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Turbulent flows over streamwise traveling wavy boundaries are investigated by large
eddy simulations at a friction Reynolds number of Reτ = 1000. Four wave ages (i.e.,
the ratio between wave phase speed and bulk mean velocity) are considered, sequentially
corresponding to the wave moving against the wind, stationary wavy wall, and intermediate
and fast waves. A triple decomposition is performed to extract the mean, wave-induced, and
turbulent components of the flow field. Very large-scale motions (VLSMs) of turbulent flow
are identified by using the one-dimensional premultiplied energy spectra, instantaneous
flow fields and conditionally averaged results. Compared with the flat-wall case, VLSMs in
the negative wave age and stationary wavy wall cases are stronger, with larger length scales
in both the streamwise and spanwise directions. The length scale and intensity of these
motions decrease as the wave age increases. The conditionally averaged VLSMs involve
the elongated low- and high-speed momentum regions and the roll cells in the streamwise
direction. The transport equation of the two-point velocity correlation is investigated in
different length scales by applying a spectral analysis. The wave-induced production that
represents the interaction between the wave-induced and turbulent components of flow
velocities provides extra input for the large-scale energy at low wave ages but play an
opposite role at high wave ages.

DOI: 10.1103/PhysRevFluids.4.054601

I. INTRODUCTION

The coupling dynamic process between surface wave and turbulent flow exists widely in
engineering and environmental flow phenomena and therefore is of great interest in many studies.
Turbulent flow over a stationary wavy wall can be applied for heat transfer enhancement in some
industrial devices [1,2]. It is also related to geophysical flows, such as oceanic flow over sandbars
[3] and wind flow over wavy terrains [4]. However, turbulent flow over a surface undergoing
a traveling wave motion can be considered as a control scheme for drag reduction [5–7]. This
system has also been widely used as an idealized model of wind flowing over water surface in
environmental research, such as energy transfer from wind to wave [8–11], wind-wave interaction
[12–15], heat/mass mixing and exchange between atmosphere and sea [16–19]), and wind over
breaking waves [20]. The previous studies showed that there were substantial differences between
the turbulent flow over the wavy boundary and that over the flat wall. The influences of the surface
wave on the turbulent momentum [12] and scalar [19] transport have complicated dependence
on the geometry, length scale, and kinematics of the surface wave. Some open questions, such
as applicability of the turbulence scaling law and estimation of the drag and mass/heat flux, are
the key issues in the practical fields, e.g., the turbulence closure model in wavy boundary flow
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[21,22], surface model for large-eddy simulation [23,24], and climate forecast model [25,26].
Thus, quantitative examination of the surface wave effects on turbulence and understanding of the
underlying mechanism are challenging work and have important value of application.

In the past few decades, extensive studies have been performed on turbulent flow over wavy
boundaries. Several theoretical models of the wave growth rate were developed, e.g., Miles [8],
Belcher and Hunt [10], and Cohen and Belcher [11]. According to these theories, the energy
exchange between air and wave is directly influenced by the phase speed of the surface wave,
which affects not only the height of the critical layer, where the mean wind speed equals the wave
phase speed but also the wave-induced and Reynolds stresses. The normalized phase speed is
also used to describe the age of the ocean waves [27] and is usually referred to as the wave age.
These theories had been supported by both numerical and experimental studies. Sullivan et al.
[12], Kihara et al. [28], and Yang and Shen [14] studied the wave-induced flow and Reynolds
stresses for flow over moving wavy boundaries with various wave ages by using direct numerical
simulation (DNS). In their results, the sign, intensity, and spatial distribution of the wave-induced
and Reynolds stresses in the vicinity of the surface are significantly affected by the wave age. More
recently, further extensions to higher Reynolds numbers with a wide range of wave ages by using
large-eddy simulation (LES) can be found in Sullivan et al. [13], Hara and Sullivan [15], and Jiang
et al. [29]. The effects of wave age on the wave-induced and turbulent momentum flux were also
carefully measured in the laboratory [30].

In addition, various studies have been conducted on the interaction between the wave-induced
flow and turbulent fluctuations. Reynolds and Hussain [12] derived the transport equations of
the averaged energies of both the wave-induced and turbulent fluctuations based on a triple
decomposition. The cross term in their equations indicates the interaction between these two
components. Yang and Shen [14] added the cross term and the production term as a whole input of
the TKE and then explained the distribution of the Reynolds stresses near the wave surface. While
in an earlier research [31], Yang and Shen reported that turbulent coherent vortices in the wavy
boundary turbulence have different orientations and preferential concentration depending on the
phase of waves at different wave ages. Combining the phase-dependent wave-induced fluctuation
with turbulent coherent vortices, they provided a physical mechanism of the interaction between the
wave-induced and turbulent fluctuations. Zedler and Street [3], Choi et al. [32], Tseng and Ferziger
[33], and Wagner et al. [34] also discussed the wave effect on the turbulent coherent structures.

The classic coherent structures in the near-wall turbulence, such as low-speed streaks and
quasistreamwise vortices, have been widely investigated [35] and their geometric features scale
with the inner scale in wall viscous units [36,37]. In recent years, the very large-scale motions
(VLSMs) scale with the outer scale, such as the half-channel height or the boundary layer thickness,
in the logarithmic region of the flat-wall turbulence were observed at high Reynolds-number flows
[38–40]. It was reported that at high Reynolds numbers, the VLSMs contribute more than half of
the Reynolds shear stress [41]. Moreover, the VLSMs superimpose their footprints on near-wall
fluctuations and have an amplitude modulation on the small-scale fluctuation [42,43]. In general,
these VLSMs involve elongated low- and high-speed momentum regions in the streamwise direction
accompanied by the large-scale roll cells between them [42,44]. These works showed that the
VLSMs play an important role in the turbulent energy transport and its influence can extend
throughout the whole boundary layer. The VLSMs were also widely reported in the turbulent
Couette flow [45–47] at relatively low Reynolds numbers.

Interestingly, the enhanced and enlarged flow structures were observed in the previous studies
of flow over a stationary wavy wall. Early examples include De Angelis et al. [48] using DNS and
Henn and Sykes [49] using LES, where the vortexlike enhanced transverse flow was presented.
Meanwhile, Gong et al. [50] also observed the vortex pairs aligned with the mean flow in their
laboratory experiment and mentioned that the vortex scaled with the boundary layer thickness.
Günther and Von Rohr [51], and Kruse et al. [52,53] performed experiments of a turbulent channel
flow over the static waves at the bottom wall. They applied a proper orthogonal decomposition
(POD) to the streamwise velocity fluctuation and extracted a dominant flow structure with a
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spanwise scale of 1.5 times of the full channel height. In their subsequent studies, the intensity and
characteristic spanwise scale of the large-scale structures increase with the blockage ratio, i.e., the
ratio of the wave amplitude to the full channel height [54,55]. However, very large-scale structures
in turbulent flow over moving waves were also investigated in some work of the marine-atmosphere
boundary layer (MABL). Nilsson et al. [56] reported that the VLSMs in the boundary layer were
disrupted by the wave at high wave ages. Sullivan et al. [57] observed the very large-scale streaky
structures in the MABL above the broadband waves and discussed their impacts on the local wave
age. However, these works usually contained other physical mechanisms in the MABL, such as
broadband waves, buoyancy, and earth rotation, which make the problem become more complicated.

As seen above, both the experimental and numerical works provided the evidence that wavy
boundary has impacts on the VLSMs at high Reynolds numbers. So far, the very large-scale
structures in the stationary wavy wall flow had been widely studied, while the related research for the
traveling wave is scarce. Further study on the influence of the geometric and phase speed of waves
on the VLSMs in turbulence is still needed, and the underlying mechanism is still to be explored.

In the present work, we simulate the turbulent flow over traveling waves by using LES and
mainly focus on the influence of the wave on the VLSMs in the outer layer. The wall-resolved LES
is performed to catch the large-scale turbulent motions at a moderate friction Reynolds number, i.e.,
Reτ ≈ 1000. Four wave ages are examined, and a comparatively small wave steepness is chosen. To
identify the wave-turbulence interaction, phase average and triple decomposition [12] are adopted
in the analysis of the flow field. The significantly enhanced VLSMs by the wave are observed in the
spanwise energy spectra of Reynolds stresses. Instantaneous snapshots and conditional average are
also applied to illustrate the very large-scale structures. Following the study on the inner-outer inter-
action of Lee [58], we applied a spectral analysis of the transport equation of the two-point velocity
correlation, to elucidate the mechanism of the enhancement of the VLSMs by the wave. The paper is
organized as follows. The problem definition, numerical method, and analysis procedure are briefly
described in Sec. II. In Sec. III, the turbulence statistics and VLSMs are introduced, the spectral anal-
ysis on the transport equation of the two-point velocity correlation are carried out, and the effects of
wave steepness and Reynolds number are also discussed. Finally, conclusions are drawn in Sec. IV.

II. PROBLEM FORMULATION AND NUMERICAL METHOD

A. Flow configuration and governing equations

The problem considered here is the fully developed three-dimensional open-channel turbulent
flow over the wave traveling in the streamwise direction. A sketch of the computational domain
and coordinate system is shown in Fig. 1. The flow is driven by an averaged streamwise gradient
of pressure which is dynamically adjusted and makes the flow rate to be strictly constant in time.
We adopt a Cartesian frame fixed in the physical space, with x, y, z being the streamwise, vertical,
and spanwise coordinates (also denoted as x1, x2, and x3 for the tensor notation). The corresponding
velocity components in the three directions are u, v, and w (or u1, u2, and u3), respectively. The
resolvable turbulent flow field is described by the filtered incompressible Navier-Stokes equations
and the continuity equation, i.e.,

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ 1

Reb

∂2ui

∂x j∂x j
− ∂τ d

i j

∂x j
. (2)

Here ui(i = 1, 2, 3) = (u, v,w) are the filtered velocity components, and p is the modified
pressure which consists of the filtered static pressure and the subgrid-scale (SGS) kinetic energy.
The governing equations are nondimensionalized by using the bulk velocity Ub, fluid density ρ,
open-channel height δ, and the kinematic viscosity ν as the characteristic quantities. The bulk
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FIG. 1. Sketch of the turbulent open-channel flow over a traveling wavy boundary.

velocity is defined as Ub = Q/δ, where Q denotes the volume flow rate. The bulk Reynolds number
is defined as Reb = Ubδ/ν. τ d

i j is the trace-free part of the SGS stress which is modelled by using
the dynamic Smagorinsky model [59,60] including a spanwise averaged model coefficient.

B. Boundary conditions and simulation parameters

In the open-channel flow, a free-slip wall is applied at the top boundary (y = δ) of the
computational domain,

∂u

∂y

∣∣∣∣
y=δ

= 0, v|y=δ = 0,
∂w

∂y

∣∣∣∣
y=δ

= 0. (3)

This condition also means that there is no momentum flux in the vertical direction at the top
boundary. The periodic condition is applied in the streamwise and spanwise directions. At the
bottom boundary, the idealized water wave is prescribed by the two-dimensional monochrome
streamwise traveling wave. In the present study, the averaged bottom boundary is located at y = 0,
and the deformation of the wave surface ηd and the vertical location of the surface yd are controlled
by

yd = ηd = a sin[kw(x − ct )]. (4)

Here a is the wave amplitude, kw = 2π/λw is the wave number with λw the wavelength, and c
is the wave phase speed. The orbital velocity at the wave surface is used as the Dirichlet boundary
condition for the turbulent flow, i.e.,

(uw, vw,ww ) = (akwc sin[kw(x − ct )], −akwc cos[kw(x − ct )], 0). (5)

In our simulation, the wave slope is small but finite, i.e., akw = 0.1. The influence of the wave age
is investigated by changing the ratio between the wave phase speed c and the bulk velocity Ub. The
bulk velocity is kept constant in simulation and is slightly lower (no more than 10%) than the mean
streamwise velocity at the top boundary for all the cases with different wave ages. Hence, it can
be regarded as a mean velocity far above the waves. We choose four different wave ages, namely,
c/Ub = −0.4, 0, 0.4, and 1.2, corresponding to the wave propagating against the flow, stationary
wavy wall, intermediate and fast waves [61]. The results of the open-channel with a flat wall (a = 0)
are also shown for comparison. The characteristic friction velocity defined by the time- and surface-
averaged total drag at wave surface including the friction drag and the pressure drag is expressed
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TABLE I. Wave parameters and Reynolds numbers.

Boundary type akw a/δ a+ λ/δ λ+
w c/Ub c+ Reb Reτ

Flat wall 0 0 0 21 000 1045
Wavy boundary 0.1 0.05 51 3204 −0.4 −7.07 18 000 1020

53 π 3330 0 0 19 000 1060
55 3455 0.4 7.25 20 000 1100
56 3487 1.2 23.77 22 000 1110

as uτ = √
τw/ρ. The friction Reynolds number Reτ based on uτ and the open-channel height δ is

about 1000. Hereafter, the superscript “+” denotes the physical quantities normalized by the friction
velocity uτ and the wall viscous length scale v/uτ . A list of Reynolds numbers and wave parameters
for the different cases can be found in Table I.

C. Coordinate transformation and numerical method

To discretize the nonrectangular physical domain with a wavy boundary, a boundary-fitted grid
system in the Cartesian coordinates (t, x, y, z) is applied in the physical space as shown in Fig. 2(a).
Then a new computational coordinate system is introduced by adopting an algebraic mapping
[62,63], i.e.,

t = τ, x1 = ξ1, x2 = ξ2(1 − ηd/δ) + ηd , x3 = ξ3. (6)

With this coordinate transformation, the irregular physical domain is transformed into a rect-
angular computational domain as shown in Fig. 2(b). In the computational space, the top and
bottom boundaries can be represented by ξ2 = 0 and ξ2 = δ, respectively. By applying the chain
rule of partial derivatives, the governing Eqs. (1) and (2) are rewritten in terms of the curvilinear
coordinates (τ, ξ1, ξ2, ξ3) in the computational space [63]. For spatial discretization, we use the
pseudo-spectral method in the ξ1 and ξ3 directions, along with the second-order finite-difference
method on the staggered grids in the ξ2 direction [31]. The governing equations are integrated in time
by the third-order time-splitting method [64]. The computational domain size is Lx × Ly × Lz =
4πδ × δ × 2πδ, and the corresponding grid number is 288 × 144 × 288. The grid sizes in the
streamwise and spanwise directions are uniform with the resolution of �ξ+

1 ≈ 45 and �ξ+
3 ≈ 22.5,

respectively. The vertical grid size changes from �ξ+
2 ≈ 0.05 clustered near the bottom boundary

to �ξ+
2 ≈ 10 near the top boundary.

FIG. 2. Illustration of the coordinate transformation: (a) boundary-fitted grid system of the irregular domain
in the physical space; (b) mapped grid system of rectangular domain in the computational space.
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FIG. 3. Triple decomposition of the streamwise velocity: (a) instantaneous field; (b) mean profile; (c) wave-
induced fluctuation; (d) turbulent fluctuation.

D. Analysis procedures

To investigate the interaction between the waves and turbulent flow, we apply a phase average
and decomposition method [12] to isolate the wave-induced and turbulent fluctuations. In the present
work, both the Cartesian and a surface-fitted coordinate systems defined in Eq. (6) are used in the
statistical analysis [19]. By applying the average and decomposition defined in Appendix A, an
instantaneous physical quantity f (t, x, y, z) can be decomposed as

f (t, x, y, z) = 〈 f 〉(x, y) + f ′(t, x, y, z) = f̄ (ξ2(x, y)) + f̃ (x, y) + f ′(t, x, y, z), (7)

where f̄ denotes the time and ξ2-plane [Eq. (6)] average, 〈 f 〉 denotes the phase averaged component,
while f̃ and f ′ denote the wave-induced and turbulent fluctuations, respectively. As defined in
Appendix A, the phase average 〈 f 〉 is calculated by averaging in time and along the spanwise
direction, and further averaging among all the wave periods in the computational domain. The
average profile f̄ can be obtained by averaging 〈 f 〉 along the ξ1-curves. Note that f̄ is a function
of ξ2, which represents the mean vertical distance from the wave surface, i.e., ȳ = ξ2. When the
wave steepness tends to zero, the averaged profile f̄ (ȳ) becomes the same as the mean profile
defined in the flat-wall turbulence. Hereinafter, f̄ is referred to as the mean of f for simplification.
The wave-induced fluctuation f̃ is obtained by subtracting f̄ from 〈 f 〉 at the corresponding ȳ
location. We use Cartesian frame when describing the distributions of 〈 f 〉 and f̃ . While introducing
the boundary-fitted curvilinear system is appropriate for describing f̄ in the vicinity of the wave
surface, including the region below the wave crest. An example of this triple decomposition of the
streamwise velocity field obtained from the stationary wavy wall case is displayed in Fig. 3. Similar
triple decomposition approaches have been wildly used in previous works [12,15,19,28,30].

III. RESULTS AND DISCUSSIONS

A. Wave effect on turbulence statistics

The influence of water waves on the mean velocity profile has been widely studied due to its
importance in practical applications. For example, the validity of the log law, parameterization of
the wave effect on the Karman constant, and the wave surface roughness are important aspects in
the ocean surface wall model [24]. In the present work, the mean streamwise velocity profiles for
various wave ages are plotted in the semilogarithmic coordinates as shown in Fig. 4. Similar to
the flat-wall case, all the profiles with different wave ages exhibit a logarithmic variation beyond
ȳ+ = 80. The influences of wave age on the slope and intercept of velocity profile are considerable.
As the wave age increases, the profile shifts downward firstly and then upwards close to the flat-wall
case. Correspondingly, the form drag of wave increases with the wave age at low wave ages and
then decreases at high wave ages. The slope of velocity profile increases with the wave age, which
indicates that the corresponding Karman constant of log law decreases. This trend is consistent with
the results reported by Sullivan et al. [12] and Yang and Shen [19]. The intercept of velocity profile,
which determines the efficient wave roughness, depends on the expected range where the log law is
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FIG. 4. Profiles of the mean streamwise velocity for different wave ages as well as the flat-wall turbulence.

satisfied and the value of the Karman constant. The results reported in previous numerical studies
showed that both the Karman constant and the roughness length had complex relationships with the
wave age and wave steepness [12,19,29]. This open question is beyond our current focus and needs
further study.

The traveling wave motion induces a significant effect on the velocity fluctuation. According to
the triple decomposition defined by Eq. (7), the mean of the momentum flux can be decomposed
into three parts, i.e.,

uiu j = (ūi + ũi + u′
i )(ū j + ũ j + u′

j ) = ūiū j + ũiũ j + u′
iu

′
j, (8)

where the second and third terms on the right-hand side represent the wave-induced and Reynolds
stresses, respectively. The mean profiles of the wave-induced and Reynolds normal stresses are
illustrated in Figs. 5 and 6 for the streamwise, vertical components, respectively. The shear stress
is displayed in Fig. 7. The intensity of Reynolds stresses shown in Figs. 5(a), 6(a), and 7(a) are
compared with the flat-wall case. The distributions of Reynolds stresses in the vertical direction
for all wave cases are close to the flat-wall turbulence, only with less intensity for the streamwise
component below ȳ+ ≈ 50. Meanwhile, the contributions of the wave-induced fluctuations provided
in Figs. 5(b), 6(b), and 7(b) are significant, even greater than their turbulent counterparts. For
the negative wave-age case (c/Ub = −0.4) and the stationary wavy wall case (c/Ub = 0), the

FIG. 5. Profiles of the streamwise velocity fluctuations for different wave ages as well as the flat-wall
turbulence: (a) turbulent component; (b) wave-induced component. The definitions of the lines are the same as
those in Fig. 4.
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FIG. 6. Profiles of the vertical velocity fluctuations for different wave ages as well as the flat-wall
turbulence: (a) turbulent component; (b) wave-induced component. The definitions of the lines are the same as
those in Fig. 4.

wave-induced streamwise and vertical stresses achieve their peak values in the region of ȳ+ < 100.
Their correlation, the shear stress is negative in the near-wall region. As the wave age increases to
c/Ub = 0.4 and 1.2, the location of the peak shifts upwards, while the amplitude decreases rapidly
toward zero and then increases again. The variation of the peak with wave age reflects the influence
of the critical layer [12]. In addition, for the positive wave-age cases, the wave-induced normal
stresses near the wave surface increase due to the stronger orbital velocity at the wave surface
[Eq. (5)]. Meanwhile, the wave-induced shear stress becomes positive below the critical layer.

To see more clearly, the phase averaged fields of the wave-induced streamwise and vertical
velocity fluctuations near wave surface are presented in Figs. 8 and 9 for a whole wave period, and
their correlation −ũṽ is shown in Fig. 10. The vertical displacement of the wave surface is enlarged
for clearly displaying the wave phase. Note that the location of the critical layer is marked by the
dashed line for c/Ub = 0.4 case. For c/Ub = −0.4 and 0, the critical layer does not exist, while for
the fast wave case c/Ub = 1.2, the critical layer is far away from the boundary. The intensity and
distribution of the wave-induced flow show strong dependence on both the wave phase and wave
age. For c/Ub = −0.4 and 0, the streamwise and vertical components are positively correlated, i.e.,
both the ũ and ṽ has the positive (negative) extrema in the windward (leeward) side due to the ge-
ometry and orbital velocity of wave surface [Figs. 8(a), 8(b), 9(a), and 9(b)]. Thus, their correlation
−ũṽ is negative in these regions as seen in Figs. 10(a) and 10(b). When the wave age increases to
c/Ub = 0.4 and 1.2, the ũ contours are tilted upstream and the ṽ changes its sign below the critical
layer [Figs. 8(c), 8(d), 9(c), and 9(d)]. Hence the original negative flux layer lifts further from the
surface and a new layer with positive momentum flux is generated above the wave surface as shown
in Figs. 10(c), 10(d), and 7(b). This phenomenon reveals that the critical layer can significantly alter

FIG. 7. Profiles of the shear stress for different wave ages as well as the flat-wall turbulence: (a) turbulent
component; (b) wave-induced component. The definitions of the lines are the same as those in Fig. 4.
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FIG. 8. Contours of the wave-induced streamwise velocity fluctuation: (a) c/Ub = −0.4; (b) c/Ub = 0;
(c) c/Ub = 0.4; (d) c/Ub = 1.2.

the momentum flux transport in the vertical direction. Particular discussions on the wave-induced
flow can be found in Sullivan et al. [12] using DNS, and in Buckley and Veron [30] using the
laboratory experiment. The present flow patterns shown in Figs. 8 to 10 agree with their results.

Besides the wave-induced fluctuations, Yang and Shen [14,19] investigated the wave-phase-
dependent modulation effect on the near-surface distribution of the Reynolds stresses. In their DNS
results, these modulations are highly correlated with the orientation and location of coherent vortical
structures in the near wall region [31]. The production term of the transport equation of Reynolds

FIG. 9. Contours of the wave-induced vertical velocity fluctuation: (a) c/Ub = −0.4; (b) c/Ub = 0;
(c) c/Ub = 0.4; (d) c/Ub = 1.2.
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FIG. 10. Contours of the wave-induced shear stress: (a) c/Ub = −0.4; (b) c/Ub = 0; (c) c/Ub = 0.4;
(d) c/Ub = 1.2.

stress directly reflects the interactions between the wave-induced flow and coherent structures. In
the following, we mainly focus on the very large-scale motions in the outer layer. The transport
equation of two-point correlation are used to investigate the interactions between the wave-induced
flow and VLSMs, and these transport mechanisms affect the energy distribution among different
scales of turbulent fluctuations, as will be discussed later.

B. Very large-scale turbulent motions

The instantaneous flow field in the streamwise-spanwise section at a certain vertical location is
shown in Fig. 11 to visually describe the VLSMs. Contours of streamwise velocity fluctuation with
blue and red regions represent the low- and high-speed regions, respectively. Figure 11(a) shows
the fluctuation at ȳ/δ = 0.03(ȳ+ ≈ 30) for the flat-wall case. As several small-scale streamwise
low-speed streaks are clearly visible in this inner region, these structures are classic coherent
structures in the wall-bounded turbulence and scaled with the inner scale. Figure 11(f) shows the
turbulent streamwise velocity fluctuations in the outer region ȳ/δ = 0.3(ȳ+ ≈ 300). In this region,
the very large-scale streamwise elongated low- and high-speed streaks can be observed, which
appear alternately in the spanwise direction and exhibits a meandering feature in the streamwise
direction. Referring to the low-speed streaks in the inner region [Fig. 11(a)], a vague superposition
effect can be observed, i.e., the faint footprints of the VLSMs in the outer region [Fig. 11(f)]
appearing in the inner region [Fig. 11(a)]. This feature has also been described by Hutchins and
Marusic [42] for the flat-wall turbulence and is considered as a type of the inner-outer interactions.
The instantaneous flow patterns show a typical prospect of the turbulent VLSMs in the moderate
and high Reynolds number turbulence reported in both the numerical and experimental studies,
such as Hutchins and Marusic [39] and Lee and Sung [40]. Figures 11(b), 11(c), 11(g), and 11(h)
show the instantaneous fields at the same vertical location for c/Ub = −0.4 and 0. The streaktype
feature of the flow also widely exists in these cases, while the low- and high-speed VLSMs in the
outer region [Figs. 11(g) and 11(h)] are more visible and coherent than the flat-wall turbulence. The
spanwise length scale of these large-scale motions is also larger than the flat-wall case. There are
three pairs of low- and high-speed streaks as can be clearly identified in Figs. 11(g) and 11(h)
and the corresponding spanwise pseudoperiod is about λz ≈ 2δ. As shown in Figs. 11(b) and
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FIG. 11. Instantaneous turbulent streamwise velocity in the x-z plane: (a), (f) flat wall; (b), (g) c/Ub =
−0.4; (c), (h) c/Ub = 0; (d), (i) c/Ub = 0.4; (e), (j) c/Ub = 1.2. Different vertical locations are chosen: (a)–(e)
ȳ/δ = 0.03; (f)–(j) ȳ/δ = 0.3.
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FIG. 12. Conditionally averaged streamwise velocity 〈u〉c and velocity vector in the y-z plane: (a) the flat-
wall case; (b) c/Ub = 0; (c) c/Ub = 0.4; (d) c/Ub = 1.2.

11(c), the footprints from the low-speed VLSMs can be discerned more clearly in the inner region,
accompanied by small-scale streaks. The instantaneous flow features indicate the stronger VLSMs
and superposition effect in the wavy boundary turbulence. As the wave age increases to c/Ub = 0.4
and c/Ub = 1.2 [Figs. 11(d), 11(e), 11(i), and 11(j)], the spanwise length scale of the low-speed
streaks is reduced and the flow pattern becomes similar to the flat-wall case. The similar large-scale
pattern also can be obscurely observed in the instantaneous fields of v′ and w′ (not shown here).

To further investigate the physical mechanism on the formation of these VLSMs, the low-pass
filter is used to extract the very large-scale turbulent fluctuation u′

L, and then a conditional average
is implemented to gain the insight of the very large-scale coherent region. First, the turbulent
streamwise velocity fluctuation is filtered by a truncated type low-pass filter in the spectral space.
Based on the instantaneous fields and the energy spectra (will be discussed later) as shown in
Figs. 11 and 13, the spanwise scale of the typical VLSMs is larger than the height of the open-
channel δ. Thus, the chosen truncated wavelength is δ in the spanwise direction. Then the criterion
u′

L < 0 is applied to discern the very large-scale low-speed events at the vertical location ȳ/δ = 0.1.
The spanwise-vertical sections of these conditionally averaged very large-scale low-speed events
for the flat-wall case is shown in Fig. 12(a). The blue and red contours represent the conditionally
averaged streamwise low- and high-speed regions, respectively. The low-speed region is flanked
by high-speed regions on both sides and the quasi-period of the velocity variation is larger than
δ but less than 2δ. The conditionally averaged transverse velocity illustrated by the superimposed
vectors indicates that the very large-scale low- and high-speed regions are located between a pair
of counter-rotating roll cells. The low-speed regions are induced by the large-scale ejecting events
and the high-speed regions are accompanied by the motions sweeping toward the boundary. This
behavior has been reported by amount of earlier works, such as Hutchins and Marusic [42] and
Chung and McKeon [44]. Figure 12(b) shows the conditionally averaged field of the stationary
wavy wall case. Note that the result of the c/Ub = −0.4 case is not included in Fig. 12 because it
is similar with the c/Ub = 0 case. In general, the large-scale flow patterns in this case are similar to
the flat-wall case. While the very large-scale streamwise velocity fluctuation is noticeably stronger
and presents a more distinct periodicity in the spanwise direction. The distance between the two
high-speed regions is slightly larger than 2δ, consistent with the instantaneous fields as seen in
Figs. 11(g) and 11(h). Compared with the flat-wall turbulence, the roll cells between the low- and
high-speed regions are also stronger and larger. Their influences extend from the bottom surface
to the top of the open-channel and generate strong ejecting and sweeping motions in the vertical
direction as well as converging and diverging motions in the spanwise direction. The similar
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conditionally averaged flow structures at the wave ages of c/Ub = 0.4 and c/Ub = 1.2 are displayed
in Figs. 12(c) and 12(d). An obvious trend is that the length scale and intensity of the extracted
VLSMs decrease with the increasing wave age.

Apparently, the length scale and intensity of the VLSMs are considerably affected by the
wave surface. This trend is quantitatively confirmed by the energy spectra. One-dimensional
pre-multiplied spanwise energy spectra of Reynolds stresses are shown in Fig. 13 for various wave
ages together with the flat-wall case. Here, the spectral densities shown in the logarithmic plot have
been pre-multiplied by the spanwise wave number kz to show the integral contribution per log kz.
Figure 13(i) shows the energy spectra of the flat-wall turbulence. Two peaks can be observed in the
spectra of the streamwise velocity [Fig. 13(i-a)] and shear stress [Fig. 13(i-d)] that correspond to
the inner/outer scale separation [58,65–67] in high Reynolds number turbulence. The inner peak
locates at the scale around λ+

z ≈ 130, which corresponds to the near-wall velocity streaks. The
outer peak locates at the scale around λz/δ ≈ 1.57, which represents the turbulent VLSMs in the
outer region. The scale of the outer peak shown in Fig. 13(i-a) is similar with the channel flows, i.e.,
λz ≈ 1.2 ∼ 1.6δ [58,68,69], while larger than those in the boundary layers, i.e., λz ≈ 0.8δ [66,67].
It is known that the spanwise length scale of the VLSMs reported in turbulent channel flow is larger
than those reported in turbulent boundary layers [42,70]. Note that the very large-scale peak region
expanding from the outer region to the inner region indicates the superposition effect of the VLSMs
on the inner region [42,43].

Although the mean profiles of Reynolds stresses for wavy boundary turbulence shown in Figs. 5–
7 have the similar intensities and vertical distributions with the flat-wall case, distinct differences
appear in their energy spectra. For c/Ub = −0.4 [Fig. 13(ii-a)] and c/Ub = 0 [Fig. 13(iii-a)], the
outer peak located at a larger scale around λz/δ ≈ 2.11 is more vivid and extends more deeply
into the inner region. As the wave age increases to c/Ub = 0.4, the scale of the outer peak
[Fig. 13(iv-a)] reduces back to λz/δ ≈ 1.57 and the amplitude also decreases. For c/Ub = 1.2
[Fig. 13(v-a)], the large-scale peak decreases further and the spectra is similar with the flat-wall
case. Noteworthily, Lee [58] reported the spectra of turbulent channel flow obtained from DNS data
at the Reynolds numbers of Reτ = 1000 and Reτ = 5200. He mentioned that at the relatively low
Reynolds number, i.e., Reτ = 1000, the separation of scales can only be observed in the streamwise
velocity. Interestingly, in our wavy boundary cases, the separation of length scale can also be
observed in the vertical and spanwise velocities. For the vertical velocity fluctuation [Fig. 13(b)], the
flat-wall turbulence [Fig. 13(i-b)] achieves its peak value only at a relatively small scale. While for
c/Ub = −0.4 [Fig. 13(ii-b)] and c/Ub = 0 [Fig. 13(iii-b)], an additional very large-scale peak can
be observed. The scale of the second peak is the same as the streamwise velocity. For the spanwise
component [Fig. 13(c)], the additional very large-scale peak can even be seen in the c/Ub = 0.4
case. The scale separation of the turbulent vertical and spanwise velocities can be explained by the
enhanced very large-scale transverse flow as depicted in Fig. 12(b).

In our results, the very large-scale peaks of all the velocity components occur at the same scale
(marked by the dash-dot line in Fig. 13) for each wave age but in different vertical regions, namely
ȳ/δ ≈ 0.5 for the vertical velocity, ȳ/δ ≈ 0.08 for the spanwise velocity. The very large-scale peak
of streamwise velocity exists in both inner- and outer-regions and centered at ȳ/δ ≈ 0.3. Then we
examine the spectra of all the velocity components at these locations (marked by the dashed line in
Fig. 13) and use the corresponding mean energy of velocity fluctuation at the same vertical location
to normalize the spectra, i.e.,

En
u′

iu
′
j
(k, ȳ) = Eu′

iu
′
j
(k, ȳ)/u′

iu
′
j (ȳ). (9)

After normalization, the integral of spectral density over the wave number is unit for all the cases.
Figure 14(a) shows the energy spectra of turbulent streamwise velocity fluctuation in the inner
region ȳ/δ = 0.03 (ȳ+ ≈ 30). In general, the streamwise turbulent velocity fluctuation is mainly
concentrated in small scales and the very large-scale peak is relatively weak. While more energy
distributes in large scales for the wavy boundary cases, their small-scale energy is slightly reduced,
correspondingly. Figure 14(b) shows the spectra at a higher vertical location ȳ/δ = 0.3 (ȳ+ ≈ 300).

054601-13



WU-YANG ZHANG, WEI-XI HUANG, AND CHUN-XIAO XU

FIG. 13. Contours of the one-dimensional pre-multiplied spanwise energy spectra of turbulent velocity
fluctuations: (i) the flat-wall case; (ii) c/Ub = −0.4; (iii) c/Ub = 0; (iv) c/Ub = 0.4; (v) c/Ub = 1.2. Different
components, i.e., (a) u′u′, (b) v′v′, (c) w′w′, and (d) u′v′ are presented.

In this outer region, the turbulent energy is mainly concentrated at large scales. A sharper and
stronger peak at the scale of λz/δ ≈ 2.11 can be observed in c/Ub = −0.4 and c/Ub = 0 cases.
When the wave age increases to c/Ub = 0.4, the scale of the peak reduces back to λz/δ ≈ 1.57 as in
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FIG. 14. Normalized one-dimensional premultiplied spanwise energy spectra of turbulent velocity fluc-
tuations for various wave ages at different vertical locations: (a) streamwise component u′, ȳ/δ = 0.03;
(b) streamwise component u′, ȳ/δ = 0.3; (c) vertical component v′, ȳ/δ = 0.5; (d) spanwise component
w′, ȳ/δ = 0.08. The different lines represent the different wave ages, the same as those in Fig. 4.

the flat-wall case but still with a stronger intensity. The spectra of vertical and spanwise velocities at
two different locations are shown in Figs. 14(c) and 14(d), respectively. For the flat-wall turbulence,
the energy distributes in a relatively wide range of scales and only a gentle peak exists. While for the
c/Ub = −0.4 and 0 cases, there is an additional sharp peak existing at a very large scale. Meanwhile,
the energy distributed in small scales (λz/δ < 1) for the vertical velocity is reduced as compared with
the flat-wall turbulence. As the wave age increases to c/Ub = 0.4, the scale and intensity of the very
large-scale peak are reduced sharply. For the c/Ub = 1.2 case, the spectra for all the components
nearly coincides with the flat-wall turbulence. In general, both the length scale and amplitude of the
very large-scale peak decrease as the wave age increases.

It is noted that the above VLSMs scaling with 1.57 ∼ 2.11δ (δ is the height of the open-channel)
in the wavy boundary cases are similar to the previous experimental work on the stationary wavy
boundary layer flow [50], where velocity streaks and vortex pairs are scaled with the boundary layer
thickness. In the experiments of the stationary wavy-wall channel flow [51–53], the large-scale flow
motion extracted by the first two eigenmodes of POD has a scale of 1 ∼ 1.5 times of the full channel
height in the spanwise direction, which is 2 ∼ 3δ and larger than our results. While the radius of
the corresponding counter-rotating vortices detected by the eigenfunctions is about 0.5 times of the
full channel height, which is similar with our conditional averaged flow fields as shown in Fig. 12.
Considering their wave amplitude (a/δ = 0.1 and 0.2) and steepness (akw = 0.1π and 0.2π ) [53]
is much larger than ours, i.e., a/δ = 0.05 and akw = 0.1 (Table I), the discrepancy in length scale
might be due to the different wave parameters. The effect of the wave steepness will be discussed
later.

Moreover, the spanwise length scale of VLSMs varies from λz/δ ≈ 1.57 to λz/δ ≈ 2.11 for
different cases. Considering the computational domain size in the spanwise direction Lz = 2πδ,
the above length scales correspond to four pseudo-periods in domain for the flat-wall, c/Ub = 0.4
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FIG. 15. Instantaneous turbulent streamwise velocity in the x-z plane: (a) ȳ/δ = 0.03; (b) ȳ/δ = 0.3; the
contours are same as those in Fig. 11. (c) Conditionally averaged streamwise velocity and velocity vector in
the y-z plane; the contours are same as those in Fig. 12.

and c/Ub = 1.2 cases, while three pseudoperiods for the c/Ub = −0.4 and c/Ub = 0 cases. Thus, we
check the influence of the computational domain size on the length scale of VLSMs. Here a larger
domain with doubled size in the spanwise direction (Lz = 4πδ) is tested for the stationary wavy
wall case. Similarly, the VLSMs extracted from the instantaneous and conditionally averaged flow
fields shown in Fig. 15 are much stronger than those in the flat-wall case. As seen in Fig. 15(b),
several very large-scale low-speed streaks exist in the instantaneous flow field. The instantaneous
flow pattern is similar with the smaller domain case [Fig. 11(h)]. While the distance between the
conditional sampled streaks quantitatively shown in Fig. 15(c) is slightly larger than that extracted
from the smaller domain case [Fig. 12(b)]. Although the specific size of the VLSMs is slightly
affected by the domain size, the formation of VLSMs is the same for all the cases and the trend is
clear that the VLSMs are enhanced and enlarged by the wavy boundary. The underlying mechanism
will be discussed later.

C. Spectral analysis on the transport equation of two-point velocity correlation

To reveal the mechanism of the enhanced turbulent VLSMs in the wavy boundary cases, the
transport equation of the two-point velocity correlation function is analyzed, as in Lee [58] and Lee
and Moser [71,72], which can be expressed as

∂u′
iu

′
r j

∂t
+ 〈uk〉

∂〈u′
iu

′
r j〉

∂xk
= Pi j + �s,i j + �t,i j + Di j + Ti j − εi j + W Pi j ; (10)

Pi j = −u′
jrv

′ ∂ui

∂y
− u′

iv
′
r

∂u j

∂y
− u′

jru′ ∂ui

∂x
− u′

iu
′
r

∂u j

∂x
; (11)
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�s,i j = p′ ∂u′
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∂u′
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′
jr

∂r2
z

+ εSGS,i j . (16)

Here Pi j,�s,i j,�t,i j, Di j, Ti j , and εi j denote the production, pressure-strain, pressure diffusion,
viscous diffusion, turbulent diffusion, and dissipation terms, respectively. The subscript “r” rep-
resents the quantity at the location with a certain distance in the spanwise direction from the
reference point. A brief introduction to the derivation of the above transport equation and its spectral
expression can be found in Appendix B. Similar equations for the flat-wall turbulence can be
referred to in Lee [58] but without TSGS,i j and εSGS,i j , which represent the transport and dissipation
terms induced by the SGS stress, respectively. Different with their derivation process, we replace the
classic Reynolds decomposition with the triple decomposition according to Eq. (7). As a result, the
additional term, which is referred to as the wave-induced production term, appears at the right-hand
side of Eq. (10), i.e.,

W Pi j = −〈u′
jrv

′〉
〈
∂ui

∂y

〉
− 〈u′

iv
′
r〉

〈
∂u j
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〉
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iu
′
r〉

〈
∂u j

∂x

〉
− 〈u′

jru′〉
〈
∂ui

∂x

〉
− Pi j

= −ũ′
jrv

′ ∂̃ui

∂y
− ũ′

iv
′
r

∂̃u j

∂y
− ũ′

jru′ ∂̃ui

∂x
− ũ′

iu
′
r

∂̃u j

∂x
, (17)

where the tilde terms represent the wave-induced variations in the streamwise direction. The
wave-induced production term W Pi j [Eq. (17)] consists the product of the wave-induced Reynolds
stresses and velocity gradients, and thus only exists in the wavy boundary cases. For the flat-wall
case, W Pi j should be zero. Since Eqs. (10)–(17) are obtained by averaging in time, streamwise and
spanwise direction, all the terms are functions of the spanwise separation distance rz and the mean
vertical location ȳ. Note that according to the definition given in Appendix B, the mean and triple
decomposition operators cannot interchange with the spatial derivatives. Rewriting the equations in
a curvilinear coordinate system will present every term in a simpler way, i.e., that all the mean and
wave-induced components in Eqs. (10)–(17) can be moved inside the derivatives. Thus, through
the operators defined in Appendix B, the wave-induced production [Eq. (17)] can be separated
from the whole production. When the spanwise separation length is zero, i.e., rz = 0, Eq. (10) is
approximately degenerated to the classic transport equation of the Reynolds stresses, which had
been studied for the wavy boundary turbulence to describe the mechanism of momentum transport
in the vertical direction [57] and the Reynolds stresses generation in different wave phases [14,31].
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As pointed out by Reynolds and Hussain [12], the wave-induced production term W Pi j represents
the energy exchange between the Reynolds stresses u′

iu
′
j and the wave-induced stresses ũiũ j .

In the present work, the spanwise length scale is allowed to vary in Eq. (10), and the spectral
analysis is implemented as defined in Appendix B to reveal the contribution of each term in
different length scales. The whole spectral analysis for the transport equation of the two-point
velocity correlation function in turbulent Poiseuille and Couette flows had been studied at a
range of Reynolds numbers by Lee [58] and Lee and Moser [72]. In general, the energy transfer
process in the flat-wall turbulence can be described briefly as follows: the production term
generates the small-scale (large-scale) turbulent kinetic energy (TKE) in the inner (outer) region;
the synthetic contributions of the pressure diffusion, viscous diffusion and turbulent diffusion terms
are transferring the energy among the different length scales and along the vertical direction; the
TKE is dissipated mainly in small scales in both the inner and outer regions; the pressure-strain
term transfers the energy among the three velocity components.

In our results, the spectra of these terms for the flat-wall case conform to Lee [58], and they
are generally similar in the wavy boundary cases. In this section, we focus on the spectra of the
terms dominating the energy gain of Reynolds stresses and momentum flux, i.e., production terms
for u′u′ and u′v′, and pressure-strain terms for v′v′ and w′w′, respectively. In the following, the
spectral densities shown in the logarithmic plot are pre-multiplied by kz and ȳ+ to represent their
integral contributions. As shown in Fig. 16(a), according to EP11 = −Euv∂u/∂y, the spectral of the
production term of u′u′ for all the cases is similar to the corresponding spectra of u′v′ as seen in
Fig. 13(d). The production term has two peaks, with the inner peak located at the scale λz/δ ≈ 0.15
and the outer peak occurring at λz/δ = 1.57 or 2.11. The variation of the spectra with the wave age
is also similar with that of u′v′. For c/Ub = −0.4 [Fig. 16(ii-a)] and c/Ub = 0 [Fig. 16(iii-a)], both
the intensity and scale of the outer peaks are increased as compared with the flat-wall turbulence.
When the wave age increases to c/Ub = 0.4, the outer peak is weakened and their length scale is
reduced [Fig. 16(iv-a)]. The outer peak is almost disappeared for case c/Ub = 1.2. The spectra of the
production term for the Reynolds shear stress, P12, in Fig. 16(d) has also a similar pattern with that
of v′v′ as shown in Fig. 13(b), according to EP12 = −Evv∂u/∂y. For c/Ub = −0.4 [Fig. 16(ii-d)]
and c/Ub = 0 [Fig. 16(iii-d)], an additional very large-scale peak can be observed. There is no
production term in the transport equations of the vertical and spanwise components, which gain
energy from the streamwise component by the pressure-strain term as shown in Figs. 16(b) and
16(c). For the flat-wall turbulence, the pressure-strain term transfers the energy from v′v′ to the other
two components [blue region in Fig. 16(i-b)] within the region ȳ+ < 10, and above that, the energy
is transferred to v′v′. For c/Ub = −0.4 [Fig. 16(ii-b)] and c/Ub = 0 [Fig. 16(iii-b)], the region losing
energy extends to a higher vertical location and a very large-scale peak with energy gain occurs in
the outer region. The outer peaks disappear as the wave age increases [Figs. 16(iv-b) and 16(v-b)].
The spectra of the spanwise component [Fig. 16(c)] has a weaker wave age dependence as compared
with the other components, while an indistinct peak in the outer region can still be distinguished in
the c/Ub = −0.4 and 0 cases [Figs. 16(ii-c) and 16(iii-c)].

For all the wavy boundary cases, the wave-induced production term WPi j provides an additional
mechanism of energy gain or loss. For the streamwise and vertical turbulent velocity fluctuations
and the Reynolds shear stress, the wave-induced production terms can be further expressed as

WP11 = −(ũ′
rv

′ + ũ′v′
r )

∂̃u

∂y
− 2ũ′u′

r

∂̃u

∂x
= WP11,uy + WP11,ux, (18)

WP22 = −2ṽ′v′
r

∂̃v

∂y
− (ũ′

rv
′ + ũ′v′

r )
∂̃v

∂x
= WP22,vy + WP22,vx, (19)

WP12 = −ṽ′v′
r

∂̃u

∂y
− ũ′v′

r

∂̃v

∂y
− ũ′v′

r

∂̃u

∂x
− ũ′u′

r

∂̃v

∂x

= WP12,uy + WP12,vy + WP12,ux + WP12,vx. (20)
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FIG. 16. Contours of the one-dimensional pre-multiplied spanwise energy spectra of the production and
pressure-strain terms: (i) the flat-wall case; (ii) c/Ub = −0.4; (iii) c/Ub = 0; (iv) c/Ub = 0.4; and (v) c/Ub =
1.2. Different terms, i.e., (a) P11, (b) �s22, (c) �s33, and (d) P12 are presented.

Note that in the above expressions, both the turbulent two-point correlation function (ũ′
iu

′
j) and

the velocity gradient ( ˜∂ui/∂x j) are varied in the streamwise direction for different wave phases and
the wave-induced production WPi j is generated by their correlation within the whole wave period.
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FIG. 17. Contours of the one-dimensional pre-multiplied spanwise energy spectra of wave-induced produc-
tion terms for different wave-ages: (i) c/Ub = −0.4; (ii) c/Ub = 0; (iii) c/Ub = 0.4; (iv) c/Ub = 1.2. Different
terms, i.e., (a) W P11,uy, (b) W P11,ux , (c) W P22,vx , and (d) W P12,vy are presented.

For the streamwise velocity fluctuation, both terms on the right-hand side of Eq. (18) are
important. The one-dimensional spectra of the first term, WP11,uy, for various wave ages are plotted
in Fig. 17(a), which can be divided into two regions in the vertical direction with different signs.
For c/Ub = −0.4 [Fig. 17(i-a)], WP11,uy has positive contribution to both small and large scales
in the region ȳ+ > 10. The bimodal characteristics indicate that the turbulent fluctuation gains
energy from this term in both small and large scales. As the wave age increases, the positive region
loses its peak in the large scale and becomes weak in the c/Ub = 0.4 case [Fig. 17(iii-a)] and a
considerable negative contribution to the small scale occurs in the region ȳ+ ≈ 10. For the fast
wave case c/Ub = 1.2 [Fig. 17(iv-a)], this term has only a positive small-scale peak in the region
of 10 < ȳ+ < 100. Figure 17(b) shows the spectra of the second term on the right-hand side of
Eq. (18). For c/Ub = −0.4, 0, and 0.4, WP11,ux has also two regions on either side of ȳ+ ≈ 10. Its
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effect is nearly opposite to WP11,uy and also becomes weak as the wave age increases. Interestingly,
the regions exchange their signs in the fast-wave case c/Ub = 1.2 [Fig. 17(iv-a)].

For the turbulent vertical velocity fluctuation, the second term on the right-hand side of Eq. (19),
WP22,vx, is the dominant term in the wave-induced production. Figure 17(i-c) shows the spectra of
WP22,vx for c/Ub = −0.4, where three regions can be identified. The first one locates at ȳ+ < 30
which belongs to the buffer layer. WP22,vx has negative contribution to the small-scale fluctuation
in this region. As the wave age increases from negative to positive, this small-scale energy loss
region enlarges and lifts a little in the vertical direction. The second region locates between ȳ+ > 30
and ȳ+ < 300. According to the Reynolds number in our simulations, i.e., Reτ ≈ 1000, this region
belongs to the logarithmic region. WP22,vx has positive contribution to the small-scale fluctuation
for c/Ub = −0.4 [Fig. 17(i-c)]. This energy gain region lifts up in the vertical direction with the
increasing wave age but becomes weak and shifts to the large scale [Fig. 17(iv-c)]. The third region
in the spectra of WP22,vx is in the outer layer, from ȳ+ > 200 upon to the top of the open channel. For
c/Ub = −0.4, a distinct positive peak occurs at ȳ/δ ≈ 0.5 (ȳ+ ≈ 500). As the wave age increases, the
amplitude and length scale of this very large-scale peak are decreased and even becomes negative in
the fast wave case c/Ub = 1.2 [Fig. 17(iv-c)]. Comparing with Fig. 14(c), we can see that the length
scale, the vertical location and the variation trend of the spectra of WP22,vx are consistent with those
of the turbulent vertical velocity fluctuation. The similar spectra characteristics indicate that WP22,vx

has an important effect on the very large-scale vertical velocity fluctuation.
The dominant term of the wave-induced production for the Reynolds shear stress is the last

term at the right-hand side of Eq. (20), WP12,vx, and its spectra for various wave ages are shown
in Fig. 17(d). Note that because of the turbulent momentum flux u′v′ is usually negative, the blue
region in Fig. 17(d) represents the energy gain and the red region is the energy loss region. The
spectral feature of WP12,vx is similar with WP22,vx, where three regions can be distinguished. For
c/Ub = −0.4 [Fig. 17(i-d)], both the large- and small-scale momentum fluxes lose energy in the
buffer layer (ȳ+ < 30) and gain energy in the logarithmic region. The very large-scale flux in the
outer layer has strong energy input due to this term. When the wave age increases, a wide range of
scales loses more energy in the buffer layer, and meanwhile, their energy input in the logarithmic
region and outer layer is decreased and then becomes negative at c/Ub = 1.2 [Fig. 17(iv-d)].

In summary, the one-dimensional spectra of the budget terms shown in Figs. 16 and 17 inherit the
characteristics of turbulent fluctuations in the outer region. In the flat-wall turbulence, the vertical
velocity fluctuation v′v′ has no production term in its transport equation (P22 = 0) and can only
receive energy from u′u′ through the pressure-strain term. While in the low wave-age situations, the
very large-scale v′v′ can be generated by WP22,vx which is induced by the interaction between very

large-scale −ũ′v′ and ˜∂v/∂x. The Reynolds shear stress −u′v′ can also gain extra very large-scale
energy from WP12,vx. Both of these two terms decrease as the wave age increases and becomes
negative at c/Ub = 1.2, which indicates that the wave-induced fluctuation gains energy from the
very large-scale v′v′ and −u′v′. Although there is no wave-induced production term in the transport
equation of the spanwise velocity fluctuation (WP33 = 0), the very large-scale spanwise motion
gains energy from u′u′ by the pressure-strain term as shown in Fig. 16(c). The budget analysis
supports that the wave-induced production provides an additional mechanism of gaining or losing
very large-scale energy from the mean flow, which is perturbed by the wavy boundary. A schematic
of the energy exchange between the very large-scale Reynolds stresses between the mean and wave-
induced flows is depicted in Fig. 18.

Interestingly, the mechanism provided here has a potential connection to the studies of Langmuir
circulations (LCs) [73] in oceanic turbulence. The sketch of LCs consists of array of elongated
vortices parallel to the directions of wind and surface wave propagation, and induces streaks between
them [73], similar to the VLSMs over the wavy boundary as shown in Figs. 11 and 12. Teixeira [74]
provided a linear model to explain the formation of the LCs based on a rapid-distortion theory. In
his work, the turbulent flow is governed by the linearized Craik–Leibovich (C-L) equations [75].
Turbulent structures are streaks of streamwise velocity when the mean flow contains only the shear.
While the structures turn to strongly elongated streaks and vortices when a Stokes drift flow is
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FIG. 18. Sketch of the paths through which the large-scale turbulent fluctuations and momentum flux
gain/lose energy.

included in the mean flow. The growth of energy of v′v′ and −u′v′ are caused by the so-called
“Stokes production.” More recently, Deng et al. [76] performed LES based on the C-L equations
to investigate the Langmuir turbulence. In their work, the Stokes production term induces large
magnitude of vertical velocity fluctuation. The Stokes production which represents the nonlinear
interaction between the Reynolds stresses and the Stokes drift-induced shear, which are in a similar
form with the wave-induced production terms WP22,vx and WP12,vx in the present work.

FIG. 19. One-dimensional premultiplied spanwise energy spectra of turbulent velocity fluctuation for
different wave steepness: (a) streamwise component u′, ȳ/δ = 0.03; (b) streamwise component u′, ȳ/δ = 0.3;
(c) vertical component v′, ȳ/δ = 0.5; (d) spanwise component w′, ȳ/δ = 0.08.
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FIG. 20. One-dimensional premultiplied spanwise energy spectra of turbulent velocity fluctuation for
different Reynolds numbers: (a) streamwise component u′, ȳ/δ = 0.03; (b) streamwise component u′, ȳ/δ =
0.3; (c) vertical component v′, ȳ/δ = 0.5; (d) spanwise component w′, ȳ/δ = 0.08.

D. Effects of wave steepness and Reynolds number

In the previous sections, the influence of wavy boundary on the energy distribution among
different length scales of turbulent fluctuations was presented, and the attention was mainly paid
on the varying wave age. In this section, the effects of the wave steepness and the Reynolds number
are further investigated.

According to the previous results, the phenomenon that the enhanced very large-scale turbulent
motions and the separation of scales are more significant in the negative wave-age case and the
stationary wavy wall case. Here we fix the phase speed c = 0 and the wave amplitude a/δ =
0.05, but vary the wavelength kw to let the wave steepness satisfy akw = 0.05, 0.1, and 0.2. For
different wave steepnesses, the friction Reynolds number is kept the same, i.e., Reτ = 1000.
One-dimensional spanwise energy spectra of turbulent velocity fluctuations are shown in Fig. 19
for various wave steepnesses together with the flat-wall case. The vertical locations of the spectra
for the streamwise, vertical and spanwise components are same as Fig. 14. As the wave steepness
increases, the small-scale energy for the streamwise and vertical velocity components decreases and
the very large-scale energy increases. While for the spanwise velocity, both the small-scale and very
large-scale energies increase at high wave steepness. The scale of the second peak also increases for
the large wave-steepness cases. For the smallest wave-steepness case (akw = 0.05), the spectra of
the streamwise and vertical velocity components are close to the flat-wall case, while the spanwise
velocity achieves a second peak at the scale λz/δ = 1.57. This trend is reasonable because when
the wave steepness becomes smaller, the wavy boundary is more similar to the flat wall and the
flow is less disturbed by the wave. The small wave steepness also means that the wave-induced
fluctuations [Eq. (7)] as well as the wave-induced production terms [Eqs. (18)–(20)] are weak and
can hardly alter the energy distribution. It is noted that the variations of intensity and scale with the
wave steepness are consistent with Kuhn et al. [54]. In addition, their following work indicated that
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the energy spectra became broader and the spanwise length scale of the flow structures is increased
with the blockage ratio [55]. In the present work, we also fix the wavelength λw/δ = π and change
the wave amplitude a/δ = 0.025, 0.05, and 0.1 (or equivalently, akw = 0.05, 0.1 and 0.2) to estimate
the influence of the blockage ratio. It is found that the observed broader spectra and larger turbulent
velocity fluctuations (not shown here) agree with those of Zenklusen et al. [55].

To investigate the Reynolds number effect, simulations of turbulent flow over the flat and
stationary wavy wall at two lower Reynolds numbers, i.e., Reτ = 220 and 550 are carried out,
as compared with the Reτ = 1000 case. All the wave parameters are kept the same for different
Reynolds numbers with the wave steepness fixed at akw = 0.1. The spanwise spectra of turbulent
velocity fluctuations are shown in Fig. 20 for different Reynold numbers. For the lowest Reynolds
number, i.e., Reτ = 220, all the three components of velocity fluctuations in the stationary wavy
wall case do not exhibit the scale separation and only a gentle peak exists in the spectra, while
the length scale of the only peak for all the three components shifts slightly to the larger scale.
Considering the low Reynolds number in this case, the inner- and outer-scales nearly overlap and
it is hard to distinguish between them [42]. When the Reynolds number increases to Reτ = 550,
more distinct differences can be observed in the spectra. The streamwise velocity spectra achieves a
second very large-scale peak in both the inner [Fig. 20(a)] and outer [Fig. 20(b)] regions. The shape
of the spectra in the very large-scale region (λz/δ > 1) and outer layer (ȳ/δ = 0.3) even coincide
with the flat-wall turbulence at a higher Reynolds number Reτ = 1000. For the vertical and spanwise
components, the spectra also show the scale separation behavior in the stationary wavy wall case.
Since the wall turbulence only exhibits a distinct very large-scale peak and scale-separation behavior
at high Reynolds numbers, our results indicate that these properties occur at a relatively low
Reynolds number and grow with the Reynolds number under the impact of the wavy boundary.

IV. CONCLUSIONS

In the present study, a wall-resolved LES was performed for turbulent flow over the prescribed
traveling waves at a friction Reynolds number of Reτ ≈ 1000. Four different wave ages are consid-
ered and compared with the flat-wall turbulence. By applying the triple decomposition [12], the flow
fields are decomposed into three components, namely the mean profile, wave-induced fluctuation
and turbulent fluctuation. The profiles of mean streamwise velocity for all the wave ages exhibit a
logarithmic region along the vertical direction, while both the Karman constant and the intercept
of the velocity profile vary with the wave age. The wave-induced stresses are comparable to the
Reynolds stresses. Their intensities and spatial distributions are strongly dependent on the wave age.
Our results of the wave-induced stresses are consistent with the previous work [27,30]. In contrast,
the mean profiles of Reynolds stresses show no significant difference for different wave ages.

The turbulent VLSMs were observed in our simulations. For the flat-wall turbulence, the two
peaks in the one-dimensional premultiplied spanwise spectra of the turbulent streamwise velocity
correspond to the low-speed streaks in the inner region and the VLSMs in the outer region,
respectively. For the negative wave age and the stationary wavy wall cases, the intensity and
length scale of the outer peak are increased as compared with the flat-wall case. The spectra
of turbulent vertical and spanwise velocities also display additional very large-scale peaks. The
enlarged and intensified VLSMs are extracted from the instantaneous and conditionally averaged
flow fields. However, the turbulent VLSMs are weakened with the increasing wave age. All the
VLSMs extracted by the conditional average involve the elongated low- and high-speed regions in
the streamwise direction accompanied by the roll cells, similar with those observed in the flat-wall
turbulence at high Reynolds numbers [42]. Effect of the wave steepness was also examined. It
was shown that reduction of the small-scale energy and increase of the very large-scale energy in
the spectra become more obvious as the wave steepness increases. Moreover, the results at two
lower Reynolds numbers indicate that the effect of the wave on the enhancement of the large-scale
turbulent motion becomes insignificant as the Reynolds number decreases.
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Based on the spectral analysis of the transport equation of two-point velocity correlation, we
attempted to explain the wave effect on the VLSMs. It is found that the wave-induced production
terms can provide additional energy input to the very large-scale v′v′ and u′v′ for the negative wave
age and stationary wavy wall cases. Then the very large-scale u′u′ and w′w′ are strengthened by the
normal production term and pressure-strain term, respectively. The wave-induced production terms
reflect the correlation between the wave-induced velocity gradient and the Reynolds stresses. This
correlation analysis is similar to Yang and Shen [14], but with an extension to a range of length
scales of turbulent fluctuations, which explains the wave effect on enhancement of the VLSMs. As
the moving wavy boundary has a wave age of c/Ub = 0.4 (or equivalently c+ = 7.25), which lies
in the intermediate wave regime [61], the wave-induced flow component is decreased, and thus the
related wave-induced production also loses intensity and can hardly alter the energy distribution
among different length scales. For the flow over the fast wave, i.e., c/Ub = 1.2 (c+ = 23.77), the
wave-induced production changes its sign, indicating that the energy begins to transport from the
very large-scale motions to the wave-induced flow in this regime.
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APPENDIX A: AVERAGE AND DECOMPOSITION OPERATIONS

In the Cartesian coordinate system, the phase average of a physical quantity f (t, x, y, z) can be
defined as

〈 f 〉(x, y) ≡ 1

Nt × Nw × Lz

Nt∑
n=1

Nw∑
m=1

∫ Lz

0
f (t (n), x + ct (n) + mλw, y, z)dz, (A1)

where Lz is the spanwise width of the computational domain, the indices m, n represent a certain
period of the wave at the moment t (n), Nw is the number of the whole wave period contained in
the computational domain, and Nt is the number of the instantaneous samples used for average
operation. The turbulent component of the quantity’s fluctuation is then defined as

f ′(t, x, y, z) = f (t, x, y, z) − 〈 f 〉(x − ct, y). (A2)

Then the time and ξ2-plane average f̄ is obtained by further averaging the phase averaged
component along with the curves ξ1 defined in Eq. (6), i.e.,

f̄ (ξ2) = 1

Lξ1

∫ Lξ1

0
〈 f 〉dξ1 = 1

Lξ1

∫ Lξ1

0
〈 f 〉(x(ξ1), y(ξ1, ξ2))dξ1. (A3)

Here, the axis ξ2 changes with both x and y, while it can also represent the mean vertical
distance from the wave surface ȳ. Correspondingly, the wave-induced component can be obtained
by subtracting the f̄ from the phase averaged component, i.e.,

f̃ (x, y) = 〈 f 〉(x, y) − f̄ (ξ2(x, y)) = 〈 f 〉(x, y) − f̄ (ȳ). (A4)
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APPENDIX B: TRANSPORT EQUATION OF THE TWO-POINT VELOCITY CORRELATION
AND ITS SPECTRAL EXPRESSION

The momentum equation of the turbulent velocity fluctuations for the wavy boundary flow can
be written as [77]

∂u′
i

∂t
+ (ūk + ũk )

∂u′
i

∂xk
= −u′

k

(
∂ui

∂xk
+ ∂̃ui

∂xk

)
− ∂ p′

∂xi
+ 1

Re

∂2u′
i

∂xk∂xk
− ∂

∂xk
(u′

iu
′
k − 〈u′

iu
′
k〉) − ∂τ d

ik
′

∂xk
.

(B1)

It should be noted that the last term on the right-hand side of Eq. (B1) represents the contribution
of the subgrid-scale stress because the data used here is obtained from LES. Then, we define the
turbulent fluctuating quantity at the location with a certain distance in the spanwise direction from
the reference point, i.e.,

f ′
r = f ′(x, y, z + rz, t ), (B2)

where rz is the separation distance in the spanwise direction. The momentum equation for u′
jr can

be similarly written as

∂u′
jr

∂t
+ (ūk + ũk )

∂u′
jr

∂xk
= −u′

kr

(
∂u j

∂xk
+ ∂̃u j

∂xk

)
− ∂ p′

r

∂x jr
+ 1

Re

∂2u′
jr

∂xkr∂xkr

− ∂

∂xkr
(u′

jru′
kr − 〈u′

ju
′
k〉) − ∂τ d ′

jk,r

∂xkr
. (B3)

By multiplying the u′
i Eq. (B1) by u′

jr and the u′
jr Eq. (B3) by u′

i, and taking the mean after
summation, the resulting transport equation of the two-point velocity correlation can be obtained,
i.e., Eq. (10).

Furthermore, each term in Eq. (10) can be discretized in the spectral space, i.e.,

f (ȳ, rz ) =
∑

kz

f̂ (ȳ, kz ) exp(ikzrz ), (B4)

where f̂ is the spectral coefficient and kz is the corresponding spanwise wave number. Then, the one-
dimensional energy spectra density of f can be defined by the real part of the spectral coefficient,
i.e.,

E f (ȳ, kz ) = f̂ (ȳ, kz ) + f̂ (ȳ,−kz ). (B5)

The spectra of the different terms in Eq. (10) depict the energy gain/loss among different length
scales and vertical positions.
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