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Oscillations of flagella and cilia play an important role in biology, which motivates the
idea of functional mimicry as part of bioinspired applications. Nevertheless, it still remains
challenging to drive their artificial counterparts to oscillate via a steady, homogeneous
stimulus. Combining theory and simulations, we demonstrate a strategy to achieve this
goal by using an elastoelectrohydrodynamic instability (based on the Quincke rotation
instability). In particular, we show that applying a uniform dc electric field can produce
self-oscillatory motion of a microrobot composed of a dielectric particle and an elastic
filament. Upon tuning the electric field and filament elasticity, the microrobot exhibits three
distinct behaviors: a stationary state, undulatory swimming, and steady spinning, where the
swimming behavior stems from an instability emerging through a Hopf bifurcation. Our
results imply the feasibility of engineering self-oscillations by leveraging the elastoviscous
response to control the type of bifurcation and the form of instability. We anticipate that
our strategy will be useful in a broad range of applications imitating self-oscillatory natural
phenomena and biological processes.

DOI: 10.1103/PhysRevFluids.4.061701

Flagella and cilia exhibit oscillatory movements for locomotion, pumping, and fluid mixing.
To mimic these functionalities, various approaches have been developed to oscillate their artificial
counterparts using magnetic [1,2], electrostatic [3], piezoelectric [4], optical [5], and hydrogel-
based actuations [6,7]. In general, a time-dependent stimulus generates oscillations in many
biomimetic systems. An apparent exception is the use of the Belousov-Zhabotinsky (BZ) oscillating
chemical reaction [7] (inspired by Ref. [8]) to deform polymer brushes periodically. Nonetheless,
time-dependent forcing is not necessary for biological systems which can occasionally generate
oscillations by steady stimuli to deliver functionalities such as otoacoustic emissions [9,10] and
glycolysis [11], etc. These behaviors, namely, the generation and maintenance of a periodic motion
powered by a source without a corresponding periodicity, are referred to as self-oscillation [12,13].

Self-oscillation plays a crucial role in some inertia-dominated flow cases, such as the collapse
of the Tacoma Narrows Bridge [14] and the sound generation of wind musical instruments
(including whistling and the human voice), owing to inertia-induced nonlinearity. In this Rapid
Communication, we create self-oscillations of artificial structures in a situation with negligible
inertia by applying a uniform, time-independent electric field. We exploit an elastoelectrohydro-
dynamic (EEH) instability by marrying an electrohydrodynamic instability with an elastoviscous
response. Combining theory and simulations, we investigate a composite microrobot that achieves
unidirectional locomotion by self-oscillatory wiggling of an elastic appendage.
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ȳ ȳ
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FIG. 1. Self-oscillation of a composite particle and filament. (a) A dielectric sphere of radius A, with an
attached filament of radius a, contour length L, size ratio α = A/L = 0.3, and elasticity characterized by the
EEV number μ̄ = 635, is under a steady uniform electrical field E = Eez; the particle dipole is P . The upright
panel depicts the Euler angles [θ, φ, ψ] describing the rotation of the object and the reference coordinate
system [eN , eQ, e3], where e3 is aligned with the object’s orientation ep. The object’s motion is constrained
to the yz plane, and its orientation ep ≡ e3 is directed at an angle θ with respect to ez. (b) The composite
object’s dimensionless rotational velocity �̄ = dθ/dt̄ oscillates over dimensionless time t̄ with a local peak
value �̄lpk. The time evolution of �̄ is characterized by two periods, as �̄lpk increases exponentially in the
initial phase (cyan box) and eventually reaches a constant magnitude �̄mag (green box). (c) Exponential growth
of �̄ in the initial phase t̄ ∈ [0, 1000] is indicated by the inset showing the linear dependence of log �̄lpk on t̄ .
(d) Periodic variation of �̄ with a constant amplitude; six times t̄i, i = 1, . . . , 6, within one period are marked.
(e) Orientation of the composite object and the filament shape at t̄i. (f) Trajectory of the particle center P in the
yz plane during the period t̄ ∈ [0, 1940].

It was discovered in 1896 by Quincke [15] that a uniform dc electric field can trigger the
spontaneous rotation of a dielectric particle immersed in a dielectric solvent with higher con-
ductivity. Quincke rotation (QR) occurs as an electrohydrodynamic instability emerging from an
equilibrium configuration where the induced-charge dipole P of the particle is opposite to the
applied field. When the field strength E exceeds a threshold value E cri [16,17], the symmetric
yet antiparallel configuration is unstable to an infinitesimal disturbance, spontaneously breaking
the mirror symmetry through a supercritical pitchfork bifurcation [18,19]; the particle then spins
steadily where the electric and viscous torques balance.

We exploit this QR instability by grafting an inextensible elastic filament of radius a and length
L onto a dielectric spherical particle of radius A [Fig. 1(a)], where s denotes the arclength of the
filament’s centerline with position r(s, t ), and α = A/L is the size ratio. The slenderness of the
filament εsl = a/L � 1. The filament base s = 0 is clamped at the particle surface J, where the
tangent vector ep = ∂r/∂s|s=0 at the base always passes through the particle center P and ep denotes
the orientation of the object. We define an elastoelectroviscous (EEV) parameter μ̄ = 8πμL4/Dτs

indicating the ratio of the elastoviscous timescale 8πμL4/D to the charge relaxation time τs =
εs/σs of the solvent, where μ, εs, and σs denote respectively the dynamic viscosity, permittivity,
and conductivity of the solvent, and D is the bending stiffness of the filament. μ̄ indicates the
relative strength of the viscous to the elastic forces, where μ̄ = 0 corresponds to a rigid filament and
increasing μ̄ corresponds to a more compliant filament. To focus on the elastoviscous response of
the filament, we do not consider its polarization. We also do not take into account the hydrodynamic
interactions between the particle and the filament.
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We adopt the proper Euler angles [θ, φ,ψ] to characterize the rotation of the object. The uniform
electric field E = Eez and the particle dipole P are expressed in the reference coordinate system
[N, Q, e3] rotating and translating with the object, where e3 coincides with the its orientation ep,
N indicates the nodal line direction, and Q = e3 × N [Fig. 1(a)]. We constrain the object’s motion
to the yz plane, hence the dipole P , the orientation ep, and the filament lie in the same plane,
resulting in N = ex. Using τs, τ−1

s , D/L, E cri, and D/(LE cri ) as the characteristic time, rotation
rate, torque, electrical field, and polarization dipole strength, respectively, the nondimensional
electrohydrodynamic equations are [20,21]

∂θ/∂ t̄ = (
�̄

f→p
N + Ē3P̄Q − ĒQP̄3

)
/η̄, (1a)

∂P̄Q/∂ t̄ = −κ (P̄Q + κη̄ĒQ), (1b)

∂P̄3/∂ t̄ = −κ (P̄3 + κη̄Ē3), (1c)

where the overbar (¯) denotes dimensionless quantities hereinafter, and �̄
f→p is the elastic torque

exerted by the filament onto the particle with respect to its center; η̄ = α3μ̄, κ = (R + 2)/(S + 2),
R = σp/σs, and S = εp/εs, where εp and σp are the permittivity and conductivity of the particle,
respectively.

Applying a fixed electric field, Ē = 1.5 for example, we discovered a self-oscillatory response of
the composite object by tuning the filament elasticity (Fig. 1). When μ̄ = 635, the particle wobbles
spontaneously rather than rotating steadily as the classical QR counterpart, as indicated by the
rotational velocity �̄ = dθ/dt̄ [Fig. 1(b)]. The local peak �̄lpk of �̄ increases with t̄ rapidly during
the initial period and eventually saturates to a constant value �̄mag corresponding to a time-periodic
state.

To understand the initial dynamics, we examine the initial phase �̄(t̄ ), as shown in Fig. 1(b)
(highlighted in the cyan box). This local peak �̄lpk [Fig. 1(c)] initially grows exponentially, as
confirmed by the inset displaying the linear dependence of log �̄lpk on t̄ . Thus, the self-oscillation
arises through a linear instability mechanism, similar to other self-oscillation phenomena [12].
Furthermore, the system reaches a time-periodic state, namely, the particle oscillates with a fixed
amplitude [Fig. 1(d) highlighting the green box of Fig. 1(b)]. To understand how the grafted
filament reacts to the particle, we show in Fig. 1(e) the particle-filament configurations at six times
within a period. We observe that the oscillating particle drives the filament to wiggle, a scenario
resembling the locomotion of a flagellated microorganism that acquires thrust by propagating
oscillatory bending waves from the head towards the tail. A striking yet natural consequence of
this self-oscillation is that the object undulates and translates, hence demonstrates propulsion by
harnessing thrust from the wiggling filament.

A series of simulations was performed to examine the influence of the filament elasticity. By
varying μ̄, we identify three states of the composite object: an undulatory motion [Figs. 2(a) and
2(b), where μ̄ = 800 and 1015, respectively] similar to the μ̄ = 635 case reported in Figs. 1(d) and
1(e), though here we observe a larger oscillation amplitude characterized by �̄mag; a steady spinning
motion [Figs. 2(c) and 2(d), where μ̄ = 1020 and 2000, respectively], resembling a QR particle
towing a passively bent filament that breaks the mirror symmetry about the filament centerline;
and a stationary state when μ̄ is below a critical value, where the object is stationary (�̄ = 0)
and possesses mirror symmetry. The three elasticity-dependent states are identified with a dashed
line (stationary), triangles (undulatory), and diamonds (spinning) in Fig. 2(e), which represent the
bifurcation diagram of a one-parameter (μ̄) dynamical system: The stationary state is a symmetric
fixed-point solution, which transits through a supercritical Hopf bifurcation [22] at μ̄cri

1 ≈ 625 to
a limit-cycle solution corresponding to the undulating state. This periodic solution jumps, via a
secondary bifurcation at μ̄cri

2 ≈ 1017, to another asymmetric fixed-point solution representing the
spinning state. The Hopf bifurcation is confirmed by the quadratic variation of �̄mag in μ̄ in the
vicinity of μ̄cri

1 shown in Fig. 2(b) [linear dependence of (�̄mag)2 on μ̄]. It is worth noting that
the bifurcation diagram featured with these two bifurcations remains unchanged when the electric
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FIG. 2. Tuning the filament elasticity for various behaviors: stationary, undulating, and spinning (see videos
in the Supplemental Material). (a) and (b) Results for μ̄ = 800 and 1015: Time evolution of �̄ when the object
undulates periodically with a magnitude �̄mag, and the particle-filament configuration at six times within a
period. The μ̄ = 1015 case exhibits a large amplitude in the rotational displacement. (c) and (d) Similar to
(a) and (b), but for μ̄ = 1020 and 2000, when the system evolves from t̄ = 0 to its steady spinning state; six
times are chosen within one rotational period. (e) The magnitude of rotational velocity �̄mag versus μ̄. The
system is stationary when μ̄ < μ̄cri

1 ≈ 625, undulates when μ̄cri
1 < μ̄ < μ̄cri

2 ≈ 1017, and spins steadily when
μ̄ > μ̄cri

2 . Two undulatory cases (μ̄ = 800 and 1015) and two steady spinning ones (μ̄ = 1020 and 2000) are
marked. (f) Linear relation between (�̄mag)2 and μ close to μ̄cri

1 .

field 1 < Ē < Ēcri, where Ēcri corresponds to the critical field above which the particle with a rigid
filament (μ̄ = 0) undergoes QR; when Ē > Ēcri, the object spins steadily regardless of μ̄.

The composite object achieves self-oscillatory propulsion only in the undulating regime μ̄ ∈
(μ̄cri

1 , μ̄cri
2 ), attaining zero net locomotion when μ̄ → μ̄cri

1 + and μ̄ → μ̄cri
2 −. We expect its propul-

sive performance to exhibit a nonmonotonic dependence on μ̄ and peaks at an optimal EEV
parameter μ̄opt. We quantify the performance by the translational velocity Ū of the swimmer along
its effective straight path connecting the most convex points on the wavelike trajectory [Fig. 3(a)].
The trajectory shape depends on μ̄: For the stiffest filament μ̄ = 650, it matches a sinusoidal
wave with a high frequency, almost preserving fore-aft temporal symmetry. Conversely, when
μ̄ = 825, the wavy trajectory is characterized by a larger amplitude and lower frequency. For the
most floppy case shown μ̄ = 950, the trajectory is significantly coiled, exhibiting a pronounced
fore-aft asymmetry. Consequently, the swimmer’s backward movement is comparable to the forward
movement, leading to a nearly reciprocal motion. The increasing coiled trajectory for μ̄ is closely
linked to the more deflected filament shown in Fig. 3(b). Figure 3(c) confirms our anticipation of
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2 .

the nonmonotonically varying Ū with peak value of Ūopt ≈ 6 × 10−3 at μ̄opt ≈ 825. This velocity
Ūopt lies in the range (1, 15) × 10−3 of the dimensionless speed of a magnetically driven flexible
flagellum [23], implying the reasonable efficiency of this self-oscillatory propulsion mechanism. We
notice that Ū oscillates with μ̄ when μ̄ → μ̄cri

2 . We do not attempt to unravel this peculiar variation
here, keeping in mind that the main focus of the current work is on engineering self-oscillation to
achieve various functionalities such as locomotion. A thorough analysis on the propulsive features
of the microrobot will be conducted in future work.

By varying Ē , we present a bifurcation diagram in Fig. 4(a) for the composite object with
different μ̄ values. The diagram shares the same feature with Fig. 2(e) considering μ̄ as the
control parameter: A Hopf and a secondary bifurcation occur at Ē cri

1 and Ē cri
2 , respectively. Ē = 1

(open square) indicates the pitchfork bifurcation resulting in the original QR instability. This graph
has highlighted the role of the filament in transforming the pitchfork bifurcation into the Hopf
bifurcation that leads to self-oscillation. We further conduct a linear stability analysis (LSA) [24]
around an equilibrium base solution [θ, P̄Q, P̄3] = [θ̂ ,−κη̄Ē sin θ̂ ,−κη̄Ē cos θ̂ ] of Eq. (1) (θ̂ can
be an arbitrary value without loss of generality), when the composite system is stationary and the
filament is undeformed. Without the filament, �̄f→p

N = 0, the LSA indeed predicts a critical electrical
field of Ē = 1 corresponding to that of the original QR instability. In the presence of filament,
realizing that the filament undergoes weak deformation near the onset of instability, we are able to
model the elastic torque �̄

f→p
N following Refs. [25,26]. The critical electric field Ē cri

1 predicted by
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LSA above which self-oscillatory instability occurs is shown as a function of μ̄ and α [Fig. 4(b)],
so as the critical EEV number μ̄cri

1 versus Ē and α [Fig. 4(c)]. These theoretical predictions agree
well with their numerical counterparts, especially when μ̄ is large.

In this Rapid Communication, we have uncovered an EEH instability and demonstrated a strategy
for engineering self-oscillations based on a steady, uniform electric field. This idea is illustrated
by driving the motion of a dielectric particle connected to an elastic filament. By tuning the
filament elasticity and electric field strength, the object achieves propulsion enabled by the dual
functionalities of the filament: manipulating the bifurcation through its elastoviscous response,
which causes the particle to oscillate; and providing thrust by wiggling motion actuated by the
oscillating particle. Besides offering the possibility as a swimming microrobot, the object can
also transform into a stationary, soft obstacle or spinner when the electric field strength is tuned,
respectively, below or above the critical values we have identified.

The key idea we have recognized is to introduce an elastic element to trigger the Hopf bifurcation
and consequently the self-oscillatory instability. Therefore, this might be one path for engineering
biomimetic oscillatory processes using a time-independent power source. More generally, our
results imply the potential for incorporating elastic media in other unstable systems to manipulate
and diversify the bifurcations [27], which possibly can be employed for different functionalities.
This concept is different from, but complementary to, taming a structure’s mechanical failures to
achieve functionalities [28]. We believe that our ideas offer opportunities to develop a generation of
soft, reconfigurable machines that can morph and adapt to the environment. Experiments to test and
further explore the EEH instability introduced in this work are in progress.
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the Swedish Research Council for a VR International Postdoc Grant (2015-06334). We thank the
NSF for support via the Princeton University Material Research Science and Engineering Center
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