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In dynamical systems theory, suppression of instabilities around a fixed point is gener-
ally achieved by controlling the linearized dynamics of infinitesimal perturbations, because
considering small-amplitude disturbances allows for application of a range of celebrated
techniques from linear control theory. In this paper, we consider the problem of design and
implementation of a controller for fully nonlinear, high-dimensional, dynamical systems
with the goal of steering trajectories to an unstable fixed point of the governing equations.
Our control strategy is based on our previous work [A. Blanchard, S. Mowlavi, and T. P.
Sapsis, Nonlinear Dynam. 95, 2745 (2019)] and takes advantage of the unique properties
of the optimally time-dependent (OTD) modes, a set of global, time-evolving, orthonormal
modes that track directions in phase space associated with transient growth and persistent
instabilities. We show that the OTD control strategy introduced previously is robust with
respect to perturbation amplitude even in cases in which the trajectory initially evolves
on an attractor that lies far away from the target fixed point. In recognition of the fact
that actuation capabilities are generally limited in practice, we also formulate a localized
control strategy in which the OTD modes are computed in a spatially localized subdomain
of the physical domain of interest. We suggest a strategy for selecting the optimal control
domain based on a quantitative criterion derived from the OTD modes. We show that even
when the range of the controller is reduced, OTD control is able to steer trajectories toward
the target fixed point.
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I. INTRODUCTION

From a practical perspective, control of dynamical systems faces at least two major challenges.
The first is that of dimensionality. Nearly all engineering applications involve high- or infinite-
dimensional physical models, for which designing robust and versatile controllers is prohibitively
expensive because many control strategies do not scale well with the dimension of the system [1].
This pitfall is generally avoided by projecting the dynamics onto an appropriate low-dimensional
subspace in which design and implementation of controllers are computationally tractable [2,3].
Of course, the projection subspace must be selected with great care, because this choice immediately
dictates the type of instabilities that the controller will be able to detect and act upon. Popular choices
for model order reduction include the proper orthogonal decomposition (POD) [4] and its derivative,
the balanced POD (BPOD) [5]; the eigensystem realization algorithm (ERA) [6]; and the dynamic
mode decomposition (DMD) [7,8]. However, all of these techniques have been found to struggle
greatly with capturing transient (non-normal) instabilities. As noted by Rowley and Dawson [3],
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POD is virtually useless in situations dominated by transient growth, while the DMD, BPOD,
and ERA perform slightly better but still require relatively large subspaces to achieve acceptable
errors, even for geometries as simple as plane Poiseuille flow. So the question remains of finding an
appropriate low-dimensional subspace that most accurately captures instabilities, regardless of the
exponential or non-normal nature of the latter.

The second challenge is that of nonlinearity. The general approach to flow control is based
on linearization of the governing equations around an unstable fixed point, since the linearized
equations describe the fate of infinitesimal perturbations in the vicinity of that fixed point [9].
Linearity is convenient because many instability and transition phenomena in fluid mechanics
arise from a linear mechanism [10,11] and also because it allows for use of an arsenal of control
algorithms (e.g., optimal linear quadratic regulators or robust H,, controllers) that have been
tried and tested over the years [2]. Yet there are a number of practical situations in which the
dynamics are fundamentally nonlinear and use of linear control theory is moot, for example, in
control of turbulent flow [12]. In those situations, the issue of nonlinearity adds to that of high
dimensionality and it becomes much more difficult to design and implement optimal controllers that
are as flexible and powerful as those available in the linear setting. Great strides have been made by
using iterative, adjoint-based, gradient optimization strategies and model predictive control [13],
but the underlying computational machinery is quite complex for implementation in real-life
configurations. Another approach, suggested by Bewley [14], is to bluntly apply any linear control
strategy to the corresponding fully nonlinear problem. As discussed in Ref. [14], there is some
evidence that linear control strategies applied to nonlinear systems might be effective, although
cases exist in which this approach has a destabilizing effect on the dynamics, rather than a stabilizing
one.

The present work builds on the results of Blanchard et al. [15], who recently proposed a control
strategy that addresses the first of the above challenges. Their approach leveraged the power of
the optimally time-dependent (OTD) modes, a set of orthonormal basis functions that adaptively
track directions of transient and persistent instabilities along a given trajectory of a dynamical
system. This fundamental property of the OTD modes led Blanchard et al. [15] to realize that
these modes formed the ideal candidate subspace for the formulation of a reduced-order control
algorithm capable of suppressing transient and asymptotic instabilities. Using the fact that the
OTD-reduced linearized dynamics describes the evolution of perturbations along a given trajectory
with no error (i.e., there is a one-to-one correspondence between the OTD-reduced linearized system
and the full-order one), they designed a controller in the OTD-reduced space that enforced no
instantaneous growth of perturbations at all times. The resulting control law fulfilled the requirement
of low dimensionality (the number of control inputs equaled the number of OTD modes used in the
dimensionality reduction) and was able to suppress normal and non-normal instabilities, a feat that
no other reduced-order method so far had been found capable of.

The purpose of the present paper is twofold. First, it addresses the question of robustness of
the OTD control strategy proposed by Blanchard et al. [15] with respect to the amplitude of
the perturbations. While the original approach relied on the assumption that perturbations around
the target fixed point had small amplitude, here we consider cases in which the initial deviation
from the fixed point has finite amplitude, so nonlinear effects may no longer be ignored. The
goal is to determine whether OTD control, owing to its time-dependent adaptive properties, can
pull out a trajectory that initially evolves on an attractor presumably far away from the target
fixed point and drive it toward that fixed point. Second, we investigate how the control strategy
by Blanchard er al. [15] can be adapted for use in situations in which range of actuation is
limited, as is the case in experiments. We formulate a modified control law in which the OTD
modes (and consequently the control force) are computed in a localized region of the physical
domain in which computations or experiments are performed. We also suggest a strategy for
selection of the OTD control subdomain, which we apply to various examples of bluff-body
flows.
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The paper is organized as follows. We formulate the control problem and review the concept
of OTD control in Sec. II, investigate how OTD control performs in fully nonlinear situations in
Sec. III, propose a spatially localized OTD control strategy in Sec. IV, and offer a summary and
some conclusions in Sec. V.

II. FORMULATION OF THE PROBLEM
A. Preliminaries

We consider a finite-dimensional autonomous dynamical system
z=F(z), ) =2, (1)

where z(¢) € R4 is the state vector at time 7, F : RY — R¥ is a smooth vector field, and the overdot
denotes differentiation with respect to time. Equation (1) may be viewed as the result of projecting
an infinite-dimensional dynamical system onto a finite-dimensional subset of complete functions
(e.g., Fourier modes or Lagrange polynomials), so the assumption of finite dimensionality does
not restrict the scope of the analysis. We assume that the dimension d of the state vector is very
large, as is often the case in fluid mechanics where z may contain values of the primitive variables
(or combinations thereof) at thousands or millions of grid points or measurements points. We also
assume that (1) admits at least one fixed point z, [with F(z,) = 0] and focus on cases in which z,
is linearly unstable. (Here and in what follows, the subscript e stands for equilibrium.) Trajectories
initialized in the vicinity of z, are rapidly expelled from it and ultimately settle into a different
attractor .7, which may be steady, time periodic, quasiperiodic, or chaotic.
Now we consider the controlled system

7 =F(z) + Be, )

where ¢ € R? is the control variable and B € R*” is the control action matrix. Our goal is to
design the control force f. = Bc so that it pulls the trajectory out of the long-time attractor <7
and steers it toward the fixed point z,. Many challenges immediately arise, the first being that of
dimensionality. As discussed in Sec. I, designing a controller for (2) for a range of parameters is
a very expensive task, and for the approach to be computationally tractable, order reduction of the
dynamics is almost inevitable. This is usually accomplished by a Galerkin projection of (2) onto an
appropriate basis. Selection of the projection basis must be done carefully, as it determines which
information is retained and which is lost upon projection. For instance, one may elect to project
the governing equations onto a set of POD modes computed from a collection of snapshots of the
trajectory. The resulting low-dimensional system accurately captures the dynamics encapsulated in
the data used to generate it, but it is generally incapable of describing regimes for which few or
no snapshots were collected [3,16]. In fact, nearly all data-driven order-reduction techniques suffer
greatly from this shortcoming, which is a simple consequence of the fact that these methods are
“biased” toward the data. Likewise, the eigenvectors of the linearized operator L, = VF(z,) have
shown their limitations when it comes to model order reduction, since they fail to capture episodes
of transient instabilities due to non-normal growth, a phenomenon ubiquitous in fluid mechanics
and climate dynamics [17].

By contrast, our control problem requires a projection subspace that can self-adapt to the
direction of instabilities as the trajectory evolves in the phase space. In the quest for the ideal
subspace, a recent concept, introduced by Babaee and Sapsis [18] and referred to as the optimally
time-dependent modes, has come to the rescue. The idea is to consider the evolution of a collection
of r independent infinitesimal perturbations v; € R? around a given trajectory z. Each perturbation
obeys the variational equation

Vi = L(Z)Vi7 1 < i < r, (3)
where L(z) = VF(z) € R?*? is the Jacobian matrix of F evaluated at z. We emphasize that L(z) is

a time-dependent operator because it depends on the current state z(7 ). Thus, L(z) is not equal to L,
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except when z = z,. As discussed by Wolfe ez al. [19] and Blanchard and Sapsis [20], the collection
of vectors {v;(¢)}/_, propagated with (3) asymptotically collapses upon itself because the magnitude
of the individual members v;(¢) grows exponentially rapidly, and the angle between each of them
precipitously vanishes as each v;(¢) seeks the most unstable direction in the phase space. To keep
track of the directions associated with growth or decay of perturbations, Babaee and Sapsis [18]
suggested that one should append to the variational equation a constraint enforcing orthonormality
of the vectors v;(¢) at all times. Incorporating this constraint in (3) leads to the OTD equation for
the ith OTD mode u; € R?,

u; = L(z)u; — Z[(L(Z)ui, ) — Py, 1<i<r “4)
k=1

where (-, -) is a suitable inner product and ® = (®;);,_, € R™" is any skew-symmetric tensor.
The subspace spanned by the collection {u;(#)};_; of OTD modes is referred to as the OTD subspace
and by construction is the same as that spanned by {v;(¢)}/_,. (The OTD modes form an orthonormal
basis of that subspace.) The second term on the right-hand side of (4) sums up contributions from
the Lagrange multipliers enforcing orthogonality of u; and u; (i # j) and normality of u;. Without
this term, the ith OTD equation reduces to the ith variational equation (3). We emphasize that the
linearized operator appearing in (4) depends on the state z of the system as the trajectory wanders
through the phase space, which allows for the possibility of the OTD modes departing significantly
from the most unstable eigendirections of L.
If the skew-symmetric (but otherwise arbitrary) tensor @ is chosen as

—(L(@)w, w), k<i
;= 10, k=i (5)
(L@u;, u), k>,

then the OTD equations assume a lower triangular form

i—1
o = L), — (L@, w); — Y (L@, w) + (L@, w) . 6)
k=1

As shown by Blanchard and Sapsis [20], the lower triangular formulation (6) is particularly
insightful because it is equivalent to continuously performing Gram-Schmidt orthonormalization
on {v;(t)}i_,, starting with v;(¢) and moving down. This is the approach we will use to generate the
numerical results presented in Sec. I'V.

Why are the OTD modes relevant to our reduced-order control problem? To answer this, we
must first review some of the properties of the OTD modes. The fact that the OTD modes span
the same subspace as the solutions of (3) implies that an r-dimensional OTD subspace constantly
seeks the most rapidly growing r-dimensional subspace in the tangent space (i.e., the space of
perturbations). For example, for a hyperbolic fixed point, the most rapidly growing subspace is
the unstable eigenspace of the associated linearized operator, and it has been shown that the OTD
subspace precisely aligns with that subspace at long times [18]. For a time-dependent trajectory,
the OTD subspace aligns exponentially fast with the most unstable eigenspace of the left Cauchy-
Green tensor (i.e., the eigenspace associated with transient instabilities) [21], just like any subspace
solution of (3). In other words, the OTD modes essentially track the directions in the phase space
along which transient and persistent instabilities develop. The added constraint of orthonormality is
key, as it provides a numerically stable way of computing those directions (the OTD subspace does
not collapse on itself).

In light of this, it is natural to consider the OTD modes as a candidate basis to reduce the
dimensionality of the linearized dynamics. We introduce the matrix U € R?*” whose ith column is
u; and note that for any solution v of the variational equation (3) that belongs to the OTD subspace,
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the projection

() =U(0)v(r) € R’ (7)
(where T denotes the Hermitian transpose operator) obeys the reduced linear equation
=L, (8)
where we have introduced the reduced linear operator
L, =U'L@z)U + &. )

The dimensionality of (8) is the same as that of the OTD subspace and presumably much smaller
than that of the original equation (3). A great advantage of the OTD order reduction is that it is
dynamically consistent, i.e., if 5 solves the reduced equation (8), then v = Uy solves the original
equation (3), and vice versa [22]. This means that propagating v with (3) is strictly equivalent to
propagating 5 with (8) and projecting the solution back to the full space. Thus, the OTD reduction
consistently retains the information of the full-order system associated with transient instabilities
along an evolving trajectory. For this reason, the OTD framework is particularly appropriate for
design of low-dimensional controllers. This was recognized by Blanchard et al. [15], who were the
first to propose an OTD-based control algorithm with a view to suppressing modal and nonmodal
growth around fixed points in high-dimensional systems. Their approach will be the basis for our
analysis, so we briefly review it below.

B. Review of control by optimally time-dependent modes

To formulate an OTD-based control law, Blanchard et al. [15] considered the controlled dynamics
of an infinitesimal perturbation z’ € R¢ around a fixed point z,, described by

7 =Lz + Be, (10)

where L = L(z) is used as a proxy for L. Introducing the OTD projection 7 = U'z’ and defining a
reduced control matrix B, = UTB € R"*?, they obtained the reduced controlled variational equation

7 =L,n+ B,c. (11

If the control vector is sought in the form ¢ = K, 5, with K, € R”*" a reduced feedback gain matrix,
then (11) reduces to

j? = Lr,cna (12)

where L. = L, + B, K, is the closed-loop reduced linear operator. The latter is time dependent, so
its eigenvalues are not good indicators for growth or decay of ||p||. However, the eigenvalues of its
symmetric part characterize the instantaneous rate of change of |||, since

Ld = Leet ) + @, Lyen)
2 dr 2 '

To stabilize the fixed point z,, Blanchard et al. [15] required that the magnitude of reduced
perturbations always decay (i.e., d||17||2/dt < 0 for all » # 0) and hence that (L, . + LIU)/Z be
negative definite. They noted, however, that there is no general framework in control theory
addressing the issue of pole placement for the symmetric part of a linear operator. So they made
one additional assumption, namely, that the controller can act on every state of the system (i.e.,
B =) and, invoking dynamical consistency of the OTD reduction, arrived at a rather simple ad hoc
expression for the control force,

f. = UQdiag[— (% + ) #(1)IQ'UT(z — z,), (14)

where 7 is the Heaviside function, { € R is a damping parameter, Q € R™” is a unitary rotation
matrix containing the eigenvectors of (L, 4+ LT)/2, and {%;}/_, are the eigenvalues of (L, + LT)/2

13)
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ranked from most (A;) to least (A,) unstable. The Heaviside function guarantees that the control
acts only on directions associated with positive instantaneous growth (those with A; > 0) and the
parameter { governs the intensity with which these directions are damped. The closed-loop rate of
change of ||p|| is thus negative for all times, thereby ensuring that z tends to z, asymptotically. Due
to orthonormality of the OTD modes, the input energy required by the control law (14) can be easily
computed as

o0
E = / IUTE,. | d, (15)
1q

where ¢, denotes the time at which OTD control is activated. There is of course an additional cost
related to computation of the OTD modes, which involves solving r d-dimensional differential
equations [i.e., the OTD system (6)]. Babaee et al. [21] showed that, in the context of computation
of finite-time Lyapunov exponents, the cost of evolving the OTD equations becomes insignificant
as the dimension d of the system becomes large.

As discussed by Blanchard et al. [15], the control law (14) guarantees suppression of transient
and asymptotic instabilities around z, provided the following three requirements are met. First, for
the order reduction to be dynamically consistent, the OTD subspace must be initialized so that
it contains the directions in which the initial deviation z(#y) — z, grows. Short of this condition
(e.g., if the deviation is initially orthogonal to the OTD subspace), the reduced-order system (11)
will leave out some or all of the directions associated with instabilities, on which the control
force (14) will thus have no influence. The second prerequisite is that the dimension » of the OTD
subspace be sufficiently large that no information related to instability is lost upon order reduction.
To capture both normal and non-normal instabilities, Blanchard ez al. [15] suggested the selection
of r according to

r > max (dim &,, dim &), (16)

where &, and £ are the unstable eigenspace of L, and (L, + LI) /2, respectively. The criterion (16)
pertains to the full-order operators evaluated at the fixed point z,, so it relies on the assumption that
the norm of the perturbation z — z, never becomes excessively large. This assumption constitutes the
third requirement identified by Blanchard et al. [15]. It allowed use of L as a proxy for L, in (10) and
made consistent application of (14) to the original nonlinear equation (2), notwithstanding that (14)
was designed based on the dynamics of the variational equation (10). (These manipulations are valid
if ||z — z.|| remains relatively small.)

In the following exposition, we address two key issues raised by Blanchard et al. [15]. The
first question is that of robustness of the control with respect to the amplitude of the perturbation.
Success of the control strategy (14) is guaranteed for small perturbations around z,, but it is not
clear whether OTD control ceases to work for disturbances with finite amplitude. After all, the OTD
modes are able to capture directions of instabilities along any given trajectory, regardless of how far
the state z may be from z.. So it might very well be that the control algorithm performs well even
in situations where linearization is a priori not valid. Robustness is important because controllers
usually shift the attractor significantly, rendering models based on POD modes, DMD modes, or
eigenvectors (which are local in phase space) moot. Thus, designing a reduced-order controller that
is robust to perturbation amplitude and direction is often considered a daunting task. The results
presented hereinafter will make clear that the OTD modes significantly deform as the magnitude
of the perturbation grows, which is a key requirement for robustness of the proposed control
algorithm.

The second issue has to do with the range of the control force. In the original formulation, the
controller took the form of a body force acting on the entire physical domain [cf. Eq. (14)]. As
noted by Blanchard et al. [15], it would be valuable to design a control law that acts only in part of
the physical domain, because this would make the approach considerably more attractive from the
standpoint of conducting experiments.
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III. STABILIZATION OF UNSTEADY FLOWS BY OTD CONTROL

In this section, we investigate how robust the control law (14) is to the amplitude of the
perturbation. We apply the control algorithm (with minor modifications discussed below) to cases in
which the initial deviation of the trajectory from z, is not small. Specifically, we investigate whether
OTD control is able to steer the trajectory toward z, after it pulled it out of a long-time attractor that
presumably lies far away from z.. In what follows, the control force is assumed to act on the entire
physical domain, as done in the original formulation by Blanchard et al. [15]. We emphasize that
the control force was designed based on the linearized dynamics, but to test its robustness we decide
to apply it to the fully nonlinear equations. As discussed in Sec. I, this approach is similar to that
proposed by Bewley [14] in which linear control strategies were applied to nonlinear systems.

A. Unsteady low-dimensional nonlinear system

We begin our investigation with a simple low-dimensional nonlinear system introduced by
Trefethen et al. [23],

7= Cz+ ||z||Dz, (172)

c—| VR 1 p= |’ ! 17b
_[o —2/R}’ _[1 0}’ (170)

with R a large parameter (here R = 25). The matrix C is non-normal, so the linear term on the right-
hand side of (17a) amplifies energy transiently. The nonlinear term involving the skew-symmetric
matrix D merely redistributes energy, but neither creates nor destroys any. As discussed by Trefethen
et al. [23], a notable feature of this system is that although the fixed point z, = 0 is asymptotically
stable, sufficiently large non-normal amplification of a perturbation can activate nonlinear energy
mixing, leading to expulsion of the trajectory from the vicinity of z, and transition to a different
long-time attractor. The system (17a) and (17b) essentially mimics transition to turbulence in the
Navier-Stokes equations. In (17a) and (17b), transient growth results from self-sustained transfer
of energy to the principal right singular vector of the non-normal operator C, facilitated by the
nonlinear terms.

Blanchard et al. [15] showed that for a range of initial disturbances, a one-dimensional OTD
subspace (r = 1), and damping coefficient { = 0.1, the control force (14) was able to suppress
non-normal growth around z, = 0. In their numerical experiments, the amplitudes of the initial
disturbances were small (no larger than 1072), so OTD control was only used to prevent transient
amplification of the disturbances and hence transition. Here, however, we do not wish to prevent
transition, but rather attempt to steer the trajectory toward the fixed point z, = 0 after transition
has occurred and once the trajectory is in a state presumably far from z,. We consider a range of
initial conditions in the form (0, ¢)" (¢ a constant) for which non-normal growth is large enough
that it leads to transition. Integration of (17a) and (17b) is performed with a third-order Adams-
Bashforth method with time-step size At = 0.1. For the range of initial conditions considered, it is
straightforward to show that the long-time “turbulent” attractor is actually another (linearly stable)
fixed point, given by z, ~ (0.0797, 0.9936)" for R = 25 [cf. Fig. 1(a)].

We use the OTD control law (14) with » = 1 and ¢ = 0.1 to drive the trajectory toward z, after
transition has occurred. The control is activated at + = 100 as the trajectory is headed toward z,.
Figure 1(b) shows that the controller has no difficulty halting the approach to z,. Upon activation of
the control, the trajectory is swiftly ejected to a different region of the phase space and then guided
toward z,. Figure 1(b) suggests that expulsion from the vicinity of z, happens more rapidly for
initial disturbances with smaller amplitudes. This is because it takes longer for smaller disturbances
to grow, so z is not as close to z, when the control is activated. In contrast, for disturbances with
larger initial amplitudes, trajectories fall in the radius of influence of z, more rapidly and it is more

where
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FIG. 1. For the 2 x 2 non-normal system (17a) and (17b), norm of trajectories subject to (a) no control,
(b) OTD control with r = 1 and ¢ = 0.1, and (c) OTD control with r = 1 and ¢ = 0.6. In (b) and (c), control
is activated at + = 100. Initial conditions for the trajectories are (0, ¢)T, where ¢ = 1073, 2.5 x 1073, 1072, and
5 x 1072, from darker to lighter.

difficult for the controller to pull them out of it. Figure 1(c) shows that this effect is much less
pronounced when the value of the damping coefficient ¢ is increased to 0.6.

Figures 1(b) and 1(c) show that increasing the value of ¢ does not accelerate the final approach
to z.. The reason is that the first OTD mode used in the control asymptotically aligns with the
most unstable eigendirection of L,. Since the target fixed point is asymptotically stable, that
eigendirection is associated with a negative eigenvalue. So in the limit z — z,, the reduced operator
L, (and for that matter its symmetric part) reduces to a negative number and the controller becomes
idle. To accelerate the final approach to z,, one approach would be to apply damping to every
OTD direction regardless of the sign of A; and simultaneously increase the dimension of the
OTD subspace. We will elaborate on the possibility of damping out all the OTD directions in
Sec. III B.

We note that the time at which control is activated cannot be chosen arbitrarily large, for the
following reason. If the control force were to be switched on long after transition happened (i.e.,
when the state z nearly coincides with the fixed point z,), OTD control would be no different from
modal control, since the OTD subspace would have aligned with the most unstable eigenspace of z,.
If a single mode is used in the order reduction, the control would remain idle for all times because the
reduced linear operator reduces to the most unstable eigenvalue of L, which is a negative number.
(The case of OTD reduction with two modes is of little interest, since in that case the OTD basis
spans the whole phase space.) Thus, OTD control must be activated before the asymptotic limit
z — 1z, is reached.

We also note that if the controller were to be turned off after z had been driven sufficiently
close to the target z,, non-normal instability of the latter would set in again and two scenarios are
possible. If the control is switched off when z is infinitesimally close to z., non-normal growth
of the deviation z — z, would not be large enough to trigger a transition to z, and the trajectory
would naturally return to z,, since the latter is asymptotically stable. On the other hand, if the
controller is switched off when z is not infinitesimally close to z,, the amplitude of z — z, might be
sufficiently amplified that transition would occur again. Should that happen, reactivation of OTD
control after transition would irremediably steer the trajectory back to z.. This is possible because
the OTD modes are able to adapt to directions of instabilities as the trajectory evolves in phase space.
Optimally time-dependent control thus provides a mechanism for switching on and off transition at
will.

B. Flow past a cylinder

We turn to the two-dimensional flow of a Newtonian fluid with constant density p and kinematic
viscosity v past a circular cylinder of diameter D with uniform free-stream velocity Ue,. The Navier-
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Stokes equations can be written in dimensionless form as
1
AW+ w-Vw = —Vp+R—V2w, (18a)
e

V.w=0, (18b)

with the no-slip boundary condition

Wir, =0 (19a)
on the cylinder surface I'¢y; and uniform flow
lim w=e, (19b)
X, y—00

in the far field. Velocity, time, and length have been scaled with cylinder diameter D and free-
stream velocity U, and the Reynolds number is Re = UD/v. With the lower triangular formulation
discussed in Sec. II, the ith OTD mode obeys

i—1
0; = Lsu; — (Lnsti, w)u; — Y [(Lnsti, we) + (Lsug, u)Jug, (202)
k=1

V.u =0, (20b)

with boundary conditions

u; Tyt = 0 (Zla)
and
lim w; =0, (21b)
X,y— 00

where (-, -) is the usual L? inner product. The (spatially discretized) linearized Navier-Stokes
operator evaluated at the current state w is given by

1
Lysw; = —Vp, + R—Vzu,- —w-Vu, —u; - Vw, (22)
e

where p; is the pressure field that guarantees incompressibility of the OTD mode u;.

We consider the case Re = 50, slightly above the Hopf bifurcation of the steady symmetric
solution w, known to occur at Re, &~ 47. At Re = 50, there is exactly one pair of unstable
complex conjugate eigenvalues [24,25], which at long times gives rise to a limit cycle with periodic
vortex shedding. Blanchard et al. [15] showed that for small asymmetric inlet perturbations, the
control law (14) based on an OTD subspace with dimension at least 2 (and ¢ = 0.1) subdued
linear instability of the base flow. By contrast, they showed that the control law (14) with a
one-dimensional OTD subspace was unable to counteract development of the vortex street. The
reason is that the most unstable eigenspace of L., with which the OTD subspace rapidly aligns
if the flow is initialized infinitesimally close to w,, contains two unstable directions. Hence, a
controller based on a single OTD mode necessarily leaves out one of the two directions responsible
for instability.

Here we do not use OTD control to suppress linear growth of initially small disturbances around
w,. Rather, we investigate whether OTD control can take the trajectory out of the limit cycle and
guide it toward w,. This may be thought of as an attempt to control an initially noninfinitesimal
perturbation, since on the limit cycle, w is far from w, and the nonlinearity of the Navier-Stokes
equations is fully active. The question then arises of how many OTD modes should be included
in the control algorithm in order to stabilize w,. (We chose not to discuss this issue in Sec. III A
because for that example the phase space was two dimensional.) As discussed in Sec. II, the
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FIG. 2. For flow past a cylinder at Re = 50, (a) spanwise vorticity distribution of the steady symmetric
solution w, and (b) snapshot of the spanwise vorticity distribution of the solution on the limit cycle at an
instant for which C; is maximum.

original criterion (16) formulated by Blanchard et al. [15] guarantees success of the control
strategy if the amplitude of the perturbation is small. Here, however, we consider perturbations
that have finite amplitude, and there is no reason to believe that choosing r = max(dim &,, dim &)
should ensure success of the control strategy. However, under no circumstances can r be less
than max(dim &,, dim &), since the latter accounts for exactly all the directions of transient and
asymptotic instabilities of w,.

The computational solution is effected using the spectral-element Navier-Stokes solver
nek5000 [26]. The computational domain extends 24D in the cross-stream direction and 32.4D
in the streamwise direction. The cylinder center is located 8.4D away from the inlet boundary
and equidistantly from the sidewalls. Our production runs use a mesh with 316 spectral elements,
polynomial degree N =9, and time-step size At =2 x 1073, For the main flow and the OTD
modes, we specify a no-penetration (symmetry) boundary condition on the sidewalls and a stress-
free condition at the outlet. At the inlet, we prescribe a nonhomogeneous Dirichlet condition
(w = e,) for the main flow and a homogeneous Dirichlet condition for the OTD modes. The
steady (unstable) base flow w, shown in Fig. 2(a) is computed by a selective-frequency-damping
approach [27].

We first perform a computation with » = 2 (the smallest value of r for which stabilization
is possible in the limit of small perturbations) and ¢ = 0.1. Initial conditions for the main flow
are selected as the state on the limit cycle for which the lift coefficient C; is maximum [cf.
Fig. 2(b)]. For the initial conditions of the OTD modes, we apply Gram-Schmidt orthonormalization
to the divergence-free subspace {sin(my)e, + cos(mx)e,}/ ;. (For a detailed discussion of the
initialization of the OTD subspace, we refer the reader to Ref. [15].) For 0 < ¢ < 100, the control is
idle and the OTD subspace aligns with the most unstable subspace on the limit cycle. Figures 3(a)-
3(h) show the vorticity distributions of the first and second OTD modes at four equally spaced time
instants in one shedding cycle of period 7, with C; reaching its maximum amplitude at t = #.
Figures 3(a)-3(h) show that the OTD modes possess the same space-time symmetry

ui,x(xv Y, t) = Mi,x(-xs -y t + T/2')1 (233)
u; y(x, y, 1) = —u; y(x, =y, t +T/2), (23b)
pi(x,y,t) = pi(x, =y, t + T/2), (23¢)

as the flow itself [28]. This is a consequence of the fact that the OTD subspace aligns exponentially
fast with a well-defined subspace that depends only on the current flow state w and not on the history
of the trajectory [20,29]. As a result, the OTD modes inherit the symmetry properties of the flow.
Figures 3(a)-3(h) also show that the vorticity distributions of the OTD modes on the limit cycle
are quite different from that of the OTD modes computed at the unstable fixed point w, [Figs. 4(a)
and 4(b)]. As discussed in Sec. II B, the reason is that the OTD subspace evolves hand in hand with
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FIG. 3. For flow past a cylinder at Re = 50 on the limit-cycle attractor, vorticity distributions of (a), (c),
(e), and (g) the first OTD mode, and (b), (d), (f), and (h) the second OTD mode, shown at time (a) and
(b) 19, (c) and (d) 7o + T /4, (e) and (f) #tp + T /2, and (g) and (h) 7y + 37 /4, where C reaches its maximum
amplitude at #,.

the trajectory. Thus, the OTD subspace coincides with &, only in the asymptotic limit w — w,, but
otherwise strongly departs from &,.

The control is activated at # = 100 and remains active for all # > 100. Figure 5(a) shows that the
control law (14) is able to drive w toward w,. In addition, movie 1 in Ref. [30] shows time series
for Cy, cued to the vorticity distributions of the solution w and the control force f.. Movie 1 [30]
shows that the amplitude of Cy, decreases by about 90% between ¢+ = 100 and 150, evidencing that
the controller acts very rapidly. It is also clear from movie 1 [30] that the vorticity distribution of £,
exhibits strong asymmetry about the midline y = 0 for most of the transient interval during which
the trajectory leaves the limit cycle and travels toward w, (i.e., for about 100 < ¢ < 145). As w
approaches w,, the vorticity distribution of the solution becomes antisymmetric, and so does that
of the control force f. (see, for example, ¢t = 160 in movie 1 [30]). At long times, f. is a linear
combination of the two most unstable eigenvectors of L, [Figs. 4(a) and 4(b)]. For ¢t > 200, the
vorticity distribution of the solution is indistinguishable from that of w,.

A notable feature of movie 1 [30] is that there are multiple flickers in the vorticity distribution of
the control force (e.g., near r = 123.4, 128.8, and 131). We have verified that these episodes should
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FIG. 4. For the steady (unstable) flow past a cylinder at Re = 50, vorticity distributions of the (a) first and
(b) second OTD modes.

not be attributed to insufficient frame rate in movie 1 [30], as they were found to persist even when
the speed of the movie was decreased by a factor of 2 and the frame rate simultaneously increased
by a factor of 5. Instead, an explanation is provided by examining the time series for the eigenvalues
{A1, Ao} of (L, + LI)/Z, shown in Fig. 5(b). We first recall that the control law (14) contains a
Heaviside function, whose use was originally motivated by the fact that only those directions with
positive instantaneous growth rate should be acted upon (and the other directions should be left
unaltered). However, Fig. 5(b) shows that the two eigenvalues of (L, + L;r) /2 have opposite signs at
the time when the control is activated (with A; > 0 > X,), but identical signs at long times when the
trajectory is close to w, (with A; > X, > 0). So X, must change sign at least once as the trajectory
travels from the limit cycle to the fixed point. In fact, Fig. 5(b) shows that A, changes sign multiple
times in the interval 120 < ¢ < 170 (at r = 123.54, 123.75, 127.26, 128.81, and 131.09 and again
att = 164.55 and 164.92). These time instants coincide with the flickers in the vorticity distribution
of f.: Every time A, becomes positive, OTD mode 2 is suddenly included in the control force and
its contribution jumps from zero to nonzero. (Likewise, when A, becomes negative, OTD mode 2 is
suddenly excluded from f,.)

There are at least two options to eliminate temporal discontinuities in the control force. One
possibility is to introduce an offset ¢ > 0 in (14) so that f. becomes

f.. = UQdiag[—(A; + ) (L +€)1Q"UT(z — z,). (24)

The modified control law (24) damps out directions of instantaneous growth [just like (14)], as well
as those directions that instantaneously decay at a rate smaller than ¢. In other words, for small
values of ¢, (24) damps out directions along which perturbations grow or barely decay. Temporal
discontinuities in f,. are eliminated if A; + & never changes sign. In practice, however, it is difficult

10 T " 0.1
5 i
| 107° + ~< 0
£
OTD control law £, A
~ OTD control law £, ,; Ao
1077 - - -0.1 + .
0 100 200 300 0 100 200 300
t t
(a) (b)

FIG. 5. For flow past a cylinder at Re = 50 subject to OTD control with » = 2 and ¢ = 0.1, (a) time series
of |w — w,|| and (b) eigenvalues of the open-loop reduced operator (L, + LI) /2. Control is idle in the interval
0 <t < 100 and active for r > 100.
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to know in advance how each A; will evolve when the control is active. So another approach is to
simply eliminate the Heaviside function from (14) and apply the same amount of damping to every
OTD direction, regardless of whether it is associated with instantaneous growth or decay:

f.a1 = UQdiag(—2)Q'U™(z — z,). (25)

The above control strategy is suboptimal, since resources are allotted to damping directions that
need not be, but it guarantees temporal continuity of the control force at all times. We note that with
this strategy, the damping coefficient ¢ must be chosen sufficiently large that it can suppress the
leading eigenvalue A;. Figure 5(a) shows that use of (25) with { = 0.1 is able to stabilize w,, and
movie 2 in Ref. [30] confirms that no temporal discontinuities are present in f, 5. For this control
strategy, the input energy E, required to operate the controller is found to be 0.132, slightly lower
than that for the case shown in movie 1 (0.180).

C. Flow past a NACA 0012 airfoil

For another example of control of bluff-body flow, we consider the two-dimensional flow of an
incompressible fluid with density p, kinematic viscosity v, and free-stream velocity Ue,, past a
NACA 0012 airfoil of chord length L, at an angle of attack « = 10°. The governing equations and
boundary conditions for the main flow and the OTD modes are identical to 18(a)—(22), where it
is understood that I'cy; now denotes the airfoil surface. The Reynolds number, based on the chord
length, is Re = UL, /v. The Navier-Stokes and OTD equations are solved using nek5000. The
computational domain is a C-grid that extends 10L, in the streamwise direction and 8L, in the cross-
stream direction. The airfoil trailing edge is located 5L, from the outlet boundary and equidistantly
from the sidewalls. The mesh is composed of 644 spectral elements with polynomial order N = 9
and the time-step size is At = 5 x 107*. The computational boundary conditions for the main flow
and the OTD modes are identical to those used in Sec. III B.

Like in the cylinder flow discussed in Sec. III B, the equations governing flow past a NACA
0012 airfoil admit a steady solution w, for any value of Re and «. The only case for which w,
is symmetric about the midline y = 0 is when the geometry is symmetric, i.e., for « = 0°. For
Re = 1000, Kurtulus [31] found that w, loses linear stability at o, =~ 8°. For Re = 1000 and « not
too much greater than «,, there is exactly one unstable pair of complex conjugate eigenvalues, and
linear instability of w, gives rise to a laminar time-periodic solution in which alternating vortices
are shed aft of the airfoil. Here we consider the case Re = 1000 and o = 10°, for which the base
flow [Fig. 6(a)] is linearly unstable and the long-time solution (in the absence of control) is a limit
cycle [Fig. 6(b)]. Consistent with previous work [32], an Arnoldi calculation [Fig. 6(c)] shows that
there is a single pair of unstable eigenvalues (w = 0.4892 + 4.7028i) for the values of Re and «
considered. We note that the real part of the unstable pair of eigenvalues is one order of magnitude
larger than that for flow past a cylinder (for which the most unstable pair of eigenvalues is found to
be w = 0.0186 £ 0.778i).

We first verify that the original approach by Blanchard et al. [15] is capable of suppressing
growth of small-amplitude perturbations around w,. Since dim(&,) = 2, we expect that the control
law (14) with two (but no fewer) OTD modes should be able to prevent development of instability.
The main flow is initialized on w,, to which is superimposed a small asymmetric inlet perturbation
in the form

Winlet (v, = 0) = (1 4 0.0001y)e,. (26)

For the initial conditions of the OTD modes, we apply Gram-Schmidt orthonormalization to the
subspace {sin(my)e, + cos(mx)e,}, _,. The control is active for all # > 0. Figure 7(a) shows time
series for |Cp — Cp .| (where Cy, is the value of the lift coefficient for w,) for r = 1 and 2, and
¢ = 0.1. Clearly, OTD control with r = 2 successfully suppresses asymptotic growth of the imposed
perturbation, while OTD control with » = 1 does not.
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FIG. 6. For flow past a NACA 0012 airfoil with @ = 10° and Re = 1000, (a) spanwise vorticity distribution
of the steady solution, (b) snapshot of the spanwise vorticity distribution of the solution on the limit cycle at an
instant for which C;, is maximum, and (c) 21 most unstable eigenvalues of the linear operator L, visualized in
the complex plane.

Next we consider a trajectory that evolves on the limit cycle and use OTD control to take it out
and steer it toward w,. Computations are performed with r = 2 (the smallest value of r required
for stabilization of w,) and the modified control law (25) to avoid temporal discontinuities in the
control force. We consider three values of the damping coefficient (¢ = 1.8, 2.4, and 3.2). The main
flow initially coincides with a state of maximum lift on the limit cycle [Fig. 6(b)]. Initial conditions
for the OTD modes are specified as above. The control is activated at + = 100 and remains active
for the rest of the calculation. For the three values of ¢ considered, Fig. 7(b) shows that activation
of the control leads to rapid stabilization of w,. The time elapsed between activation of the control
and beginning of the final approach to w, is shorter for larger values of ¢. The rate at which final
approach to w, takes place is essentially independent of ¢, suggesting that the values of ¢ considered
are sufficiently large that the rate of approach is dictated by the least stable eigendirection on which
the control does not act.

For ¢ = 1.8, inspection of the vorticity distribution of f. ,; reveals that no temporal discontinu-
ities are present (cf. movie 3 in Ref. [30]). We also note that, interestingly, although the control acts
as a body force on the entire computational domain, it appears to work its way downstream, in that

100 ¢ : : 10!
— 107° 1 =10"¢
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| | |
i 1076 | 4 1 i 1073 1
MW‘J il .
¥ - =
. ‘ { }\‘ r=2 B
10-9 | \ 105 . . . A
0 50 100 150 0 50 100 150 200 250
t t
(a) (b)

FIG. 7. For flow past a NACA 0012 airfoil with o = 10° and Re = 1000, (a) time series of |C;, — C; .| for
trajectories subject to infinitesimal asymmetric inlet perturbation (26) with OTD control law (14) and ¢ = 0.1
and (b) time series of |w — w,|| for trajectories initialized on the limit cycle subject to OTD control law (25)
with r =2 and ¢ = 1.8, 2.4, and 3.2. In (a), OTD control is active for all > 0. In (b), OTD control is idle in
the interval 0 < ¢ < 100 and active for r > 100.
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FIG. 8. For flow past a NACA 0012 airfoil with & = 10° and Re = 1000 subject to OTD control (25)
with r = 2 and ¢ = 1.8, spanwise vorticity distributions of (a) the solution w and (b) the control force f, 4 at
t = 120 [cf. Fig. 7(b)].

stabilization and symmetrization of the wake first occur in the near field, before propagating to the
far field. As the solution in the near field becomes more symmetric, the vorticity distribution of £, 4
evolves accordingly. For example, Fig. 8(b) shows that at# = 120 there is a clear difference between
the vorticity distribution of f, ,; immediately aft of the airfoil (the vortices arrange themselves in a
way that resembles the vorticity distribution of the unstable eigenvectors of L,) and that in the far
field, which appears considerably less organized and reflects the strongly asymmetric and unsteady
nature of the flow in that region of the domain [cf. Fig. 8(a)]. This effect is more pronounced for this
geometry at this Re value than it was in the flow past a cylinder at Re = 50 discussed in Sec. III B.

The input energy E,. required for stabilization is found to be 0.293, 0.184, and 0.163 for ¢ = 1.8,
2.4, and 3.2, respectively. That larger values of ¢ require less energy might seem counterintuitive,
but the reason is quite simple. Figure 7(b) shows that controller activation is followed by an interval
during which [|[w — w,|| decreases nonlinearly. The duration of this interval is larger for smaller
values of ¢ and ends approximately when ||w — w,|| falls below 0.1 [Fig. 7(b)]. At that time, w
has been brought sufficiently close to w, and ||w — w,|| begins to decrease linearly. The bulk of
the effort is done in the interval of nonlinear decay of |w — w, ||, as this interval corresponds to the
controller pulling the trajectory out of the limit cycle. That this interval is shorter for larger values
of ¢ compensates for the fact that large ¢ in principle increases the cost of the control.

D. Kolmogorov flow

We now consider Kolmogorov flow on the torus Q = [0, 277]>. The flow obeys the incompress-
ible Navier-Stokes equations with sinusoidal forcing, written in dimensionless form as

1
ow+w-Vw=—-Vp+ R—Vzw + sin(kry)e,, (27a)
e

V.w=0, (27b)

where ky is a positive integer and the Reynolds number Re is the inverse of a dimensionless fluid
viscosity v. The OTD equations are identical to 20(a) and 20(b), with Lys given by (22). The
main flow and the OTD modes satisfy periodic boundary conditions. The computational solution
is effected using nek5000 with a mesh composed of 256 elements (16 elements in each direction),
polynomial order N = 7, and time-step size At = 1073.

The Kolmogorov flow admits a laminar solution

Re .
w, = E sin(kry)e,, (28)
which is asymptotically stable for forcing wave number k; = 1 and any value of Re [33]. For

ks > 1 and large enough Re values, the laminar solution w, is unstable and the long-time solution
is chaotic [34,35]. Other invariant solutions besides (28) are known to exist for this flow. For ky = 4
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FIG. 9. For Kolmogorov flow with Re = 40 and k; = 4, (a) spanwise vorticity distribution of the initial
condition used in the computations and (b) energy dissipation for trajectories with OTD control (with ¢ = 0.1)
and without control. Control is idle in the interval 0 < ¢t < 50 and active for r > 50.

and Re = 40, Farazmand [36] reported no fewer than 16 different steady (unstable) solutions, with
dim &, ranging from 5 to 38. In Ref. [15], Blanchard et al. were able to stabilize the laminar
solution (28) (for which dim &, = 38) in the limit of small perturbations by applying the control
law (14) with 38 OTD modes.

In the wake of Blanchard et al. [15], we consider parameters ky = 4 and Re = 40 for which (28)
is linearly unstable and the long-time solution is chaotic. Here we use OTD control to annihilate the
chaotic attractor and steer the trajectory to the fixed point (28). We note that the temporal regularity
of the long-time (chaotic) attractor is lower than in the previous examples considered. (The long-
time attractor was a fixed point in Sec. III A and a time-periodic orbit in Secs. III B and III C.) The
main flow is initialized on the chaotic attractor [cf. Fig. 9(a)]. To initialize the OTD modes, we apply
Gram-Schmidt orthonormalization to the subspace {cos(mx) sin(my)e, — sin(mx) cos(my)e,}’ _,.
The OTD modes thus satisfy the incompressibility constraint and the periodic boundary conditions
att = 0. For the first 50 convective time units, the control is idle and the trajectory wanders on the
chaotic attractor. The control is activated at# = 50 and remains active for the rest of the computation.

Figure 9(b) shows time series for the energy dissipation

1

E(t) = RS2l

/ IV x wikde (29)
Q

for the uncontrolled case (» = 0) and three controlled cases with various values of r and control
law (14). We first note that in the absence of control, the trajectory remains on the chaotic attractor
and never approaches the laminar solution w, (for which E; = 1.25). We also note that for r = 38,
the smallest value for which stabilization of w, is possible in the limit of infinitesimal perturbations,
OTD control is not able to annihilate the chaotic attractor. (The calculation was terminated at
t = 1500 to give credibility to this claim.) This is in stark contrast with the previous examples in
Secs. III A-III C, in which choosing r = max(dim &,, dim £) was sufficient to guarantee success
of the control strategy, notwithstanding that this criterion was based on the assumption that the
disturbance amplitude remained small. Kolmogorov flow is thus the first example that we encounter
in which r must be strictly greater than max(dim &,, dim &) for OTD control to annihilate the
attractor. As discussed in Sec. II B, this is a consequence of the fact that in the chaotic regime,
|lw — w,|| is not small: The number of unstable directions on the attractor, or along the path from
the attractor to the target, may well exceed the number of unstable directions close to w,. For
stabilization to be possible, the controller must act on all unstable directions, from the moment
the trajectory leaves the attractor to the final approach to the target. So it is not surprising that in
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some cases, we need a larger number of OTD modes than that prescribed by linearized theory.
However, as noted in Sec. III B, we cannot afford to use fewer modes than max(dim &,, dim &),
because otherwise stabilization close to w, would not be possible.

To determine the critical value of r for which destruction of the chaotic attractor by OTD
control is possible, we proceed by bisection. We must first note, however, that because the original
control law (14) is based on linearization assumptions, there is no guarantee that there exists a
low-dimensional OTD control strategy capable of stabilizing w, for large-amplitude disturbances.
In fact, when linearization does not hold, the only available bound on the critical OTD subspace
dimension is max(dim &,, dim &) < r < d, where d is the dimension of the phase space. So our
hope is that there exists a value of r not too much greater than max(dim &,, dim &) such that (14)
is efficient, although nothing guarantees it a priori. The results are shown in Fig. 9(b). We find that
OTD control with r = 56 is able to stabilize w,. A refined search shows that no fewer than 44 OTD
modes should be included in order to destroy the chaotic attractor.

For r = 44, movie 4 in Ref. [30] shows time series for E; cued to the vorticity distributions of
w and f.. The latter exhibits large-scale coherent structures in the transient interval during which
the trajectory is pulled out of the chaotic attractor (from ¢ = 50 to about 115). At longer times
(after about r = 115), the trajectory approaches the fixed point and the OTD subspace aligns with
the most unstable eigenspace of L,. When w is infinitesimally close to w,, only 38 of the 44 OTD
directions are acted upon by the controller. For r = 56, movie 5 in Ref. [30] and Fig. 9(b) show
that w approaches w, much more rapidly than for » = 44, which suggests that including more OTD
modes in the controller can prevent “overshoot” of the solution and accelerate stabilization. Finally,
we note that the input energy E. required by the control is two orders of magnitude larger for
r = 44 (1106.8) than for r = 56 (78.68). This discrepancy has to do with the fact that stabilization
is achieved much more rapidly in the latter case.

This completes demonstration of robustness of OTD control in situations where the trajectory
initially evolves on an attractor far from the target fixed point. We found no instances in which the
OTD controller had a destabilizing effect on the dynamics. We conjecture that this is because the
OTD modes are computed along the trajectory and therefore are able to adapt to situations in which
the state of the system is not close to the target fixed point. The examples discussed above indeed
made clear that the OTD modes deform significantly as the trajectory visits various regions in the
phase space, including during its journey from the unsteady attractor to the target fixed point.

IV. STABILIZATION OF UNSTEADY FLOWS BY SPATIALLY LOCALIZED OTD CONTROL

The results presented in Sec. III were generated with a control strategy in which it was assumed
that the control had knowledge of, and could act on, every state variable of the system. In other
words, the system was assumed fully observable and fully controllable. As discussed Sec. I, this
approach has limited applicability from the standpoint of conducting experiments, since in practice
the range and number of sensors and actuators are limited by the apparatus. In this section, we
attempt to address this issue and propose a modified OTD control strategy in which the range of
action of the controller is restricted to a small portion of the physical domain and the control law
(including the OTD modes) is computed solely based on the knowledge of the primitive variables
in that subdomain.

A. Formulation of a spatially localized OTD control law

To formulate a practical OTD control law, we assume that the range of actuation and access to
flow data are limited to a convex subdomain € of the physical domain 2 in which experiments
or computations are performed. This assumption immediately excludes a naive control strategy in
which the control force f. would be computed on the entire domain €2 (as in Sec. III) and on which
a mask would be applied that sets the value of f. to zero in € \ € and leaves it unaltered otherwise.
We further assume that the state Z of the system in € is known with exactitude. The question then
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is to find an appropriate formulation for computing the OTD modes in Q, given sole knowledge of
the state in €2.

1. Computation of localized OTD modes

To help us with the formulation, we make a brief incursion in the infinite-dimensional setting.
We consider a generic dynamical system whose evolution obeys 9,z = % (z), where z belongs to
an appropriate function space X defined in € x R* and % is a nonlinear differential operator.
Infinitesimal perturbations about a trajectory obey the variational equation d,v = .Z(z; v), where
v e X and Z(z;v) = dF (z;v) is the Gateaux derivative of .% evaluated at z along the direction v.
The lower triangular OTD system can be written as

i1
du; = L(zu;) — (L (T ui), ui)u; — Z[(g(Z;Mi), ue) + (L @), u)ug, 1<i<r, (30)

k=1

where it is understood that each u; belongs to X and therefore is defined in  x R*. The OTD
equations obtain at every point x € 2, so a fortiori at every x € Q. Therefore, we may use (30)
to compute the OTD modes in Q. The question then arises as to what boundary conditions
should be specified on 92 for the modes. A natural answer is to use homogeneous Dirichlet
boundary conditions. This choice is appropriate for the following reason. Here we have restricted
ourselves to controlling the flow in €, so the control force must vanish outside of the control
domain. However, we recall from Sec. II B that dynamical consistency of the order reduction
demands that the control force belong to the OTD subspace. Hence, use of homogeneous Dirichlet
boundary conditions for the OTD modes guarantees that the resulting control force f, is continuous
across 9.

Use of homogeneous Dirichlet boundary conditions on dQ for the OTD modes is consistent
only if we recover the original OTD modes (i.e., those computed in the full domain €2) in
the limit when Q — Q. For open flows of infinite extent, the far-field velocity components for
the base flow are specified as inhomogeneous Dirichlet boundary conditions [e.g., Eq. (19b)].
In that case, infinitesimal perturbations about the base flow (and likewise, OTD modes) must
satisfy homogeneous Dirichlet boundary conditions in the far field [e.g., Eq. (21b)], so there is no
incompatibility of the boundary conditions as  — . The issue arises when the flow domain has
finite extent, e.g., in physically bounded flows, and in any computation of open flows. In the latter
case, there is no accepted answer to the question of what boundary conditions are appropriate for the
linearized dynamics. The only related investigation of which we are aware was done by Peplinski
etal. [37]. For flow past a circular cylinder at Re = 50, and for other open flows, including Poiseuille
flow and jet in crossflow, Peplinski et al. [37] showed that the effect of boundary conditions on the
most unstable eigenvalues of the linearized operator (i.e., those responsible for linear instability of
the base flow) is minuscule and that only the high-frequency highly damped modes appear to be
significantly affected. Heuristically, this is because the stronger instabilities should not be affected
by the flow conditions in the far field, as long as the computational domain is large enough.

Based on this discussion, we decide to specify homogeneous Dirichlet boundary conditions
for the OTD equation regardless of the domain in which the OTD modes are computed. The
spatially discretized OTD equation retains a form similar to (6), but now U and L are computed
in a subdomain  with homogeneous Dirichlet boundary conditions on 3$2. We will denote these
quantities by U € R"*" and L. € R, respectively, where m is the number of degrees of freedom
associated with Q (m = d when Q = Q). (We note that the OTD modes computed in  satisfy the
orthonormality condition in £2.) This allows us to formulate a control law

£ = UQdiag[—(%; + ) (1)IQ"U'R(z — z,), 31)

where Q and {%;}/_, are the eigenvectors and eigenvalues of (L, + L])/2, respectively, and R €
R™*4 is a rank-m restriction matrix that excises from the full state z those degrees of freedom

053902-18



STABILIZATION OF UNSTEADY FLOWS BY ...

associated with © \ & and retains those in the interior of Q. The presence of the restriction operator
left multiplying the deviation z — z, reflects the fact that only part of the state is accessible. To
facilitate application of the control force to the governing equations (which are defined in €2), we
premultiply f. ¢ by the prolongation matrix RT, which gives

f. b = RTUQdiag[—(%; + ¢)#(A)IQ'U'R(z — z,). (32)

The modified control force (32) is defined in £, by construction vanishes outside of €2, and is C°
continuous across 2.

We note that in a realistic (experimental) setup, actuation is typically achieved using boundary
control (e.g., blowing and suction on the surface of a bluff body [38] or near the upstream edge
of a cavity [39]). However, use of a localized body force such as (32) is far from irrelevant. First,
as others have noted [40], this approach facilitates analysis and evaluation of control performance.
Second, it often is the case that boundary actuation can be represented as a Galerkin superposition of
actuation modes that mimic the effect of a body force [41,42]. Third, this approach has encountered
a great deal of success in a range of flow control problems, including flow past a cylinder [43] and
an airfoil [44], and synthetic jets [45]. We also note that other localized control strategies have been
found quite successful, including use of a splitter plate to manipulate the flow immediately behind a
bluff body in order to mitigate wake separation [46,47]. The addition of a splitter plate aft of a bluff
body can be thought of as enforcement of a discontinuity in the primitive variables along the span
of the splitter plate. This is in contrast to the proposed localized OTD control strategy, in which the
actuation produces no artificial discontinuity in the flow field.

2. Selection of control domain

We now have a recipe to compute the OTD modes in a localized domain based on which we
were able to formulate a localized control law. We must now address the question of how to select
the size and location of the control subdomain. We first note that information related to transient
instabilities is contained in the full-order linearized operator L (which is defined globally in €2). For
hyperbolic fixed points, all this information is retained upon OTD reduction, provided the dimension
of the OTD subspace is large enough [15]. However, this no longer holds when the OTD modes are
computed in a subdomain. So to evaluate the extent to which restriction of §2 to a smaller 2 affects
the instability properties of the linearized operator, we consider a measure of instability based on
the OTD modes.

We assume for the moment that the OTD modes are computed in the full domain 2. We let

Vi) = | Ay ;)] (33)
be the volume of the k-dimensional parallelepiped spanned by the first K OTD modes. Defining
l)j(t) = (Lllj, llj) (34)

as the jth instantaneous OTD eigenvalue, we note that the rate of change of Vi(¢), which
characterizes the instantaneous growth or decay of the reference volume Vi (¢) at time ¢, satisfies

k
dn V(1) S w0 %)
j=1

dt -

As discussed in Ref. [20], the long-time average of (35) coincides with the k-dimensional infinite-
horizon Lyapunov exponent

w® = lim InVi(¢), (36)

t—>o0f — [
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while the one-dimensional infinite-horizon Lyapunov exponent 1 ; associated with the jth edge of
the parallelepiped in (33) is nothing more than

1 t
i = 1lim —— [ v;(r)dr. 37
wy = Jim - | vt (37)
This suggests that the instantaneous OTD eigenvalues v;, or equivalently their long-time averages
W ;j, may serve as indicators to determine how much information associated with instabilities the
OTD subspace captures. Interestingly, for k = d (the dimension of the phase space), we have that

dInVy
dt

which is simply the divergence of the vector field F. Quite obviously, when the operator L is steady
(e.g., evaluated at a fixed point), the volume V; grows like the k£ most unstable eigenvalues of the
operator because the OTD subspace coincides with the most unstable eigenspace &,.

The instantaneous OTD eigenvalues {v;}’_, depend only on the OTD modes and the linearized
operator and are therefore oblivious to whether the OTD modes are computed in the original domain
Q or a localized domain . So we may define the jth localized instantaneous OTD eigenvalue as

vi(t) = (I:l_lj, u;), (39)

—V.F, (38)

where @; is the jth column of U, as well as its long-time average, which we denote by fi;. We
note that y; and fi; are real numbers, so they may be compared with one another. In particular, we
have that fi; — w; as @ — Q. Moreover, there is every reason to believe that for subdomains €
smaller than €2, the localized OTD eigenvalue ji; will differ from its global counterpart ; by some
measurable amount. This observation suggests that the difference between fi; and p; may serve
as an indicator for how much information related to instability the OTD modes are able to capture
when computed in a smaller domain €2. For example, in flow past a cylinder, we expect i ; to greatly
differ from p; if Q is selected as some region in the far field where the flow is uniform, much more
than if Q includes a substantial fraction of the near field where the wake instability develops and the
vortex shedding appears. In the following examples, we provide numerical evidence that the fi;’s
(more precisely, the leading exponent i) are indeed good indicators for selection of the control
domain.

B. Application to bluff-body flows

We return to the flow past a circular cylinder at Re = 50 considered in Sec. III B. We begin
by verifying the claim made by Peplinski e al. [37] that the most unstable eigenvalues of L, are
virtually unaffected by a change in the far-field computational boundary conditions on 9€2. For
the mesh used in Sec. III B, we compute the spectrum of L, by an Arnoldi algorithm for two sets
of far-field boundary conditions. The first set corresponds to the original boundary conditions that
were used in Sec. III B, i.e., homogeneous Dirichlet boundary conditions at the inlet, stress-free
boundary condition at the outlet, and symmetry boundary conditions on the sidewalls. The second
set corresponds to homogeneous Dirichlet boundary conditions specified at the inlet, at the outlet,
and on the sidewalls. For these two sets of boundary conditions, a no-slip boundary condition is
specified on the cylinder surface. Figure 10(a) shows that, consistent with Peplinski et al. [37],
the two unstable eigenvalues responsible for linear instability of w, are largely unaffected by
a change in the far-field boundary conditions. This is important because it is those eigenvalues
that OTD control asymptotically targets. Figure 10(a) also shows that the stable eigenvalues are
much more sensitive to boundary conditions. (Of course, this sensitivity depends on the size of
the computational domain.) Specifically, the real parts of the stable eigenvalues are larger when
homogeneous Dirichlet boundary conditions are specified on d€2. Fortunately, no spurious unstable
eigenvalues have appeared, so this discrepancy (which was also noted by Peplinski ez al. [37]) has
no consequence for our control strategy.
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FIG. 10. For flow past a cylinder at Re = 50, (a) spectrum of L, computed with inflow-outflow-symmetry
boundary conditions (black squares) and homogeneous Dirichlet boundary conditions (red triangles) and
(b) location of control subdomains Q-4 with the spanwise vorticity distribution of w, shown in the
background.

We proceed to investigate what fraction of instability the OTD modes are able to capture when
they are computed in a localized domain Q. We compute long-time averages of the instantaneous
OTD eigenvalues for an eight-dimensional OTD subspace and the four subdomains shown in
Fig. 10(b). The first (Q) coincides with © and therefore serves as a sanity check, as the OTD
eigenvalues in 2 can be directly compared against those computed by the Arnoldi algorithm. The
second (€, = {(x,y) : x € [—1, 8], y € [-3, 3]}) corresponds to a rectangular domain that contains
the cylinder and part of the near wake. The third (Q3 = {(x,y) : x € [1,3], y € [-1, 1]}) corre-
sponds to a square domain that extends over a smaller area in the near wake, immediately behind
the cylinder. The fourth (Q4 = {(x,y) : x € [12, 18], y € [-3, —1]}) corresponds to a rectangular
domain located further downstream where the flow is nearly uniform.

Table I lists the long-time averages ji; of the instantaneous OTD eigenvalues for the four
subdomains introduced above, along with the real part ; of the eight most unstable eigenvalues
of L, computed by an Arnoldi algorithm [the red triangles in Fig. 10(a)]. For a fair comparison,
we use the steady linearized operator L, in the computation of the OTD eigenvalues. Table I shows
that for €2, the OTD eigenvalues i ; agree with the results of the Arnoldi calculation to within 3%.

TABLEI. For flow past a cylinder at Re = 50, real part of the eight most unstable eigenvalues (. ; computed
by an Arnoldi method, compared to the leading eight time-averaged OTD eigenvalues ;g computed in
control subdomain & [cf. Fig. 10(b)] with r = 8.

J i R R, Ry R,

1 0.0181 0.0177 0.0157 —0.4615 —0.5127
2 0.0181 0.0177 0.0157 —0.4615 —0.5385
3 —0.0574 —0.0591 —0.1287 —0.8498 —0.5385
4 —0.0574 —0.0591 —0.1287 —0.8498 —0.5530
5 —0.0939 —0.0940 —0.3765 —0.8668 —0.5530
6 —0.0939 —0.0940 —0.3765 —1.1903 —0.6139
7 —0.1073 —0.1084 —0.4083 —1.1903 —0.6139
8 —0.1073 —0.1084 —0.4083 —1.2436 —0.6432
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FIG. 11. For flow past a cylinder at Re = 50 subject to localized OTD control with r = 8, { = 0.4, and the
control subdomains §; shown in Fig. 10(b), (a) time series of |w — w,|| and (b) detail of the time series for
C;. Control is idle in the interval 0 < ¢ < 100 and active for r > 100.

For Q,, the leading pair of eigenvalues {R1q, ag,} is close to {i1, 12}, but the other eigenvalues
{i1)0,}>3 are not close to {;};>3. For €23 and €24, the eigenvalues are all negative, with fi; o
slightly closer to u; than fi; g, .

To interpret the results in Table I, we apply OTD control to the subdomains {Q;}!_,. In
recognition of the fact that the long-time OTD eigenvalues for Q3 and €, are all negative, we
substitute diag[—(X; + )7 (X;)] with diag(—¢) in (32) so that damping is applied to each of
the OTD directions. If we were to use (32) for €3 and 4, the controller would be idle at long
times because all the i;’s would be negative, and stabilization would therefore be impossible. As
in Sec. III B, we assume that the trajectory initially evolves on the limit cycle and activate OTD
control at + = 100. For r = 8 and ¢ = 0.4, Fig. 11(a) shows that the localized OTD controller is
able to stabilize w, globally for Q;, Q,, and Q3 (cf. movie 6 in Ref. [30]). These are cases in which
the control domain extends over flow regions that are relevant to the overall dynamics. By contrast,
for the poorly selected domain €24, OTD control fails to stabilize w,. For the three subdomains for
which stabilization is achieved, Figs. 11(a) and 11(b) show that the approach to w, is faster when
the control subdomain is larger. The input energy E. normalized by the size of the control domain
is found to be 8.04 x 107*, 2.24 x 1073, and 2.46 x 1073 for Q, Q,, and Q3, respectively. These
numbers suggest that use of a localized controller does not necessarily lead to a reduction in power
requirement, largely because the approach to w, is slower for the localized controllers considered
here [cf. Fig. 11(a)].

The results in Table I and Figs. 11(a) and 11(b) suggest that to achieve stabilization, the OTD
control subdomain should cover a portion of the computational domain that is relevant to the
instability mechanism. Here the relevance of a subdomain Q can be characterized by the leading
time-averaged OTD eigenvalue ft; (cf. Table I). The closer j1; is to the actual Lyapunov exponent
u1, the more efficient the OTD controller should be. Of course, the values reported in Table I
suggest that a larger control subdomain is more efficient, since fi; o, is much closer to u; than
ity q,- However, the fact that OTD control in £2; also leads to stabilization shows that this criterion
is best used for comparing two candidate subdomains of identical dimensions, rather than to decide
on the absolute “worthiness” of a subdomain.

In light of this, it is natural to ask whether a strategy can be proposed for optimally selecting
the control subdomain, given a particular subdomain size. To this end, we consider a subdomain Q
with fixed dimensions and systematically study how varying the location of 2 affects the leading
eigenvalue ji;. Specifically, we consider a square subdomain extending 2D in the streamwise and
cross-stream directions (with the sidewalls parallel to the y axis) and vary the location of its center
(x¢, ¥c). Here we do not attempt to solve the full optimization problem, but rather consider 15
combinations of x, and y., with x./D ranging from 1 to 5 in increments of 1 and y./D ranging
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o, =—1.382 Ty =—1.077 i =—1.117 fi, =—1.227 fiy =—1.304
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FIG. 12. For flow past a cylinder at Re = 50, leading time-averaged OTD eigenvalue fi; computed with
r = 8 on various subdomains extending 2D in the streamwise and cross-stream directions (black bounding
boxes). The spanwise vorticity distribution of w, is shown in the background.

from —1 to I in increments of 1. Figure 12 shows that, of the 15 (x., y.) pairs considered, those for
which the subdomain is not symmetric about the midplane (i.e., those with y. # 0) and those for
which the subdomain is located several diameters downstream of the cylinder center, are associated
with smaller values of ji; than otherwise. The combination of x. and y. for which fi; is the largest
is (x¢, y.) = (2D, 0), corresponding to a subdomain located immediately behind the cylinder rear
stagnation point (this domain is actually 3). For this (x., y.) pair, Figs. 11(a) and 11(b) and movie
6 in Ref. [30] showed that OTD control was able to stabilize w,. The results in Fig. 12 thus suggest
a strategy for selecting the location of the OTD controller when the size of the control subdomain
is prescribed: The optimal subdomain is the one for which fi; is largest. Interestingly, the optimal
control subdomain for the (x., y.) pairs considered in Fig. 12 nearly coincides with the control
volume used by Tadmor et al. [40] for the same flow. These results also suggest possible connections
between the optimal OTD control subdomain and flow regions in which the flow is most receptive
or sensitive [10,48,49]. We leave exploration of this issue to future investigation.

Finally, we apply the above methodology to flow past a NACA 0012 airfoil with o = 10°,
Re = 1000, and computational parameters identical to those used in Sec. ITII C. We consider a square
control subdomain with fixed dimensions (0.5L. in the streamwise and cross-stream directions)

i, =—1.510 i, =—1.043 i, =—1.100 i, =—1.546 i, =—2.050
L — | — | e | — , —
iy =—4.232 i, =—3.621 iy =—3.378 iy =—4.348 iy =—4.142

| T—| T <— —— -

FIG. 13. For flow past a NACA 0012 airfoil with @ = 10° at Re = 1000, leading time-averaged OTD
eigenvalue j1; computed with r = 8 on various subdomains extending 0.5L, in the streamwise and cross-stream
directions (black bounding boxes). The spanwise vorticity distribution of w, is shown in the background.
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FIG. 14. For flow past a NACA 0012 airfoil with @ = 10° at Re = 1000, detail of the time series of C, for
a trajectory initialized on the limit cycle and subject to localized OTD control with » = 8 and { = 3.4 acting
in the optimal subdomain identified in Fig. 13 (x, = 1.5L, and y. = 0.05L,). Control is idle for r < 100 and
active for ¢ > 100.

and ten combinations of (x., y.) for the location of its center, with x./L. ranging from 1.25 to
2.25 in increments of 0.25 and y./L. ranging from —0.2 to 0.05 in increments of 0.25. Figure 13
shows that the leading OTD eigenvalue fi; follows a similar trend as in the cylinder flow. In
particular, ji; is larger for subdomains located immediately behind the airfoil and encompassing
the two recirculation bubbles. For the optimal (x., y.) pair considered in Fig. 13 (x, = 1.5L. and
y. = 0.05L,), Fig. 14 shows that OTD control stabilizes the flow with no difficulty, at a cost of
E, = 0.716. When normalized by the size of the control subdomain, this cost becomes 2.864. (For
a controller with the same parameters but acting in the entire domain, the normalized cost is found
to be 2.56 x 1073.)

V. CONCLUSION

In this work, we investigated stabilization of unsteady flows by a reduced-order control algorithm
based on the optimally time-dependent modes, a set of evolving modes that naturally track with
directions of transient and persistent instabilities along a given trajectory. Optimally time-dependent
control had already been used to suppress transient and asymptotic instabilities of a fixed point of
the governing equations in Ref. [15], but the results presented therein pertained to small-amplitude
disturbances and hence relied on the assumption that the dynamics of the system approximately
obeyed the linearized equations. Thus, it was not clear how robust the proposed control algorithm
was to disturbances with larger amplitude. Moreover, the authors in Ref. [15] assumed the OTD
controller to be omniscient and omnipotent, which is rarely the case in practice. They noted that
one possible improvement to their approach would be to formulate an OTD control law that only
acts in part of the physical domain. The present work aimed to address these two questions, namely,
robustness and confinement of the control.

We began with an investigation of robustness of the control law proposed in Ref. [15]. Rather than
considering small-amplitude perturbations, we assumed that the trajectory had already been ejected
from the unstable fixed point and was evolving on a long-time unsteady attractor. We applied OTD
control to determine whether it was possible to annihilate the attractor and steer the trajectory back
toward the fixed point, notwithstanding that the latter may lie quite far from the attractor on which
the trajectory initially evolves. We considered a low-dimensional system mimicking transition to
turbulence and three high-dimensional fluid flows for which the temporal regularity of the attractor
in the absence of control ranged from time periodic to chaotic. In all these cases, we found that OTD
control was able to destroy the attractor and drive the trajectory toward the target fixed point. For
the low-dimensional system and the time-periodic fluid flows, stabilization was achieved using the
smallest possible OTD subspace as predicted by linear theory. For the chaotic system, however, we
had to include a number of OTD modes larger than that prescribed by linearized theory. In passing,
we proposed a modification of the original control law by Blanchard er al. [15] that eliminated
temporal discontinuities in the control force.
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We went on to formulate an OTD control law in which the OTD modes were computed in
a subdomain of the physical domain of interest. This was done in recognition of the fact that
computing the OTD modes in a subdomain yields a control force that is localized in space, which
makes the approach more attractive from the standpoint of experiments. Computation of the OTD
modes in a localized domain required specification of boundary conditions, and we argued that
homogeneous Dirichlet boundary conditions were appropriate to perform comparison between
various control subdomains. We also showed that the long-time average of the leading instantaneous
OTD eigenvalue is a good indicator for selecting the location of the control subdomain once the
extent of the latter has been decided. Interestingly, for the two bluff-body flows investigated, this
indicator suggested that the control subdomain should be located in the near wake, no more than a
few characteristic lengths behind the object. For these flows, localized OTD control was able to steer
the trajectory toward the fixed point and stabilize the wake. Possible improvements of the localized
OTD control strategy include state and OTD modes reconstruction using sparse measurements as
well as actuation on the object surface in the form of time-dependent boundary conditions.

We conclude with a few remarks on potential applications of OTD control in fluid flows, besides
stabilization of a fixed point of the Navier-Stokes equations. First, we recall that the OTD modes
have been used as precursors for extreme events in turbulent flows [22]. In principle, they could also
be incorporated into control algorithms designed to suppress these extreme events, which would
be a first step toward taming turbulence. One approach could be to transpose the control strategy
proposed here to situations in which OTD control could prevent the system from executing large
excursions from the mean state of the turbulent attractor. Second, we note that in the majority of
flow control applications, it is not the whole state of the system that is of interest, but rather some
observable, such as drag, lift, or skin friction. In its current manifestation, the OTD framework
applies to the phase space, but it could presumably be extended to the space of observables, merging
with ideas from Koopman theory. This could lead to the formulation of reduced-order algorithms
that specifically target instabilities of some observable without having to compute or reconstruct the
full state. Such algorithms would pave the way for the design of efficient and practical controllers
for drag reduction in turbulent flows.
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