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For two-dimensional flow past a linearly sprung circular cylinder to which has been
attached an internal “nonlinear energy sink” consisting of a mass allowed to rotate about the
cylinder axis and a viscous damper that linearly retards the rotational motion of that mass,
we show, for a given set of parameters, that as many as three distinct unsteady long-time
solutions (two periodic and one chaotic), in addition to one or more steady solutions, can
coexist. For other combinations of the parameters, two unsteady solutions (both periodic,
one periodic and one quasiperiodic, one periodic and one chaotic, one quasiperiodic and
one chaotic, or both chaotic) can coexist with one or more steady solutions. These multiple
solutions, all of which appear to be linearly stable, are found in a range of Reynolds number
(15 < Re < 50) in which the flow is expected to be two dimensional. The discovery of this
unprecedented degree of solution multiplicity establishes the potential of this system to
serve, at low Re, as a test bed for detailed investigation of basins of attraction of the Navier-
Stokes equations, and in studies of noise- and disturbance-induced transitions between
different long-time solutions.

DOI: 10.1103/PhysRevFluids.4.054401

I. INTRODUCTION

A key issue in understanding the solution structure of the Navier-Stokes equations is the
dependence of solutions on initial conditions. One manifestation of this is the sensitive dependence
of turbulent (and more generally, temporally chaotic) solutions on initial conditions.

A second facet of this issue concerns situations in which there exist qualitatively distinct long-
time attracting solutions, each with its own basin of attraction in the initial condition space. In
several cases, such behavior has been characterized, including for von Kármán rotating disk flow
and variants [1,2]; vortex-induced vibration in flow past a cylinder [3,4]; flow in a pipe, where
steady axisymmetric, fully developed flow can exist over a broad range of Reynolds numbers with
either transitional or turbulent flow also being a solution [5]; Rayleigh-Bénard convection [6–9];
Taylor-Couette flow [10–14]; flow in a pair of channels [15]; dynamo-related magnetohydrodynamic
flows [16]; multicomponent convection in a porous medium [17]; flow in a nearly symmetric two-
dimensional sudden expansion [18]; and a drop rising through an immiscible liquid [19,20].
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Situations having more than one long-time attracting solution (referred to here as “long-time
solution”) are of interest for three reasons. First, if transition from one long-time solution to another
can be induced by an intentional disturbance, then “switching” from one flow state to another has the
potential to favorably affect heat or mass transfer, aerodynamic performance, or chemical reaction
rates in a controllable way. Second, systems in which there are coexisting long-time solutions
facilitate study of transitions induced by underlying thermodynamic [21] or environmental [22]
fluctuations. Finally, such situations provide a platform for delineating basins of attraction in the
initial condition space.

Identification of multiple long-time solutions typically involves conducting a bifurcation analysis
or conducting laboratory or computational experiments to explore the infinite-dimensional space
of initial conditions. As a result, there is an interest in systems for which multiplicity occurs in
two-dimensional flows at relatively low Reynolds number and quantitative experiments and high-
fidelity computations can be performed relatively easily. Two-dimensionality is important from the
standpoint of reducing the dimension of the initial condition space. Two-dimensionality and low
Reynolds number are important from the standpoint of simplifying experimental measurements and
computations, and allowing them to be performed at high resolution.

A particularly attractive class of two-dimensional flows in which to study multiplicity is vortex-
induced vibration (VIV) of a linearly sprung circular cylinder, for the case in which cylinder motion
is perpendicular to the mean flow. In this case, at a Reynolds number of 100 (based on cylinder
diameter), Navrose and Mittal [3,4] recently found a new region of multiplicity in the interior of
the lock-in region, in addition to the multiplicity previously identified at the “ends” of the lock-
in region. Those authors found that the extent of this “middle” range of multiplicity (measured
in terms of a dimensionless “reduced speed” defined by the free-stream velocity divided by the
product of the cylinder diameter and the in vacuo natural frequency of the spring-mass system)
decreased linearly to zero as the ratio of cylinder density to fluid density approached ten from
above.

Here, we consider multiplicity in a related system previously investigated by Tumkur et al.
[23], in which two-dimensional flow of an incompressible Newtonian fluid excites cross-stream
vibration of a linearly sprung vertical cylinder of circular cross section in an unbounded domain.
Inertial coupling between the rectilinear motion of the cylinder and the rotational motion of a mass
attached to the cylinder axis, whose rotation is linearly retarded by a damper (e.g., solid-solid
friction at the pivot), provides a mechanism for energy to be mechanically dissipated (i.e., not
by viscosity within the fluid). As discussed by Tumkur et al. [23], the key issues are (a) inertial
coupling of the rectilinear and rotational motions, (b) the inherent lack of a natural frequency for
the rotational motion (when the attached mass rotates about a vertical axis, there is no preferred
frequency associated with gravity), and (c) mechanical dissipation, which combine to give rise to
a “nonlinear energy sink” (NES). Gendelman et al. [24] and Sigalov et al. [25,26] showed that for
a linearly sprung mass undergoing rectilinear motion, attached to a second mass whose rotational
motion is linearly retarded by a viscous damper, the free response of this in vacuo system is quite
complex.

In the context of flow-induced vibration, Tumkur et al. [23] showed that a rotational NES allows
for a much richer response than is found for “standard” (NES-less) VIV. (In the range of Reynolds
numbers considered below, we use “standard VIV” to refer to time-periodic two-dimensional flow
and time-periodic motion of a linearly sprung cylinder absent an NES [3,4].)

The present work establishes that up to three long-time periodic, quasiperiodic, or temporally
chaotic solutions, along with a steady, symmetric, motionless-cylinder solution, can coexist when
the motion of a rotational NES is inertially coupled to the rectilinear motion of the cylinder. The
range of multiplicity extends well below the critical Reynolds number for flow past a fixed cylinder
(Refixed ≈ 46). The results pertain to a density ratio of ten, thus facilitating experiments in water and
other liquids.
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FIG. 1. Linearly sprung cylinder in cross flow with rotational NES.

The remainder of the paper is organized as follows. We present the formulation and computa-
tional approach in Sec. II, the results in Secs. III and IV, a discussion in Sec. V, and a conclusion in
Sec. VI.

II. FORMULATION AND APPROACH

A. Physical model

The physical problem, involving a Newtonian fluid with constant density ρ f and kinematic
viscosity ν flowing with uniform velocity Uex past a linearly sprung circular cylinder with diameter
D, is identical to that considered by Tumkur et al. [23], and is shown schematically in Fig. 1.
The cylinder is allowed to move transversely to the mean flow, in the y direction, with its motion
restrained by a linear spring with spring constant Kcyl. The cylinder has an “overall” or “effective”
density ρb = (Mstat + MNES)/(πD2L/4), where L is the spanwise extent of the flow, and Mstat and
MNES are the masses of the nonrotating part of the cylinder (the “stator”) in contact with the flow,
and the rotational NES, respectively. (We note that in most laboratory experiments, the spring or
other elastic restraint lies outside the span of the flow. Here, the stator, the NES, or both can extend
beyond the span of the flow.) The NES consists of two components. First, a mass MNES is allowed to
rotate at an effective distance r0 from the cylinder axis. (For a point mass or a mass concentrated on
a line parallel to the cylinder axis, r0 is simply the distance from the axis. For any distributed mass,
Tumkur et al. [23] showed that r0 = R2

g/Rcm, where Rg and Rcm are the radius of gyration and the
distance from the center of mass to the axis of rotation, respectively.) The second component is a
viscous damper, which retards rotation of the attached NES mass with a torque linearly proportional
(with coefficient CNES) to the latter’s angular velocity.

The dimensionless equations are identical to those of Tumkur et al. [23], given by

∂v
∂τ

+ v · ∇v = −∇p + 1

Re
∇2v, (1a)

∇ · v = 0, (1b)

d2y1

dτ 2
+

[
2π

g∗
n

Re

]2

y1 = εpr̄0
d

dτ

[
dθ

dτ
sin θ

]
+ 2CL

πm∗ , (2a)

d2θ

dτ 2
+ ζ

Re

dθ

dτ
= sin θ

r̄0

d2y1

dτ 2
(2b)

where velocity, time, and length (including cylinder displacement) have been scaled with cylinder
diameter D and free-stream velocity U , the Reynolds number is Re = UD/ν, θ is the angular
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position of the NES mass rotating about the cylinder axis, and CL is the lift coefficient. We
take θ = 0 to coincide with the positive y axis. The other dimensionless parameters are m∗ =
ρb/ρ f , the dimensionless in vacuo natural frequency g∗

n = D2
√

Kcyl/(Mstat + MNES)/(2πν) of
the spring-mass system, εp = [MNES/(Mstat + MNES)]/(Rcm/Rg)2, r̄0 = r0/D, and a dimensionless
damping parameter ζ = CNESD2/(νr2

0 MNES). For a point mass or a concentrated line mass, εp =
MNES/(Mstat + MNES). We note that m∗ can be made very large, even when the fluid is a liquid, and
that εp can be varied over a very wide range, by extending the stator and NES beyond the span of
the flow.

In the limit of very high damping of the rotational motion of the attached mass, rotation ceases
and the system behaves as would a linearly sprung NES-less cylinder, i.e., with no effect of the
rotatable mass. In that limit, the motion (or lack thereof) depends only on the Reynolds number,
dimensionless spring constant, and ratio of cylinder density to fluid density.

B. Inlet transients

To explore coexistence of multiple long-time solutions, we used inlet transients symmetric
and asymmetric about y = 0, rather than searching in the initial condition space. These inlet
transients smoothly relax to a uniform inlet condition in finite time, providing a finite-time transition
from a prescribed inlet disturbance to uniform inlet flow compatible with a steady, symmetric,
motionless-cylinder (SSMC) solution. [If vx(x, y, τ ) = vx(x,−y, τ ), vy(x, y, τ ) = −vy(x,−y, τ )
and p(x, y, τ ) = p(x,−y, τ ), we refer to the flow as symmetric about y = 0. The corresponding
vorticity distribution is antisymmetric.] Our approach can be thought of as a variation on persistent
inlet excitation [27,28], but with a finite duration, since persistent inlet excitation would not be
compatible with an SSMC solution.

Each asymmetric inlet transient v(xin, y, τ ) = exvx,in(y, τ ) with

vx,A(y, τ ; α) = {1 + αexp[−(y − 1)2/2]}
[
1 − τ

25

]
+ τ

25
, (3a)

vx,B(y, τ ; β ) =
(

1 + β

{
2

tanh[(y + 36)/30]

tanh(12/5)
− 1

})[
1 − τ

25

]
+ τ

25
, (3b)

vx,C (y, τ ; γ ) =
[
1 + γ

y

36

][
1 − τ

25

]
+ τ

25
, (3c)

vx,D(y, τ ; δ) = [1 + δ sin(πy/36)]
[
1 − τ

25

]
+ τ

25
, (3d)

for 0 � τ � 25, has the same uniform profile [vx,in(y, τ ) = 1] for τ � 25, where xin is the location
of the upstream computational inlet, discussed in Sec. II C. These transients (Figs. S1(a)–S1(d) [29])
vary on a timescale (25 convective time units) orders of magnitude larger than the time-step size,
and also considerably larger than the timescale for vortex shedding and cylinder motion. [The fifth
transient, denoted by E , is uniform flow for τ � 0, i.e., vx,E (y, τ ) = 1.] In Eqs. (3a)–(3d), α, β,
γ , and δ characterize the degree of asymmetry of the prescribed inlet transient, with large values
corresponding to strong asymmetry, and each of the limits α → 0, β → 0, γ → 0, and δ → 0
corresponding to uniform flow for all τ � 0. Unless otherwise specified, α = β = γ = δ = 1.

In each case, the initial condition in our domain is a divergence-free velocity field v(x, y, 0) =
exvx,in(y, 0) with a cross-stream profile identical to the initial inlet velocity. The compatibility of the
initial and inlet profiles at τ = 0 and x = xin is important in that it avoids incompatibilities between
a specified nonuniform inlet condition and a uniform initial condition in the domain, or between a
uniform inlet condition and a nonuniform initial condition. Also, in each case, the initial position
of the NES mass is θi = π/2 unless otherwise indicated, and the initial velocity of the NES mass is
zero. The cylinder is initially motionless at its equilibrium position.

In searching for coexisting long-time solutions, use of multiple inlet transients over 0 � τ �
25 is equivalent to use of multiple initial conditions at τ = 25. The instantaneous velocity and
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pressure fields at τ = 25, as well as the rectilinear displacement and velocity of the cylinder and
angular position and velocity of the rotating mass at τ = 25, are determined by the initial-value
problem (beginning at τ = 0) with the imposed inlet transient. There is thus a mapping from each
combination of an inlet transient over 0 � τ � 25 and an initial condition at τ = 0, to an initial
condition at τ = 25, with the mapping being effected by the governing equations.

C. Computational approach

Solutions are approximated computationally using the open-source, spectral-element Navier-
Stokes solver Nek5000 [30], whose adaptation to the problem at hand is described by Tumkur
et al. [23]. The computational domain extends 72 cylinder diameters in the cross-stream direction
and 96D in the streamwise direction, with the undisplaced cylinder center located 24D away from
the inlet boundary and equidistantly from the side walls. Our production runs use a mesh with 2784
spectral elements, polynomial degree N = 5, and time-step size �τ = 2 × 10−3. For these values of
the parameters, the long-time solutions are qualitatively similar to those where we simultaneously
halved the time-step size, quadrupled the number of elements, and increased the polynomial degree
to nine (Figs. S2(a)–S2(h) [29]).

As in the work of Tumkur et al. [23], the time-step size used is sufficiently small that no fluid-
structure interaction iteration is required.

III. PHASE DIAGRAM AND STABILITY BOUNDARY

When an SSMC is found, we define the final angular position of the NES mass by

θ∞ = lim
τ→∞ θ (τ ). (4a)

In this case, the flow is symmetric about y = 0, even though the position of the NES mass might
not be. All other long-time solutions we found are unsteady, with the flow being asymmetric at each
time.

In what follows, m∗ = 10, εp = 0.3, ζ = 4/3, and r̄0 = 0.3 unless otherwise stated.

A. Overview of the phase diagram

For the stated combination of density ratio (m∗), NES parameters (εp, ζ , and r̄0), and initial
angular position θi = π/2, the solid and dotted lines in Fig. 2 show linear stability boundaries
for the NES-less and NES-equipped cases, respectively, as determined by Tumkur et al. [23]
using inlet transient A with α = 10−4. The 279 tilted squares, pentagons, upright squares, and
circles correspond to cases in which inlet transients A–E with α = 1 lead to four, three, two, and
one long-time solutions, respectively. (No more than one SSMC solution is counted in making
this assignment, regardless of the number of values of θ∞ found with different inlet transients.)
Moreover, for each symbol shape (and hence for each number of distinct long-time solutions),
there is a one-to-one correspondence between the symbol color and the combination of long-time
solutions found.

For each combination of g∗
n and Re in Fig. 2, the number and type of SSMC solutions is indicated

using one or more internal lines. A horizontal line denotes a case in which the symmetric inlet
transient does not lead to cylinder motion, so that the rotating mass is never displaced. A vertical line
denotes a case in which at least one inlet transient gives rise to an SSMC solution with |θ∞ − nπ | �
10−6π (n being an integer). A diagonal cross denotes a case where at least one inlet transient gives
rise to an SSMC solution with |θ∞ − nπ/2| � 10−6π for all integers n. For symbols containing
more than one of these lines, the interpretation is “additive.” Thus, an open circle with vertical and
horizontal lines and a diagonal cross correspond to the case in which every inlet transient leads
to an SSMC solution, with at least one being θ∞ = π/2, at least one being θ∞ = nπ , and at least
one being θ∞ �= mπ/2, where m and n are integers. Similarly, a pentagon with a horizontal line
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FIG. 2. Phase diagram. Standard VIV (SVIV) solutions, ; fully developed chaotic (FDC) solutions,
; slowly decaying cycle (SDC) solutions, ; steplike chaotic (SLC) solutions, ; quasiperiodic (QP)

solutions, ; back-and-forth periodically rotating (BAFPR) solutions, ; periodic, predominantly unidirec-
tionally rotating (PPUR) solutions, ; SVIV + SLC, ; SVIV + BAFPR, ; SVIV + FDC, ; BAFPR +
SLC, ; QP + SLC, ; QP + PPUR, ; FDC + PPUR, ; SLC + PPUR, ; SDC + PPUR, ; and
SLC + PPUR + BAFPR, . The dashed horizontal line, solid line, and dotted line denote the stability
boundary for the fixed cylinder, NES-less sprung cylinder, and NES-equipped sprung cylinder with εp sin2 θs =
0.3, respectively.

corresponds to a case in which the only SSMC solution found has θ∞ = π/2, and two unsteady
long-time solutions also exist. Situations in which all of the inlet transients give rise to unsteady
long-time solutions are denoted by symbols with no internal lines.

As a consequence of the mapping from an inlet transient and τ = 0 initial condition to a τ = 25
“initial condition,” the existence of more than one long-time attracting solution for a given set
of parameters demonstrates that the initial condition space for this autonomous system can be
decomposed into parts, from each of which attraction occurs to a different long-time solution. While
it is typically not trivial to identify basins of attraction in the initial condition space even for a
finite-dimensional system in which the basins are neither fractal nor riddled [31–35], the difficulty
of doing so in the infinite-dimensional initial condition space for any nonlinear partial differential
equation is daunting. One can in principle project the function space of initial conditions onto a
finite-dimensional space and divide that into basins of attraction. But as far as we know, there
has been only one attempt to identify basins of attraction in a flow, namely the work of Skufca
et al. [36], who considered a nine-dimensional reduced-order (ODE) model of a parallel shear flow,
and delineated basins of attraction in a two-dimensional projection of the nine-dimensional initial
condition space.

We do not attempt to fully explore the initial condition space (or the space of inlet transients) and
thus make no claim for completeness of our “collection” of long-time solutions for any combination
of Re and g∗

n. We consider only integer Re, for which we focus on identifying qualitatively
different long-time solutions. We make no claim regarding solutions at fractional Re values and
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do not characterize routes to chaos, transitions as Re or g∗
n varies, or basins of attraction in the

infinite-dimensional space of initial conditions or in any projection thereof.

B. Relationship to the stability boundary

As discussed by Tumkur et al. [23], the two stability boundaries shown in Fig. 2 pertain to an
SSMC base flow and were computed using noninfinitesimal disturbances with small asymmetry,
along the lines of Zielinska and Wesfreid [37]. For the NES-less case, the stability boundary
ABCDE separates conditions under which sufficiently small disturbances to the base flow decay for
combinations of Re and g∗

n on one side and do not decay on the other side. For the NES-equipped
case, we specify an initial value θi = π/2 and note that the stability boundary AB′C′D′E separates
situations where asymmetric disturbances decay from those in which they do not. (As discussed
below, the symmetric inlet transient E can lead to instability only as a result of asymmetries in the
numerics.) We also note that the steady symmetric flow with θi = π/2 can evolve to an SSMC
solution in which the angular position of the NES mass has a different value. If that outcome
occurred when infinitesimal disturbances were used, then there would be two possibilities, in which
the final position θ∞ of the NES mass differs infinitesimally or noninfinitesimally from π/2. In
terms of a base state corresponding to an SSMC solution and θi = π/2, we characterize the first
situation as stable, and the second as unstable because the disturbance grew to a noninfinitesimal
amplitude before ultimately decaying to θ∞ �= θi. Because the stability boundaries were determined
using noninfinitesimal disturbances, a final value θ∞ = π/2 is expected to arise in only two cases:
(a) when the disturbance is symmetric and the NES mass is not displaced and (b) as a limiting case
when the asymmetry of the inlet transient tends to zero. As discussed by Tumkur et al. [23], both
possibilities have been realized.

Figure 2 shows that in the portion of the Re-1/g∗
n plane in which the NES-less case is linearly

stable, only SSMC solutions are found. Moreover, in the portion of the Re-1/g∗
n plane in which the

NES-less case is linearly stable and the NES-equipped case is unstable, none of the SSMC solutions
found has θ∞ = π/2. This includes those for symmetric inlet transient E, showing that in this part of
the Re-1/g∗

n plane, the initial SSMC solution is destabilized by small asymmetries in the numerics.
In the portion of the Re-1/g∗

n plane in which the NES-equipped case is linearly stable and the NES-
less case is unstable, additional computations for inlet transients with smaller asymmetries (α =
β = γ = δ = 10−1, 10−2, 10−3, and 10−4) give results consistent with the linear stability boundary
(Table S1 [29]). The dependence of the final state on disturbance amplitude (shown for inlet transient
A in Table S1 [29]) shows that the SSMC solution with θi = π/2 is subject to finite-amplitude
instability in this portion of the Re-1/g∗

n plane.
As discussed by Tumkur et al. [23], the stability boundaries are triple-valued over a range of

g∗
n, and linear stability of an SSMC solution depends on Re, g∗

n, m∗, ζ , and εp sin2 θs, but not on
r̄0, or separately on either εp or θs (where θs is the steady NES angular position). Based on this or
examination of Eqs. (2a) and (2b), it is clear that linear stability analysis of the SSMC solution with
θs = nπ reduces to the NES-less case. (On physical grounds, this must be so because there is no
inertial coupling if θ = nπ and dθ/dτ = 0.) As discussed in Sec. IV, for each combination of Re,
g∗

n, m∗, and ζ for which an SSMC solution with θs = π/2 is linearly stable, there is a range of stable
values of εp sin2 θs, and so stable SSMC solutions do not have a unique θs, except when θs = nπ is
the only stable SSMC solution.

IV. NATURE OF THE DISTINCT SOLUTIONS

Here, we categorize and discuss the computed solutions over a range of Re and 1/g∗
n, largely

based on the long-time dynamical behavior of the rotating mass, which is qualitatively distinct for
each unsteady long-time solution, and of the wake. This focus is appropriate because, as discussed
in Sec. II C, the long-time behavior is qualitatively insensitive to the details of the numerical
discretization, provided that the discretization provides sufficient temporal and spatial resolution.
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The relationship between the temporal complexity of the NES mass rotation, cylinder displace-
ment, and flow is of interest from the standpoint of using one or two of them as diagnostics for
the remainder. There are two distinct cases. First, when the NES mass does not rotate, if either the
cylinder displacement or the flow is steady, time-periodic, quasiperiodic, or chaotic, then so is the
other, on account of the coupling through Eq. (2a) and the boundary conditions at the fluid/cylinder
interface. In the second case, when the NES mass rotates, Eqs. (2a) and (2b) show that neither the
flow nor y1 can be steady and that if any one of the NES mass rotation, cylinder motion, or flow is
periodic, quasiperiodic, or chaotic, then so are the others. Note that Eq. (2b), considered in isolation
as a second-order ODE for θ with y1(τ ) being a given periodic function, allows for the possibility
of a time-periodic cylinder motion giving rise to chaotic NES mass rotation. But when Eq. (2a) is
also considered, it becomes clear that a periodic y1 is incompatible with a chaotic θ .

The transient behavior of the asymptotically periodic and quasiperiodic solutions (all of which
include a chaotic transient [38]), and the long-time chaotic solutions, is sensitive not only to initial
conditions but also to the details of the numerical discretization. When the discretization provides
sufficient spatial and temporal resolution, this sensitivity has very little effect on the statistics
(broadly defined) of the long-time solution. Sensitivity of transient or long-time chaotic behavior
to discretization likely corresponds to sensitivity to initial conditions in a physical experiment. For
such solutions, the reported behavior is thought to be representative, in the same sense that, for a
broad class of physical systems, chaotic behavior in a single realization of a physical experiment
is thought to be representative of what would be observed in a larger ensemble. Evidence for this
hypothesis can be found in the results presented in Sec. IV D.

A. Steady solutions

For an SSMC solution with any value of θs, the flow is identical to that past a fixed cylinder. As
noted in Sec. III B, for an NES-equipped cylinder the linear stability of an SSMC solution depends
on only Re, g∗

n, m∗, ζ , and εp sin2 θs. For Re = 36, 1/g∗
n = 0.17, and inlet transient A with α = 10−4

(used to compute the stability boundaries), Table I shows that for εp = 0.3 and 0.6, there is a limited
range of angular positions of the NES mass for which the SSMC solution is stable. That range has
upper and lower bounds π/2 and θcrit = arcsin(�/εp)1/2, respectively, where � ≈ 0.0912 is the
minimum value of the “combination” parameter εp sin2 θs for which stability is possible. For θi = 0,
a standard VIV solution is the long-time solution. Different long-time solutions are found for larger
values of εp sin2 θi in the range 0 < εp sin2 θi < 0.0912, where any SSMC solution necessarily has
θ∞ �= θi, with arcsin(�/εp)1/2 � θ∞ � π/2.

The physical mechanism is as follows. For θs = 0, the NES has no consequence for linear
stability and the only possible long-time solutions are the standard VIV solution corresponding to
an NES-less sprung cylinder, and an SSMC solution. On the other hand, the more θs differs from an
integer multiple of π , the more potential there is for the NES mass to respond to rectilinear cylinder
motion arising from asymmetric disturbances. This response can bleed off kinetic energy associated
with that rectilinear motion, damping disturbances. When θs is close to an integer multiple of π , the
NES mass has little “leverage” to bleed energy from the rectilinear motion, and some disturbances
which would have decayed for larger θs can now grow.

B. Time-periodic solutions

1. Standard VIV solutions

For standard VIV, the NES has no dynamical effect, and the two-dimensional flow and cylinder
motion are time periodic (in this range of Re) and identical to the NES-less case. Conversely, if
θ is always equal to an integer multiple of π , cylinder oscillation corresponds to standard VIV,
and Eqs. (2a) and (2b) show that the rectilinear motion of the cylinder is coupled only to the flow.
Consistent with what is known about standard VIV [3], we believe that when this solution is linearly
stable for m∗ � 10, there are no additional unsteady long-time solutions with θ∞ equal to an integer
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TABLE I. Relationship between values of the combined parameter
εp sin2 θi and long-time solutions using inlet transient A with α = 10−4, at
Re = 36 and 1/g∗

n = 0.17, computed for εp = 0.3 and 0.6 (SVIV, standard
VIV solution; SSMC†, steady, symmetric, motionless-cylinder solution
with θ∞ = θi; SSMC�, steady, symmetric, motionless-cylinder solution
with θ∞ �= θi; SLC, steplike chaotic solution; PPUR, periodic, predomi-
nantly unidirectionally rotating solution; QP: quasiperiodic solution).

εp = 0.3
θi/π εp sin2 θi Long-time solution

0.0000 0.0000 SVIV
0.0100 0.0003 PPUR
0.0500 0.0073 SLC
0.1000 0.0286 SLC
0.1200 0.0407 SLC
0.1300 0.0473 SLC
0.1350 0.0508 SLC
0.1400 0.0544 PPUR
0.1450 0.0581 SLC
0.1500 0.0618 SLC
0.1540 0.0649 SLC
0.1580 0.0680 SLC
0.1620 0.0712 SLC
0.1660 0.0745 SSMC�

0.1859 0.0912 SLC
0.1860 0.0913 SSMC†

0.1880 0.0930 SSMC†

0.1900 0.0948 SSMC†

0.1920 0.0965 SSMC†

0.1960 0.1001 SSMC†

0.1980 0.1019 SSMC†

0.2000 0.1036 SSMC†

0.3000 0.1964 SSMC†

0.4000 0.2714 SSMC†

0.4500 0.2927 SSMC†

0.4900 0.2997 SSMC†

0.5000 0.3000 SSMC†

εp = 0.6
θi/π εp sin2 θi Long-time solution

0.0000 0.0000 SVIV
0.0100 0.0006 SSMC�

0.0500 0.0147 QP
0.1000 0.0573 QP
0.1275 0.0912 QP
0.1276 0.0913 SSMC†

0.1300 0.0946 SSMC†

0.1500 0.1237 SSMC†

0.2000 0.2073 SSMC†

0.3000 0.3927 SSMC†

0.4000 0.5427 SSMC†

0.5000 0.6000 SSMC†
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Time series for the PPUR solution found with inlet transient C at Re = 38 and 1/g∗
n = 0.18:

(a) cylinder displacement, (b) NES angular position, (c) lift coefficient, (d) NES angular velocity, and [(e)–(h)]
details of long-time behavior of quantities shown in panels (a)–(d).

multiple of π . For Re = 35 and 1/g∗
n = 0.28 (leftmost red circle in Fig. 2) and inlet transient A,

coupling NES mass rotation to the cylinder’s rectilinear motion leads to growth of disturbances in
y1 and θ during an interval of transient chaos (see Movie 1 in the Supplemental Material [29]),
followed by an asymptotic approach to standard VIV with θ∞ = 0 (see Figs. S3(a)–S3(h) [29]).
Asymptotic values of θ equal to even and odd multiples of π have been observed, depending on the
transient chaotic behavior, which in turn depends on the specified inlet transient and the detailed
error properties of the computational algorithm.

2. Periodic, predominantly unidirectionally rotating (PPUR) solutions

Figures 3(a)–3(h) show time series for Re = 38 and 1/g∗
n = 0.18, using inlet transient C. A

notable feature is the very long chaotic transient (extending over 2000 convective time units) before
the trajectory settles down to a time-periodic solution that could have been overlooked had the
simulation been terminated earlier. The chaotic transient features several episodes (340 < τ < 400,
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(a) (b)

FIG. 4. Spanwise vorticity for (a) the PPUR solution found with inlet transient C at Re = 38 and
1/g∗

n = 0.18, at τ = 2878.8, and (b) NES-less VIV for the same parameters and the same phase of cylinder
motion as in panel (a).

660 < τ < 700, and briefly near τ = 1020, 1180, 1350, 1530, and 1630; see Movie 2 in the
Supplemental Material [29]) of significant wake elongation and symmetrization. Elongation and
symmetrization are not found (here or in previous work) in the NES-less case, showing that the
NES is necessary for these flow phenomena. In the asymptotic state [Figs. 3(e)–3(h)], the NES
mass rotates exclusively in the counterclockwise direction, swinging through a full 2π during each
period. (For an inlet transient with opposite symmetry, it is easy to prove that the NES mass rotates
in the opposite direction.) Comparison of the asymptotic limit cycle [Fig. 4(a)] to the NES-less
standard VIV case [Fig. 4(b)] shows that the wakes are similar.

That the solution continues to wander through the phase space before finally being attracted to a
time-periodic solution at around τ = 2100 suggests that both the standard VIV solution (to which
the trajectory was not attracted after the inlet transient) and SSMC solution are nonattracting sets in
the phase space, whose existence is a necessary condition for transient chaos [38].

If the first factor in the first term on the right-hand side of inlet transient C is modified to
1 + y/36.001, then the pre-PPUR transient (see Figs. S4(a)–S4(d) [29]) is quite different than
for the unmodified inlet transient C [Figs. 3(a)–3(d)], with the duration of transient chaos being
significantly shorter. This sensitivity to inlet transient details is reminiscent of sensitivity to initial
conditions in systems displaying transient chaotic behavior [38] and follows directly from the
relationship between inlet transients and initial conditions discussed in Sec. II B.

For Re = 36 and 1/g∗
n = 0.17 (the parameters for which SSMC solutions were presented above)

with inlet transient A, Movie 3 [29] and Figs. 5(a)–5(h) show that the solution settles into a PPUR
state by about τ = 200. The NES mass rotates predominantly counterclockwise, but with some
reversal during a small fraction of each cycle [Fig. 5(h)]. Power spectral analysis shows that y1

has a dominant dimensionless frequency of 0.139, with a relatively weak harmonic contribution
at f D/U = 0.278. The lift and drag coefficients show significant response at both frequencies. In
contrast to the PPUR solution discussed above for Re = 38 and 1/g∗

n = 0.18, the PPUR solution for
Re = 36 and 1/g∗

n = 0.17 (both with inlet transient A) involves a definite “hesitation” in the angular
position of the NES mass (near θ = 3π/2) during each cycle, with the NES mass coming to rest and
quickly executing a small clockwise reversal, before resuming its counterclockwise motion. Vortex
shedding is strong from the start, with no discernible partial stabilization or vortex elongation.

3. Back-and-forth periodically rotating (BAFPR) solutions

For Re = 24, 1/g∗
n = 0.4, and inlet transient A, Figs. 6(a)–6(h) and Movie 4 [29] show

that during an initial transient (0 < τ < 35), relatively rapid, large-amplitude cylinder motion
significantly disturbs the early-time spanwise vorticity distribution, which is convected downstream
and out of the computational domain. During this time, the cylinder and NES mass undergo large
rectilinear and angular displacements, respectively. This is followed by an interval (from about
τ = 50 to about τ = 150) that begins with considerable vortex elongation (see Movie 4 in the
Supplemental Material [29]) and small-amplitude cylinder motion and NES mass rotation about
θ = 0. As time progresses, oscillations in y1 and CL continue to grow, the NES mass remains nearly

054401-11



ANTOINE B. BLANCHARD et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Time series for the PPUR solution (with reversal) found with inlet transient A at Re = 36 and
1/g∗

n = 0.17: (a) cylinder displacement, (b) NES angular position, (c) lift coefficient, (d) NES angular velocity,
and [(e)–(h)] details of long-time behavior of quantities shown in panels (a)–(d).

stationary near θ = 0, and the solution seemingly approaches standard VIV. At about τ = 480,
however, the amplitude of oscillation of the NES mass grows rapidly. As shown in Fig. 6(c),
this begins with “split-peak oscillations,” leading to large “spikes” in the lift, and ultimately to a
time-periodic solution in which split-peak oscillations of the NES mass persist [Fig. 6(h)]. The
increasing deviation of the NES-equipped case from the NES-less case beginning near τ = 480 is
associated with the NES mass rotation becoming more closely coupled to the cylinder motion, and
hence to the flow, as θ increases. The wake is qualitatively similar to what is seen for standard
VIV [compare Fig. 7(a) to Fig. 7(b)]. At long times, y1, CL, and θ are periodic (Figs. S5(a)–S5(c)
[29]), with a slightly richer harmonic content in the Fourier spectrum for CL than for y1 and θ .
The dominant frequencies for CL, y1, and θ are close to St, St, and St/2 (where St is the Strouhal
frequency), respectively, strongly suggesting a mechanism of 1:1:2 internal resonance among the
lift, rectilinear cylinder motion, and rotation of the NES mass, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Time series for the BAFPR solution found with inlet transient A at Re = 24 and 1/g∗
n = 0.4:

(a) cylinder displacement, (b) NES angular position, (c) lift coefficient, (d) NES angular velocity, and [(e–h)]
details of long-time behavior of quantities shown in panels (a)–(d).

(a) (b)

FIG. 7. Spanwise vorticity for (a) the BAFPR solution found with inlet transient A at Re = 24 and 1/g∗
n =

0.4, at τ = 1804, and (b) NES-less VIV for the same parameters and the same phase of cylinder motion as in
panel (a).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. Time series for the QP solution found with inlet transient A at Re = 33 and 1/g∗
n = 0.19:

(a) cylinder displacement, (b) NES angular position, (c) lift coefficient, (d) NES angular velocity, and [(e)–(h)]
details of long-time behavior of quantities shown in panels (a)–(d).

C. Quasiperiodic solutions

For Re = 33 and 1/g∗
n = 0.19, Figs. 8(a)–8(h) and Movie 5 [29] show that inlet transient A gives

rise to a long transient in which the amplitude of oscillations in y1 decays from greater than 0.2
to about 0.05, and the NES mass rotates counterclockwise, approaching −10π . As the NES mass
becomes nearly motionless near −10π , a wake instability sets in, and the oscillation amplitudes of
y1 and CL linearly grow, leading to increased wake asymmetry and unsteadiness. By about τ = 520,
the amplitude of y1 has increased to the point where rotation of the NES mass is excited, and the
system rapidly approaches a long-time solution that appears to be quasiperiodic, and in which the
wake is quite different from that for an NES-less linearly sprung cylinder [compare Figs. 9(a) and
9(b)].

Figures 10(a) and 10(c) and Tables S2(a) and S2(c) [29] show that the dominant frequency
for y1 and CL is f1 = 0.1449, close to the natural frequency [1/(0.19 × 33) = 0.1594] of the
linearly sprung cylinder. For θ , Fig. 10(b) shows that the dominant frequency is f2 = 0.0834. For y1
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(a) (b)

FIG. 9. Spanwise vorticity for (a) the QP solution found with inlet transient A at Re = 33 and 1/g∗
n = 0.19,

at τ = 1950.8, and (b) NES-less VIV for the same parameters and the same phase of cylinder motion as in panel
(a).

(using the 18 frequencies having the highest energy), θ (16 frequencies), and CL (15 frequencies),
respectively, each frequency can be written as a sum of rational multiples of the essentially
incommensurable frequencies f1 and f2, whose ratio is 0.576 (Tables S2(a)–S2(c) [29]). (The closest
ratio of “small” integers is 5/7 = 0.571428... . The closest ratio of integers with denominator less
than 26 is 11/19 = 0.578947... .) The rational numbers in the “a” and “b” columns of Tables S2(a)–
S2(c) [29] are multiples of 1/3. For the long-time solution, the wave forms for y1 [Fig. 8(e)] and
CL [Fig. 8(g)] are quite similar. The power spectrum for y1 [Fig. 10(a)] shows a (small) peak near
0.0205, corresponding to the modulation frequency, which is the difference between four pairs of
frequencies in each of the three power spectra (see Tables S2(a)–S2(c) [29]).

In the asymptotic regime, dy1/dτ fluctuates about a mean of essentially zero. The long-time
θ and dθ/dτ [Figs. 8(f) and 8(h), respectively] are strongly modulated, at a frequency of 0.019,
with no significant power at the frequency dominant for y1 and CL. The angular motion has its
two most energetic peaks at 0.0834 and 0.1039, separated by 0.0205 = (0.1449 − 0.0834)/3, the
modulation frequency for y1, CL, and θ .

Although the dominant frequencies (0.1449 and 0.0834) of y1 and θ “cross over” into each other’s
time series (each extracted frequency in y1 and θ can be written as a rational linear combination
of the two dominant frequencies; see Tables S2(a)–S2(c) in the Supplemental Material [29]), the
modulation frequencies (0.0205 for y1 and 0.019 for θ ) are not among the most energetic frequencies
extracted.

Finally, modulation of CL is somewhat asymmetric [Fig. 8(g)], being smaller near the minima
than at the maxima. Modulation of y1 is considerably less asymmetric.

(a) (b) (c)

FIG. 10. Fourier spectra of (a) y1, (b) θ , and (c) CL computed over the time window 1200 � τ � 2000 for
the QP solution found with inlet transient A at Re = 33 and 1/g∗

n = 0.19.
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D. Temporally chaotic solutions

1. Fully developed chaotic (FDC) solutions

For Re = 31, 1/g∗
n = 0.28, and inlet transient C, Figs. 11(a)–11(e) and Movie 6 [29] show that

after an initial transient (from τ = 0 to about τ = 70), the trajectory settles into a chaotic state,
whose nature is evident from the broadband frequency content of the wavelet spectra for y1, sin θ ,
and CL (Figs. S6(a)–S6(c) [29]). By comparison to the standard VIV case [Fig. 12(d)], Figs. 12(a)
and 12(b) show that the wake structure is considerably affected by the NES, not only in the near
field, with recurring episodes featuring noticeable elongation of the attached vorticity [Fig. 12(a)],
but also in the far field, with less organized vortex structures [Fig. 12(b)]. Figure 12(c) shows that
during other time intervals, the wake structure is reminiscent of standard VIV [Fig. 12(d)].

Movie 6 [29] shows that in the asymptotic regime, the cylinder displacement shows a number of
peaks (e.g., near τ = 1170, 1248, 1308, 1386, and 1472), recurring at roughly equal intervals, inter-
laced with very short intervals of small cylinder displacement. During each of the latter relatively
quiescent episodes, the wake undergoes considerable elongation and significant symmetrization,
corresponding to minima in the time series of drag [Fig. 11(e)]. But just as an SSMC solution
can give rise (via instability) to the Kármán vortex street in the NES-less case, we believe that the
partially symmetrized flow found here elongates until it becomes unstable with respect to a wake
instability. Judging from Movie 6 [29], the streamwise extent of wake elongation appears to be
roughly the same in each episode.

To characterize the chaotic response, we consider the streamwise and cross-stream velocity
components at a point fixed with respect to an inertial reference frame and located in the near wake,
1.25D downstream of the cylinder center and 1D above the midline y = 0 (referred to as point P),
along with their wavelet and Fourier spectra (Figs. S7(a)–S7(f) [29]). As with y1, θ , and CL, the
broadband frequency content of the wavelet and Fourier spectra for the two velocity components
evidences the chaotic nature of the flow. Qualitatively identical results are obtained for the two
velocity components at a point 3.25D downstream of the undisplaced cylinder center and 1D above
the midline. (We refer to this as point Q.)

Figures 13(a)–13(f) show the normalized autocorrelation of vx,P ≡ vx(xP, yP, τ ), the normalized
cross correlations of vx,P, vy,P ≡ vy(xP, yP, τ ) and dy1/dτ with each other, the normalized cross
correlation of vx,P and vx,Q ≡ vx(xQ, yQ, τ ), and the normalized cross correlation of dy1/dτ with
CL, where we define the normalized cross correlation of q(τ ) and s(τ ) as

aq,s(τc) =
∫ τ2

τ1
q′(τ )s′(τ + τc) dτ

(τ2 − τ1)[〈q′2〉〈s′2〉]1/2
, (5)

where q′(τ ) = q(τ ) − 〈q〉, s′(τ ) = s(τ ) − 〈s〉, and the angle brackets denote mean quantities. For
the normalized autocorrelation, we simply replace s(τ ) by q(τ ). The most striking feature of these
plots is that none decays as the lag τc increases to 1200 convective time units, corresponding to
almost 200 shedding cycles. This is in stark contrast to the results shown in Figs. 20(g) and 20(h)
of Tumkur et al. [23], where the cross correlations of the cylinder velocity with the two velocity
components at point P showed significant decay over lag times much shorter than observed in
Figs. 13(a)–13(f). The difference between our nondecaying (or very slowly decaying) correlations
and those of Tumkur et al. [23] is largely due to the relatively “weakly chaotic” nature of the present
time series for vx,P, vy,P, vx,Q, and dy1/dτ , as revealed by comparison of the wavelet spectra in
Figs. S7(c) and S7(d) [29] to those in Figs. 20(c) and 20(d) of Tumkur et al. [23] and of the power
spectra in Figs. S7(e) and S7(f) [29] to those in Figs. 20(e) and 20(f) of Tumkur et al. [23]. It is
clear that the response in the present case, while definitely broadband, is more strongly dominated
by two frequencies than is the case for the higher Re system considered by Tumkur et al. [23]. The
autocorrelation of vx,P, the cross correlations of vx,P with either vx,Q, vy,P, or dy1/dτ , and the cross
correlation of vy,P with dy1/dτ are essentially identical, largely because the velocity components at
points P and Q, and the cylinder velocity, are strongly correlated. The cross correlation of dy1/dτ

with CL shown in Fig. 13(f) is qualitatively similar. To eliminate the effect of the two dominant
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(a)

(b)

(c)

(d)

(e)

FIG. 11. Time series for the FDC solution found with inlet transient C at Re = 31 and 1/g∗
n = 0.28:

(a) cylinder displacement, (b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e)
drag coefficient.

frequencies in the correlation plots, we apply a first-order Butterworth band-stop filter with lower
and upper critical frequencies 0.05D/U and 0.6D/U , respectively, to the time series of dy1/dτ ,
CL, vx,P, vy,P, vx,Q, and vy,Q. In contrast to Figs. 13(a)–13(f), Figs. S8(a)–S8(f) [29] show that the
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(a) (b)

(c) (d)

FIG. 12. Spanwise vorticity for the NES-equipped FDC solution found with inlet transient C at Re = 31
and 1/g∗

n = 0.28, at (a) τ = 766.8, (b) τ = 1532.2, and (c) τ = 1890.8, and (d) NES-less VIV for the same
parameters and the same phase of cylinder motion as in panel (c).

(a) (b)

(c) (d)

(e) (f)

FIG. 13. For the FDC solution found with inlet transient C at Re = 31 and 1/g∗
n = 0.28, (a) autocorrelation

of vx,P, and cross correlations of (b) vx,P and vy,P, (c) vx,P and dy1/dτ , (d) vy,P and dy1/dτ , (e) vx,P and vx,Q,
and (f) dy1/dτ and CL .
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autocorrelations of the filtered signals are virtually zero after about 30 time units, which corresponds
to approximately five shedding cycles.

Cursory inspection of the time series for θ (Fig. S9 [29]) shows that the NES mass does not have
a strong preference for any particular position (e.g., θ = nπ for any integer n). This is more clearly
seen using the cumulative distribution function

Fθ (φ) = P(θ mod 2π � φ), φ ∈ [−π, π ), (6a)

and probability density function

fθ (φ) = dFθ (φ)/dφ, φ ∈ [−π, π ) (6b)

where P(Xi ) is the probability that the variable X assumes the value Xi. For Re = 31, 1/g∗
n = 0.28,

and inlet transient C, the NES mass has only a very weak preference for θ = 0 or π (see Figs. S10(a)
and S10(b) [29]). This preference persists regardless of the sampling window used in the time series,
and regardless of whether the PDF is computed by differentiation of the distribution function, or by
a “binning” approach (Figs. S10(c)–10(f) [29]). The PDF is an approximately even function of θ ,
with minima near ±π/2.

The CDF and PDF of dθ/dτ at the times when θ crosses through an integer multiple of π

show that there is a minimum nonzero value of |dθ/dτ | (Figs. S11(a) and S11(b) [29]). Comparison
to the CDF and PDF when the values of dθ/dτ are additionally conditioned on the requirement that
the NES mass was displaced by at least 0.1 (rad) since the previous zero crossing, to eliminate the
effect of “jitter” near integer multiples of π (Figs. S11(c) and S11(d) [29]), shows that the crossings
having the smallest values of |dθ/dτ | are “jittering” near integer multiples of π . No instances were
found in which θ and dθ/dτ simultaneously vanished. (If this happened, Eq. (2b) shows that the
NES mass would come to rest, and Eq. (2a) shows that the solution would be identical to standard
VIV thereafter.) It is clear that there is a threshold value of |dθ/dτ | ≈ 0.1 for “jitterless” crossings
of θ = nπ . The explanation is that if |dθ/dτ | is sufficiently small when θ = nπ , then “capture”
by a VIV or SSMC solution (with no rotation of the NES mass) is possible if the small amount of
rotational kinetic energy can be dissipated. In that case, the long-time solution would not be chaotic.

To further characterize the fully developed chaotic solution, we estimate the correlation dimen-
sions dcorr of y1 and CL using the algorithm of Grassberger and Procaccia [39], implemented by
Hegger et al. [40]. We compute the correlation sum Cm(σ ) over a range of scales σ for several
values of the embedding dimension m. Convergence of dcorr is established when for sufficiently
large m, the slope of logCm(σ ) versus log σ becomes independent of m and σ over a relatively
broad range of σ . For such a range, Cm(σ ) scales like σ dcorr .

We apply this approach at Re = 31 and 1/g∗
n = 0.28 with inlet transient C [Figs. 11(a) and 11(d)].

We discard the initial portion of the time series (0 � τ � 70), use 500 points per convective time
unit (about 3000 points per nominal shedding cycle), a time delay chosen in the standard way (here,
1046 sampled points), and a Theiler window parameter corresponding to 10 000 sampled points.
Least-squares lines fitted to Cm over the same intermediate range of σ (roughly 10−3 � σ � 10−2)
used by Tumkur et al. [23] show that as m increases, the limiting slopes of logCm(σ ) versus log σ

for y1 and CL are 3.46 and 3.50, respectively, consistent with the dimension of 3.2 found by Tumkur
et al. [23] for a different chaotic solution at Re = 100 with other values of 1/g∗

n and the NES
parameters. As discussed by those authors, such relatively low values for the correlation dimension
are consistent with expectations for low- and intermediate-Re flows with two additional degrees
of freedom (rectilinear cylinder motion and NES mass rotation) and are comparable to the fractal
dimensions of 2.48, 3.10, and 4.65 computed for a temporally chaotic two-dimensional flow past a
NACA 0012 airfoil at Re = 1600, 2000, and 3000, respectively [41].

2. Steplike chaotic (SLC) solutions

For Re = 36, 1/g∗
n = 0.17 (the parameters for which results were presented above for the SSMC

and PPUR solutions), and inlet transient B, Figs. 14(a)–14(e) and Movie 7 [29] show that the

054401-19



ANTOINE B. BLANCHARD et al.

(a)
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(d)

(e)

FIG. 14. Time series for the SLC solution found with inlet transient B at Re = 36 and 1/g∗
n = 0.17:

(a) cylinder displacement, (b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e)
drag coefficient.

long-time solution is characterized by a succession of intervals (e.g., 960 < τ < 1080) during which
the oscillation amplitudes of y1, CL, and CD monotonically grow, the NES mass nearly comes to
rest at θ = nπ (n = 0 for 960 < τ < 1080), and the solution appears to, but does not, approach
the standard VIV solution. As the amplitudes of y1 and CL near their maximum values (e.g., near
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FIG. 15. Detail, from τ = 700 to τ = 1410, of the trajectory, in a two-dimensional projection of the phase
space, for the SLC solution found with inlet transient B at Re = 36 and 1/g∗

n = 0.17; closed circles at I and
J denote the approximate times at which the first 1:1 resonance capture begins and ends (τ = 892.5 and
922, respectively), while closed circles at K and L refer to the corresponding times (τ = 1180.5 and 1224.5,
respectively) for the second capture. Open squares denote points at specified values of τ .

τ = 1080), there is a rapid onset of large-amplitude oscillations of the NES mass, marking the
end of linear growth of y1 and CL, and the onset of temporal chaos. This intermittent bursting
manifests itself in broadband frequency content of the wavelet spectra for y1, sin θ , and CL, shown
in Figs. S12(a)–S12(c) [29]. This chaotic episode, whose duration varies from one cycle to the next,
ends with a sudden reduction in oscillation amplitudes for y1, CL, and CD (nearly twofold for y1

and CL between τ = 1160 and τ = 1250 in Figs. 14(a) and 14(d), respectively). The NES mass
concomitantly executes a large-amplitude, predominantly counterclockwise motion, and rapidly
jumps, in what we refer to below as a 1:1 resonance capture, from nπ to about mπ , where n and
m are distinct integers [Fig. 14(b)]. While the angular position of the NES mass slowly approaches
mπ (m = 4 for 1250 < τ < 1360), the amplitudes of y1 and CL begin to grow rapidly, and the
previously described behavior starts anew. The steplike nature of the time series for θ corresponds
to these successive jumps from nπ to mπ , where |n − m| � 4 in the cases examined.

The corresponding wavelet spectra (Figs. S12(a)– S12(c) [29]) for y1, sin θ , and CL exhibit
several notable features. The spectrum for y1 shows that the long-time cylinder response is
exclusively at the Strouhal frequency during the intervals of linear growth of y1 and CL (e.g.,
for 1250 � τ � 1360 and for 1480 � τ � 1600), and predominantly at the Strouhal frequency
otherwise, with a broadband contribution evidencing temporal chaos. Identical conclusions can be
drawn from the spectrum of CL. On the other hand, the spectrum of sin θ exhibits no dominant
frequency and is predominantly broadband, except for intervals during which the NES mass nearly
comes to rest after a jump. As discussed above, each such interval features sudden, predominantly
unidirectional motion of the NES mass, immediately followed by a much quieter interval.

The wavelet spectrum of sin θ (Fig. S12(b) [29]) shows that during each angular jump of the
NES mass shown in Fig. 14(b), there is a dominant frequency close to St, which slowly and slightly
decays as the NES mass approaches an integer multiple of π . This strongly suggests that each jump
in θ is the manifestation of a transient 1:1 resonance capture during which energy transfer from the
cylinder to the NES mass occurs, leading to a rapid decrease in the amplitude of y1. Each such event
is followed by a prolonged interval during which the NES mass becomes nearly motionless near
θ = nπ , corresponding to escape from the state of 1:1 resonance. To illustrate this point, Fig. 15
shows the trajectory of the NES mass in the two-dimensional projection (θ, dθ/dτ ) of the phase
space for a time window during which several such 1:1 transient resonance captures (two in the
present case) successively occur.
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To establish the temporally chaotic nature of the steplike solution at Re = 36 and 1/g∗
n = 0.17

with inlet transient B, we compute the correlation dimension of the attractor. We use 100 � τ �
3000, 500 points per convective time unit, a time delay corresponding to 833 sampled points, and a
Theiler window parameter corresponding to 10 000 sampled points. For y1 and CL, the correlation
dimension dcorr approaches limiting values of 2.64 and 2.62, respectively, as m increases. These
values are measurably lower than those determined above for the FDC solution.

3. Slowly decaying cycle (SDC) solutions

For Re = 46, 1/g∗
n = 0.15 and inlet transient B, Figs. 16(a)–16(e) and Movie 8 [29] show that

the long-time solution is characterized by successive cycles of regular motion interrupted by chaotic
bursts. During each interval of regular motion, the oscillation amplitudes of y1, CL, and CD slowly
decrease, and the NES mass executes nearly unidirectional rotational motion. At the end of each
such SDC, the cylinder has almost come to rest. This is followed by a short interval during which
the cylinder remains nearly motionless, the angular velocity of the NES mass decays considerably,
the oscillation amplitude of CL decreases precipitously (to below 0.04), and CD is nearly constant.
This strongly suggests that, during each such interval, the trajectory approaches an SSMC state
(in which the cylinder and NES mass are motionless, with no lift and constant drag). If an SSMC
solution was indeed reached, its stability would depend on the angular position of the NES mass, as
discussed in Sec. III B.

However, as |dθ/dτ | decreases toward zero, the oscillation amplitudes of y1 and CL grow.
This leads to transfer of kinetic energy from rectilinear cylinder motion to NES mass rotation
and ultimately gives rise to large-amplitude oscillations of the latter. This rapid linear growth
of θ ushers in an interval of transient chaos, the duration of which varies among the SDCs
within a single time series. For Re = 46 and 1/g∗

n = 0.15, the trajectory settles into a new slowly
decaying cycle, strongly suggesting that the “intermittently chaotic” slowly decaying solution is
not part of a longer initial transient, but, rather, is a stable attractor for the present combination of
parameters.

A remarkable feature of this slowly decaying solution is the striking change in wake structure
at the end of each SDC and immediately thereafter. As discussed above, each SDC ends with
a dramatic diminution of the amplitudes of y1, CL, and CD, followed by a brief interval during
which the solution appears to approach an SSMC solution. This transition from a large-amplitude
VIV-like state to a nearly SSMC state is accompanied by slow, yet considerable, elongation of the
attached vorticity, as shown in Movie 8 [29] for the entire computation. Movie 9 [29] shows that,
for a large fraction of the first SDC (200 < τ < 765), the wake is qualitatively similar to standard
VIV (compare to Movie 10 [29] at the same Re and 1/g∗

n), and that it is not until τ ≈ 660, when
the amplitude of y1 rapidly drops, that significant wake elongation begins. Still later, the attached
vorticity is elongated to about 10D (see Movie 9 [29] at τ = 757.2). Elongation and symmetrization
of the wake continue as the cylinder and NES mass become nearly motionless, CL approaches zero,
and CD becomes nearly constant. The attached vorticity elongates beyond 30D (see τ = 850 in
Movie 9 [29]), corresponding to a nearly symmetric vorticity distribution, with slight waviness
attributable to small residual oscillatory motion of the cylinder.

We conjecture that the instability that develops following the spectacular elongation and nearly
complete symmetrization of the vorticity distribution, and which starts the trajectory on its path
toward temporal chaos, has its origin in the following. Near the “quietest” time in one cycle [e.g.,
over 800 < τ < 846 in Figs. 16(a)–16(e)], |dθ/dτ | decreases while θ passes through nπ , but this
clearly does not lead to θ and dθ/dτ vanishing asymptotically, and “capture” by a VIV or SSMC
solution. Instead, an instability leading to another cycle of chaotic motion develops. Figure 2 shows
that the point Re = 46, 1/g∗

n = 0.15 is on the unstable side of the NES-equipped (with εp sin2 θs =
εp) and NES-less (with εp sin2 θs = 0) stability boundaries, for which the codimension-two points
are at 1/g∗

n = 0.119 and 0.140, respectively. Thus, we expect that no SSMC solution (regardless of
θ∞) will be linearly stable.
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(a)

(b)

(c)

(d)

(e)

FIG. 16. Time series for the SDC solution found with inlet transient B at Re = 46 and 1/g∗
n = 0.15:

(a) cylinder displacement, (b) NES angular position, (c) NES angular velocity, (d) lift coefficient, and (e)
drag coefficient.

Because the SDC solution lies on a chaotic attractor, no two slowly decaying cycles in a given
time series are identical in duration or mean amplitude. Of the four SDCs shown in Figs. 16(a)–
16(e), two (corresponding to approximately 200 < τ < 765 and 1870 < τ < 2520) extend over
intervals significantly longer than the other two (covering approximately 1100 < τ < 1350 and
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1510 < τ < 1640). Figure 16(a) shows that the oscillation amplitude of y1 decreases approximately
linearly during the first portion of each SDC (e.g., for 200 < τ < 600, during which the amplitude
of y1 drops by about 27%), after which it decays much more rapidly in the latter portion of the cycle
(e.g., 660 < τ < 765 for the first SDC, during which the amplitude of y1 drops by about 88%).
During the intervals of slow decay, strong modulation is seen in CL and dθ/dτ , with that of the
former exhibiting a strong departure from up-down symmetry. Modulation in the oscillation of CL

is not reflected in the cylinder motion but does seem to affect modulation of dθ/dτ , as evidenced by
the inflection near the minima of |dθ/dτ | at about τ = 580 and τ = 2330, accompanied by a similar
inflection near the minima of CL. Finally, as required by invariance of Eqs. (2a) and (2b) under a
sign change in θ , the direction of rotation of the NES mass has no influence on the flow. This is
reflected in the qualitatively very similar wave forms of the lift coefficient for the first (200 < τ <

765) and last (1870 < τ < 2520) SDCs in Fig. 16(d), with the NES mass rotating predominantly
counterclockwise and clockwise during the former and latter periods, respectively.

Wavelet spectra for y1, sin θ , and CL (Figs. S13(a)–S13(c) [29]) show that, during each SDC,
the response is predominantly at a frequency near the Strouhal frequency, with higher harmonics
being weak and present during only part of each SDC. (This is particularly clear in the time series
shown in Movie 9 [29] for the first SDC.) During the chaotic bursts, there is no discernible dominant
frequency, indicative of a broadband response.

To confirm the chaotic nature of the long-time slowly decaying solution, we compute the
correlation dimension of the attractor as described earlier, discarding the portion of the time series
corresponding to τ < 50. As the embedding dimension m increases, the correlation dimension
approaches limiting values of 2.50 and 2.55 for y1 and CL, respectively, comparable to those obtained
for the steplike chaotic solution described above. In contrast, application of this procedure to the first
SDC (200 < τ < 765) yields correlation dimensions of 2.28 and 2.24 for y1 and CL, respectively,
slightly smaller than those obtained for the longer time series. For the same Re and 1/g∗

n values,
Figs. S14(a)–S14(e) [29] show that halving the time-step size and increasing the polynomial order
produces results that are qualitatively similar to those shown in Figs. 16(a)–16(e). This supports the
statement made earlier that the statistics of the reported chaotic long-time solutions are insensitive
to the details of the discretization.

A slowly decaying solution of similar type was found by Tumkur et al. [23] at higher Re (60 �
Re � 120) and with different NES parameters. For m∗ = 10, 1/g∗

n = 0.059, Re = 100, εp = 0.3,
r̄0 = 0.5, ζ = 0.3395, θi = π/2, and inlet transient E (uniform flow), those authors found a similar
slowly decaying solution, with elongation of the attached vorticity to a downstream position as
much as 9.5D aft of the cylinder center. In contrast to the Re = 46 case described above, the
intermittently bursting solution found by Tumkur et al. [23] features a dominant frequency that
continuously decreases as each SDC progresses, falling well below St before each burst into chaos.
This mechanism was attributed to an added-mass effect induced by the presence of the NES mass.
Another noteworthy difference is that all SDCs of the slowly decaying solution found by Tumkur
et al. [23] have similar durations.

V. DISCUSSION

A. Overview of multiplicity and the phase diagram

Although rigorous demonstration that any of the unsteady long-time solutions reported in Sec. IV
are stable or attracting is beyond the scope of this work, the facts that they are found at Reynolds
numbers where flow past a vibrating circular cylinder is thought to be two dimensional, that they
persist over hundreds of shedding cycles, and that they appear to be robust with respect to the
computational parameters strongly suggest that they are locally stable or attracting, within the class
of two-dimensional solutions [3]. This also suggests that for combinations of Re and 1/g∗

n for which
two or more long-time solutions coexist, “mode switching” of the trajectory between them can
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FIG. 17. CDF of θ∞ for all SSMC solutions found.

occur only as the result of strong external disturbances. This question is worthy of investigation but
beyond the scope of the present work.

Figure 2 shows that for intermediate Re, there is a large portion of the Re-1/g∗
n plane in which

two or more long-time solutions coexist and no solution is globally attracting. For one combination
of the parameters (Re = 37, 1/g∗

n = 0.17), we find two periodic solutions and a chaotic solution
coexisting with more than one steady solution. For a number of other combinations of Re and
1/g∗

n, we find two distinct unsteady solutions (both periodic, one periodic and one quasiperiodic,
one periodic and one chaotic, one quasiperiodic and one chaotic, or both chaotic), in most cases
coexisting with one or more steady solutions. For no Re-1/g∗

n combination do we find five or more
long-time solutions, and in no case are more than three unsteady. No aperiodic solutions are found
for 1/g∗

n > 0.38.
As discussed in Sec. I, multiple long-time solutions of the Navier-Stokes equations have been

found before. In the majority of the situations in which multiplicity has been found, the flow is
driven by rotation of an infinite plane or by rotation of one or both members of a pair of infinite
planes (see Refs. [1,2], and references cited therein), and all of the flows are either steady or time
periodic. For pipe flow, the steady Poiseuille solution is linearly stable at Re values well above
the experimentally observed critical Re associated with finite-amplitude instability [42], so that the
“base flow” and turbulence coexist over a wide range of Re. For pipe flow and plane Couette flow
[43], intermittency, in which laminar and turbulent flow alternate in time at a particular streamwise
location, have also been observed over a range of conditions. But no previous case of which we
are aware gives rise to the degree of multiplicity found here, in which as many as three unsteady
long-time solutions (including one or more aperiodic solutions) coexist with one or more steady
solutions in a laminar flow.

As discussed by Tumkur et al. [23], the stability boundaries shown in Fig. 2 demonstrate that
below the fixed-cylinder critical value Refixed ≈ 46, an NES can stabilize the θs = π/2 SSMC
solution, in the sense that there are combinations of Re and 1/g∗

n for which this SSMC solution is
unstable absent an NES and stable with an NES. The stability boundaries also show that in the same
range of Re, an NES with θs = π/2 can destabilize the SSMC solution. This raises the question
of how an NES might be used at higher Re, to not only change the amplitude of VIV but also to
completely suppress VIV. If one thinks of the VIV suppression “design” problem as one in which
the goal is to use the NES to “bleed off” energy from incipient rectilinear motion, then one approach
is to place the rotating mass at θ = π/2, where Eqs. (2a) and (2b) show that “maximum coupling”
is obtained in the case of small-amplitude oscillations.

Finally, Fig. 17 shows the cumulative probability distribution function of final values of the
angular position of the NES mass for all combinations of Re, 1/g∗

n and inlet transient for which
an SSMC solution was found. It is not surprising that there is a large concentration near θ = π/2,
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where all of the simulations begin, and many end. However, there are also large concentrations
near integer multiples of π . These correspond to solutions in which (a) the inlet transient excited
significant cylinder motion, (b) the NES ultimately bled off kinetic energy from the rectilinear
motion of the cylinder, and (c) in accomplishing that, the NES mass was “entrained” into a final
angular position that is an integer multiple of π .

B. Experimental considerations

Finally, the issue arises as to how our predictions can be confirmed experimentally. There are
three key questions. First, how can an experiment be set up? Second, will three-dimensional effects
render the two-dimensional analysis moot? Third, what is the importance of nonlinearity?

Experimental realization, including a detailed analysis of a distributed rotating mass dynamically
equivalent to the point-mass model described here in Sec. II A, was discussed by Tumkur et al. [23].
We pointed out there that constraints on the radial extent of the rotator (associated with either large
values of r̄0 or the maximum density of available materials) can be overcome by placing the rotating
mass outside the spanwise extent of the flow. We note here that if the rotator is placed outside of the
flow domain, one need not use very dense materials (e.g., tungsten), because the spanwise extent
of the rotating mass can be made as large as needed. This is a simple consequence of the fact that
the rotating and nonrotating masses are characterized on a per-unit-length basis, where the relevant
length is the spanwise extent of the flow. So placing the rotating mass (or for that matter, some of
the nonrotating mass) beyond the spanwise boundaries of the flow increases the mass, while leaving
the (flow) length unchanged.

Three-dimensionality can become an issue in two ways. First, for a fixed cylinder, even a
slightly three-dimensional geometry (e.g., any finite-span cylinder) can give rise to oblique shedding
[44]. While this is not well understood in the context of flow-induced vibration, it is clear that
the effects can be reduced by use of a large-aspect-ratio cylinder. To assess the significance of
three-dimensional geometries would require computation of three-dimensional time-periodic base
flows and Floquet analysis of their stability, which is beyond the scope of the present work.
Second, there is the potential for three-dimensional instability in a strictly two-dimensional base
flow [45,46]. Fortunately, work by Leontini et al. [46] strongly suggests that two-dimensional flow
past a circular cylinder undergoing either transverse VIV or forced transverse oscillation becomes
unstable with respect to three-dimensional disturbance at Re above the known fixed-cylinder critical
value of 190 [45], far beyond the range considered here.

As for nonlinearity, we note that our results were obtained in simulations of the fully nonlinear
governing equations, in which the initial-value problem was solved using disturbances of significant
magnitude in the inlet transients [Eqs. (3a)–(3d)]. No linearization was performed, and the
allowance for large disturbances strongly suggests that the results should be relatively robust with
respect to typical disturbances in laboratory facilities.

VI. CONCLUSION

For a linearly sprung circular cylinder in cross flow at Re < 50, equipped with a nonlinear
energy sink consisting of a rotating mass and a linear damper, we found that as many as three
distinct unsteady long-time solutions (two time-periodic solutions and one temporally chaotic
solution) and a steady, symmetric, motionless-cylinder solution can coexist for a single combination
of Re, dimensionless spring constant, ratio of cylinder density to fluid density, and parameters
characterizing the rotating mass and its damper. For a number of other combinations of Re and 1/g∗

n
(with the other parameters unchanged), we find two distinct unsteady solutions (both periodic, one
periodic and one quasiperiodic, one periodic and one chaotic, one quasiperiodic and one chaotic,
or both chaotic), in most cases coexisting with one or more steady solutions. The discovery of
this unprecedented degree of multiplicity in a range of Re (15 < Re < 50) far removed from any
expected three-dimensionality is significant because it facilitates high-fidelity computations that
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can delineate the structure of the basins of attraction in the initial condition space (or the space of
inlet transients). Understanding solution multiplicity is especially important to studies of noise- and
disturbance-induced transition between attracting solutions and to flow control. All of the results
are obtained for a density ratio of ten, thus allowing experiments to be performed in water or other
liquids, without the cylinder extending beyond the span of the flow.
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