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The effect of phase difference on the collective locomotion of two tandem flapping
foils is numerically studied in this paper. The numerical results indicate that the collective
locomotion is greatly affected by the phase difference. Two distinct collective modes are
observed, i.e., the fast mode and the slow mode. The fast mode is only observed in part of
the range of the phase difference (φ), i.e., φ = 0.0−0.1π and 1.5π–1.9π with appropriate
initial distance, and the slow mode appears in the range of φ = 0.3π−1.4π . Meanwhile,
the follower of the two foils has hydrodynamic benefit in both fast and slow modes, and
it can obtain the highest efficiency in the fast mode at φ = 1.6π . However, the leader
can only achieve hydrodynamic benefit in the fast mode, and the highest efficiency occurs
at φ = 0.1π . In addition, the stable distance between two foils in the slow mode can be
quantized with the phase difference. Furthermore, the fluid-structure interactions between
two foils are also analyzed. Two distinct vortex interactions are observed in the fast mode,
i.e., merging interaction and broken interaction, which, respectively, result in the highest
propulsive efficiency for the follower and the leader. In the merging interaction, the leading
edge vortex of the leader is captured by the follower, which results in the weak trailing
edge vortex of the leader but a strong trailing edge vortex of the follower. In the broken
interaction, the leading edge vortex of the follower sheds into the wake together with the
trailing edge vortex of the leader, and induces the trailing edge vortex of the follower
to be broken into two parts. Which kind of vortex interaction occurs depends on the
phase difference. The results obtained here may provide some light on understanding the
coordinated behavior of biological collectives.

DOI: 10.1103/PhysRevFluids.4.054101

I. INTRODUCTION

The collective locomotion of multiple moving bodies has recently become a transdisciplinary
research focus. It is not only ubiquitous in biological systems [1,2], but also may have implications
for the optimization of artificial machines, such as artificial flying or swimming robots and energy
harvester devices [3,4]. As typical examples of biological systems with collective motions, fish
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school and bird flocks have been interesting to biologists, physicists, and engineers for several
decades [5–10]. Several benefits have been verified for such collective behaviors, such as foraging
and antipredator behavior [1]. From the fluid mechanics perspective, it is also considered that the
hydrodynamic benefit can be obtained from collective behaviors [7–13]. Moreover, Lighthill once
pointed out that the hydrodynamic force alone is enough for the emergence of collective locomotion
[14]. However, the hydrodynamic mechanism of such collective behaviors is still controversial so
far [15,16]. One of the primary challenges for understanding animal collective behaviors is that the
collective flow-structure interactions are very complicated, since there is complex coupling between
flows and moving bodies.

Attempting to understand the collective behaviors of fish school and bird flocks, a number of
experimental and numerical studies have been carried out [17–21]. In order to simplify the question
and consider the biological morphology, an animal collective can be simplified as two flapping foils
or hydrofoils in several arrangements [22,23]. For the tandem formation, it has been indicated that
the performance of the downstream body is affected by the wake of the upstream body [17,24,25],
since the oncoming flow and the effective angle of attack of the follower are changed by the vortices
shed from the leader [26,27]. The thrust enhancement can be achieved by the follower when it
slaloms between the vortices [25,27], while the thrust of the leader can be enhanced when the
spacing is small [17], because the wake splitting occurs at the leading edge of the follower [24]. In
addition, the performance augmentation of two flapping foils has also been observed for the other
arrangements [19,21]. However, in these previous studies, the individuals were fixed in the flow,
which only has the response of the flow to the bodies’ movement with the lack of the response
of the bodies’ locomotion to the flow. Thus, such simplified models still have restrictions on the
investigations of collective behaviors.

In order to further investigate the hydrodynamic mechanism in the coordinated behaviors in
animal collectives, the self-propelled model has been developed recently [28,29]. Zhu et al. have
shown that orderly formations can be formed by two tandem self-propelled flapping foils through the
flow-mediated interactions, in which the trajectory of the follower was also locked onto the vortex
cores shed from the leader [30]. Furthermore, the collective behaviors of multiple self-propelled
flapping foils have recently been observed [31]. On the other hand, the collective locomotion of two
flapping foils was also investigated experimentally [32]. Ramananarivo et al. have shown that the
hydrodynamic force can prompt and retain the coordinated locomotion, and the separation distance
between individuals can be quantized with the wavelength traced out by the leader [33]. However,
for the possible purpose of simplifying the problem, only the in-phase motion was discussed in these
studies. But in nature, it is hard to find the uniform in-phase motions in animal collectives; instead
the phase difference is more likely to be observed. The collective behaviors of two autopropelled
flapping foils with phase difference have not been sufficiently investigated; learning more about the
effect of the phase difference on the collective behaviors of animal collectives is the motivation of
the current work.

In this paper, the effect of the phase difference on the collective behaviors of two self-propelled
flapping foils is numerically studied in detail. As shown in Fig. 1, two self-propelled flapping
foils are arranged in tandem formation initially, and the autopropulsion of each foil is driven by
a harmonic motion. The simulations are carried out via an immersed boundary method based on a
simplified circular function–based gas kinetic scheme [34,35]. The numerical results indicate that
the collective locomotion is significantly affected by phase difference. Two collective modes are
identified according to the propulsive velocity, i.e., the fast mode and the slow mode. Which kind of
mode occurs depends on the phase difference. In addition, the collective fluid-structure interactions
are analyzed for collective locomotion. Two distinct vortex interactions are observed in the fast
mode, i.e., merging interaction and broken interaction. Moreover, the stable separating distance
between two foils in the slow mode has been quantized with phase difference.

The remainder of this paper is organized as follows. The problem description and methodology
are presented in Sec. II. The simulation results are addressed in detail with discussion in Sec. III.
Finally, some conclusions are drawn in Sec. IV.
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FIG. 1. Sketch view of the simulation model, i.e., two flapping foils in tandem arrangement. h(t ) and θ (t ),
respectively, represent the heaving and pitching motions; u(t ) is the propelled velocity; subscripts 1 and 2,
respectively, represent the variables of leading and trailing foils. G is the horizontal separation gap between
two foils; c is the chord length. The pivot location of the pitching motion is fixed at c/3 for both foils.

II. PROBLEM DESCRIPTION AND METHODOLOGY

A. Problem description

In this paper, the two-dimensional NACA 0012 airfoil with the chord length of c is used as
the profile of the autopropelled flapping foil. As shown in Fig. 1, two flapping foils are arranged
in tandem formation with the initial longitudinal spacing G0. Both foils are driven by harmonic
motions as follows:

h1(t ) = A1 sin(2π f1t ), θ1(t ) = α1 cos(2π f1t ), (1a)

h2(t ) = A2 sin(2π f2t + φ), θ2(t ) = α2 cos(2π f2t + φ), (1b)

where h(t ) and θ (t ), respectively, are the instantaneous heaving and pitching motions of the flapping
foils, f is the flapping frequency, A is the heaving amplitude, α is the pitching amplitude, and the
subscripts 1 and 2, respectively, represent the variables of leading and trailing foils. φ is the phase
difference between two flapping foils. The pivot location of the pitching motion is fixed at c/3 for
both foils.

The propulsion of each foil is controlled by the Newton’s second law, which can be described as

m
d2X
dt2

= F, (2)

where X = (X,Y ) is the dimensionless position vector of the foil; F is the hydrodynamic force
applied on the foil surface, which results from the hydrodynamic interactions. m = (ρss)/(ρc2) is
the dimensionless mass of the foil which is determined by the density ratio ρ̄ = ρs/ρ, where ρs and
ρ are the densities of foil and fluid, respectively, and s represents the area of the foil. Both foils
are set as free and can self-propel in the horizontal direction (x direction) due to the force generated
from the hydrodynamic interactions, but there is no motion in the vertical direction. In this paper, the
positive thrust and propelled direction are defined along the negative x direction. The instantaneous
dimensionless propelled velocity of each foil can be calculated as

u(t ) = dX

dt
. (3)

Meanwhile, the cycle-averaged power consumption of each foil can be calculated as

Pm = 1

T

∫ t+T

t

[∣∣∣∣Fy
dh(t )

dt

∣∣∣∣ +
∣∣∣∣M dθ (t )

dt

∣∣∣∣
]

dt, (4)

where T is the flapping period; Fy and M are the vertical force and torque applied on the foil surface,
respectively. Thus, the propulsive efficiency is defined as

η = Ek

PmT
, (5)

where Ek = 1
T

∫ t+T
t

1
2 mu2dt is the output power, i.e., the kinetic energy of each foil.
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In addition, other parameters, i.e., thrust coefficient and power coefficient, are calculated as
follows:

CT = −2Fx

ρU 2c
, Cp = 2Pm

ρU 3c
, (6)

where Fx is the horizontal force; U = 2π f A is the characteristic velocity.
Moreover, since the self-propelled velocity of the flapping foil fluctuates in the steady swimming

state [36], the cycle-averaged distance and velocity are also calculated for analysis, i.e.,

Ḡ = 1

T

∫ t+T

t
G(t )dt, ū = 1

T

∫ t+T

t
u(t )dt, (7)

where G(t ) is the instantaneous horizontal separation gap between two foils.

B. Numerical method and validation

The two-dimensional viscous flow over the flapping foils is simulated in the current work, and
the governing equations can be written as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (8)

∂ρu
∂t

+ ∇ · (ρuuT + pI) = ν∇ · [∇(ρu) + ∇(ρu)T ] , (9)

where u is the flow velocity vector, p is the pressure, ν is the kinematic viscosity of flow, and
I is the unit tensor. The Reynolds number is defined as Re = Uc/ν in the current work. A
simplified circular function–based gas kinetic method [34,35] is adopted to solve Eqs. (8) and
(9), and a velocity correction–based immersed boundary method [37] is used to deal with the
fluid-structure interactions between the flapping foils and the surrounding flow. For more details
about the numerical method used in this study, one can refer to our previous work [34,35,37].

Although the numerical method and the corresponding code have been validated with other
numerical results in our previous work [34,35], the experimental validation is carried out in the
current work. The previous experimental work of Wang [38] is selected for the current numerical
validation, in which the stationary fluid condition is the same as that in the current work. The
kinematics of the airfoil is controlled as follows:

[x(t ), y(t )] = A0

2c
cos(2π f t )(cos β, sin β ), (10a)

α(t ) = α0 + αm sin(2π f t ), (10b)

where [x(t ), y(t )] are the coordinates of the center of the airfoil; α(t ) and α0 are the instantaneous
and initial angles of attack of the airfoil, respectively. A0/c is the dimensionless flapping amplitude,
β is the inclined angle of the stroke plane with respect to the horizontal direction, and αm is the
rotating amplitude. The Reynolds number for this problem is defined as Re0 = A0π f c/ν. The
parameters are set as Re0 = 75, β = 0, A0/c = 2.8, α0 = π/2, and αm = π/4. The validation
simulation is carried out in a computational domain of 25c × 20c with the domain of 4c × 4c around
the foil, in which the mesh size is �h = 0.01c. The Dirichlet boundary condition is applied on the
boundaries of computational domain, and the no-slip boundary condition is applied on the foil
surface. The lift and drag coefficients are shown in Fig. 2. It is clear that the present results agree
well with the experimental and numerical results in Ref. [38]. Consequently, the adopted method is
suitable for the current investigation.
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FIG. 2. Comparisons of (a) lift and (b) drag coefficients with previous results.

III. RESULTS AND DISCUSSION

In the current work, the coordinated locomotion of two tandem flapping foils is studied.
The controlled parameters used in this work are listed in Table I. The size of the rectangular
computational domain is 80c × 20c, in which the size of fine and uniform domain is 70c × 10c with
�h = 0.01c. The foil surface is represented by 204 Lagrangian points with uniform distribution.
The no-slip boundary condition is applied on the foil surface, and the Dirichlet boundary condition
is applied on the boundaries of the computational domain. In order to make sure that the results
obtained here are independent of the mesh spacing, a sensitivity test has been accomplished. As
shown in Fig. 3, it can be seen that the propulsive velocity obtained from the mesh of �h = 0.01c
is very close to that obtained from the mesh of �h = 0.005c. To strike a balance between
computational expense and accuracy that related to mesh, a grid of �h = 0.01c is chosen for the
current simulations.

A. States of collective locomotion

The propulsive velocity is the key parameter to quantify the performance of two tandem flapping
foils. In the current simulations, both foils of most cases can obtain the same cycle-averaged
velocity after several flapping periods. Consequently, the orderly formation with certain separation
distance is achieved by the tandem foils. However, the exception also appears in three cases, i.e.,

TABLE I. Values of the controlled parameters used in the current simulations.

Parameters Values

Re 200
ρ̄ 10
A1, A2 0.4c
f1, f2 0.3
θ1, θ2 π /9
G0/c 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 3.0
φ 0π−1.9π (� = 0.1π )
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FIG. 3. Time histories of the propulsive velocity of a single flapping foil obtained from different mesh
spacing. The flapping parameters are the same as that used in the current work, i.e., f = 0.3, A=0.4, θ = π/9,
ρ̄ = 10, and Re = 200.

(φ = 0.2π, G0 = 0.1c, 0.25c) and φ(=0.3π, G0 = 0.1c). It is observed that the collision between
two foils occurs in such cases; namely, the distance becomes zero which results in stopping of the
simulation immediately. In this section, the propulsive velocity is selected for analysis firstly, and
then two distinct modes are classified, i.e., the fast mode and the slow mode. In the fast mode, a
significant velocity augmentation can be observed, which is larger than 5% as compared with the
single foil, and in the slow mode, the propulsive velocity of two tandem foils is close to that of the
isolated foil, in which the velocity variation is less than 5%.

Figure 4 shows the ratio of cycle-averaged velocity of the tandem foils to that of the isolated
foil. The fast mode is observed in the cases located in the gray region in Fig. 4(b), and the
slow mode is observed in the rest of the cases, except three cross symbols which represent
the collision that occurred in these cases. It is clear that the fast mode is determined by both
phase difference and initial distance. In the current work, the fast mode is observed in the cases
of (φ = 1.5π−1.9π, G0 = 0.1c−c), (φ = 0π−0.1π, G0 = 0.1c−0.5c), (φ = 1.5π, G0 = 1.25c),
and (φ = 0π, G0 = 0.75c). In the fast mode, the propulsive velocity augmentation is affected by the
phase difference. For instance, in the region of φ = 1.5π−1.9π , the averaged velocity of tandem
foils in the fast mode is increased with the rise of phase difference. The stable averaged separation
distance (Ḡ) is illustrated in Fig. 5. It is clear that, in the fast mode, Ḡ is very small (approximately
0.1c–0.3c). However, in the slow mode, Ḡ is significantly larger than that in the fast mode. Moreover,
it is found that the variation of Ḡ with G0 is piecewise for a given φ, and it is constant during each
subregion of G0. For a fixed G0, Ḡ can generally vary with φ during each subregion of φ, and there
is a jump of Ḡ between different subregions which is determined by the G0 and φ. In addition, Ḡ
also can be quantized and it will be discussed in a later section.

The significant observation from Figs. 4 and 5 is that the fast mode only occurs in the cases
with appropriate phase difference, not in all phase differences. It means that the fast mode is also
affected by the phase difference, not only affected by the initial separation distance that has been
observed in previous work [30,31,33]. Moreover, the capacity of the tandem foil system to maintain
the fast mode is also affected by the phase difference. The tandem foil system with φ = 1.5π−1.9π
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FIG. 4. (a) The ratio of the stable propulsive velocities of tandem foils and single foil, and (b) is the
planform of (a). The cross symbols in (b) represent the cases in which the collision happens (the same below).
The gray region represents the parameter space in which the fast mode is observed (the same below).

has high capacity to maintain the fast mode, as compared with the in-phase tandem foil system. On
the other hand, the maximum velocity augmentation is not achieved by the in-phase system. In the
current work, the maximum velocity augmentation is achieved at φ = 0.1π and G0 = 0.1c−0.5c,
in which the averaged dimensionless velocity is approximately 1.58, which is more than a 50%
increment as compared with the single foil case ((ūs = 1.05).

In addition, the power consumption and propulsive efficiency of each foil are also analyzed and
compared to those of the isolated foil, as shown in Figs. 6 and 7. It can be seen that the leading
foil needs to consume more power in the fast mode, as shown in Fig. 6(a). However, its propulsive
efficiency is significantly increased as compared with the single foil. The maximum augmentation

FIG. 5. (a) The stable distance between two foils in the current simulations, and (b) is the planform of (a).
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FIG. 6. The ratio of the (a) power coefficients and (b) propulsive efficiencies between the leading foil in
tandem formation and the single foil.

of efficiency is achieved when φ = 0.1π and G0 = 0.1c−0.5c, which is approximately 38.9%, with
an increment of about 37%. In the slow mode, the power consumption and efficiency of the leading
foil are close to those of the single foil, which is the same as the situation of its propulsive velocity.
It means that the leader of the two tandem foil system only has hydrodynamic benefit in the fast
mode.

As for the follower in the tandem formation, it is interesting that less power consumption as
compared with the single foil is observed in the fast mode when φ = 1.5π−1.7π , although high
propulsive velocity is generated. However, more power consumption is also required for the follower
in the fast mode region when φ = 0.0−0.1π and 1.8–1.9π , as shown in Fig. 7(a). Similar to the
leader in the fast mode, the follower also has high propulsive efficiency, as shown in Fig. 7(b), but

FIG. 7. The ratio of the (a) power coefficients and (b) propulsive efficiencies between the trailing foil in
tandem formation and the single foil.
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FIG. 8. The ratio of the (a) power coefficients and (b) propulsive efficiencies between the whole tandem
system and the single foil.

the highest propulsive efficiency is achieved at φ = 1.6π and G0 = 0.1c−c, instead of φ = 0.1π

and G0 = 0.1c−0.5c, in which the highest velocity is obtained. The highest propulsive efficiency of
the follower is approximately 54.3%, an increment of about 90% as compared with the single foil.
In addition, the follower also consumes less power in the slow mode as compared with the isolated
one, although the same averaged velocity is achieved. Consequently, the high propulsive efficiency
is obtained by the follower in the slow mode. However, the augmentation of the efficiency of the
follower in the slow mode is smaller than that in the fast mode. It means that the follower has
hydrodynamic benefit in both fast and slow modes, especially in the fast mode.

The power consumption and efficiency of the whole two tandem foil system are provided in
Fig. 8. It can be seen from the figure that the whole system nearly consumes less power as compared
with the single foil, except in the fast mode with φ = 0.0π−0.1π and 1.7π–1.9π . In addition, the
whole system always produces high propulsive efficiency in both fast and slow modes, especially
in the fast mode. The maximum efficiency of the whole system is achieved in the fast mode at φ =
1.6π and G0 = 0.1c−c, which is about 43.8%, increased by approximately 55% as compared with
the isolated one. However, it should be pointed out that, besides the initial distance and the phase
difference, the collective locomotion behavior of two tandem foils is also affected by the density
ratio ρ̄. For the fixed φ and G0, the collective locomotion state may change from the fast mode to
the slow mode as ρ̄ increases and vice versa. This is because the lighter foils are more sensitive
to fluid-structure interaction than the heavier foils [39]. In addition, in the fast or slow mode, the
cycle-averaged propulsive velocity and power consumption of tandem foils are independent of ρ̄.
Therefore, the effect of ρ̄ on the collective locomotion of two tandem foils is not discussed in detail
in the current work.

B. Performance of fast mode

In the fast mode, for a fixed phase difference, the final stable distance is not dependent on the
initial distance, as shown in Fig. 9(a), for example ((φ = 1.6π ). However, for a fixed initial distance,
it is found that the final stable distance is related to the phase difference, as shown in Fig. 9(b), for
example (G0 = 0.5c). This is caused by the different fluid-structure interactions between two foils.
Two distinct fluid-structure interactions are observed in the fast mode, i.e., merging interaction and
broken interaction. The merging interaction appears in the cases of φ = 1.5π−1.7π , and the broken
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FIG. 9. The time histories of the distance between two tandem flapping foils with (a) φ = 1.6π and
(b) G0 = 0.5c.

interaction is observed in the cases of φ = 0.0π−0.1π and 1.8π–1.9π . Considering the propulsive
efficiency reported above, it seems that the merging interaction is beneficial for the follower to get
a high efficiency, while the broken interaction is good for the leader to achieve a high efficiency. In
order to quantitatively describe such two different fluid-structure interactions, two typical cases with
φ = 1.6π , G0 = c and φ = 0.1π , G0 = 0.5c, respectively, are selected as examples of merging and
broken interactions in this section.

When the merging interaction occurs, the leading edge vortex (LEV) of the leader is captured
by the follower, and merges with the LEV of the follower. Figure 10 shows the process of merging
vortex interaction for the case of φ = 1.6π and G0 = c. It can be seen that the LEVs of both foils
(LEV1F1 and LEV1F2), respectively, develop at the beginning of one cycle, as shown in Fig. 10(a).

FIG. 10. Instantaneous vorticity at (a) t = 0.05T , (b) 0.4T, (c) 0.55T, and (d) 0.85T for the case of φ =
1.6π and G0 = c.
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FIG. 11. The time histories of (a) thrust coefficients and (b) power coefficients of tandem foils and
single foil. (c) Instantaneous pressure coefficient distribution along the surfaces of the foils at t/T = 0.05.
Instantaneous pressure coefficient contours of tandem foils at (d) t/T = 0.05 and (e) 0.4 for the case of
φ = 1.6π and G0 = c.

Then, LEVs of both foils shed from the leading edges and transport along the foil surfaces. However,
as shown in Fig. 10(b), LEV1F1 is captured by the follower and starts to merge with LEV1F2. This
process is different from the isolated foil whose LEV is captured by itself and merges with its trailing
edge vortex (TEV). Thus, only weak TEV is generated by the leader when the merging interaction
occurs, as shown in Fig. 10(c). In addition, such weak TEV1F1 dissipates quickly later, as shown in
Fig. 10(d). Consequently, there are only two opposite vortices shed into the wake from the trailing
edge of the trailing foil in one cycle, which results in the normal reversed von Kármán vortex street
in the wake. Since both LEV1F1 and LEV1F2 are captured by the follower, the strong TEV can
be generated by the follower as compared with the single one, such as the TEV1F2 as shown in
Fig. 10(d). Consequently, two tandem foils swim like a whole large flapping foil.

Figure 11(a) shows the time histories of thrust coefficients of tandem foils and single foil for
the case of φ = 1.6π and G0 = c. It is clear that the thrust peaks of the leader and the follower are
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FIG. 12. Instantaneous vorticity at (a) t = 0.05T , (b) 0.3T, (c) 0.4T, and (d) 0.5T for the case of φ = 0.1π

and G0 = 0.5c.

higher than that of the single foil. There are two reasons for the higher thrust peak of the follower.
Firstly, there exists a negative pressure region near the leading edge of the follower, as in Figs. 11(c)
and 11(d), which has a suction effect on the follower. This negative pressure region is produced
by the trailing edge vortex of the leader. Secondly, it can be seen from Fig. 11(c) that the pressure
difference between upper and lower surfaces of the follower is larger than that of the isolated foil.
Such phenomenon also can be found for the leading foil. Consequently, the leader generates a high
thrust peak as compared with the isolated one.

Although the cycle-averaged thrust is zero in the steady self-propulsion, the propulsive velocity
can be quantitatively analyzed by the averaged positive thrust in the upstroke or downstroke of one
period. If more averaged positive thrust in one stroke is generated by the flapping foil, then the
higher velocity can be generated. For instance, as shown in Fig. 11(a), in one stroke for the case of
φ = 1.6π and G0 = c, the averaged positive thrust coefficients of leader and follower, respectively,
are C̄T = 0.12 and 0.15, which are larger than that of the single one, C̄T = 0.10. Since the follower
has to overcome the jet flow of the leader, the large thrust is required for the follower as compared
with the leader. The time histories of the power coefficients of tandem foils and single foil are
illustrated in Fig. 11(b). It is clear that the follower performs the energy extraction at t = 0.4T and
0.9T. Since the LEV of the leader is captured by the follower at those moments (such as LEV1F1

is captured at t = 0.4T ), the LEV induces the flow streams toward the follower, which results in
the positive pressure on the lower surface of the follower, as shown in Fig. 11(e). Thus, a positive
lift is applied to the follower at this moment, whose direction is the same as the flapping direction.
Consequently, the follower can extract the energy from the flow.

In the broken interaction, the TEV of the leading foil sheds into the wake together with the LEV
of the trailing foil, which causes the TEV of the trailing foil to be broken into two parts. For instance,
Fig. 12 shows the instantaneous vorticity at four different instants in the half period for the case of
φ = 0.1π and G0 = 0.5c. It can be seen that TEV1F1 sheds into the region nearby the LEV1F2

at the beginning of one cycle, which induces the synchronous shedding of LEV1F2, as shown in
Fig. 12(a). When LEV1F2 is close to TEV1F2, the TEV1F2 is broken into two parts, i.e., TEV1F2−p1

and TEV1F2−p2 as shown in Fig. 12(b). Moreover, TEV1F1 is cut off by the trailing foil when its
flapping direction is changed, since both foils are too close to each other. Then, the new TEV of
the leading foil (TEV2F1) is formed along the other surface, which also induces the shedding of
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FIG. 13. The time histories of (a) thrust coefficients and (b) power coefficients of tandem foils (φ = 0.1π

and G0 = 0.5c) and a single foil. Instantaneous pressure coefficient contours of tandem foils at (c) t/T = 0.3
and (d) 0.55 for the case of φ = 0.1π and G0 = 0.5c.

the new LEV of the trailing foil (LEV2F2), as shown in Fig. 12(c). Consequently, the similar vortex
interaction occurs in the other half period, as shown in Fig. 12(d). It should be noted that there are
four vortices shed into the wake in the half period when the broken interaction happens, as shown
in the green dashed circular region of Fig. 12(d), which results in the complex vortex structure in
the wake.

Figure 13(a) shows the time histories of thrust coefficients of tandem foils and a single foil
for the case of φ = 0.1π and G0 = 0.5c. The averaged positive thrust coefficients of leader and
follower, respectively, are C̄T = 0.19 and 0.25. As expected, the averaged positive thrust coefficients
of tandem foils in one stroke are larger than that of the single foil. However, compared with the
single one, more power is also required for the tandem foils as shown in Fig. 13(b). Moreover, the
thrust augmentation of the follower mainly occurs nearby t = 0.3T and 0.8T.

As shown in Fig. 13(c), there exists a significant positive high pressure region nearby the lower
surface of the follower as compared with the leader, which results in the thrust augmentation. The
reason may be that the shedding LEV1F2 induces the flow streams toward the lower surface of the
follower, as shown in Fig. 12(b). In addition, the thrust augmentation of the leader mainly occurs
near t = 0.05T and 0.55T. Since both foils are close to each other, the positive pressure on the
leading edge of the follower also increases the positive pressure on the lower surface of the leader,
as shown in Fig. 13(d).

In order to further quantitatively describe the fast mode and the two vortex interactions, the
vertical gap between the trailing edge of the leading foil and the leading edge of the trailing foil
is calculated. It can be defined as DV = y1 − y2, where y1 and y2, respectively, represent the
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FIG. 14. (a) The maximum value and (b) time histories of the vertical gap between the trailing edge of
the leading foil and the leading edge of the trailing foil, and (c) the relationship between mean stable distance
and maximum vertical gap in different cases. Instantaneous pressure coefficient contours of tandem foils at
t/T = 0.2 for the cases of (d) φ = 1.6π and (e) φ = 0.1π in the fast mode.

dimensionless vertical coordinates of the trailing edge of the leading foil and the leading edge of the
trailing foil.

Figure 14(a) shows the maximum value of DV , i.e., DV max, in one cycle in different cases. It
is clear that the fast mode is only observed in the cases with small DV max (<0.46, below the blue
dash-dot line). Moreover, the evolution of DV in one cycle is illustrated in Fig. 14(b). It can be seen
that the different vortex interactions are determined by the moment when DV max occurs. When DV max

appears in the upstroke, the merging interaction happens. When DV max appears in the downstroke,
the broken interaction happens.

In addition, the averaged separation distance between two foils is related to the different
fluid-structure interactions in the fast mode. Figure 14(c) shows the relationship between the
mean separation distance (Ḡ/c) and the maximum vertical gap (DV max) in merging and broken
interactions. It is clear that in the merging interaction, Ḡ/c increases with the rise of DV max.
However, in the broken interaction, the opposite trend can be observed. The different trends of
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FIG. 15. Instantaneous vorticity at (a) t = 0.1T , (b) 0.3T, and (c) 0.5T for the case of φ = 0.7π and G0 = c.
(d) Instantaneous pressure coefficient contours at t = 0.3T .

variation of Ḡ/c versus DV max in merging and broken interactions can be qualitatively explained as
follows. In the merging interaction, the TEV of the leading foil is often located near the leading
edge of the trailing foil, and it induces a negative pressure region between the two foils, which is
marked as the green dashed region in Fig. 14(d). Such negative pressure region has a suction effect
on the trailing foil. As DV max increases, the suction effect becomes weak; thus, Ḡ/c increases. In
the broken interaction, the TEV of the leading foil often sheds into the wake together with the LEV
of the trailing foil, which induces a positive pressure region between two foils [the green dashed
region in Fig. 14(e)]. Such positive pressure region has a repulsion effect on the trailing foil. As the
DV max decreases, the repulsion effect becomes strong, and Ḡ/c increases.

C. Performance of slow mode

In the slow mode, only one vortex interaction is observed, i.e., the vortex locking. As shown
in Figs. 15(a)–15(c), for example, the follower swims through the vortex cores. In this mode, the
leader swims like the isolated one.

As shown in Fig. 16, both the thrust and power coefficients of the leader are similar to those
of the isolated foil. However, although the follower achieves the same averaged velocity of the
leader, the velocity fluctuation of the follower is larger than that of the leader. This is because
the thrust fluctuation of the follower is larger than that of the leader, as shown in Fig. 16(a). A
possible reason is that the follower needs more thrust to balance the additional drag that is produced
by the jet flow of the leader. Moreover, the follower exhibits significant energy extraction during
t = 0.3T −0.4T and 0.4T–0.9T in one cycle, as shown in Fig. 16(b). The reason is that the vortex-
induced velocity can produce positive pressure at the leading edge of the follower when it is close
to a vortex, which results in the lift with the same direction of the flapping motion, as shown in
Figs. 15(b) and 15(d). This mode is similar to the observations in the previous work [30,31,33], and
it can be qualitatively explained by the hydrodynamic mechanism in which the thrust is determined
by the effective flapping speed [31,33]. For example, as shown in Fig. 15(a), the follower propels
at the equilibrium position. If the follower propels ahead of the equilibrium position, the direction
of the vortex-induced velocity is the same as that of the flapping direction, which would reduce its
effective flapping speed. Thus, the follower would generate low thrust and move backward to the
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FIG. 16. The time histories of (a) thrust coefficients and (b) power coefficients of tandem foils (φ = 0.7π

and G0 = c) and a single foil.

equilibrium position. Similarly, if the follower propels behind the equilibrium position, the vortex-
induced velocity has the opposite direction as compared with the flapping motion, which would
increase its effective flapping speed. Consequently, the follower would generate large thrust and
move forward to the equilibrium position.

Figure 17 is the side elevation of Fig. 5(a) without the cases in the fast mode, which is viewed
along the G0/c direction. It is clear that for a fixed initial spacing, the stable separation distance in
the slow mode is linearly affected by the phase difference, but there is a discontinuity point which is
determined by G0. The slope of linear variation is approximately –0.41, which is close to the value
of −L/(2π ), where L is the propulsive length in one period of an isolated flapping foil with the same
parameters. Consequently, the relationship between the stable distance and the phase difference can
be described as

Ḡ ≈ − L

2π
φ + C, (11)

FIG. 17. The side elevation of Fig. 5(a) viewed along the G0/c direction.
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FIG. 18. (a) The quantized result of the stable distance between two foils in the slow mode; (b) is the
planform of (a).

where C is a constant which represents the discontinuity point. Inspired by the work reported in the
literature [33], C can be defined as C ≈ NL, where N is integer value such as N = 1, 2 · · · . Thus,
the stable gap of two tandem foils in arbitrary phase difference can be quantized as

S = Ḡ

L
+ φ

2π
≈ N. (12)

When φ = 0, i.e., the in-phase motion appears, the quantized equation is similar to that proposed
by Ramananarivo and coauthors [33]. The quantized result is illustrated in Fig. 18. It is clear that the
values of S are close to the integer values. Namely, the stable distance can be quantized with phase
difference in the slow mode, as formulated by Eq. (12). Ramananarivo et al. [33] indicated that
the stable gap between two in-phase heaving foils is integer multiples of the propulsive length of
the leader in one period. Considering the phase difference between tandem foils, the integer S here
indicates that in the slow mode, the asynchronous follower propels along the same trajectory as that
of the in-phase follower, but ahead of the in-phase one with a distance which can be approximated
as g ≈ φ

2π
L.

IV. CONCLUSIONS

The collective locomotion of two tandem flapping foils with phase difference is numerically
studied in the current work, in which both foils, respectively, are driven by the harmonic motions.
The two-dimensional viscous flow over the flapping foils is simulated by an immersed boundary-
simplified circular function–based gas kinetic method. A wide range of phase difference φ is
selected for study, i.e., 0.0π–1.9π with an interval of 0.1π . The achieved results indicate that the
collective locomotion is greatly affected by the phase difference. Two distinct collective modes
are classified according to the variation of the propulsive velocity, i.e., the fast mode and slow
mode.

In the fast mode, both foils achieve high velocity and propulsive efficiency as compared with
the single foil, and the stable distance is small (approximately 0.1c–0.3c). The fast mode is only
observed in part of the range of phase difference, i.e., φ = 0.0π−0.1π and 1.5π−1.9π , with
appropriate initial distance. Meanwhile, it is found that the fast mode is related to the maximum
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vertical distance between the trailing edge of the leader and the leading edge of the follower. In
addition, two distinct vortex interactions are observed in the fast mode, i.e., merging interaction and
broken interaction. In the merging interaction, the leading edge vortex of the leader is captured by
the follower, which results in the weak trailing edge vortex of the leader but a strong trailing edge
vortex of the follower. In the broken interaction, the leading edge vortex of the follower sheds into
the wake together with the trailing edge vortex of the leader, and induces the trailing edge vortex
of the follower to be broken into two parts. Which kind of interaction occurs depends on the phase
difference.

In the slow mode, both foils produce the same averaged velocity which is close to that of the
isolated foil. In the range of φ = 0.3π−1.4π , the slow mode is the unique collective mode observed
in the current work. In the rest of the range of φ, the slow mode only occurs when the initial distance
is large enough. In addition, the stable distance between two foils in the slow mode can be quantized
with phase difference. Moreover, it should be pointed out that the follower also has hydrodynamic
benefit in both fast and slow modes, but the leader can only achieve hydrodynamic benefit in the fast
mode. Furthermore, the leader achieves the highest efficiency and velocity in the fast mode when
φ = 0.1π , but the follower obtains the highest efficiency in the fast mode when φ = 1.6π . The
results obtained in the current work may shed some light on understanding the collective behavior
of fish schools and bird flocks.
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