adjacent

solid grids) and is given by

U bending =
Nb∑
j

kB[1 − cos(θ j − θ0)], (A24)

where kB is the bending coefficient and θ j and θ0 are the instantaneous and initial angles,
respectively, between two adjacent triangles which have the common edge j.

The total elastic force FE
i exerted on the ith grid in the CGCM is computed by

FE
i = −∇i(U

in-plane + U area + U volume + U bending). (A25)

The gradient is calculated analytically, and the answers are used in the code.
The CGCM [13,38–41] also addresses the membrane viscosity by adding the dissipative FD

i j for
each spring (edge) as

FD
i j = −ηT vi j − ηC (vi j · ei j )ei j, (A26)

where ηT and ηC are dissipative coefficients, respectively; and vi j and ei j are the relative velocity
and unit vector, respectively, between the ith and jth grids. The membrane shear viscosity ηm is
related to the dissipative parameters (ηT and ηC), as follows:

ηm =
√

3ηT +
√

3

4
ηC, (A27)

ηC = ηT

3
. (A28)

A repulsive force is added on leukocytes between the leukocytes and substrate in the Z direction
(perpendicular to the substrate) when the leukocytes are close to the substrate. The repulsive force
is borrowed from the gradient of the Lennard-Jones potential (U LJ ) with a negative sign, as

FR(δz) =
{

−∇z{U LJ (δz)} = −∇z
{
4εR

[(
σR
δz

)12 − (
σR
δz

)6]}
δz � RC

0 δz > RC
, (A29)

where δz is the distance above the substrate, RC is the cutoff radius, εR is the well depth of the
potential, and σR is the distance between the substrate surface and the position where U LJ = 0.
Therefore, the total force exerted on the ith solid grid is given by

FT
i = FE

i +
∑

j

FD
i j + FH

i + FR
i , (A30)

where FT , FE , FD, FH , and FR denote the total, elastic, dissipative, hydrodynamic, and repulsive
forces, respectively; and j denotes the grid nearby the ith solid grid. Once the total force of a solid
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grid is obtained, the leap-frog algorithm is used to obtain the position and velocity of each solid grid
during the simulation run.

Next, six parameters (kF , kP, kA, kD, kV , and kB) must be determined in the CGCM. First, the
potential coefficient of power law kP can be described in terms of kF since the attractive term should
be equal to the repulsive term at the equilibrium point in U in-plane. By setting the exponent of the
power law m = 6 and R0 = 1.75r, the potential coefficient of power law kP can be written by

kP
∼= 1.4848kF rm+1 = 1.4848kF r7. (A31)

Second, according to Fedosov et al. [38,39], the shear stress μ0 based on the U in-plane is given by

μ0 =
√

3

4

{
2kF

(
r

R0

)2[
1 − (

r
R0

)2]2 + kP(m + 1)

rm+1

}
, (A32)

and the compression modulus κ of cell is given by

κ = 2μ0 + kA + kD. (A33)

The linear Young’s modulus Y and Poisson’s ratio ν p of the cell are expressed by

Y = 4κμ0

κ + μ0
, (A34)

ν p = κ − μ0

κ + μ0
. (A35)

To achieve incompressibility and to make kA + kD 
 μ0, Fedosov et al. showed that a nearly
incompressible membrane is achieved when kA + kD = 500μ0. That assumption is followed. In
addition, the bending coefficient kB in the CGCM is given by

kB = 2√
3

kC, (A36)

where kC is the bending rigidity. All parameters used in the CGCM are collected in Tables I and II.
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