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The macroscale structure and microscale fluctuation statistics of late-time asymptotic
steady-state flows in cylindrical geometries is studied using the methods of equilibrium
statistical mechanics. The axisymmetric assumption permits an effective two-dimensional
(2D) description in terms of the (toroidal) flow field σ about the cylinder axis and the
vorticity field ξ that generates mixing within the (poloidal) planes of fixed azimuth. As for
a number of other 2D fluid systems, extending the classic 2D Euler equation, the flow is
constrained by an infinite number of conservation laws, beyond the usual kinetic energy
and angular momentum. All must be accounted for in a consistent equilibrium description.
It is shown that the most directly observable impact of the conservation laws is on σ ,
which displays interesting large-scale radius-dependent flow structure. However, unlike in
some previous treatments, we find that the thermodynamic temperature is always positive.
As a consequence, except for an infinitesimal boundary layer that maintains the correct
(conserved) value of the overall poloidal circulation, the impact on ξ resides in the statistics
of the strongly fluctuating, fine-scale mixing, where it is sensitive to “antiferromagnetic”
microscale correlations that help maintain the analog of local charge neutrality. The
poloidal flow is macroscopically featureless, displaying no large-scale circulating jet- or
eddylike features (which typically emerge as negative temperature states in analogous
Euler and quasigeostrophic equilibria).

DOI: 10.1103/PhysRevFluids.4.054703

I. INTRODUCTION

The modern era of exact statistical treatments of the late-time steady states of two-dimensional
(2D) fluid flows, properly accounting for the infinite number of conserved integrals of the motion,
began with the Miller–Robert–Sommeria (MRS) theory of the 2D Euler equation [1–4], generalizing
earlier approximate treatments going all the way back to the seminal work of Onsager [5], and
progressing through the Kraichnan energy–enstrophy theory [6], various formulations of the point
vortex problem (see, e.g., Refs. [7,8]), and extensions to the quasigeostrophic equations [9–11].
Since then, the theory has been applied to significantly more complex systems, containing multiple
interacting fields (in contrast to the Euler equation, which reduces to a single scalar equation
for the vorticity), but still possessing an infinite number of conserved integrals [12]. These
include magnetohydrodynamic equilibria [13–15], the shallow water equations [16–18], as well
as numerous other geophysical applications [19].

Here we return to the example of 3D axisymmetric flows, refining and substantially extending
a theory presented in Ref. [20] (as well as related earlier work relying on various simplifying
assumptions [21,22]). These flows, sketched in Fig. 1, are interesting because they allow constrained
interaction between circulation about the cylinder axis (toroidal flow) and circulation within any
given fixed 2D azimuth plane containing that axis (poloidal flow). A novel aspect of this system,
making it substantially different from the classic case of the Euler equation, is that although the key
2D dynamics occur in the “poloidal plane,” the vorticity field ξ in that plane is not conserved by
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FIG. 1. Axisymmetric flow geometry. The pattern of flows is assumed to be invariant under rotation about
the cylinder axis, and hence may be fully specified by the toroidal flow field σ about the axis [Eq. (7)], and
poloidal vorticity field ξ [Eq. (9)] within any 2D radial plane D.

the flow. Rather, it is the toroidal field σ that is passively advected, and is then constrained by an
infinite number of conserved integrals. It is therefore the indirect effects of σ -conservation that must
feed back on ξ to generate any interesting equilibrium poloidal flow structure. One consequence is
that, due to the comparatively weak constraints on ξ , the equilibrium state is strongly fluctuating
and only positive temperature equilibria are permitted. This is in contrast to the Euler case in which
the direct constraints on the vorticity field strongly suppress fluctuations, the equilibria may derived
from an exact variational (mean field) theory, and both positive and negative temperature equilibria
are permitted (with the latter sometimes leading to large-scale vortex structures). It will be seen that
in the axisymmetric flow case, the variational approximation is not generally applicable.

A. Outline and summary of results

The outline of the remainder of this paper is as follows. The basic equations of motion, derived
from the 3D Euler equation under the axial flow assumption and reduced to a pair of coupled
2D equations for ξ and σ (defined on the poloidal plane), are summarized in Sec. II. The key
conservation laws are summarized in Sec. III. In addition to the usual kinetic energy, linear
momentum along the cylinder axis, and angular momentum about the axis, these include two infinite
classes of conserved circulation integrals that are a consequence of the constrained effectively 2D
dynamics. The first class involves σ alone. The second couples both fields, but only linearly in ξ . All
of the conserved values may be viewed as fixed by the flow initial condition, and then maintained
through the turbulent cascade that leads to the late-time equilibrated flow.

In Sec. IV the thermodynamic free energy fully characterizing the equilibrium flows is defined in
terms of the underlying grand canonical statistical mechanics formalism laid out in Appendices A
and B. The continuum fluid results are obtained through a limiting procedure in which the
continuous poloidal plane is replaced by a 2D grid with microscopic mesh size a, and the limit
a → 0 taken. Similar to the Euler case [3], it transpires that the temperature and other model
parameters must be scaled appropriately with a to obtain a sensible thermodynamic limit. At this
point the basic positive temperature requirement is an obvious consequence of the unboundedness
of the poloidal field ξ , which is then capable of absorbing arbitrarily large energies.

To gain basic intuition, in Sec. V the exact solution is derived for the special choice of parameters
in which the toroidal and poloidal degrees of freedom are completely decoupled. This solution will
turn out to be highly relevant to the general case as well. We also introduce a class of “finite-level”
models in which the full set of conserved integrals are constrained to a finite number through a
special choice of parameters. These are particularly amenable to analytic and numerical solution.
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In Sec. VI the full coupled model is considered, and reduced models are derived focusing
separately on the toroidal and poloidal fields. In particular, by integrating out the poloidal field ξ ,
the effective theory for σ is shown to be equivalent to a certain type of classical antiferromagnetic
(AF) spin model on the microgrid. Proper scaling in the a → 0 limit, however, turns out to generate
only very weak antiferromagnetic correlations, allowing an exact perturbative treatment of both
classes of conservation laws. The intuition here is that the bias on ξ introduced by the second class
of conservation laws is rather weak compared to the intrinsic microscale fluctuations, and the final
result lies very close to the decoupled model solution.

On the other hand, the effective theory for ξ , obtained by integrating out the toroidal field σ ,
is that of a plasma model with long-range logarithmic (2D Coulomb-type) interactions—as would
be expected from the underlying vortex degrees of freedom. The AF correlations are here reflected
in the strong tendency toward local charge neutrality in Coulomb systems, which includes also
the classic electrostatic effect in which all uncompensated free charges are pushed to the system
boundary. There they are distributed in such a way as to produce vanishing interior large-scale flow
(equivalent to the requirement of vanishing static electric field within a conducting body).

In Sec. VII some simple examples are treated, including a detailed look at the two-level model,
and are used to illustrate the general theory.

The paper is concluded in Sec. VIII. In particular, comparison is made with the approach of
Ref. [20] (motivated as well by earlier work [21]) in which an artificial cutoff |ξ | < M is applied,
and the limit M → ∞ taken after a → 0. These two limits do not generally commute and this
strongly impacts the physical consequences of the theory. In particular, the variational approach
used there, indeed valid in parameter regimes where |ξ | = O(M ) is controlled by the cutoff, is seen
here to fail when the dynamics fully encompasses a very large range of scales—from finite |ξ | � M
all the way up to |ξ | ∼ 1/a controlled by microscale mixing processes—hence, missing the effects
of strong positive temperature fluctuations. However, the large-scale (negative temperature) poloidal
eddy structures emerging from this theory do mirror (and were motivated by) experimental results
on this system (see, e.g., Refs. [23,24] and references therein), and seen as well in more recent
direct numerical simulations [25,26]. Given the macroscopically featureless poloidal flows predicted
here, this raises very interesting questions about violations of ergodicity and other full equilibration
barriers (previously observed in Euler flows [27,28]) that deserve more careful investigation. Further
refinement of the proper theoretical description of such long-lived (negative-temperature-like) states
will hopefully be informed by the physics of the exact equilibrium theory presented here.

It may be observed that fluid equilibria provide a wonderful, self-consistent theoretical play-
ground. The statistical assumptions underlying the theory mean that they do not always fully reflect
reality; however, they continue to provide tremendous insight into the physics of fluid flow.

II. BACKGROUND

In this and the following section we summarize the key properties of axisymmetric flow
that allow one to derive an effective two-dimensional description with an infinite hierarchy of
conservation laws. These properties are well known [12,20–22,29] but are collected here for clarity
and to establish notation.

Axisymmetric flows are confined to a 3D domain of revolution with cylindrical coordinates
(θ, r, z) ∈ D ≡ [0, 2π ) × D, where D is a fixed 2D domain in the rz plane (Fig. 1). Ultimately,
we will specialize to a finite cylindrical domain, Rin � r � Rout, with periodic boundary conditions
along the axis of the cylinder 0 � z � h, but for now D is arbitrary.

The flows obey the three-dimensional Euler equation

∂t v + (v · ∇)v = −∇p, (1)

in which the pressure is uniquely determined by the incompressibility constraint

∇ · v = 0 (2)
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but specialized to velocity fields

v = vr (r, z)r̂ + vz(r, z)ẑ + vθ (r, z)θ̂, (3)

whose cylindrical coordinate components are independent of the azimuthal angle θ .

A. Vorticity and stream function

It follows from Eq. (2) that

∂r (rvr ) + ∂z(rvz ) = 0, (4)

allowing one to represent

vr = −1

r
∂zψ, vz = 1

r
∂rψ (5)

in terms of a stream function ψ (r, z). The velocity is therefore conveniently represented in the form

v = ∇ ×
(

1

r
ψθ̂

)
+ 1

r
σ θ̂, (6)

in which ψ and the vertical component of the angular momentum density

σ = rvθ (7)

about the symmetry axis are taken as the fundamental fields.
The axial vorticity ωθ is related to the stream function by

ωθ ≡ ẑ · ∇ × v = ∂zvr − ∂rvz = −1

r
∂2

z ψ − ∂r

(
1

r
∂rψ

)
. (8)

Defining the poloidal (scaled) vorticity

ξ = ωθ

r
, (9)

and the modified radial and 2D coordinates

y = r2

2
, ρ = (y, z), (10)

one may express the poloidal velocity components in the form

(vr, vz ) =
(

− 1√
2y

∂zψ, ∂yψ

)
≡ ∇∗ × ψ

∇∗ ≡ ŷ∂y + ẑ
1√
2y

∂z, (11)

and one obtains the relation

ξ = −
(

1

2y
∂2

z + ∂2
y

)
ψ ≡ −	∗ψ. (12)

For a simply connected domain, the free slip condition is enforced with Dirichlet boundary
conditions, ψ |∂D = 0. The generalized Laplace equation may be solved to derive ψ from any given
ξ :

ψ (ρ) =
∫

D
dρ′G(ρ, ρ′)ξ (ρ′), (13)
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with generalized Laplacian Green function obeying

−	∗G(ρ, ρ′) = δ(ρ − ρ′). (14)

and satisfying the same Dirichlet boundary condition in both arguments.
More generally, for the multiply connected cylindrical geometry of primary interest here, free

slip boundary conditions allow different constant values of ψ on the inner and outer boundaries of
the cylinder, rin � r � rout [18]. This may be handled by accounting for the mean vertical flow

v0
z = 1

VD

∫
D

dxvz, (15)

in which VD = πh(r2
out − r2

in ) = 2πh(yout − yin ) is the cylinder volume, with h its height. Conser-
vation of vertical momentum implies that v0

z is a constant of the motion (see Sec. III C), and the
subtracted stream function

ψD = ψ − v0
z y (16)

may be chosen to vanish on both boundaries. The scaled vorticity remains unchanged,

vD = v − v0
z ẑ ⇒ ξ = −	∗ψD, (17)

and Eq. (13) therefore generalizes to

ψ (ρ) = ψD(ρ) + v0
z y =

∫
D

dρ′G(ρ, ρ′)ξ (ρ′) + v0
z y, (18)

in which v0
z is a fixed parameter defined, e.g., by the flow initial condition.

B. Equations of motion in terms of ξ and σ

The azimuthal component of the Euler equation takes the form

∂tvθ + vr∂rvθ + vz∂zvθ + vθvr

r
= 0, (19)

which reduces to

∂tσ + w · ∇ρσ = 0, (20)

in which ∇ρ = (∂y, ∂z ) is a 2D gradient, and

w = ∇ρ × ψ = (−∂zψ, ∂yψ ) = (rvr, vz ) (21)

satisfies the 2D incompressibility condition

∇ρ · w = 0. (22)

Equation (20) expresses the fact that, in this modified 2D coordinate system, the toroidal flow
parameter σ is freely advected by the incompressible poloidal flow generated by ξ .

Applying appropriate spatial derivatives to the Euler equation and using the incompressibility
constraint Eq. (4), the axial vorticity Eq. (8) obeys

∂tωθ + vr∂rωθ + vz∂zωθ − ωθvr

r
= ∂zv

2
θ

r
, (23)

which may be put in the form

∂tξ + w · ∇ρξ = ∂zσ
2

4y2
. (24)

Thus, 2D advection of ξ (by its self-generated poloidal flow field) is forced by σ .
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Equations (20) and (24) are the fundamental equations of motion for axisymmetric flow, reducing
the 3D vector Euler Eq. (1) to a pair of coupled 2D scalar equations. The original 3D velocity field is
recovered using Eq. (7), and by constructing the 2D stream function Eq. (18), and then using Eq. (5)
in conjunction with the coordinate mapping Eq. (10).

III. CONSERVATION LAWS

A. Conserved energy

The kinetic energy is

E = 1

2

∫
D

dx|v|2 = 1

2

∫
D

dx
[|vD|2 + (

v0
z

)2] = π

∫
D

dρ

[
|∇∗ψD|2 + σ 2

2y

]
+ E0

z

= π

∫
dρ

(
ξψD + σ 2

2y

)
+ E0

z = EG[ξ ] + π

∫
dρ

σ 2

2y
+ E0

z , (25)

in which

E0
z = 1

2VD
(
v0

z

)2
, EG[ξ ] = π

∫
D

dρ

∫
D

dρ′ξ (ρ)G(ρ, ρ′)ξ (ρ′) (26)

are the kinetic energies associated, respectively, with the mean and poloidal flows. To derive the
latter, Eq. (18) has been used following an integration by parts. The surface term vanishes by virtue
of the ability to impose ψD|∂D = 0.

Energy conservation (which does not require axisymmetry) is verified by noting that, using the
Euler Eq. (1) and the incompressibility condition Eq. (2), the equation of motion for the kinetic
energy density

ε = 1
2 |v|2 (27)

takes the form of the conservation law

∂tε + ∇ · jε = 0, (28)

with energy current

jε = (p + ε)v. (29)

It follows that

∂t E = −
∫
D

dx∇ · jε = −
∫

∂D
dA(p + ε)v · n̂ = 0. (30)

The surface integral over the boundary ∂D vanishes for any combination of periodic and free slip
boundary conditions (v · n̂ = 0).

B. Conserved vorticity integrals

It follows from Eqs. (20) and (22) that any function f (σ ) obeys the conservation law

∂t f (σ ) + ∇ρ · [ f (σ )w] = 0. (31)

The vorticity integral

� f =
∫

D
dρ f (σ ) (32)

then obeys

∂t� f = −π

∫
D

dρ∇ρ · [ f (σ )w] = −
∫

∂D
dl f (σ )w · n̂ = 0. (33)
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Here, we make use of the fact that the free slip boundary condition is equivalent to w · n̂ = 0 in
the modified coordinates, and is valid for arbitrary D. The special case f (σ ) = σ coincides with
conservation of total angular momentum about the symmetry axis.

More generally, from Eqs. (20), (22), and (24) the combination ξ f (σ ) obeys

∂t [ξ f (σ )] + ∇ρ · [ξ f (σ )w] = f (σ )∂zσ
2

4y2
, (34)

from which follows the conservation law form

∂t [ξ f (σ )] + ∇ρ ·
[
ξ f (σ )w + F (σ )

4y2
ẑ
]

= 0, (35)

in which F (σ ) obeys

F ′(σ ) = 2σ f (σ ) ⇒ F (σ ) = 2
∫ σ

0
s f (s)ds. (36)

The integral

�̃ f =
∫

D
dρξ f (σ ) (37)

therefore obeys

∂t �̃ f = −
∫

∂D
dl

F (σ )

4y2
ẑ · n̂, (38)

which vanishes for a cylindrical boundary rin � r � rout (enforcing ẑ · n̂ = 0) along with periodic
boundary conditions in 0 � z < h.

The interpretation here is that in addition to being self-advected by w, the axial vorticity ξ is
advected vertically by the angular momentum density σ . Hence, only for a vertical boundary does
the net advection keep ξ from effectively exiting or entering the domain.

As a special case, in the context of the axisymmetric equations, the helicity is defined as [30]

H = 2
∫
D

dxvθωθ = 4π

∫
D

dρξσ (39)

and is conserved since it corresponds to the choice f (s) = 4πs in Eq. (37).
As illustrated in Fig. 2, the full infinite set of conserved vorticity integrals may be conveniently

parameterized by the functionals

γ [σ ](s) =
∫

D
dρδ[s − σ (ρ)], γ̃ [ξ, σ ](s) =

∫
D

dρξ (ρ)δ[s − σ (ρ)], (40)

which measure, for each real value −∞ < s < ∞, the fractional area on which σ takes the value s,
in the second case weighted by the values of ξ . Given these functions, one directly derives for any
function f ,

� f [σ ] =
∫

dsγ [σ ](s) f (s), �̃ f [ξ, σ ] =
∫

dsγ̃ [ξ, σ ](s) f (s). (41)

C. Conserved vertical momentum

As alluded to below Eq. (15), for the case of cylindrical boundary, translation symmetry in z
implies conservation of vertical momentum

Pz =
∫
D

dxvz = VDv0
z , (42)
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FIG. 2. Schematic level surfaces of the toroidal field σ , illustrating the conserved vorticity integrals in an
approximation in which σ takes only a finite number of discrete values (. . . > s2 > s1 > 0 > −s1 > . . .). As
formally defined by Eq. (40), the total area γ [σ ](s) of each level set {σ (ρ) = s} is conserved by the flow, as
is the total integral γ̃ [σ, ξ ](s) of ξ over each such set. In general each set is the union of some number of (in
general, multiply connected) pieces. For clarity, only a few of these are explicitly labeled in the figure. Since
the exact value of σ , but only the mean value of ξ , is specified on each set, the former is far more strongly
constrained. Arbitrary fluctuations of the latter about the mean are permitted, and this greatly impacts the
predicted equilibrium states.

with or without axisymmetry. To verify this formally, the z-component of Eq. (1) may be written in
the form

∂tvz + ∇ · jz = 0, jz ≡ vzv + pẑ, (43)

and it follows that

∂t Pz = −
∫

∂D
dA(vzv + pẑ) · n̂ = 0 (44)

for free slip boundary conditions on a cylinder.
From Eq. (5) it follows more explicitly that

Pz = 2πh[ψ (rout ) − ψ (rin )] (45)

is completely determined by the Dirichlet boundary conditions on ψ . In particular, as claimed
earlier, Pz = 0 may be enforced by setting ψ = 0 on both boundaries.

IV. EQUILIBRIUM FREE ENERGY

The grand canonical partition function, defined by Eqs. (B1)–(B3), takes the form

Z = e−βE0
z Z0[β,μ, μ̃; hσ , hξ ],

(46)

Z0 ≡
∫

D[σ ]e−β
∫

D dρ[ πσ2

2y −μ(σ )−hσ (ρ)σ ]
∫

D[ξ ]e−β{EG[ξ ]−∫
D dρξ [μ̃(σ )+hξ (ρ)]},

with corresponding free energy

F = E0
z + F0[β,μ, μ̃; hσ , hξ ], F0 ≡ − 1

β
ln(Z0), (47)
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in which the functional integrals are defined by the limit Eq. (A2), and E0
z , EG were defined in

Eq. (26). The conserved quantities are obtained from the free-energy derivatives Eq. (B5) with
respect to the Lagrange multipliers β,μ, μ̃. We have also included conjugate fields hσ and hξ that
will be set to zero in the end, but whose free-energy derivatives may be used to generate statistical
averages and correlations of the two fields.

We will consider first, in Sec. V, the model μ̃ ≡ 0, in which the two fields are entirely decoupled.
This model is exact in noncylindrical geometries, where the second class of conserved integrals is
absent and μ̃ therefore does not appear. This limit also serves to illustrate the nature of the limit
a → 0. We will then consider in Sec. VI the full coupled model, in particular deriving reduced
models by first integrating out either one of ξ or σ . The statistics of the remaining field exhibit
rather different physical phenomena.

V. DECOUPLED MODEL

Setting μ̃ ≡ 0, as well as hσ = hξ = 0 for now, one obtains

F0(β,μ) = Fσ (β,μ) + Fξ (β ), (48)

in which

Fσ = − 1

β
ln(Zσ ), Fξ = − 1

β
ln(Zξ ), (49)

with decoupled partition functions

Zσ =
∫

D[σ ]e−β
∫

D dρ[ πσ2

2y −μ(σ )]
, Zξ =

∫
D[ξ ]e−βEG[ξ ]. (50)

We analyze each in sequence, with special attention to the continuum limit, a → 0. Note that when
considered separately the two models may be well defined over different temperature ranges (e.g.,
only positive versus either sign), but in the end the sum Eq. (48) constrains the thermodynamics to
a common temperature range for which both are defined (e.g., only positive).

A. Statistics of σ

Using the square grid discretization Eq. (A2) [31], the statistics of the σ field are clearly
decoupled from site to site, and one obtains

Zσ =
∏

l

Z1[βa2, μ, yl ], (51)

with factor a2 coming from the discretization of
∫

D dρ, the product extending over all lattice sites,
and single site partition function

Z1(β̄, μ, y) =
∫

dse−β̄[ πs2

2y −μ(s)]
. (52)

Typically, the flow initial condition will have bounded σ , hence γ [σ ](s) has compact support, and
so therefore will e−β̄μ(s). Thus, Eq. (52) is strongly convergent for any real β̄, both positive and
negative. The single-site probability distribution takes the form

pσ (s, y) = 〈δ[s − σ (ρ)]〉 = e−βa2[ πs2

2y −μ(s)]

Z1(βa2, μ, y)
, (53)

and the position-dependent mean is

〈σ (ρ)〉 =
∫

sdspσ (s, y). (54)
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Equation (51) serves to illustrate another key result. It is seen that the properly scaled thermal
variable is

β̄ = βa2 ⇒ T̄ = T/a2, (55)

which needs to remain finite in the continuum limit a → 0 [3]. Only for finite β̄ does σ have a
nontrivial distribution. The σ field free energy

Fσ (β̄, μ) = − lim
a→0

1

β
ln(Zσ ) = − 1

β̄

∫
D

dρ ln[Z1(β̄, μ, y)] (56)

is also finite in the continuum limit. The latter corresponds to the thermodynamic limit in the sense
that the number of grid cells VD/πa2 diverges. For cylindrical D this expression may clearly be
simplified, but in this section we treat this as a special case of the more general domain.

Finite β, in contrast, leads to β̄ = β/a2 → ∞ and T̄ = Ta2 → 0. The zero temperature limit
leads to frozen σ = s0(y) at the value s0 minimizing (β > 0) or maximizing (β < 0) the exponent
πs2

2y − μ(s) over the support of μ. More generally, positive temperatures encourage larger σ values
to gather at smaller radii (larger 1/2y), while negative temperatures encourage them to gather at
larger radii (smaller 1/2y) [20].

The constraint Eq. (B5) for the conserved integral g(s) takes the explicit form

g(s) = − δFσ

δμ(s)
=

∫
D

dρpσ (s, y). (57)

Using independence of the two fields in the decoupled model, one obtains trivially

g̃(s) =
∫

D
dρ〈ξ (ρ)δ[s − σ (ρ)]〉 =

∫
D

dρ〈ξ (ρ)〉pσ (s, y) ≡ 0, (58)

since EG[ξ ] is a positive even functional of ξ .

B. Finite-level models

A common approximation is to restrict the initial condition for σ to a finite, discrete set of levels.
As the simplest model, which will form the basis for most explicit examples in later sections, the
two-level system is described by

g(s) = AD[p1δ(s − s1) + p2δ(s − s2)], (59)

with, by convention, s2 > s1, and in which AD = ∫
D dρ = VD/2π is the modified coordinate area

of D, and p1, p2 = 1 − p1 are, respectively, the fractional areas on which σ (ρ) = s1, s2. The
corresponding chemical potential must take the general form

eβ̄μ(s) = eβ̄μ1δ(s − s1) + eβ̄μ2δ(s − s2), (60)

which leads to

Z1 = eβ̄(μ1−πs2
1/2y) + eβ̄(μ2−πs2

2/2y),

pσ (s1, y) = 1 − pσ (s2, y) = eβ̄[π (s2
2−s2

1 )/4y−μ	]

2 cosh
{
β̄
[
π

(
s2

2 − s2
1

)
/4y − μ	

]} ,

〈σ (ρ)〉 = s1 pσ (s1, y) + s2 pσ (s2, y),

Fσ = π
(
s2

1 + s2
2

)
4

ID − μ0AD − 1

β̄

∫
D

dρ ln

(
2 cosh

{
β̄

[
π

(
s2

2 − s2
1

)
4y

− μ	

]})
, (61)

in which we define the mean and difference chemical potentials

μ0 = μ2 + μ1

2
, μ	 = μ2 − μ1

2
(62)
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FIG. 3. Example equilibrium results for the two-level model described by Eqs. (59)–(64) using s1 = 0
and s2 = 1, scaled temperature T̄ = 0.1, and cylinder boundaries rin = 1, rout = 2 yielding yin = 0.5, yout = 2.
Left: Probability distribution pσ (s2, y) for a range of chemical potential values 0.2 � μ	 � 1.7 in steps of 0.1.
The interface moves left (larger region occupied by s2) for increasing μ	. For the chosen s1, s2 values, the
curves coincide with the mean toroidal flow profile 〈σ (ρ)〉 [third equality in Eq. (61)]. Right: Fractional area
p2(μ	), defined by Eqs. (59) and (64), occupied by σ = s2. This illustrates the 1–1 correspondence between
the Lagrange multiplier μ	 and the conserved integrals g(s).

and the integration constant

ID =
∫

D

dρ

y
. (63)

The constraint Eq. (57) takes the form

p1 = 1 − p2 = 1

2AD

∫
dρpσ (s1, y). (64)

These depend only on the difference μ	, which is then used to set the values of p1,2. The
correspondence is easily seen to be one-to-one and invertible. Some model results are plotted in
Fig. 3. For example, at low temperatures it is seen that there is sharp (Fermi-surface-like) interface
between the smaller of |s1|, |s2| (y < yI ) and the larger of |s1|, |s2| (y > yI ) dominated regions, with
position yI = π (s2

2 − s2
1)/4μ	 controlled by μ	.

The more general L-level model, which restricts σ (ρ) to a discrete set of values s1 < s2 < . . . <

sL, is described by

g(s) = AD

L∑
m=1

pmδ(s − sm),
L∑

m=1

pm = 1, eβ̄μ(s) =
L∑

m=1

eβ̄μmδ(s − sm), (65)

which leads to

Z1 =
L∑

m=1

e−β̄πs2
m/2yeβ̄μm , Fσ = − 1

β̄

∫
D

dρ ln

(
L∑

m=1

eβ̄μm e−β̄πs2
m/2y

)
. (66)

Defining m0 = arg min{|sm|} (the index of the smallest magnitude |sm|), the constraint equations
may be put in the form

pm = 1

AD

∫
D

dρpσ (sm, y), pσ (sm, y) = eβ̄	μm e−β̄π (s2
m−s2

m0
)/2y

1 + ∑L
m′ �=m0

eβ̄	μm′ e−β̄π (s2
m′−s2

m0
)/2y

, (67)
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with the differences 	μm = μm − μm0 , m �= m0, used to set the L − 1 independent pm values. The
areas Am = AD pm on which σ = sm are conserved by the flow, though the corresponding domain
geometries strongly mix at ever finer scales as time advances.

Analogous to the result for the two-level model, each difference 	μm controls the position of
an interface, at position ym = (s2

m − s2
m0

)/2	μm, separating sm-increasingly-present (y > ym) and
sm-increasingly-absent (y < ym) regions.

C. Statistics of ξ

Since EG[ξ ] is positive definite, Eq. (46) makes sense only for positive temperatures, β > 0. This
is in contrast to the Euler equation [1,3], where the equivalent of the field ξ is directly constrained
by the conservation laws, and negative temperature equilibria are ubiquitous.

To verify that the combination β̄ is appropriate here as well, consider the square grid Gaussian
form

e−βEG[ξ ] = e− 1
2

∑
l,m Almξl ξm , (68)

with discrete variables

ξl = ξ (ρl ), Alm = β̄a2G(ρl , ρm). (69)

The discrete approximation to the Green function Eq. (14) takes the form

−
∑

n

	lnG(ρn, ρm) = δlm, (70)

in which

	lm = a2[	∗]lm = δl+ŷ,m − 2δlm + δl−ŷ,m + δl+ẑ,m − 2δlm + δl−ẑ,m

2yl
(71)

is the discrete (nearest-neighbor finite difference) version of the generalized Laplacian. The
Dirichlet boundary conditions on G lead to the vanishing of Eq. (70) when either or both l, m lie on
the boundary, hence this equation only makes sense if both indices l, m correspond to interior points
of D. Thus, all terms in Eq. (71) vanish if l itself is a boundary point; and if l is an interior point,
then the corresponding nearest-neighbor Kronecker δ is absent if l + δ̂ is a boundary point (with δ̂

any of the four nearest-neighbor directions).
Put another way, from the fact that boundary values of ξ do not contribute to EG it follows that∑
m Glmξm ≡ 0 for any ξ entirely supported on the boundary. Thus, the matrix G is not invertible

unless restricted to the interior. It follows also that, to obtain a finite well-defined free energy,
the functional integral over ξ must be restricted to interior points as well. Note that since the σ

field is strongly regularized, whether or not one includes values on the boundary is of negligible
consequence in the continuum limit, but for consistency we will restrict it to interior sites as well.

1. Poloidal field correlations

With this interior restriction, −	lm is precisely the inverse of the matrix Glm, and the second
moments of ξ are given by the corresponding nearest-neighbor form

〈ξlξm〉 = [A−1]lm = −	lm

β̄a2
= − 1

β̄
[	∗]lm. (72)

The right-hand side diverges in the continuum limit: Microscopic vorticity fluctuations are ex-
tremely large. Note that, when expressed in terms of β = β̄/a2, Eq. (72) may be written in the
form

〈ξ (ρ)ξ (ρ′)〉 = − 1

β
	∗δ(ρ − ρ′), (73)

which is well defined in the sense of distributions. However, for finite β this leads to a much stronger
divergence of the variance 〈ξ (ρ)2〉 ∝ 1/βa4 that will be seen to lead to unphysical states with infinite
flow energy.
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By substitution of Eq. (18), it is straightforward to verify the stream function correlation identity

〈ψD(ρ)ψD(ρ′)〉 = 1

β
G(ρ, ρ′). (74)

The result is finite for finite β, but the remaining short-range singularity in G still leads to a
logarithmic divergence 〈ψD(ρ)2〉 ∼ ln(AD/a2). Similarly, the microscale mean-square difference
〈[ψD(ρ) − ψD(ρ′)]2〉 ∼ β−1 ln(|ρ − ρ′|/a) increases logarithmically with separation. Both of these
results reflect the thermally rough elastic surface model that emerges when EG is written in terms of
the stream function [gradient-squared form in the first line of Eq. (25)].

It is straightforward to verify that the mean energy 〈EG〉 ∼ AD/2βa2 also diverges for finite
β. A consistent, finite conserved value of the hydrodynamic kinetic energy emerges only if the
combination β̄ = βa2 remains finite, consistent with the scaling (55) that emerged from the statistics
of σ . With this scaling, one sees that 〈ψD(ρ)ψD(ρ′)〉 → 0: the macroscopic stream function
vanishes. On the other hand, consistent with finite kinetic energy, the continuum limit correlations
of the 2D velocity vD = (vr, vz ) = (−∂zψD/

√
2y, ∂yψD) take the form

〈vD(ρ) · vD(ρ′)〉 = 1

β
δ(ρ − ρ′) = 1

β̄
δρ,ρ′ (75)

and are therefore finite. Although ψD vanishes, and any local average of vD vanishes as well, the
finite microscale gradients of the former generate finite microscale velocity fluctuations containing
finite energy. This is in contrast to the Euler case in which ξ is directly bounded, vD is then
continuous, ψ is differentiable, and the energy resides entirely in the macroscale flow. As pointed
out as well in Ref. [21], there are parallels in the present case to that of magnetohydrodynamic
equilibria [15], where the infinite number of integral constraints apply to the flow potentials rather
than to the vorticity: finite energy again provides the essential constraint on vorticity fluctuations,
and microscale velocity fluctuations make a finite contribution to the energy.

2. Poloidal field free energy

In a similar fashion, the poloidal free-energy contribution is

Fξ (β̄ ) = 1

2β
ln[det(A/2π )] = − 1

2β

∑
n

ln

(
2πa2λn

β̄

)
, (76)

in which λn are the eigenvalues of the generalized Poisson equation

−
∑

m

	lmψm = λa2ψl → −	∗ψ = λψ, (77)

with the usual Dirichlet and periodic boundary conditions.
For the cylindrical geometry, translation invariance in z allows one to seek eigenfunctions of

Eq. (77) in the form

ψ (ρ) = eiqzψq(y), q = 2πm

h
, (78)

for integer |m| � h/2a. For each q one then solves the one-dimensional (1D) eigenvalue equa-
tion [32] (

−∂2
y + q2

2y

)
ψq = λψq, (79)

with Dirichlet boundary conditions on the interval [yin, yout]. The eigenvalues λq,l are substituted
into Eq. (76) with n = (q, l ) now a double index.
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For finite a there are ND = AD/a2 eigenvalues, and one expects a finite limit

�0 = lim
a→0

a2
∑

n

ln(a2λn), (80)

The continuum free energy, therefore, takes the form

Fξ (β̄ ) = 1

2β̄
[ln(β̄/2π ) − �0], (81)

and is finite for finite β̄. Note that the Dirichlet boundary conditions on the eigenfunctions, which
ensures that all λn > 0, automatically remove the boundary values of ξ from the functional integral,
rendering the free energy well defined [as per the discussion below Eq. (71)].

To gain intuition using an analytic example, if one replaces 2yl by unity in Eqs. (71), (77),
and (79) [31], the Fourier representation is appropriate in both y and z, and one obtains eigenfunc-
tions and eigenvalues

ψ (ρ) = ψpqei(py+qz), (p, q) = 2π

(
l

yout − yin
,

m

h

)
,

λ(p, q) = sin2(pa/2) + sin2(qa/2)

a2/4
, (82)

for integers |l| � (yout − yin )/2a, |m| � h/2a. This leads, as stated, to the finite limit

�0 = AD

∫ π

−π

dsy

2π

∫ π

−π

dsz

2π
ln[4 sin2(sy/2) + 4 sin2(sz/2)]. (83)

Note that the scaling Eq. (77) yields the finite result λ(q) → |q|2 as a → 0 for any finite q—and
will similarly yield a well-defined functional form when the 2y factor is restored in the eigenvalue
equation. However, the free energy includes contributions from all scales, and the full microscale
form of the eigenvalues enters �0. As a consequence, the value of �0 depends on the precise
form of the discretization. However, the ln(β̄/2π ) term is universal and contains the essential
temperature-dependent thermodynamic behavior, which is independent of the precise form of the
continuum limit.

3. Stream function representation

Note also that one may use the eigen-decomposition to perform the phase space change of
variable ∫

D[ξ ] = Jξ

∫
D[ψ], (84)

with (constant) Jacobian

Jξ = det

[
∂ξ

∂ψ

]
=

∏
n

λn. (85)

An alternative form for the partition function is therefore

Zξ = Jξ

∫
D[ψ]e−βEG[ψ],

EG[ψ] = −1

2

∫
dρ ψ	∗ψ = 1

2

∫
dρ|∇∗ψ |2. (86)
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Using the eigen-decomposition to diagonalize EG[ψ], the free energy is

Fξ (β̄ ) = − 1

β
ln(Jξ ) + 1

2β

∑
n

ln(βλn/2π ), (87)

which, using Eq. (80), reproduces Eqs. (76) and (81).

D. Decoupled model thermodynamics

We have noted that Fσ is well defined for both positive and negative temperatures [assuming only
bounded support of g(s)], while Fξ [see Eq. (81)] is well defined only for positive temperatures.
Physically, the toroidal flow energy

Eσ (β̄, μ) =
∫

D
dρ

∫
dspσ (s, y)

πs2

2y
(88)

is always finite, while the poloidal flow energy

Eξ (β̄ ) = ∂ (β̄Fξ )

∂β̄
= 1

2
T̄ (89)

diverges as β̄ → 0+ (T̄ → +∞) and is strictly infinite for β̄ < 0. This linear in T̄ result is a version
of the equipartition principle for quadratic Hamiltonians, and was derived as well in Ref. [22] within
the context of Gaussian fluctuations about a mean field approximation. It follows that arbitrarily
large values of the total energy

E0 = Eσ (β̄, μ) + 1
2 T̄ (90)

are explored using only positive values of T̄ , with the toroidal energy saturating at the fully mixed
value

Eσ (0, μ) = π ID

2AD

∫
s2dsg(s), (91)

in which one observes that limβ̄→0 pσ (s, y) = g(s)/AD independent of y. All remaining energy is
absorbed into ever increasing ξ fluctuations. Negative temperature toroidal states are never accessed
by the combined system.

VI. GENERAL COUPLED MODEL

We consider now the full coupled model Eq. (46). The ξμ̃(σ ) coupling term is sufficiently simple
that it is straightforward to perform the functional integral over either one of the fields to obtain a
reduced model expressed entirely in terms of the other. The resulting models have more complex
interactions, and an exact solution is not generally possible. However, general features may be
understood, and approximate solutions may be derived in various limits. In fact, it will turn out that
the proper a → 0 scaling limit for the coupling requires that μ̃ = μ̄a2 vanish with a, allowing an
exact relation between μ̃ and g̃ to be derived.

Both reduced models must produce the identical final free-energy Eq. (47), hence represent
the same underlying physics, though expressed in different ways. The effective (conditional)
equilibrium statistics of the fields σ and ξ provide interesting complementary views of the
underlying fluctuations:

(1) The σ -model is a classical scalar spin model with local (nearest-neighbor) antiferromagnetic
interactions but including also adjustable on-site potentials determined by the Lagrange multipliers
μ, μ̃ that allow one to enforce the conservation laws Eq. (B5) [with Eq. (40)].

(2) The ξ -model continues to be a vortex model with long-range Coulomb-type interactions,
but now with an additional local potential. The potential is (linearly) unbounded from below, hence
does not confine the ξ field to finite values as would be required for validity of the variational
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approach—the variance of ξ is still O(1/β̄a2). The forms of μ, μ̃ that determine the exact shape of
the potential again allow one to enforce the conservation laws.

A. Reduced σ-model

We consider first the case in which the (Gaussian) ξ integral is performed to obtain an effective
model for σ alone. We apply the Gaussian identity∏

l

∫ ∞

−∞
dξl e

∑
l ql ξl e− 1

2

∑
l,m Almξl ξm = 1√

det(2πA)
e

1
2

∑
l,m[A−1]lmql qm , (92)

valid for any positive definite (real symmetric) matrix A. In addition to the parameters Eq. (69), we
identify here

ql = β̄{μ̃[σ (ρl )] + hξ (ρl )}, (93)

in which ρl is again restricted to the interior of D, and the conjugate field hξ has also been reinstated.
Restoring continuum notation, it follows that the result of the ξ functional integral is

Z = e−βE0
z√

det(2πβa4G)

∫
D[σ ]e−βK1[σ ], (94)

with reduced σ -functional

K1[σ ] =
∫

D
dρ

{
πσ 2

2y
− μ(σ ) − hσ σ + 1

2
[μ̃(σ ) + hξ ]	∗[μ̃(σ ) + hξ ]

}
. (95)

When interpreting the last term, the interior restriction allows one to take μ̃(σ ) and hξ to vanish on
the boundary. Note that the term

M̃ ≡ −1

2
β

∫
D

dρμ̃(σ )	∗μ̃(σ ) = 1

2
β

∫
D

dρμ̃′(σ )2|∇∗σ |2 (96)

for β > 0 favors gradients in σ , corresponding to antiferromagnetic correlations at the grid
scale. This is converse to the ferromagnetic negative temperature states encountered for the Euler
equation [3], which favor smooth σ .

1. Scaling of μ̃(σ )

In discrete form, one obtains

βK1[σ ] = β̄
∑

l

[
πσ 2

l

2yl
− μ(σl ) − hσ,lσl

]
+ β̄

2a2

∑
l,m

	lm[μ̃(σl ) + hξ,l ][μ̃(σm) + hξ,m]. (97)

The first line generates the individual spin weighting analyzed in Sec. V A. The second line
generates antiferromagnetic nearest-neighbor interactions between spins. Note the appearance of
the divergent coefficient β = β̄/a2, rather than β̄, in the latter. We will see below that to obtain the
proper scaling that produces finite values for the conserved integrals g̃(s), one requires an additional
scaling relation

μ̃(σ ) = aμ̄0 + aγ μ̄(σ ), hξ = aγ h̄ξ (98)

for some γ > 0, with μ̄ and h̄ξ remaining finite as a → 0. From Eq. (96) one sees that μ̄0 contributes
only at the boundary, but is required, with its potentially distinct scaling, to control the total vorticity∫

D dρξ (ρ). The choice γ = 1 produces a finite antiferromagnetic coupling in Eq. (97). We will see
that this leads to divergent g̃(s), and a larger value γ = 2, hence asymptotically vanishing coupling,
is required.

Physically, the coupling biases the equilibrium state toward differing neighboring toroidal flows
σ , beyond that which would be encountered with pure random (Poisson statistics) assignment,
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μ̃ ≡ 0. This is precisely what is required to control the specified nonzero average g̃(s) of ξ over
different level sets {σ = s} [see Eqs. (40) and (B5)]. Since real fluids do not have a fixed microscale
a, it is not clear how such correlations would actually be exhibited in an equilibrating fluid,
especially as finite viscosity will lead to at some point to significant dissipation. As discussed in
more detail in Sec. VIII, this would be an interesting topic for future numerical investigation.

2. Equilibrium averages

The equilibrium average of ξ follows in the form

ξeq(ρ) ≡ 〈ξ (ρ)〉 = − δF0

δhξ (ρ)
= −〈	∗μ̃[σ (ρ)]〉 = −	∗ψeq(ρ),

(99)
ψeq(ρ) ≡ 〈μ̃[σ (ρ)]〉,

in which the averages are now with respect to the reduced functional K1[σ ], and we set hξ = 0 at
the end. The adopted convention μ̃[σ (ρ)] ≡ 0 on ∂D ensures that ψeq obeys the required Dirichlet
boundary conditions. Although μ̃(σ ), like σ itself, will have strong microscale fluctuations, ψeq(ρ)
will be a smooth function in the interior of D, and it follows that 〈ξ (ρ)〉 will be as well [33]. The
scaling Eq. (98) actually results in ψeq → 0, while

ξeq(ρ) → μ̄0[δ(y − yin ) + δ(y − yout )], (100)

corresponding to vanishing interior vorticity, but a pair of uniform finite vortex surface layers with
total mean vorticity,

ξ0 = 1

AD

∫
D

dρξeq(ρ) = 2μ̄0

yout − yin
. (101)

Unequal vortex layers generate a net uniform flow, and hence provide an equivalent mechanism
for producing the conserved vertical flow v0

z . Equal layers produce zero net interior flow, hence
vanishing energy contribution. Physically, this is directly analogous to the usual Coulomb result
that all excess charge on a conducting body resides on the surface in such a way that the interior
electric field vanishes. Note that for γ > 1 the stream function fluctuations ψD ∼ a/

√
β̄ are much

larger than those in μ̃(σ ), and produce the finite microscale velocity fluctuations [34].
By way of contrast, if spread uniformly, ξ (ρ) ≡ ξ0, then the result is a linear shear flow

ψeq(y) = 1

2
ξ0(y − yin )(yout − y), vz

eq(y) = −ξ0

(
y − yin + yout

2

)
. (102)

However, in the context of the Euler equation, this corresponds to a “zonal jet” negative temperature
state, and is in the present case thermodynamically unstable to the positive temperature state
Eq. (101).

The conserved integrals Eq. (B5) follow in the form

g(s) = − δF0

δμ(s)
=

∫
D

dρ〈δ[s − σ (ρ)]〉,
(103)

g̃(s) = − δF0

δμ̃(s)
= −

∫
D

dρ〈	∗μ̃[σ (ρ)]δ[s − σ (ρ)]〉,

in which we have set hξ = hσ = 0. The substitution ξ → −	∗μ̃(σ ) is consistent with Eq. (99).
However, although the mean Eq. (99) vanishes, the confinement of the integration support to a
particular level set σ = s in general biases the integrand defining g̃(s) to produce a nonzero result.
For example, if s is at the high end of the support of g(s), then the neighboring points ρ ± aŷ, ρ ± aẑ
will likely lie on lower level sets, biasing the finite difference Laplacian a2	∗σ (ρ) [see Eq. (71)]
to finite negative values, and a2	∗μ̄[σ (ρ)] to (also typically finite) values depending on the precise
form of the function μ̄(s).
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It follows that finite biased values of 	∗μ̃[σ (ρ)] = aγ−2(a2	∗)μ̄[σ (ρ)] require the choice

γ = 2, (104)

as claimed above. This choice confirms, via Eq. (99), that the bias in ξ when ρ is confined to a
particular level set of σ is also finite, as required by the original form Eq. (B5) with Eq. (40).

The total vorticity is

ADξ0 =
∫

dsg̃(s) = 2hμ̄0, (105)

and is nonzero only by virtue of the surface layers.

3. Exact relations for g(s) and g̃(s)

With the choice Eq. (104), the last line of the statistical functional Eq. (97) is of relative order a2

compared to the first, and it follows that the averages Eq. (103) may be evaluated using the first term
alone, i.e., the uncoupled model—the additional antiferromagnetic bias (beyond the appearance of
μ̃ in the integrand of that equation) is negligible compared to that induced by the choice of s. This
produces the following exact solution.

The conserved integral g(s) is still given by Eq. (57), with input Eqs. (53) and (52).
Moving on to g̃(s), since all sites are completely independent in the decoupled model, for ρ �= ρ′,

even for nearest-neighbor microscale grid sites, one obtains

〈μ̄[σ (ρ′)]δ[σ (ρ) − s]〉0 = 〈μ̄[σ (ρ′)]〉0〈δ[σ (ρ) − s]〉0 = pσ (s, y)
∫

ds′μ̄(s′)pσ (s′, y′), (106)

while, for ρ = ρ′,

〈μ̄[σ (ρ)]δ[σ (ρ) − s]〉0 = μ̄(s)〈δ[σ (ρ) − s]〉0 = μ̄(s)pσ (s, y), (107)

in which 〈·〉0 denotes the decoupled model average, μ̃ ≡ 0, and the single site probability pσ

is defined by Eq. (53). Substituting the discrete form Eq. (71), along with the scaling Eqs. (98)
and (104), one obtains

	∗μ̃(σl ) → μ̄(σl+ŷ) + μ̄(σl−ŷ) + μ̄(σl+ẑ) + μ̄(σl−ẑ)

2yl
−

(
2 + 1

yl

)
μ̄(σl ), (108)

as long as l does not neighbor a boundary point (i.e., l ± ŷ are both not boundary points), while

−	∗μ̃(σl ) → μ̄0

a
(109)

for l neighboring a boundary point.
Substituting Eqs. (107)–(109) into the second line of Eq. (103) and restoring continuum limit

notation, one obtains

g̃(s) =
∫

D
dρpσ (s, y)

(
2 + 1

y

)[∫
ds′μ̄(s′)pσ (s′, y) − μ̄(s)

]
+ hμ̄0[pσ (s, yin ) + pσ (s, yout )],

(110)

in which, in the first term, one may safely replace pσ (s, y + aδ̂) → pσ (s, y) for all δ̂ at the end
because ratios of small differences are no longer involved. The s-integral of the first term vanishes,
while the last line produces Eq. (105).

Equation (110) [replacing Eq. (58)], along with Eq. (57), are the fundamental results of this
section. Note that the relation between μ and g is independent of μ̄, but strongly nonlinear. However,
once μ is determined, the relation between g̃ and μ̄ is linear. Some illustrative applications will be
presented in Sec. VII.
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B. Reduced ξ-model

Although the σ -field formulation Eq. (95) provides the most convenient representation, being
directly expressed in terms of the conserved field, it is interesting to examine also the alternative
reduced model obtained by integrating out σ . Since the latter appears without any coupling between
different spatial points, we can express the result in terms of the 1D integral

eβ̄W (x,t ;hσ ,hξ ) =
∫

dseβ̄{μ(s)+x[μ̃(s)+hξ ]−πs2/2t+hσ s}, (111)

which yields

Z = e−βE0
z

∫
D[ξ ]e−βK2[ξ ], (112)

with reduced ξ -functional

K2[ξ ] = EG[ξ ] −
∫

D
dρW [ξ (ρ), y; hσ (ρ), hξ (ρ)]. (113)

The positions of the level curves of σ fluctuate with the statistical mechanical average, hence the
statistics of ξ at each physical point ρ involve also an average over the possible σ -level curves
passing through that point. This is precisely the content of the function W . As will be discussed
below, this model must contain the identical antiferromagnetic interpretation as the σ formulation.

The result here is formally similar to that for the Euler equation [3], except for that case the
range of ξ was directly bounded by the vorticity constraints. Here it is unbounded since the vorticity
constraints instead apply to σ . For example, the two-level system form yields

W (x, t ) = 1

β̄
ln

[
eβ̄(μ1+xμ̃1−πs2

1/2t ) + eβ̄(μ2+xμ̃2 )−πs2
2/2t

]
, (114)

in which μ̃l = μ̃(sl ), l = 1, 2. This result contains linearly increasing terms for sgn(x) such that
xμ̃l > 0 [as should be more generally clear from the ξμ̃(σ ) dependence in Eq. (46)]. These are
controlled by the positive definite quadratic form EG[ξ ], but as a consequence there remain large
fluctuations in equilibrium, and the Euler equation mean field result fails (which is a consequence
both of the bounded vorticity and of the long-range property of G).

In the absence of W , as seen in detail in Sec. V, one has Fourier coefficient ξ̂ (q) ∼ q/
√

β̄,
strongly divergent at small scales, q ∼ π/a, leading to 〈ξ (ρ)2〉 ∼ 1/a4 → ∞ [see Eq. (73)]. From
the definition Eq. (111), one sees that

eβ̄W (x,t ) ∼
{

eβ̄μ̃maxx, x → ∞
eβ̄μ̃minx, x → −∞, (115)

in which

μ̃max = sup μ̃(s), μ̃min = inf μ̃(s) (116)

are the maximum and minimum values of μ̃(s). It follows that W (x, t ) → +∞ on at least one side
for large |x| (depending on the signs of μ̃±), thus enhancing, rather than suppressing, fluctuations
of ξ . This contrasts with the Euler equation case, in which the analog of W → −∞ outside a finite
range of support of ξ , directly limiting its fluctuations.

As in the decoupled model one therefore relies on the quadratic term EG to counteract this
divergence, and one expects a self-consistent shift in the mean of the form δξ ∼ −	ρW (ξ, y) ∼
(μ̃max − μ̃min)/a2, accounting for the site-to-site near-independence. The finite shift requirement
leads to the scaling μ̃max,min = a2μ̄max,min, recovering Eqs. (98) and (104). Note also that the
combination β̄μ̃ξ = β̄μ̄δξa2 → 0 for ξ ∼ 1/a: the coupling term is a vanishing perturbation of
the decoupled model, but is precisely the right size to provide the finite bias to the large q ∼ π/a
Fourier components that dominate the microscale mixing.
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The mean value g̃(s) of ξ is fixed on each σ = s level curve, set here through the Lagrange
multiplier μ̃(s). However, there is only weak control of fluctuations about this mean, which remain
comparable to those for the decoupled model. Thus, the equilibria will be strongly fluctuating and
the variational mean field approximation will fail. The elastic membrane model Eq. (86) defined by
the stream function ψ will fluctuate strongly, though remaining microscopically consistent with the
mean values defined by μ̃(s) [see Eq. (99)] and constrained by the Dirichlet boundary condition on
the domain D.

From Eq. (B5), the conserved integrals take the form

g(s) =
〈∫

D
dρ

δW [ξ (ρ), y]

δμ(s)

〉
=

∫
D

dρ〈γ [s|ξ (ρ)]〉,
(117)

g̃(s) =
〈∫

D
dρ

δW [ξ (ρ), y]

δμ̃(s)

〉
=

∫
D

dρ〈ξ (ρ)γ [s|ξ (ρ)]〉,

in which the averages are now with respect to the reduced functional K2[ξ ], and

γ [s|ξ (ρ)] = 〈δ[s − σ (ρ)]〉σ = e−β̄W [ξ (ρ),y]eβ̄[μ(s)+ξ (ρ)μ̃(s)−πs2/2y] (118)

is the probability distribution of s = σ (ρ) for fixed ξ (ρ) (with 〈·〉σ being the average over σ at fixed
ξ ). For fixed s, Eqs. (115) and (116) control the behavior of γ for large |ξ (ρ)|.

Using the scaling Eqs. (98) and (104), it is straightforward to rederive the forms Eqs. (57)
and (110) for the conserved integrals. Specifically, one may simply drop the μ̃ dependence in the
expression for g(s)—it generates vanishing corrections for a → 0. Similarly, in the expression for g̃
the ξ dependence in the e−β̄W factor in Eq. (118) may be dropped, and the average of the resulting
combination pσ (s, y)ξeβ̄μ̃(s)ξ reproduces the result Eq. (110).

VII. APPLICATIONS

We consider now a few examples, illustrating the results of the theory.

A. Uniform vorticity bias

Consider first the case of constant μ̃(s) = aμ̄0, in which only the uniform term is kept in Eq. (98).
As will be seen, the long-range Coulomb interactions make this a rather singular limit. For short-
range interactions, a finite uniform mean vorticity would be expected [see Eq. (102)], but, as we
have previously seen, the long-range interactions push the extra vorticity to the boundaries [see
Eq. (100)].

Since dependence on σ drops out, this represents a somewhat more general decoupled
model [20], and it follows that the σ -field distribution function Eq. (53), free-energy Eq. (56), and
conserved integrals Eq. (57) are unchanged.

The ξ -field partition function, defined by Eq. (92) with constant ql = β̄aμ̄0, leads to the
correction

Fξ (β̄, μ̄0) = Fξ (β̄ ) − ahμ̄2
0, (119)

in which the first term is given by Eq. (81) and the second term is the result of the area integral of

− 1
2 μ̃	∗μ̃ = 1

2 aμ̄2
0[δ(y − yin ) + δ(y − yout )] (120)

or equivalently the area integral of 1
2 |∇∗μ̃|2. The correction vanishes in the continuum limit,

consistent with the physical result that the equilibrium surface vortex layer, which continues to
be defined by Eq. (100), generates vanishing bulk flow, hence negligible energy.

Note that such vortex layers exist also in positive temperature Euler equilibria [3]; however, the
bounds on |ξ | in that case constrain these layers to finite amplitude and finite width. Correspond-
ingly, finite T̄ suffices to generate “blurring” of these layers, with finite excitation of vorticity into
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the system interior. The bound |ξ | < M used in Ref. [20] as part of their limiting procedure for
axisymmetric equilibria yields similar nonsingular equilibria if one scales T̄ ∝ M2 [35].

The ξ -dependent conserved integrals are given by the last term in Eq. (110):

g̃(s) = hμ̄0[pσ (s, yin ) + pσ (s, yout )], (121)

corresponding again to the entire shift in the mean of ξ residing on the boundaries. Consistently,
one obtains

ADξ0 = − ∂Fξ

∂μ̃0
= 2hμ̄0 =

∫
dsg̃(s), (122)

with areal mean ξ0 defined by Eq. (101). Thus, even though the free-energy correction in Eq. (119) is
vanishingly small, it still generates the finite contribution to the μ̃ derivative required for consistency
with the conserved integrals.

B. Two-level system poloidal equilibria

We consider next the more interesting, nonsingular problem corresponding to the two-level
system described in Sec. V B [see Eqs. (59)–(64)], where toroidal equilibrium quantities were also
derived (Fig. 3). Here we extend the results to include poloidal equilibrium quantities. The four
Lagrange multiplier parameters μ(s1), μ(s2) and μ̃(s1), μ̃(s2) reduce the general solution derived
in Sec. VI A to a finite dimensional problem.

The form Eq. (59) restricting σ = s1, s2 leads to

μ̃[σ (ρ)] = μ̃1χ{σ=s1}(ρ) + μ̃2χ{σ=s2}(ρ), (123)

in which χA(ρ) is the indicator function on the set A. Note that the scaling Eqs. (98) and (104) still
applies, but will only be imposed later.

Defining the Ising variable

σ̄ = 2σ − (s1 + s2)

s2 − s1
= ±1, (124)

one may write

μ(σ ) = μ0 + μ	σ̄ , μ̃(σ ) = μ̃0 + μ̃	σ̄ , (125)

in which μ0, μ	 were defined in Eq. (62), and similarly

μ̃0 = μ̃2 + μ̃1

2
, μ̃	 = μ̃2 − μ̃1

2
. (126)

Substituting Eqs. (124)–(126) into the discrete form Eq. (97) of the σ -functional, one obtains the
nearest-neighbor antiferromagnetic Ising model form

βK1[σ ] = β̄

2

∑
l,δ̂

Jl,δ̂σ̄l σ̄l+δ̂ − β̄
∑

l

hl σ̄l + β̄K0, (127)

in which the δ̂ sum in the first term runs over nearest neighbors ±ŷ,±ẑ, and includes dropping of
boundary terms as described below Eq. (71). The (antiferromagnetic) exchange, magnetic field, and
additive parameters are given, respectively, by

Jl,±ŷ = μ̃2
	

a2
, Jl,±ẑ = μ̃2

	

2a2yl
,

hl = s2 − s1

2
hσ,l + μ	 − π (s2 − s1)

4yl
− μ̃	

a2

∑
m

	lm(μ̃0 + hξ,m),
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K0 =
∑

l

[
π (s2

1 + s2
2)

4yl
− μ0 − s1 + s2

2
hσ,l − μ̃2

	

a2

(
1 + 1

2yl

)]

+ 1

2a2

∑
l,m

(μ̃0 + hξ,l )	lm(μ̃0 + hξ,m). (128)

As discussed in Sec. VI A the finite difference operations in 	lm annihilate the parameter μ̃0 except
for boundary terms.

The Ising model Eq. (127), if taken at face value, has potentially very interesting thermodynamic
behavior. For example, for finite values of the exchange parameters Jl,δ̂ it will undergo a magnetic
transition as the temperature T̄ falls below a critical value [36]. However, the physics of the fluid
system lies entirely outside of this regime, with (perhaps unfortunately) the scaling Eqs. (98)
and (104) implying asymptotically vanishing exchange parameters, but still just large enough to
enforce finite values of the poloidal conserved integrals.

Example equilibrium results for the toroidal field σ were shown in Fig. 3, using s1 = 0, s2 = 1.
We now extend these results to characterize equilibria including the poloidal field ξ . When the
scaling Eq. (98) is applied, all parameters vanish except hl = μ	 − π/4yl , agreeing with the
exponential argument in the distributions pσ (s, y)—see Eq. (61).

The conserved integrals g̃(s) may be written in the form

g̃(s) = AD[p1ξ̃1δ(s − s1) + p2ξ̃2δ(s − s2)], (129)

in which pm are the fractional areas Eq. (64) on which σ = sm (and plotted in the right panel of
Fig. 3), and ξ̃m are then the mean values of ξ restricted to the respective areas. From the general
result Eq. (110), the latter take the form

ξ̃m = 1

pmAD

∫
D

dρG̃m(y), (130)

with integrands

G̃m(y) = pσ (sm, y)

(
2 + 1

y

)
[μ̄1 pσ (s1, y) + μ̄2 pσ (s2, y) − μ̄m] = (−1)m−12μ̄	G̃0(y),

G̃0(y) ≡
(

2 + 1

y

)
pσ (s2, y)[1 − pσ (s2, y)]. (131)

For simplicity, we have dropped the boundary term, setting μ̄0 = 0. The integrands are equal
and opposite, G̃1 = −G̃2 as required by the interior neutrality condition Eq. (100), and only the
difference chemical potential μ̄	 = (μ̄2 − μ̄1)/2 enters.

The function G0(y) characterizes the spatial distribution of ξ -field mean values on the two
toroidal (microscopically mixed) level sets {σ = sm} whose local density is given by pσ (sm, y).
In fact, one may identify

ξ̃m(y) = G̃m(y)

pσ (sm, y)
= (−1)m−12μ̄	

(
2 + 1

y

)
[1 − pσ (sm, y)] (132)

as the local mean value of ξ on the respective level set at radial position y.
Figure 4 shows results for G̃0(y) and for the normalized area integral

g̃0(μ	) = 1

AD

∫
D

dρG̃0(y) ⇒ ξ̃m(μ	) = (−1)m−12μ̄	

g̃0(μ	)

pm(μ	)
, (133)

for the same set of μ	 values used in Fig. 3. The neutrality constraint p1ξ̃1 = −p2ξ̃2 implies
that mean values ξm must increase (decrease) as their supporting area decreases (increases). Both
are linear in μ̃	, and the one-to-one correspondence between Lagrange multiplier and conserved
integral values is therefore trivial.
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FIG. 4. Example poloidal field equilibrium results for the same two-level model and parameters described
in Fig. 3. Left: Poloidal spatial distribution G̃0(y) defined by Eq. (131) for a range of chemical potential values
0.2 � μ	 � 1.7 in steps of 0.1. The peak moves to left for increasing μ	. Right: Normalized area integral
g̃0(μ	) defined by Eq. (133).

VIII. CONCLUDING REMARKS

We end by comparing the present results with the quite different axisymmetric equilibrium state
predictions derived in Ref. [20] and suggest future work that might lend further insight into possible
different domains of validity, depending on detailed equilibration dynamics and timescales.

A. Positive temperature states

In the approach taken in Ref. [20], in addition to the microscale a, a bound |ξ | < M is applied,
and the limit M → ∞ is taken after the limit a → 0 [21]. If one limits consideration, as in the
present work, to finite, positive temperatures T̄ > 0, no a priori bound on ξ is required, and the
two limits commute. This is the domain of the full fluctuation-dominated model analyzed here
(see Sec. VI). We have seen that this model provides a detailed methodology for computing
candidate equilibrium states for any given values of the conserved integrals.

On the other hand, the theory proposed in Ref. [20] to describe the finite T̄ > 0 “low-energy”
regime is based on a variational mean field approach that, unlike the exact Gaussian analysis in
Sec. V C, fails to account for strong fluctuations, and therefore can provide an at best approximate
description. The result of that analysis is a return to the decoupled model described in Sec. V, with
〈ξ 〉 trivially slaved to 〈σ 〉. The decoupled model plays a central role in the present (exact) analysis
as well, but in a very different way that leads to vanishing 〈ξ 〉 and highlights instead the statistics of
the large microscale fluctuations (Sec. VI, especially Sec. VI A 3).

B. Possibility of negative-temperature-like intermediate states

We have observed that the unbounded (Gaussian) poloidal energy EG[ξ ] in Eq. (25) forbids
negative temperature states, T̄ < 0—just as in standard many particle systems with unbounded
kinetic energy ∼p2/2m. As a consequence, high-energy initial states with, e.g., smooth large-scale
(negative-temperature-like) poloidal eddies, are predicted to undergo a turbulent forward energy
cascade transferring much of the energy to microscale fluctuations. Specifically, the axisymmetric
equations of motion Eqs. (20) and (24) in principle provide a pathway for leakage of the flow energy
into small-scale (but large amplitude ∼1/a) poloidal fluctuations. The analogous feature arises in
the shallow water equations [18,37], where negative temperature states are similarly ruled out and
large-scale eddy energy is expected to be transferred into small-scale surface height fluctuations
(with equilibria similarly sensitive to the details of the microscale lattice geometry).
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However, it is well known that such energy transfers between substantially different scales can be
extremely slow, if not forbidden entirely, by the fundamental constraints of 2D flow. For example, it
has long been observed, in the context of the Euler equation, that there can be strong barriers to full
equilibration, with, e.g., very long-lived steady [27] or even fluctuating [28] states preempting the
statistical mechanics prediction, and depending strongly on initial condition. Similarly, experimental
results on the axisymmetric system [23,24], as well as recent numerical simulation results [25,26],
display long-lived, large-scale eddy features that have been interpreted in terms of equilibrium
concepts. One may motivate such a comparison by the observation that smooth, large-scale flow
states, such as those described by the variational approximation, are insensitive to the microscale,
and it may take time to build up the required forward cascade.

Maintaining the |ξ | < M bound provides one possible route to exploring such intermediate states
within the statistical equilibrium formalism [20,21]. Fixed finite M provides an upper bound on
EG[ξ ], and permits negative temperature states—the “high-energy” regime considered in Ref. [20].
The imposed bounded fluctuations might be thought of now as being frozen in and swept along by
the large-scale flow [21] (with similar ideas potentially applicable to the shallow water system [16]).
For T̄ < 0 enhancement of fine-scale mixing is replaced by enhancement of smooth flows [see
Eq. (96)]. This encourages both the σ and ξ fields to organize into high-energy, macroscopic
patterns (in the Coulomb analogy, like charges attract rather than repel). In particular the resulting
equilibria display large-scale poloidal flow structure, including the dipolar flows and 2D vortical
eddies familiar from the Euler problem.

A consistent M → ∞ limit for the mean flow may be obtained by scaling the temperature
and other model parameters with M, in particular T̄ (M ) = M2T ∗ → ∞ [20]. It follows that the
energy and mean vorticity 〈ξ (ρ)〉 remain finite even as 〈ξ 2〉 ∝ M2 → ∞. The divergent temperature,
however, ensures that the toroidal flow field σ is completely mixed with uniform 〈σ (ρ)〉. Just as in
the Euler case, the variational approach provides a formally exact description in this regime, and
a mean field formalism may be developed in terms of the scaled variables to solve for 〈ξ (ρ)〉.
For any finite T ∗ the system is dominated by divergent fluctuations |ξ | = O(M ), but since we are
now working in the limit M � 1/a it is clear that the two limits do not commute in the negative
temperature regime.

It would be extremely interesting to explore in more detail such practical equilibration questions
for the axisymmetric model (as well as for the shallow water system), where buildup of microscale
mixing (or surface height fluctuations), emergence of macroscale (negative temperature) coherent
poloidal jet or vortex structures [20,23–26], or perhaps other features, may similarly occur on
different (perhaps even infinite [27,28]) timescales and depending on the initial state. A real fluid
with finite initial ξ field is unlikely to evolve toward a state accurately reproducing the large M states
studied in Ref. [20], even if one allows M to, e.g., diverge steadily with time. However, this does
not preclude derivation of similar interesting flow structures (that indeed properly reflect aspects
of the observed fluid physics) from a refined theory that more rigorously reflects intermediate
state dynamics. In support of the latter, the physics of the exact equilibrium theory may point to
more focused numerical signatures sensitive to the transfer rate of energy into large microscale
fluctuations of ξ , allowing one to identify potential bottlenecks and barriers, and more carefully
quantify associated timescales. The theory motivates as well careful attention to maintenance of
numerical precision in the presence of extremely large microscale fluctuations.

APPENDIX A: LIOUVILLE THEOREM

Proof of the Liouville theorem for the axisymmetric system closely follows that for the Euler
equation [3]. A point in the infinite dimensional phase space � is defined by an instantiation of the
fields {ξ (ρ), σ (ρ)}ρ∈D. The phase space gradient of a functional F[ξ, σ ] is defined by the infinite
dimensional vector of functional derivative values

∇�F =
[

δF
δξ (ρ)

,
δF

δσ (ρ)

]
ρ∈D

, (A1)
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and the phase space integral∫
�

d� = lim
a→0

1

N (a)

∏
i

∫
dξ (ρi )

∫
dσ (ρi ) (A2)

is defined by independent integration over each value of the fields at each point in D. Formally, it is
defined here by a procedure in which the fields are first restricted to a (finite) uniform square mesh
with side a, then the limit a → 0 is taken with a suitable normalization N (a) [31]. A probability
measure ρ̂[ξ, σ ] is a functional with unit phase space integral, and averages are defined by

〈F〉 =
∫

d�ρ̂[ξ, σ ]F[ξ, σ ]. (A3)

The equations of motion are written formally in functional form ∂tξ (ρ) = σ̇ [ξ, σ ](ρ), ∂tσ (ρ) ≡
σ̇ [ξ, σ ](ρ), and the phase space vector

W[ξ, σ ] = [ξ̇ (ρ), σ̇ (ρ)]ρ∈D (A4)

defines a flow velocity field in phase space. The flow divergence is defined by

∇� · W ≡
∫

D
dρ

[
δξ̇ (ρ)

δξ (ρ)
+ δσ̇ (ρ)

δσ (ρ)

]
, (A5)

and its vanishing defines an incompressible phase space flow. Systems with the latter property are
said to obey the Liouville theorem.

A probability measure, whose time dependence ρ̂[ξ, σ ](t ) = ρ̂[ξ (t ), σ (t )] is defined by the
evolution of the field arguments obeys the equation of motion

∂t ρ̂ + ∇� · (ρ̂W) = 0, (A6)

so that the product ρ̂[ξ, σ ](t )d�(t ) is conserved, in which the (Lagrangian) volume element d�(t )
is here defined to move with the flow. An equilibrium measure ρ̂eq is by definition constant in time,
and therefore obeys

∇� · (ρ̂eqW) = 0. (A7)

If phase space flows are incompressible, ∇� · W = 0, then one obtains the constraint

0 = W · ∇�ρ̂eq =
∫

D
dρ

[
δρ̂eq

δξ (ρ)
ξ̇ (ρ) + δρ̂eq

δσ (ρ)
σ̇ (ρ)

]
= ˙̂ρeq, (A8)

which then states that ρ̂eq is a conserved integral. It follows that

ρ̂eq = feq(E [ξ, σ ], γ [σ ](·), γ̃ [ξ, σ ](·)) (A9)

must be some (ordinary) function of the basic set of conserved quantities, in the present case those
defined in Sec. III. The choice of feq defines the statistical ensemble—see Appendix B.

We now proceed to verify phase space incompressibility (Liouville’s theorem) using the
equations of motion Eqs. (20) and (24). Since, via Eqs. (13) and (21), the velocity field w depends
only on ξ , one obtains

δσ̇ (ρ)

δσ (ρ)
= −w(ρ) · ∇ρδ(0) = 0. (A10)

Here one formally concludes that ∇ρδ(0) = 0 because δ(ρ) is formally an even function. An
alternative limiting procedure would note that the symmetric finite difference [ξ (ρ + a/2) − ξ (ρ −
a/2)]/a, for arbitrary small displacement a, is independent of ξ (ρ), hence leads to vanishing
functional derivative for arbitrarily small grid cutoff a → 0.

054703-25



PETER B. WEICHMAN

Similarly, one obtains

δξ̇ (ρ)

δξ (ρ)
= −w(ρ) · ∇ρδ(0) − w0(ρ) · ∇ρξ (ρ), (A11)

in which w0(ρ) is the self-induced advection velocity for a point vortex at ρ:

w0(ρ) = [∇ρ × G(ρ, ρ′)]ρ′=ρ. (A12)

Although the Green function G, obeying Eq. (14) with generalized Laplacian operator defined by
Eq. (12), has a logarithmic singularity at ρ′ = ρ, one may still derive a sensible form for w0. To see
this, one separates

G(ρ, ρ′) = GF (ρ, ρ′) + �(ρ, ρ′) (A13)

into free and boundary-induced parts, both symmetric in their arguments, and with � satisfying the
generalized Laplace equation

	∗� = 0, (A14)

and chosen so that G satisfies the same boundary conditions (in both arguments) discussed in
Sec. II A.

In the absence of a boundary, the vortex (in this case a circular vortex ring, with unit circulation,
centered on the z axis) self-advects vertically at constant speed [38,39]

vz
F (y) = 1

4πr

[
ln

(
8r

a

)
− 1

2

]
, r =

√
2y, (A15)

which again requires a ring core radius cutoff a to properly interpret, while � induces an additional
(regular) contribution

w�(ρ) = [∇ρ × �(ρ, ρ′)]ρ′=ρ = 1
2 [(∇ρ + ∇′

ρ ) × �(ρ, ρ′)]ρ′=ρ = 1
2∇ρ × �(ρ, ρ), (A16)

in which symmetry of � has been used to obtain the final equality.
Finally, integrating yields∫

D
dρ

δξ̇ (ρ)

δξ (ρ)
= −

∫
D

dρ[vz
F (y)ẑ + w�(ρ)] · ∇ρξ (ρ)

=
∫

D
dρξ (ρ)[∂zv

z
F (y) + ∇ρ · w�(ρ)] −

∫
∂D

dAξ (ρ)[vz
F (y)ẑ + w�(ρ)] · n̂

= 0, (A17)

in which incompressibility of w�(ρ) follows directly from the final equality in Eq. (A16). The
boundary term vanishes by virtue of the boundary conditions on G, which then leads to the required
combination of free slip and periodic boundary conditions (described in Sec. III) on the total velocity
w0 = w� + ẑvz

F .
Together, Eqs. (A10) and (A17) establish Liouville’s theorem for the axisymmetric flow system.

APPENDIX B: STATISTICAL MECHANICS FORMALISM

Steady state equilibrium flows are computed using phase space averages Eq. (A3) of the flow
field [1,2], with valid forms Eq. (A9) of the phase space equilibrium measure limited by the Liouville
theorem.

The grand canonical equilibrium measure takes the exponential form [3]

ρ̂G[ξ, σ ] = 1

Z
e−βK[ξ,σ ], (B1)
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in which β = 1/T is an inverse temperature variable, and the functional K takes the form

K[ξ, σ ] = E [ξ, σ ] −
∫

D
dρ{μ[σ (ρ)] + ξ (ρ)μ̃[σ (ρ)]}, (B2)

being a linear sum of all of the conserved integrals, with coefficients, or Lagrange multipliers
{β,μ(·), μ̃(·)}, defining the conjugate fields. In this case there are a pair of conjugate field functions
μ(s), μ̃(s) (of a single argument). The mean flow/conserved momentum parameter v0

z is suppressed
here from the notation, being assumed fixed from the outset. Its only role is to introduce the constant
term [first equality in Eq. (26)].

The partition function

Z =
∫

d�e−βK, (B3)

which simply normalizes ρ̂G, is related as usual to the thermodynamic free energy F via

F [β,μ(·), μ̃(·)] = − 1

β
ln{Z[β,μ(·), μ̃(·)]}, (B4)

in which a suitable a → 0 continuum limiting procedure (equivalent to the thermodynamic limit in
conventional systems) is implied (see Sec. IV). The equilibrium averages (with respect to ρ̂G) are
obtained from the free-energy derivatives

g(s) ≡ 〈γ [σ ](s)〉 = − 1

β

δF

δμ(s)
, g̃(s) ≡ 〈γ̃ [ξ, σ ](s)〉 = − 1

β

δF

δμ̃(s)
, (B5)

in which the conserved integrals γ , γ̃ are defined by Eq. (40).
By way of comparison, the microcanonical ensemble is defined by the form

ρ̂μ[ξ, σ ] = 1

W
δ(ε − E [ξ, σ ])

∏
s

δ(g(s) − γ [σ ](s))δ(g̃(s) − γ̃ [ξ, σ ](s)), (B6)

in which each conserved integral is rigidly specified. The normalization W , which is the area of the
corresponding constrained hypersurface in �, is related to the thermodynamic entropy via

S[ε, g(·), g̃(·)] = ln{W [ε, g(·), g̃(·)]}. (B7)

It is apparent that the two ensembles are related through the Laplace transform

ρ̂G[ξ, σ ] =
∫

dε

∫
D[g]

∫
D[g̃]ρ̂μ[ξ, σ ; ε, g(·), g̃(·)]e−β{ε−∫

ds[μ(s)g(s)+μ̃(s)g̃(s)]}, (B8)

in which, similar to Eq. (A2), the functional integrals over g and g̃ may be defined via a limiting
procedure, ∫

D[g]
∫

D[g̃] = lim
δs→0

1

M(δs)

∏
l

∫
dg(sl )

∫
dg̃(sl ), (B9)

where M is a normalization, and sl = lδs, l ∈ Z, represents a uniform gridding of the variable s.
Ensemble equivalence therefore reduces to the mathematical question of invertibility of this

infinite dimensional Laplace transform. It is known that this property can fail in certain regions of
the phase diagram [19,40], where stable free-energy minima become locally unstable saddle points.
Therefore one is in general unable to access all values of the microcanonical variables through
control of the conjugate field variables. However, mathematical convenience encourages one to
begin with the grand canonical approach [3], which allows a more transparent exploration of the
basic physics of the model, and then to subsequently investigate potential methods (e.g., some form
of analytic continuation) to extend access to these technically forbidden regions.
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