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The impact of a Newtonian or non-Newtonian interface, possibly curved due to wetting
effects, on the surface viscosimetry method historically developed by Mannheimer and
Schechter [Mannheimer and Schechter, J. Colloid Interface Sci. 32, 195 (1970); 32, 212
(1970)] is investigated theoretically and numerically in this paper. The Reynolds number
is considered small enough for inertial effects to be negligible and thus for surface shear
viscosity to be preferentially studied. The classical Boussinesq-Scriven law is modified
by a shear-dependent viscosity governed by the Carreau constitutive law. The case of
a curved interface is also investigated whether the liquid is hydrophilic or hydrophobic
(liquid metals), which is revealed to be relevant for a liquid with a significant capillary
length. The shallow-channel layout is found to be particularly well suited to the detection of
a non-Newtonian liquid surface whatever its mechanical behavior: shear thinning or shear
thickening. A key to evaluating the parameters involved in a surface viscosity model is to
carry out a series of experiments at various rotation speeds, with preferably a nonwetting
contact angle. Indeed, it is demonstrated that such a contact angle tends to amplify
non-Newtonian effects, especially for a carrier fluid with a significant capillary length.

DOI: 10.1103/PhysRevFluids.4.054002

I. INTRODUCTION

When a liquid-gas interface is composed of a heterogeneous chemical content, introduction of
surface rheology is relevant for the description of its mechanical behavior. According to the Gibbs
hypothesis, rheological properties of the interface can be described using a macroscopic approach
(see [1]). To compensate for the appearance of a jump in stresses due to the zero thickness of the
interface considered as a two-dimensional (2D) medium, (excess) surface quantities are introduced:
the surface shear viscosity ησ , the surface dilatational viscosity χσ , and the surface tension γ .

Nowadays, research is increasingly focusing on assessing the impact of these rheological
parameters on multiphase flows (e.g., foams, drops, bubbles, and thin films). This is accounted
for by the frequent use of surfactants, proteins, or amphiphilic nanoparticles in the sectors of life
sciences [2–4], cosmetics, microfluidics, food, and feed industry, particularly aimed at simplifying
the formation and stabilization of emulsions and foams [5–8]. Recently, the introduction of surface
rheology has been proved to be relevant for modeling a liquid or molten metal flow covered
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FIG. 1. Cross section of the annular surface viscometer considering the shallow-channel configuration on
the left-hand side and the deep-channel layout on the right-hand side.

by an oxide film [9,10]. During the continuous casting process, liquid metals tend to oxidize
instantaneously on contact with the ambient air. A thin oxide layer, approximately 100 nm to 1 μm
thick, forms at the air-metal interface. With respect to either a layer of adsorbed molecules or an
oxide film, it is commonly accepted that the rheological properties of the interface greatly depend
on film structure and thickness. Generally speaking, a higher concentration of surfactants or a more
advanced oxidation level leads to a reduction in surface tension, combined with an increase in
surface viscosities.

Since the start of the 20th century, many authors have worked on the implementation of
experimental test benches in order to measure these surface quantities at micro- or macroscale [11]
and evaluate their impact. Harkins and Meyers [12] proposed the first surface viscometer able to
measure surface shear viscosity due to a flow induced by an interfacial pressure gradient. However,
this technique does not avoid the Marangoni effect. To guard against a potential surface tension
gradient in the flow direction, Mannheimer and Schechter [13] developed the classical configuration
of the annular viscometer. In this system, whose cross section is shown on the right-hand side of
Fig. 1, an annular shear flow is end driven by a rotating floor between two motionless sidewalls. The
inner and outer radii are ri and ro, respectively, and the height of the liquid is denoted by h.

Many authors have since used and revisited this technique to determine preferentially surface
shear viscosity [14–17]. In fact, for small to moderate Reynolds numbers, the meridional flow due
to centrifugation is vanishingly small and the flow is azimuthal. Consequently, only surface shear
viscosity is solicited. Recently, some authors have looked into the possibility of using this system
to determine surface dilatational viscosity due to sufficiently high rotation speeds [18–20]. Inertial
effects are no longer negligible and the meridional flow, resulting from centrifugation, means that
surface dilatational viscosity is also solicited. However, surface flow may cause a radially inward
packing of the adsorbed elements to the inner part of the viscometer. Should this occur, interfacial
properties are no longer uniformly distributed along the interface and a Marangoni stress could
be suspected. In particular, an analytical study has proved the influence of a radial distribution of
molecules at the interface on the azimuthal surface flow [21].

In most cases, the Boussinesq-Scriven model [22], based on a Newtonian interface, is sufficient
to correctly describe the mechanical behavior of an interface in a permanent regime. When
implemented in a jump momentum balance (JMB), evaluated at the interface, it establishes the
relation between surface stresses and volumic stresses [23]. However, just as for bulk properties of
certain fluids, interface properties may depend on flow conditions (beyond the mere fact that the
flow regime is permanent, oscillatory, or transient). Several authors have already experimentally
observed a reduction in surface viscosity with the increase in shear rate at the interface via an
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FIG. 2. Three-dimensional representation of the liquid flowing in the annular viscometer with an example
of curved interface (inner radius ri = 3 cm, outer radius ro = 7 cm, and average liquid depth h0 = 1 cm).

interfacial rheometer [24–26] or with the classical annular viscometer configuration [27,28]. A
velocity gradient along the interface can cause molecular rearrangements, generally resulting in
a reduction in surface flow resistance. According to this work, an interface populated by active
agents may have a behavior of the shear-thinning type [29,30], in the same way as fluids such as
blood [31,32], and certain polymer solutions [33,34] whose apparent dynamic viscosity decreases
as shear rate increases.

Likewise, the hypothesis of a planar interface is often put forward as a means of markedly
simplifying the tangential JMB expression. This hypothesis is completely justified when the
capillary length of the carrier fluid is short compared with channel width or when the fluid wets
the sidewalls and when a technique involving a sharp edge with precise monitoring of bath height
is implemented [13]. Otherwise (see Fig. 2), Wasan and co-workers [14,35] have highlighted,
analytically (with some approximations) and experimentally, the influence of interface curvature on
the surface velocity field. Thus, identification of surface shear viscosity may be falsified, whether or
not the mechanical behavior of the surface is Newtonian. While Hirsa and co-workers [15,18,28–30]
investigated the role of a large Reynolds number in channel viscosimetry, the goal of the present
paper is to demonstrate the role of curvature effects. This is particularly relevant in the case where
the liquid under consideration exhibits a contact angle larger than 90◦ (liquid metals, for instance)
and more generally speaking in the case where the contact angle is time dependent because of
surface aging or evaporation.

II. GOALS AND OVERALL METHOD

In this paper we propose a theoretical and numerical study of the coupling between the mechanics
of a non-Newtonian and curved interface with a carrier annular flow. To promote bulk-surface
coupling, preference is given to the shallow-channel layout (see the left part of Figs. 1 and 2),
corresponding to the case where the liquid depth is reduced compared with the radial gap of the
channel, over the classic annular viscometer configuration.

In point of fact, this geometric aspect ratio amplifies the coupling between the surface viscous
effects and those of the subphase due to higher vertical bulk shear. Similarly, a reduction in channel
height causes an increase in tangent shear along the free surface, thereby encouraging the emergence
of non-Newtonian behavior. With respect to the surface viscosity model, the idea is simply to use
one of the many models for describing non-Newtonian fluid behavior and to extend it to the case of
an interface populated by active agents or covered by an oxide film.

Thus, the first aim is to investigate the two-way coupling between a non-Newtonian liquid-gas
interface and an annular flow. The two mechanical behaviors for a liquid surface, shear thinning and
shear thickening, are investigated and the detection range of a non-Newtonian behavior within the
annular viscometer is discussed. The second aim consists in determining the influence of the surface
curvature that is not always negligible, particularly for liquid metals. Its impact on the identification
process of surface shear viscosity, uniformly distributed or otherwise, is evaluated by considering
two different subphases: an aqueous solution and a molten aluminium bath.
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In the following, the hypotheses, governing equations, and boundary conditions are first high-
lighted. Special attention is given to the jump momentum balance, written for the general case of a
nonuniform and curved interface. Then the non-Newtonian surface viscosity model and the scaling
parameters of the problem are defined. Numerical modeling, based on the finite-element method, is
benchmarked with Mannheimer and Schechter’s analytical solution, considering a Newtonian planar
interface. Finally, the impact of a non-Newtonian curved interface is highlighted and discussed.

III. PHYSICAL MODELING

A. Notation and hypotheses

Regarding purely hydrodynamic hypotheses, annular flow is assumed to be axisymmetric
(∂·/∂θ = 0), permanent, and laminar with an incompressible and Newtonian carrier fluid. The
Reynolds number Re = ρ	r2

o/η, with ρ the subphase density, η its dynamic viscosity, and 	

the rotation speed of the rotating floor, is considered sufficiently small for inertial effects to be
negligible, typically Re � 200. Below this limit value assessed in [18], the radial and the vertical
components of the velocity field are negligible, which means that the flow can be considered purely
azimuthal: v = vθ (r, z)eθ . Creeping annular flow, considered to be in steady state, is thus governed
by the azimuthal component of the Stokes equation

∂

∂r

(
1

r

∂ (rvθ )

∂r

)
+ ∂2vθ

∂z2
= 0. (1)

Several hypotheses are then made concerning the liquid-gas interface mechanics. First, just as in
the Mannheimer and Schechter model, the flow is supposed to be purely azimuthal and hence the
deformation of the interface due to an eventual radial pressure gradient induced by centrifugation
is consistently considered to be negligibly small.1 As already mentioned, the role of inertia has
been extensively investigated in the recent literature [15,18,20,28], whereas the present paper aims
at investigating the ability of surface curvature to modify surface viscosity identification. Among
other consequences, the surface dilatational viscosity χσ is not solicited, allowing preferential focus
on the role of the surface shear viscosity ησ . However, in contrast to the existing literature, the
hypothesis of a planar interface is not considered here, which allows us to consider a contact angle
at the sidewalls as well as a significant capillary length, typically of the same order as the length
scale of the channel,

lc =
√

γ

ρg
∼ ro − ri. (2)

In this expression, γ is the surface tension, g is the gravity, and ro − ri is the radial gap of the
channel. As an example, one can consider a nonwetting liquid metal such as molten aluminium
whose capillary length is found to be approximately 6 mm at 750 ◦C.

In the following, the shape of the liquid surface is determined by taking gravity, surface tension,
and wetting angle into account. The index σ is used to denote surface quantities and the symbol θ

refers to the azimuthal direction.

1In [20], the elevation of the liquid surface is measured by a digital particle image velocimetry technique
with a Reynolds number as large as Re = 8500. Hirsa et al. demonstrate that even with such a level of inertia,
the maximum change in surface elevation is no larger than 50 ± 10 μm. As a consequence, the shape of
the interface is neither modified by an eventual radial pressure gradient nor subjected to a significant normal
viscous stress (with a capillary number as small as Ca ∼ 10−5).
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B. Interfacial hydrodynamics

1. Surface stress tensor

The macroscopic description of the interface requires introduction of the surface (in-excess)
stress tensor supplied by the Boussinesq-Scriven constitutive law [1]

T σ = [γ + (χσ − ησ )divσ (vσ )]P + ησ {P · [gradσ (vσ )] + [gradσ (vσ )]� · P}. (3)

Here P stands for the surface projection tensor, defined as P = I − n ⊗ n, where I is the identity
matrix and n is the normal unit vector at the interface defined as

n = −h′
√

1 + h′2 er + 1√
1 + h′2 ez, (4)

with h′ the first radial derivative of the liquid height h(r). The symbols used here, i.e., �, ·, and ⊗,
stand for the transposed matrix, the matrix product, and the tensor product, respectively. The surface
operators are defined as follows:

gradσ (vσ ) = grad(vσ ) · P, (5)

divσ (vσ ) = Tr[grad(vσ ) · P]. (6)

As explained above, only the surface shear viscosity ησ is solicited, with divσ (vσ ) = 0. The surface
stress tensor is then reduced to the shear and surface tension effects

T σ = γ P + ησ τσ , (7)

where τσ is the surface strain rate tensor, with the following non-null components:

τσrθ = τσθr = 1

1 + h′2

(
∂vσ

∂r
− vσ

r
+ h′ ∂vσ

∂z

)
, (8)

τσzθ = τσθz = h′

1 + h′2

(
∂vσ

∂r
− vσ

r
+ h′ ∂vσ

∂z

)
. (9)

2. Jump momentum balance

The jump momentum balance, evaluated on a heterogeneous elementary volume overlapping the
zero-thickness interface, is used to establish the relation between surface and volume stresses [23]

divσ (T σ ) + fσ = �T · n�. (10)

Here fσ stands for a surface (in-excess) body force and is not considered in this study. The right-hand
term corresponds to the jump in volumic stresses on both side of the interface, while the left-hand
term is the surface divergence of the surface stress tensor, which is expressed using the double dot
product:

divσ (T σ ) = grad(T σ ) : P. (11)

The third-order tensor grad(T σ ) can be broken down into three tensors of second order, detailed in
Appendix A, such that the component along the direction ei is

divσ (T σ ). ei = Tr
[
P · gradei

(T σ )
]
. (12)
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3. Interface shape

The vertical component of the JMB, involving surface tension and pressure effects, leads directly
to the Laplace-Young equation, expressed in the cylindrical coordinate system

γ

(1 + h′2)3/2

(
h′′ + h′

r
+ h′3

r

)
= ρgh, (13)

where h′ and h′′ are, respectively, the first and second radial derivatives of liquid height h(r). The
contact angle φ is imposed on the two sidewalls of the annular viscometer by the following boundary
condition:

h′|ri = −h′|ro = − coth φ. (14)

4. Interface dynamics

The azimuthal component of the JMB takes into account the viscous effects of the interface and
those of the subphase, with an additional term for the tangential gradient of surface viscosity and an
additional term linked to surface curvature. Ignoring the dynamic viscosity of gas, we obtain

ησ

∂

∂s

(
1

r

∂ (rvσ )

∂s

)
︸ ︷︷ ︸

surface viscous shear

+ ∂ησ

∂s

[
r

∂

∂s

(vσ

r

)]
︸ ︷︷ ︸
surface nonuniformity

+ ησ

vσ

r

2h′h′′

(1 + h′2)2︸ ︷︷ ︸
surface curvature

= ηr
∂

∂n

(v

r

)∣∣∣∣
h(r)︸ ︷︷ ︸

bulk shear

, (15)

where the tangential and normal derivatives at the interface are defined as a function of the radial
and vertical coordinates

∂·
∂s

= 1√
1 + h′2

(
∂·
∂r

+ h′ ∂·
∂z

)
, (16)

∂·
∂n

= 1√
1 + h′2

(
∂·
∂z

− h′ ∂·
∂r

)
. (17)

A non-Newtonian behavior of the interface is taken into account mainly via the second term of
Eq. (15) because it involves the emergence of a surface viscosity radial profile.

C. Dimensionless quantities

The governing equations are normalized considering the following bulk and surface dimension-
less quantities, denoted by an asterisk superscript: the radial coordinate r∗ = r/ro (except in the
figures where r∗ = (r − ri )/(ro − ri )); the vertical coordinate z∗ = z/h0, where h0 is the mean
depth of the annular channel; the azimuthal bulk velocity v∗ = v/ro	; the curvilinear abscissa
along the interface s∗ = s/r0; the normal coordinate at the interface n∗ = n/h0; and the azimuthal
surface velocity v∗

σ = vσ /ro	. A rheological dimensionless number can be put forward from the
azimuthal component of the jump momentum balance. Called the Boussinesq number, it describes
the competition between bulk and surface shear stresses

Bo = ε
ησ

ηro
, (18)

where ε = h0/ro stands for the vertical aspect ratio. Thus, the following normalized azimuthal
component of the JMB is obtained:

Bo
∂

∂s∗

(
1

r∗
∂r∗v∗

σ

∂s∗

)
+ ∂ Bo

∂s∗

[
r∗ ∂

∂s∗

(
v∗

σ

r∗

)]
+ Bo

v∗
σ

r∗
2ε2h′∗h′′∗

(1 + ε2h′2∗)2
= r∗ ∂

∂n∗

(
v∗

r∗

)∣∣∣∣
h∗(r∗ )

. (19)
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FIG. 3. Geometry and boundary conditions of the 2D axisymmetric model.

D. Constitutive law for surface viscosity

A number of empirical models are available to describe the non-Newtonian behavior of a fluid
body, such as those proposed by Ostwald, Ellis, Carreau, Cross and Williamson, and Powell and
Eyring. To model the variations in surface shear viscosity with the tangent shear rate along the
interface, denoted by τσ , we have chosen to use here the Carreau model adapted to the case of a
fluid interface (see also [29,30,36]):

ησc (τσ ) = ησ [1 + (λτσ )2](n−1)/2. (20)

This law, extensively used for its simplicity, allows the description of an interface exhibiting a con-
stant (Newtonian) viscosity at a low shear rate, denoted by ησ , and a power-law behavior for higher
shear rates. The transition between these two evolutions is characterized by the relaxation time, de-
noted by λ. The power-law index, denoted by n, is used to describe a shear-thinning interface (n < 1)
or a shear-thickening interface (n > 1). When the index equals 1, a Newtonian behavior is recovered.
For the annular viscometer configuration, the shear rate along the interface is written as follows:

τσ (r) = r
∂

∂s

(
vσ

r

)
. (21)

Thus, the Carreau constitutive model can be written as a function of the radius within the
dimensionless form as follows:

Boc(r∗) = Bo

{
1 +

[
λ	r∗ ∂

∂s∗

(
v∗

σ (r∗)

r∗

)]2
}(n−1)/2

. (22)

E. Numerical implementation

Numerical simulations of the 2D axisymmetric model are solved by the finite-element method.
The Stokes (elliptic) equation is implemented in weak formulation using the mathematical module
dedicated to partial derivative equations in COMSOL software. The boundary conditions considered
are presented in Fig. 3.

A no-slip boundary condition is applied along the sidewalls, except in the vicinity of the floor,
rotating at 	 speed, to take account of the presence of a lubrication gap in the experimental
conditions and incidentally to avoid a singularity on the Dirichlet boundary conditions. Thus,
a Couette profile is introduced for the velocity azimuthal component along two small vertical
segments of height δ such that δ 	 h. The value δ = 0.5 mm is compliant with the majority of
experimental conditions for which it is necessary to respect lubrication between the rotating floor
and the static vertical walls. For the inner and the outer radii, the following boundary conditions are
thus imposed:

v(r = ri, z) =
{

ri	
(
1 − z

δ

)
for z ∈ [0, δ]

0 for z ∈ [δ, h(ri )],
(23)

v(r = ro, z) =
{

ro	
(
1 − z

δ

)
for z ∈ [0, δ]

0 for z ∈ [δ, h(ro)].
(24)
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Regarding the liquid-gas boundary condition, the interface shape and the surface velocity
dynamics are given by the surface rheology equations and the associated JMB which are solved
through their corresponding weak formulations. The vertical component of the JMB, equivalent to
the Laplace-Young equation, is implemented in a 1D axisymmetric model, separately from the flow
equations. Indeed, as previously stated, the annular flow is considered not to modify the interface
shape. The weak formulation is then obtained by multiplying Eq. (13) by the test function ωz and
then by integrating it along the radial direction. Applying integration by parts and considering the
term

α =
[

1 +
(

dz

dr

)2
]3/2

(25)

as a relaxation parameter, the following weak formulation is resolved:∫ r

0

{
dωz

dr

dz

dr
− ωz

[
1

r

dz

dr
+ 1

r

(
dz

dr

)3

− α
z

l2
c

]}
dr = 0. (26)

The computational domain consists of a line of width ro − ri, discretized in small segments. The
contact angle is imposed at the sidewalls via an end-point boundary condition of Neumann type
[see Eq. (14)]. Resolution of this independent model yields the height of the interface, denoted
hereafter by h(r), as a function of the capillary length, contact angle, and aspect ratios.

For the interface dynamics, the azimuthal component is directly implemented as a boundary
condition along the liquid-gas interface in the 2D axisymmetric model (see Fig. 3). As above, the
weak formulation is obtained by multiplying Eq. (15) by the test function, denoted by ωvσ

, and then
integrating it along the curvilinear abscissa s. Integration by parts of the second term of Eq. (15)
allows us to simplify the formulation by lowering derivative order and eliminating the tangential
derivative of the surface viscosity profile:∫ s

0

{
ησ

∂ωvσ

∂s

[
r

∂

∂s

(
vσ

r

)]
− 2ησ

ωvσ√
1 + h′2

∂

∂s

(
vσ

r

)
+ ηωvσ

[
r

∂

∂n

(
v

r

)]}
ds = 0. (27)

The computational domain consists of triangular elements with a refinement at the free surface.
When the interface is Newtonian, a direct (linear) steady-state solver suffices to resolve the problem
(multifrontal massively parallel sparse direct solver and use of lower-upper factorization [37]). To
allow for the non-Newtonian behavior of the interface, a relaxation method (iterative) is required
such that the viscosity ησc is corrected at each iteration i as a function of the shear rate calculated at
the previous iteration i − 1.

IV. RESULTS AND INTERPRETATIONS

A. Benchmark: Newtonian planar interface

First, model implementation is validated by comparing the surface variables obtained by
numerical simulations, with Mannheimer and Schechter’s analytical solution [13]. Consequently,
the case of a planar interface (φ = 90◦) with a Newtonian behavior (n = 1) is considered. The
analytical solution, recalled in Appendix B, is calculated for the annular viscometer configuration
presented earlier (ri/ro = 30/70 and ε = 10/70).

As shown in Fig. 4, the surface velocity, surface shear, and normal bulk shear at the interface are
in perfect agreement for the different Boussinesq values considered. The numerical study proposed
in this paper thus yields results that are similar to Mannheimer and Schechter’s analytical solution
when the interface is planar and Newtonian.

In this specific case, as long as inertial effects remain negligible, the normalized velocity profile
along the interface only depends on the Boussinesq number. Then measurement of the surface
velocity field allows us to directly identify the surface shear viscosity by comparison with the
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FIG. 4. (a) Surface velocity profile, (b) surface shear, and (c) bulk shear at the interface obtained by
numerical simulations and compared to the analytical solution of Mannheimer and Schechter for various
Boussinesq numbers (n = 1 and φ = 90◦).

analytical or numerical solution. Moreover, a simple way of checking experimentally the Newtonian
behavior of an interface is to carry out a series of tests at different rotation speeds, and so, at
different (but small enough) Reynolds numbers. The normalized velocity profiles are supposed to
be superimposed perfectly. Otherwise, the interface is probably non-Newtonian and the resulting
velocity profiles evolution can be used to characterize the mechanical behavior of the interface.

B. Non-Newtonian planar interface

In this section the interface is considered to be planar, but now with a non-Newtonian behavior,
either of the shear-thinning type (n = 0.5) or of the shear-thickening type (n = 2). According to the
Carreau model (20), the surface shear viscosity ησc depends on the (tangential) surface shear τσ ;
the constant (Newtonian) surface shear viscosity ησ , which is related to the classical (Newtonian)
Boussinesq number; and the relaxation time λ. To evaluate the changes due to a non-Newtonian
interface, the respective influence of these parameters is assessed independently of each other, on
the surface variables and the bulk shear at the interface (Fig. 5), by comparing them to the Newtonian
reference case.
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FIG. 5. (a) Surface velocity profile, (b) Boussinesq number along the interface, (c) surface shear, and
(d) bulk shear at the interface for the Newtonian (MS), shear-thinning (n = 0.5), and shear-thickening (n = 2)
cases for various (Newtonian) Boussinesq numbers (Re = 100, λ = 100, and φ = 90◦).

1. Influence of behavior type

When the power-law index n is less than 1, interface behavior is of the shear-thinning type.
Consequently, surface viscosity decreases in the zones where the interface exhibits a high shear,
namely, close to the fixed sidewalls [see Fig. 4(b)]. As there are fewer viscous dissipations, the
surface velocity, shown in Fig. 5(a) with open symbols, tends to be higher than in the equivalent
Newtonian case.

In contrast, a shear-thickening behavior corresponds to a power-law index greater than 1. In
this case, surface viscosity increases close to the sidewalls and the interfacial strain rate is less
intense. The velocity at the interface [closed symbols in Fig. 5(a)] is then lower than in the equivalent
Newtonian case.

Finally, the velocity profile observed is slightly deformed at the outer part of the annular channel
for both types of behavior. This is due to a shear asymmetry along the interface, which is more
intense in the outer part of the viscometer [see Fig. 4(b)]. Variations in surface viscosities are thus
more intense in this zone with greater shear-thinning or shear-thickening effects [Fig. 5(b)].

2. Influence of Boussinesq number

The (Newtonian) Boussinesq number conditions the value of surface viscosity at the point where
surface shear is canceled out, positioned more or less at the center of the annular channel. It also
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FIG. 6. (a) Surface velocity profile and (b) Boussinesq number along the interface for the Newtonian
(black solid curve), shear-thinning (n = 0.5), and shear-thickening (n = 2) cases for various relaxation times
λ (Re = 100, Bo = 0.05, and φ = 90◦).

affects the tangential shear range of the interface. For high values of the Boussinesq number,
typically Bo = 0.5, the surface velocity is very low and so the interfacial strain rate is very
restricted, implying an almost constant viscosity. All surface quantities along a shear-thinning or
shear-thickening interface are then very close to those obtained for the Newtonian case [Fig. 5(b)].

In contrast, a small Boussinesq number, such that Bo = 0.001, leads to a large variation in surface
viscosity due to intense surface shear [Fig. 5(c)]. Consequently, the velocity of a shear-thickening
interface decreases significantly compared to the Newtonian case. However, the velocity profile
along the shear-thinning interface remains virtually unchanged as it logically tends to the maximum
velocity obtained when the free surface is noncontaminated.

The intermediate case, corresponding to Bo = 0.05, is the case presenting the greatest impact on
surface flow. Tangent shear at the interface is sufficient to cause large variations in surface viscosity,
without however obtaining the maximum velocity profile for the shear-thinning case (see the case
of a liquid surface free of contamination).

3. Influence of relaxation time

The relaxation time λ defines the transition between the Newtonian behavior observed at low
surface shear and the power law for higher interfacial strain rates. For a sufficiently low value,
typically λ = 10, the velocity profile along the interface is almost identical to that of a Newtonian
surface flow [see Fig. 6(a)]. In this case, the maximum tangential shear undergone by the interface is
less than the relaxation shear, defined by τσc = 1/λ. In other words, the interface is not sufficiently
solicited to reveal its non-Newtonian behavior. Conversely, a large value of the relaxation time
reduces the critical shear from which non-Newtonian behavior arises. Surface viscosity variations
become much more significant, as shown in Fig. 6(b) for λ = 100 and λ = 1000, and the surface
velocity profiles are accordingly modified [Fig. 6(a)].

C. Role of interface curvature

The impact of a curved interface is evaluated by considering mass conservation and two different
cases: Either the channel is filled with an aqueous solution whose interface is populated by adsorbed
molecules or it is filled with molten aluminium covered by an oxide film. Both cases are interesting
to investigate as they exhibit different capillary lengths: lc ∼ 2 mm for an aqueous solution and

054002-11



PATOUILLET, DAVOUST, DOCHE, AND DELACROIX

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25
0.5

0.75
1

1.25
1.5

r∗

z
∗

Aqueous solution
Molten aluminium

30 150

FIG. 7. Evolution of the bath height for an aqueous solution (lc = 2 mm) and molten aluminium
(lc = 6 mm) for various contact angles.

lc ∼ 6 mm for molten aluminium. The shape of their interface is thus significantly different for the
same contact angle imposed at the sidewalls of the viscometer.

Figure 7 shows the evolution of bath height for various contact angles: φ = 30◦ for the wetting
case, φ = 150◦ for the nonwetting case, and naturally φ = 90◦ when the interface is planar. As
explained earlier, the shape of the surface is determined by resolving the Laplace-Young equation.
The subphase height is then adjusted by mass conservation.

1. Newtonian curved interface

We first examine the case where the curved interface has a Newtonian behavior. Surface velocity
profiles of the wetting and nonwetting cases are compared to the profile obtained when the interface
is planar for various Boussinesq numbers. Figure 8(a) allows us to verify that the interface shape
does not significantly modify the surface velocity profile in the case of an aqueous solution whatever
the value of the contact angle. The hypothesis of a planar interface is thus valid for the shallow-
channel surface viscometer, whose capillary length to channel width ratio is 0.05. However, the
interface curvature can have a significant effect, even with an aqueous phase [14], especially for the
deep-channel viscometer layout.

Conversely, interface shape significantly impacts the surface velocity field in the case of molten
aluminium, where differences from the planar case increase as the Boussinesq number decreases.
When φ = 30◦, a dead zone appears close to the fixed sidewalls (see Fig. 9) with a lower surface
velocity than for the planar case. In this zone, surface shear drops to practically reach a null value
at the triple line [see Fig. 8(c)]. In contrast, the nonwetting case leads to an increase in surface
velocity at the far ends of the channel and thus to a very intense tangent shear at the interface. For
high-Boussinesq-number values, typically Bo = 0.5, velocity profiles and surface shear [Fig. 8(d)]
are virtually identical, as viscous dissipation along the interface prevails over entrainment of the
subphase.

2. Non-Newtonian curved interface

In light of the above observations, interface curvature must mainly be considered for the case
of weakly oxidized liquid metals. The nonwetting case is of particular interest as it implies a high
surface shear at the triple line, unlike the wetting case. This is why Fig. 10 only shows velocity
profiles along a non-Newtonian interface for the case of a molten aluminium bath with φ = 150◦
and φ = 90◦.

As expected, interface curvature tends to amplify the shear-thinning and shear-thickening effects,
in particular close to the sidewalls with more intense viscosity variations. With a high capillary
length and a contact angle close to φ = 180◦, there is a marked increase in the surface shear
range compared to the planar case. In other words, a curved interface enhances detection of a
non-Newtonian behavior due to larger viscosity variations.
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FIG. 8. (a) and (b) Surface velocity profile and (c) and (d) surface shear along a Newtonian interface
(n = 1), for the wetting (φ = 30◦), planar (MS), and nonwetting (φ = 150◦) cases, as a function of the
Boussinesq number and the liquid bath: (a) an aqueous solution (lc = 2 mm) or (b)–(d) molten aluminium
(lc = 6 mm).

D. Measuring range of the annular viscometer

In this section, the detection limits of the annular viscometer is discussed, with the Boussinesq
number range likely to be measured and notably the possibility of revealing a non-Newtonian
behavior, considering both a planar and a curved interface.

(a)
Dead zone

v∗
1

0.8

0.6

0.4

0.2

0

(b)

FIG. 9. Bulk velocity field for (a) the wetting case (φ = 30◦) and (b) the nonwetting case (φ = 150◦),
considering the molten aluminium subphase (lc = 6 mm) with Bo = 0.001.
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FIG. 10. Surface velocity profile for (a) a shear-thinning (n = 0.5) and (b) a shear-thickening (n = 2)
interface for various Boussinesq number and contact angle, considering the molten aluminium subphase (lc = 6
mm, λ = 100, and Re = 100).

With respect to the first point, the maximum value of the surface velocity max(v∗
σ ) is determined

as a function of the Boussinesq number for an aqueous solution, considering a Newtonian interface
[black curve in Fig. 11(a)]. As the surface shear viscosity is identified from the surface velocity
profile, the latter must necessarily be different from the profile obtained for a (noncontaminated)
free surface. Consequently, below a Boussinesq number of 10−3 (ησ = 10−7 kg s−1), surface flow
is less and less sensitive to the presence of residual contamination. The upper detection limit
corresponds to the case where the interface is virtually motionless (intense contamination), which is
roughly equivalent to a Boussinesq number of approximately unit order (ησ = 10−4 kg s−1). Then
the measurement range of the shallow-channel surface viscometer covers three orders of magnitude:
10−3 < Bo < 1.
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FIG. 11. (a) Maximum surface velocity along the interface for the shear-thinning (n = 0.5), Newtonian
(n = 1), and shear-thickening (n = 2) cases as a function of the Boussinesq number. (b) Relative difference
between the Newtonian and the non-Newtonian cases. Here φ = 90◦, λ = 100, and Re = 100.
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FIG. 12. Isovalues of the relative difference E (%), as a function of the Boussinesq number and the power-
law index n for (a) λ = 200 and (b) λ = 2000, with φ = 90◦ and Re = 200.

1. Sensitivity to non-Newtonian behavior

To assess the ability of the annular viscometer to highlight a non-Newtonian behavior, the
maximum value of the surface velocity is also determined for the shear-thinning (n = 0.5) and
shear-thickening (n = 2) cases, with λ = 100 and Re = 100 [Fig. 11(a)]. The relative difference,
denoted by E (%), is calculated between the non-Newtonian case (n �= 1) and the Newtonian case
(n = 1), the latter being taken as the reference case:

E (%) = 100 ×
∣∣∣∣max(v∗

σ )n �=1 − max(v∗
σ )n=1

max(v∗
σ )n=1

∣∣∣∣.
Figure 11(b) highlights an increased sensitivity to a non-Newtonian behavior around the specific
value of the Boussinesq number which corresponds to the peak of the curves. When the interface
is shear thinning, a Boussinesq number around the value 0.07 generates a relative difference of
roughly 40%. In other words, the velocity of a shear-thinning interface will be 40% higher than
that of the associated Newtonian case (for Bo = 0.07, λ = 100, and Re = 100), which makes easier
the detection of a non-Newtonian behavior. A similar comment can be made on shear-thickening
behavior, with an important relative difference of 35% around the specific value of the Boussinesq
number of 0.03. However, a major difference appears regarding the detection range: A shear-
thickening behavior can be made evident on a wider range of the Boussinesq number than in the
shear-thinning case, especially for a weakly contaminated surface.

The investigation of the sensitivity of channel viscometry to a non-Newtonian behavior also
requires us to focus on the role of the power-law index n. The relative difference E (%) is also
determined as a function of the Boussinesq number, for a power-law index n ranging between 0.1
and 10, and two different values of the relaxation time λ [see the isovalues of E (%) in Fig. 12].
Doing this, it is possible to visualize the areas where the relative difference is larger than 10%. Not
surprisingly, it is easy to demonstrate a non-Newtonian behavior when the power-law index is far
enough from unity. In a similar way, an interface characterized by a high value of the relaxation
time consistently enhances a non-Newtonian behavior.

2. Focus on the role of surface curvature

Now, in order to assess how the contact angle can highlight the non-Newtonian behavior,
the molten aluminium is considered. Figure 13, showing the relative difference between the
Newtonian and the non-Newtonian cases for various contact angles, allows us to confirm the

054002-15



PATOUILLET, DAVOUST, DOCHE, AND DELACROIX

10−5 10−4 10−3 10−2 10−1 100 101
0

5

10

15

20

25

30

Bo

E
(%

)

φ = 150
φ = 90
φ = 30

(a)

10−5 10−4 10−3 10−2 10−1 100 101
0

5

10

15

20

25

30

Bo

φ = 150
φ = 90
φ = 30

(b)

FIG. 13. Relative difference of the maximum surface velocities between the Newtonian and the non-
Newtonian cases, with (a) a shear-thickening interface (n = 0.5) and (b) a shear-thinning interface (n = 2),
for various contact angles considering molten aluminium (lc = 6 mm, Re = 100, and λ = 100).

previous observations. Indeed, the nonwetting case tends to amplify non-Newtonian effects with
higher sensitivity, more particularly at a low value of the Boussinesq number. The wetting case has
the opposite effect due to an overall decrease in surface shear. Therefore, a nonwetting contact angle
may appropriately be used for a better detection of a non-Newtonian behavior.

3. Identification procedure of the surface shear viscosity

Finally, from an experimental point of view, it is sufficient to perform tests under different
rotation speeds in order to evaluate the parameters involved in the surface viscosity model. To
demonstrate this, Fig. 14(a) shows the evolution of the surface velocity profiles with the Reynolds
number for a shear-thinning (n = 0.5) and a shear-thickening (n = 2) interface.
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FIG. 14. (a) Dependence of the surface velocity profiles on the Reynolds number for a shear-thinning
(n = 0.5) and a shear-thickening (n = 2) interface, with Bo = 0.05 and λ = 250. (b) Dependence of the
maximum surface velocity on the Reynolds number, with Bo = 0.05.
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An experiment conducted at a low rotation speed (small Reynolds number) makes it possible to
approach the constant (Newtonian) surface viscosity value due to a very restricted surface shear.
In this way, surface viscosity is (almost) constant all along the interface and the velocity profile
approaches the Newtonian case. Then, by progressively increasing the rotation speed, but not
beyond a large enough Reynolds number for which the inertia effect could become significant,
the non-Newtonian behavior of the interface can be made evident from a growing surface shear.
By considering the dimensionless surface velocity along the interface, it is possible to define its
maximum value max(v∗

σ ) as a new variable. Thereby, a significant dependence of the latter on the
Reynolds number [Fig. 14(b)] delivers most useful information on the non-Newtonian behavior of
the interface. A comparison between experimental data and numerical simulations based on the plot
max(v∗

σ ) = f (Re) is revealed to be decisive for solving the inverse problem since it allows for a
quick identification of the Boussinesq number, the power-law index, and the relaxation time.

V. CONCLUSION

Taking into account surface curvature effects is a priority in surface rheology because they can be
revealed to be a serious source of experimental errors whenever the surface viscosities are identified
with the assumption that the liquid surface remains planar. This is true whatever the rheological
method developed, either based on channel viscosimetry or based on the drag measurement of
moving actuators straddling the liquid surface [26,38].

The numerical study conducted in this paper enabled assessment of the two-way coupling
between a non-Newtonian, possibly non-Euclidean (curved), interface and a supporting flow in the
configuration of the annular channel viscometer. To this end, the Boussinesq-Scriven law model
was enhanced by a Carreau-law model, for which surface shear viscosity depends on the strain rate
along the interface. The interfacial jump momentum balance was also written here so as to take into
account surface curvature effects and further developed according to a weak formulation prior to its
resolution by the finite-element method.

After having validated the implementation of the numerical model by comparing the results with
Mannheimer and Schechter’s analytical solution valid for the case of a Newtonian planar interface,
the influence and the measurement range of the parameters involved in the Carreau model have been
evaluated. It has been proved that a series of experiments conducted at different rotation speeds can
determine the three parameters characterizing the non-Newtonian behavior of a contaminated liquid
surface, namely, the Boussinesq number, the power-law index, and the relaxation time.

The influence of surface curvature on the flow of a non-Newtonian interface was also demon-
strated with a notable benefit in a nonwetting case, particularly for a significant capillary length
to channel width ratio. Finally, it was found that a shallow-channel configuration is particularly
well suited to developing the mechanical characterization of a non-Newtonian interface submitted
to shear thinning or shear thickening.

Among possible prospects for the present paper, one would consist in studying the additional
role of the Reynolds number: The aim would be to widen the measurement range of the surface
shear viscosity, to identify the surface dilatational viscosity in more realistic conditions (wetting
effects included), and finally to investigate the sensitivity of the latter viscosity to a non-Newtonian
behavior.
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APPENDIX A: GRADIENT OF A SECOND-ORDER TENSOR

The stress tensor gradient T σ can be broken down into three second-order tensors (considering
∂ · /∂θ = 0), which are easier to handle:

grader
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APPENDIX B: MANNHEIMER AND SCHECHTER’S SOLUTION

The analytical expression of the velocity profile along the interface assessed by Mannheimer and
Schechter’s solution [13] is

v∗
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e
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The quantities J and Y stand for the first- and second-order Bessel functions with the associated
indices 0 and 1. The channel width ro − ri is denoted by e, while βi stands for the ith solution of the
relation
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Finally, the analytical expression of the subphase velocity is
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