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We study the deformation and breakup of an axisymmetric electrolyte drop which is
freely suspended in an infinite dielectric medium and subjected to an imposed electric
field. The electric potential in the drop phase is assumed to be small, so that its governing
equation is approximated by a linearized Poisson-Boltzmann or modified Helmholtz
equation (the Debye-Hückel regime). An accurate and efficient boundary integral method
is developed to solve the low-Reynolds-number flow problem for the time-dependent drop
deformation, in the case of arbitrary Debye layer thickness. Extensive numerical results
are presented for the case when the viscosity of the drop and surrounding medium are
comparable. Qualitative similarities are found between the evolution of a drop with a thick
Debye layer (characterized by the parameter χ � 1, which is an inverse dimensionless
Debye layer thickness) and a perfect dielectric drop in an insulating medium. In this
limit, a highly elongated steady state is obtained for sufficiently large imposed electric
field, and the field inside the drop is found to be well approximated using slender-body
theory. In the opposite limit χ � 1, when the Debye layer is thin, the drop behaves as a
highly conducting drop, even for moderate permittivity ratio Q = ε1/ε2, where ε1, ε2 is the
dielectric permittivity of drop interior and exterior, respectively. For parameter values at
which steady solutions no longer exist, we find three distinct types of unsteady solution
or breakup modes. These are termed conical end formation, end splashing, and open
end stretching. The second breakup mode, end splashing, resembles the breakup solution
presented in a recent paper [R. B. Karyappa et al., J. Fluid Mech. 754, 550 (2014)]. We
compute a phase diagram which illustrates the regions in parameter space in which the
different breakup modes occur.
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I. INTRODUCTION

The behavior of a viscous liquid drop immersed in a viscous surrounding fluid and acted on
by an imposed electric field is a classical problem which has been extensively studied for more
than one hundred years. It is known that a mismatch in electrical properties between the fluids
results in a jump in electric stress at the drop interface. In the case of a drop subjected to a uniform
far-field electric field, nonuniform tractions at the drop surface lead to deformation of the interface
and, for a sufficiently large imposed field, breakup of the drop. This problem arises in a number
of important applications, including electrosprays, electrohydrodynamic atomization, breakup of
droplets in thunderstorms, microfluidic processes, and others. A thorough review of the topic can
be found in Refs. [1–5].
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For either the case of a perfect dielectric or a perfectly conducting drop in an insulating medium,
the electric field modifies the normal stress at the interface but does not affect the tangential stress.
The normal interfacial electric stress is balanced by surface tension, but the lack of a tangential
electric stress to balance viscous stresses means that there can be no fluid flow when the drop
reaches a steady-state shape. This leads to prolate steady-state drop shapes, as shown in a number
of early studies [6–11]. A theoretical prediction of the steady-state solution branch based on a
spheroidal approximation of the equilibrium drop shape is given in Refs. [10,12]. Above a critical
permittivity ratio Qc � 20.8, the theoretical steady solution branch forms an S shape and is no longer
single valued. Time-dependent boundary integral computations [13] of dielectric or nonconducting
drops for Q greater than this critical value, starting from a spherical shape, converge to steady-state
profiles on the solution branch for sufficiently small electric field strength as measured by the electric
capillary number Eb = ε2E 2R/γ , where E is the applied field strength, R is the undeformed drop
radius, and γ is the surface tension. However, beyond a critical electric field strength Ec

b associated
with the first turning point on the solution branch, the evolving drop forms a pointed tip and
the numerics break down before reaching the steady-state shape. This gives, in effect, a critical
permittivity ratio Qc and electric field strength Ec

b above which steady drop shapes are no longer
observed. We note that steady-state shapes on the upper branch could be obtained in the numerics if
the initial drop shape was sufficiently close to equilibrium [13] or by using other models [14]. When
Q is less than the critical value, the boundary integral computations converge to the steady state for
any electric field strength.

The pointed drop shape that occurs above a critical permittivity ratio Q and electric field strength
was first investigated by Taylor for conducting water droplets [10] and is known as a Taylor cone.
Later theoretical work includes predictions of the conical end angles of a Taylor cone [15–18]. It is
worth noting that Taylor’s analysis [10] is in fact based on a local solution that assumes a steady or
equilibrium cone shape while in experiments the dynamics is often observed to be unsteady, with
a thin, charged fluid jet emitted from the end of the conical or pointed tip in a process known as
tip streaming [19]. A recent review on the topic of Taylor cones in two-phase flow can be found in
Ref. [20].

In addition to the prolate drop profiles mentioned above, experiments [9] in weakly conducting
fluids show the presence of oblate drop shapes and nonzero fluid velocity even after a drop has
reached a steady-state shape. These characteristics are not captured by the perfect dielectric and
perfect conductor models. To explain these features, Taylor proposed the so-called leaky dielectric
[21] or Taylor-Melcher (TM) model [2] for weakly conducting fluids, which has been widely
and successfully applied to many problems in electrohydrodynamics (see, e.g., Refs. [22–28] in
addition to the references below). The leaky dielectric model allows charge to accumulate at a
fluid-fluid interface and tangential electric stresses generated by this surface charge along with
charge convection are found to be important for predicting oblate steady-state drop shapes, steady
fluid motion, and unsteady breakup in isolated drops acted on by an electric field [29,30]. The model
has been used extensively in numerical studies of the steady deformation and unsteady breakup of
an isolated drop in an imposed electric field; see, e.g., Refs. [13,29–33]. The results of these studies
are in qualitative agreement with experiments involving weak electrolytes, although quantitative
agreement is sometimes lacking. In particular, the numerical simulations capture the two main drop
breakup modes observed in experiments [9,11,34,35]. These are (i) end pinching, in which the drop
elongates and forms fluid blobs at its ends that eventually pinch off, and (ii) tip streaming, i.e.,
the formation of a Taylor cone, followed by emission of a thin charged fluid jet or a series of small
droplets from the pointed tip. Tip streaming from a viscous drop or fluid layer in an imposed electric
field has been studied by finite element numerical simulations of the leaky dielectric model [19,29].
In particular, these studies demonstrate the importance of charge convection and tangential electric
stress at the interface in the phenomena of fluid ejection from Taylor cones. However, various
experiments also report discrepancies between the TM model and experimental results (see, for
example, Vizika and Saville [36] and Ha and Yang [34]), which suggest the necessity of further
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modeling work. A thorough review on the TM model can be found in Melcher and Taylor [2],
Saville [37], and Vlahovska [38].

In recent years, there has been renewed interest in more detailed electrokinetic models for
systems of drops and bubbles which incorporate equations governing the dynamics of bulk ionic
charge. Theoretical studies have often focused on the asymptotic analysis in the thin Debye layer
limit of the electrokinetic equations for various physical problems [39–42]. There has been much
less work on the direct numerical simulation of the full electrokinetic equations. Berry et al. [43]
developed a combined level-set/volume-of-fluid method to simulate the Poisson-Nernst-Planck
electrokinetic model for liquid-liquid interfaces. Pillai [14,44] employed the method of Ref. [43]
to study the deformation and breakup of an isolated electrolyte drop suspended in an insulating
phase and acted on by an imposed electric field. Their results include computations of tip-streaming
drops. Related numerical work includes Refs. [45–47]. A strong motivation for theoretical and
numerical analysis of the electrokinetic models is their significance in microfluidic devices, for
which electrokinetic techniques have been among the most important methods for the manipulation
of drops and bubbles [48].

In this paper, we modify the traditional model for a perfect dielectric drop in an insulating
medium by assuming that the fluid inside the drop is an electrolyte, while keeping the exterior fluid
as nonionic. We avoid the difficulty of solving the full nonlinear problem for the ion dynamics, as
in Refs. [14,44], by employing the Debye-Hückel approximation for the electric potential inside the
drop, which results in a linearized Poisson-Boltzmann or modified Helmholtz equation. Our model
is therefore less general than the full electrokinetic model of Refs. [14,44] but has the advantage that
the governing equations allow a Green’s function formulation, which enables the development and
application of a highly accurate boundary integral numerical method. This surface-based numerical
method can effectively compute for much thinner Debye layers (i.e., for χ � 1) than is possible
for the full electrokinetic model. A similar model was previously presented by Hua et al. [49], but
there the focus is on analytical theory for small drop deformation. We go beyond this and carry out
a more comprehensive numerical investigation.

Numerical computations based on a boundary integral formulation for the problem of freely
suspended drops in an electric field have been popular due to their high accuracy and relative
simplicity [13,16,30,33,50–54]. When the electric potential is governed by Laplace’s equation,
there is an analytical expression for the axisymmetric version of the Green’s function, i.e., the
azimuthal part of the surface integral can be done analytically. This reduces the dimension of
the boundary integrals and leads to a significant reduction in computational cost. However, this
is not the case for the modified Helmholtz equation that arises here from linearizing the Poisson-
Boltzmann equation. Although accurate numerical schemes to solve boundary integral formulations
of Laplace and Helmholtz equations in axisymmetric geometries have been developed (see Ref. [55]
and references therein), one of the main contributions in this paper is to develop a scheme to
accurately and efficiently compute the Green’s function for the modified Helmholtz equation and
apply it to a moving boundary problem. In this way, we extend previous studies to assess the effect
of ions on drop deformation in the case of arbitrary Debye-layer thickness. For numerical efficiency,
our results are specialized to the case when the viscosity of the drop and surrounding medium are
comparable.

Along with the numerical simulations, we also carry out a slender-body analysis (in the case of
highly elongated drops) starting from the boundary-integral equations to approximate the electric
field inside the drop. A correction term to the results of Ref. [15] that takes into account the presence
of ions is derived, and the result is shown to agree reasonably well with simulations of the full
problem.

The analysis and numerics are used to find steady-state solution branches and unsteady breakup
modes over a wide range of parameter values. These solutions are found to be in good agreement
with previous computations [13,17,51] in the limiting cases of a perfect conductor or perfect di-
electric, but exhibit some differences when compared to simulations based on the full electrokinetic
model in Ref. [14]. For parameter values at which steady solutions no longer exist, we find three
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distinct types of unsteady solution or breakup modes, which are termed conical end formation, end
splashing, and open end stretching (see Sec. IV C for examples of these breakup modes). Similar
breakup phenomena have been previously reported in simulations of perfect conductor, perfect
dielectric, and leaky dielectric models [13,17,30,53]. However, there are some important differences
in the results here.

To maintain simplicity, we do not allow for charge to accumulate at the interface. Thus, like the
perfect dielectric and perfect conductor models, there is no tangential electric stress at the interface
(see Sec. II for a detailed discussion). The general expectation is that drop breakup by tip streaming
or pinch-off does not occur in the absence of such tangential interface stresses [29]. Although our
model does not capture the tip streaming of thin charged jets from a Taylor cone, as in Refs. [14,29],
a main result of this paper is the computation of breakup modes without tangential interface stress, as
shown in Sec. IV C. One of these breakup modes, end splashing, involves the formation of a Taylor-
cone-like structure, followed by the emission or discharge of a thin axisymetric sheet of fluid which
subsequently can pinch off. This breakup mode is not seen in computations of the leaky dielectric
model, but is very similar to that observed in experiments and simulations of an electrokinetic model
in Ref. [56], based on a pendant drop geometry. A similar breakup mode is observed in experiments
on high conductivity drops and simulations of a perfect conductor model at small viscosity ratio
(Q → ∞ and λ � 0.05) in Ref. [53]. Here, however, we find that end splashing also occurs at a
finite conductivity ratio Q and for unit viscosity ratio λ = 1, suggesting that electrokinetic effects
can promote this type of breakup. Preliminary computations using our model at a small viscosity
ratio, to be reported elsewhere, also exhibit the end-splashing breakup mode.

The model presented here is formally valid for small potential, or more precisely, when
eφ/(kBT ) � 1. However, we will sometimes also apply it to cases with large deformation and
potentials (e.g., Fig. 10), which may be beyond its range of formal validity. Nevertheless, qual-
itative similarities between solutions to our model and behavior observed in the experiments of
Refs. [53,56], even at relatively large potentials, are encouraging. A discussion of the Debye-Hückel
theory and its limitations is given in Ref. [57].

The paper is organized as follows. We begin in Sec. II with a complete description of the
equations governing the electric field, viscous flow, and the boundary conditions. In Sec. III, the
problem is reformulated as a system of boundary integral equations and the numerical method
is introduced. Numerical results are presented in Sec. IV. We summarize the effect of ions on
the drop’s steady deformation and unsteady breakup behavior. Closing remarks are provided in
Sec. V. In Appendix A, we present the formulations of the Green’s function and its derivatives for
the modified Helmholtz equation, as well as results demonstrating the accuracy of our numerical
scheme in computing the Green’s functions. In Appendix B, we present a brief derivation of the
small deformation theory for our problem. This is used to compare with and partially validate our
numerical results. Finally, details of the slender-body analysis are presented in Appendix C.

II. MATHEMATICAL FORMULATION

A. Electrokinetic equations

We consider the dynamics of an electrolyte fluid drop with viscosity λμ (region 1) immersed
in a dielectric (nonionic) medium with viscosity μ (region 2), as shown in Fig. 1. Cylindrical
polar coordinates x = rer + zez are used with the z axis aligned with the drop’s axis of symmetry.
The surrounding medium is considered as a perfect dielectric and the electric potential φ2 satisfies
Laplace equation with a far-field condition φ2 → −E z due to the applied electric field E = E ez.

In the drop phase, the electric potential is governed by Poisson’s equation,

−ε1∇2φ1 = ρ =
N∑

i=1

ezici, (1)
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FIG. 1. An electrolyte fluid drop with viscosity λμ is surrounded by a nonionic fluid with viscosity μ. A
constant electric field, directed along the z axis, is imposed in the far field.

with ε1 being the dielectric constant, ρ being the bulk volume charge density, and zi being the
valence of species i and e the elementary charge. We assume that the ions are in thermoequilibrium
and that their concentration follows a Boltzmann distribution [58–60],

ci = c0
i e−zie(φ1−φ0 )/(kBT ), (2)

where φ0 is a reference potential, which is set to zero without loss of generality, kB is the Boltzmann
constant, and T is the absolute temperature. We consider a symmetrical electrolyte with z1 = −z2 =
z and c0

1 = c0
2 = c0, which leads to an odd symmetry of the potential φ1 with respect to the plane

z = 0, where φ1 ≡ 0. We take c0
i to be the constant bulk concentration of ion species i far from the

interface when this bulk state exists (e.g., for a thin Debye layer), and otherwise take it to be the ion
concentration on the plane z = 0. The neutral bulk condition

∑2
i=1 zic0

i = 0 is assumed to hold. We
introduce

β = E eR

kBT
, (3)

which measures the ratio of the imposed field potential over the thermal potential. Using R, E R, and
c∗ as the characteristic length, electric potential, and ion concentration in Eq. (1), where R is the
unperturbed drop radius, E is the uniform electric field at infinity, and c∗ = ∫

	
ci dV/

∫
	

dV is the
average concentration of ion species i in drop region 	 (which is the same for i = 1, 2), we obtain
the Poisson-Boltzmann equation in dimensionless form

−∇2φ1 = eRc∗

ε1E

2∑
i=1

zic
0
i e−βziφ1 . (4)

In the case of small applied (drop phase) potential |βφ1| � 1, the ion concentration is approximated
as ci ≈ c0

i (1 − βziφ1) and ionic mass conservation in the drop combined with symmetry of the
potential φ1 gives c0

i = 1. Thus, Eq. (4) simplifies at leading order to the linearized Poisson-
Boltzmann or modified Helmholtz equation,

∇2φ1 = χ2φ1, (5)

where

χ2 = 2z2e2R2c∗

ε1kBT
. (6)
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This linearized equation, also known as Debye-Hückel approximation, is widely used in various
problems involving electrolyte solutions [49,58–63]. An advantage of (5) is that there is a Green’s
function representation of the solution, which is evaluated using a highly accurate boundary integral
numerical method. Since drop breakup can require large applied voltage, we will sometimes apply
the approximation (5) in situations in which it is not formally valid.

At the drop interface, we have the boundary conditions

φ1 = φ2, Qφ1n = φ2n, (7)

where Q = ε1/ε2. This specifies that no ionic charge accumulates at the interface, a condition used
in the electrolyte-drop model of Ref. [49].

B. Fluid motion and stress boundary conditions

The fluid motion is approximated by Stokes equations, which are nondimensionalized using the
spherical drop radius R for lengths, γ /R for pressure, E R for potential, and γ /μ for velocities, with
γ being the surface tension. After replacing ∇2φ1 by χ2φ1 from (5), we have

−∇p1 + αφ1∇φ1 + λ∇2u1 = 0, ∇ · u1 = 0, (8)

−∇p2 + ∇2u2 = 0, ∇ · u2 = 0. (9)

In the above,

α = χ2EbQ with Eb = ε2E
2R/γ , (10)

where the latter quantity is an electric capillary number which measures the ratio of Maxwell or
electric stress to capillary pressure. The stress balance on the interface is written as

[T · n]1
2 = [σ · n]1

2 − � f e = −κn, (11)

where σ = −pI + 2λie is the hydrodynamic stress tensor with λ1 = λ and λ2 = 1, e is the
symmetric part of the velocity gradient, n is the outward unit normal, and κ is the interface curvature,
taken as positive for a convex surface. Here [·]1

2 denotes the jump across the interface, with the
convention that it is the limit as the interface is approached from the interior domain (region 1)
minus the limit from the exterior domain (region 2). The Maxwell stress, or electric contribution to
the stress balance, is directed normally to the interface and is given by

� f e = Eb(Q − 1)

2

(
QE2

1n + E2
t

)
n, (12)

where E1n and Et are normal and tangential components of electric field E = −∇φ in region
1 respectively (see works by Sherwood [13], Lac and Homsy [33], Miksis [50]). The jump in
tangential stress at the interface is ε2Et (E2n − QE1n) [13] and is zero in view of the boundary
condition (7) for a charge-free surface. Far from the drop, φ2 → −z as |x| → ∞.

III. BOUNDARY INTEGRAL METHOD

A. Integral equations

We reformulate the electrostatic problem as a system of boundary integral equations using
classical potential theory [64]. Denote the Green’s function for the modified Helmholtz equation
by Gχ

3D; expressions for this Green’s function are presented in Appendix A. The electric potentials
φ1 and φ2 in regions 1 and 2 satisfy

1

2
φ1(x0) +

∫
S
φ1(x)

∂Gχ

3D

∂nx
(x, x0) dS(x) =

∫
S

∂φ1

∂n
(x)Gχ

3D(x, x0) dS(x), (13)
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−1

2
[φ2(x0) − φ∞(x0)] +

∫
S
[φ2(x) − φ∞(x)]

∂G0
3D

∂nx
(x, x0) dS(x),

=
∫

S

∂ (φ2 − φ∞)

∂n
(x)G0

3D(x, x0) dS(x), (14)

where φ∞ = −z is the imposed far-field electric potential. We note that setting χ = 0 in (13)
recovers the case of a perfect dielectric drop, in which electrolyte is not present in the interior
(see Ref. [50]).

The standard boundary integral formulation of the Stokes flow problem for the fluid velocity is
modified to include the electrostatic forcing. Starting from the Lorentz reciprocal relation [65], we
obtain

u1(x0) = α

8πλ

∫
V

φ1(x)∇φ1(x) · J(x, x0) dV (x) + 1

8πλ

∫
S

n(x) · σ1(x) · J(x, x0) dS(x)

+ 1

8π

∫
S

n(x) · K(x, x0) · u(x) dS(x), (15)

u2(x0) = − 1

8π

[∫
S

n(x) · σ2(x) · J(x, x0) dS(x) +
∫

S
n(x) · K(x, x0) · u(x) dS(x)

]
, (16)

where J and K are the Stokeslet and Stresslet Green’s functions for Stokes flow, and x0 is located
in regions 1 and 2 in (15) and (16), respectively. The first term on the right-hand side of (15) is
transformed into a surface integral by using the divergence free property of the Stokeslet, namely,

∇ · J = 0, (17)

which leads to ∫
V

φ1(x)∇φ1(x)J(x, x0) dV (x) = 1

2

∫
V

∇x · [
φ2

1 (x)J(x, x0)
]

dV (x), (18)

= 1

2

∫
S
φ2

1 (x)J(x, x0) · n(x) dS(x), (19)

where (19) follows (18) by the divergence theorem. As x0 approaches interface, the integral
equations can be combined to one equation by using (11),

u(x0) = − 1

4π (1 + λ)

∫
S

J(x, x0) · �Fe(x) dS(x) − 1 − λ

4π (1 + λ)

∫
S

n(x) · T (x, x0) · u(x) dS(x),

(20)

where φs is the electric potential on the interface S and

�Fe =
(

κ − α

2
φ2

s

)
n − � f e, (21)

where α is given in (10) and � f e is given by (12). Similar integral equation formulations for a
viscous drop in an electric field have appeared in Refs. [13,33,50], and Refs. [65,66] provide more
details in the derivation, as well as numerical implementations. Note that the additional term αφ2

s
in (21) is a consequence of the electric body force in the Stokes equation. This term can also be
understood via a modified or effective pressure p̂1 = p1 − α

2 φ2
1 in (8), which similarly implies (21).

In the limit of a perfect conductor (χ → ∞), φ1 = 0, whereas in the limit of a perfect dielectric
drop, χ → 0; hence, α → 0. Therefore, this additional term vanishes in both extreme cases.
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B. Computation of Green’s functions

The axisymmetric version of the free space Green’s function for Laplace’s equation (defined as
the azimuthal integral of the 3D Green’s function) can be expressed in closed form; see, for example,
Ref. [66]:

G0(z, z0, r, r0) =
∫ 2π

0
G0

3D(z, z0, r, r0, φ, φ0)dϕ = K (k)

π
√

(z − z0)2 + (r + r0)2
, (22)

where G0
3D(z, z0, r, r0, φ, φ0) = [(z − z0)2 + r2 + r2

0 − 2rr0 cos(φ − φ0)]−1/2/(4π ) is the Green’s
function for the 3D Laplace’s equation in cylindrical coordinates, k2 = 4rr0/[(z − z0)2 + (r + r0)2],
and k � 1. Here K (k) is the complete elliptical integral function of first kind,

K (k) =
∫ π/2

0

dθ√
1 − k2 cos2 θ

. (23)

The axisymmetric Green’s function for the modified Helmholtz equation, however, does not have
an analytical expression. Starting from the Green’s function for the modified Helmholtz equation in
cylindrical coordinates, we write the axisymmetric version as follows:

Gχ (z, z0, r, r0) = 1

4π

∫ 2π

0

exp
(−χ

[
(z − z0)2 + r2 + r2

0 − 2rr0 cos u
]1/2)[

(z − z0)2 + r2 + r2
0 − 2rr0 cos u

]1/2 du

= 1

4π

∫ 2π

0

exp(−χ [(z − z0)2 + (r + r0)2 − 4rr0 cos2(u/2)]1/2)

[(z − z0)2 + (r + r0)2 − 4rr0 cos2(u/2)]1/2
du

= k

2π (rr0)1/2

∫ π/2

0

exp(−�[1 − k2 cos2 θ ]1/2)

(1 − k2 cos2 θ )1/2
dθ, (24)

where � = 2χ (rr0)1/2/k. When |�| � 1 or |�| � 1 in (24), the Green’s function is expanded in
an appropriate series for the numerical calculations in Ref. [67]. In the present study, we focus on
the direct evaluation of (24) by proper quadrature.

Substitution of t = cos θ into (24) results in

Gχ (z, z0, r, r0) = k

2π (rr0)1/2

∫ 1

0

exp(−�[1 − k2t2]1/2)

(1 − k2t2)1/2

dt

(1 − t2)1/2
. (25)

Gauss-Chebyshev quadrature would seem a natural choice to integrate (25), treating (1 − t2)−1/2

as the weight function. However, our experience shows that Alpert quadrature [68] gives faster
convergence and better performance. By recognizing (1 − t )−1/2 as a singular function inside the
integrand and setting t = 1 − x, (25) can be rewritten as

Gχ (z, z0, r, r0) = k

2π (rr0)1/2

∫ 1

0

exp(−�[1 − k2(1 − x)2]1/2)

[1 − k2(1 − x)2]1/2(2 − x)1/2
x−1/2dx. (26)

Alpert quadrature uses a hybrid Gauss-trapezoidal quadrature rule for the integration
∫ 1

0 f (x)dx,
where f (x) = g(x)x−1/2 and g(x) is regular. The quadrature follows the formula (see Ref. [68] for
more details)

T jkab
n ( f ) = h

(
j∑

i=1

ui f (vih) +
m−1∑
i=0

f (ah + ih) +
k∑

i=1

wi f (1 − xih)

)
, (27)

where the nodes v1, . . . , v j, x1, . . . , xk and weights u1, . . . , u j,w1, . . . ,wk are given for known
j, k, a, b, which are related to the convergence order, here chosen as fourth order. The total number
of nodes is denoted by n = j + m + k. This method is of high-order accuracy when the Green’s
function is regular.
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As k → 1, Green’s function (24) is close to singular and exhibits the same singular behavior
as (22) for Laplace’s equation. Simple calculation shows that the singular behavior of the normal
gradient of Gχ is also the same as that of G0. We add and subtract the singular Laplace kernel to
obtain

Gχ (z, z0, r, r0) = k

2π (rr0)1/2

∫ 1

0

exp(−�[1 − k2t2]1/2) − 1

(1 − k2t2)1/2

dt

(1 − t2)1/2
+ G0(z, z0, r, r0), (28)

so that the first term is regular, and we use the hybrid quadrature method as described above.
Meanwhile, the singularity in G0 is treated in a standard way, via Gauss-log quadrature [26,69].
Expressions for the gradient of the Green’s function are given in Appendix A, and the method of
treating the singularity in derivatives of Gχ is the same as for Gχ . Furthermore, in Appendix A we
provide sample calculations of both the Green’s function and its derivatives, which demonstrates
the accuracy of our numerical method. We note that for thin Debye layers � � 1, and the main
contribution to the integral in (28) is localized near t = 1 and k = 1. Resolution studies show that
our computation of the Green’s function has error of about 10−6 for � up to 1414, when n = 2048
is employed in the Alpert quadrature.

C. Numerical procedure

In this paper, we focus on the deformation of axisymmetric drops. The azimuthal part of the
surface integrations in each of the integral equations is carried out analytically, except for the ones
with Green’s functions from the modified Helmholtz equations, for which Alpert quadrature is
implemented as described above. The drop interface is discretized by N + 1 points, which divide it
into N segments. The discretized equations assume the unknown “densities” φs and u vary linearly
between node points along the interface. On each boundary element, this gives an integral of the
product of a linear (density) function and the Green’s function. Integrations of this product are
carried out in double precision using six-point Gaussian quadrature when the element is regular.
As x0 → x, the integrand is logarithmically singular, and Gauss-log quadrature is used to handle
the singularity (see also the implementation in Ref. [26]). The normal and curvature along the drop
interface are calculated by fitting cubic splines, which is similar to the work of Stone and Leal [70].

The linear system that results from discretizing an integral equation is solved by using the
FORTRAN subroutine dgesv in LAPACK. After obtaining surface velocities, the drop interface is
advanced by Euler’s method via the kinematic condition. The full method is second-order accurate
in space and first-order accurate in time. A solution is deemed to be in a steady state when
max|un| < 10−4 along the drop interface. For the steady-state calculations reported here, N =
40–70 is typically enough to resolve the interface. The code for the Stokes droplet without an
electric field has been extensively tested and used in earlier work [71,72]. When electrostatic fields
are included in both the drop and surrounding phases in the simpler case of χ = 0, the code has
been validated against small deformation theory as well as the results in Refs. [13,33], where
good agreement is obtained. For example, in Fig. 2 we compare the numerically computed electric
potential φs for a spherical drop with an analytical prediction from Hua et al. [49], for a uniform
imposed field with φ → −z as x → ∞. Parameter values are Q = 10 and χ = 0.1, 1, 10. Excellent
agreement is obtained.

If the drop deforms into a highly elongated spheroidal shape or a spindle shape with conical ends,
an adaptive regridding scheme is employed. In particular, grid points are redistributed using cubic
spline interpolation to be inversely proportional to local curvature, so that the density of points is
high near conical ends. One check on the overall method is to compare our calculated results with
those of Sherwood [13] (e.g., their Fig. 3). The results are in excellent agreement (see also our
Fig. 5). If the drop becomes elongated and exhibits end pinching or other breakup modes, larger N
is used (typically N ∼ 160 to 320) together with adaptive time stepping. No special adaptive spatial
regridding is applied in this case.
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FIG. 2. Comparison of numerically computed results (solid lines) for the surface potential φs and analytical
solutions (cross symbols) for a spherical particle, from Ref. [49]. Here Q = 10 and χ is indicated in the figure.

IV. RESULTS AND DISCUSSION

We focus the discussion on the case where the interior and exterior fluids have equal viscosity,
i.e., λ = 1. The third term in Eq. (20) is then absent, which greatly simplifies the numerics, but also
allows for a rich bifurcation diagram and wide variety of unsteady shapes. Results for λ �= 1 will be
reported elsewhere.

A. Parameters in experiments

Microfluidic drops as small as 1 μm are routinely generated and manipulated in experiments,
although studies on drop deformation and breakup commonly use millimeter-sized drops.

FIG. 3. Comparison between computed results (solid lines with filled symbols) and small deformation
theory from Ref. [49] and Appendix B (dashed lines) with Q and χ indicated in the figure. Insets: Magnification
of results near Eb = 0.
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Representative values of parameters in experiments are E � 105 V/m, D � 10−9 m2/s, μ �
100 Pa s [37,73], and γ � 10 mN/m [53]. Assuming R � 1 mm and approximating ε2 � 80ε0 (the
permittivity of water), the electric capillary number at breakup is estimated as Eb = ε2E 2R/γ �
10−1, consistent with the numerical results below. The conductivity σ in our electrokinetic model
is related to the ion density by σ = 2e2Dc0/(kBT ), assuming a symmetric 1:1 electrolyte. Using
a representative bulk ion concentration c0 � 10−7 mol/L gives a conductivity σ � 10−9 S/m [37]
with corresponding Debye layer thickness �D � 10−6 m, so that χ � 103. A poorly conducting
drop is obtained by specifying a thick Debye layer χ � 1, although care is required to ensure
that the equilibrium assumption in (2) is satisfied. This necessitates that the charge relaxation
timescale te be much shorter than the time scale for fluid motion tμ. Taking te = R2/(χ2D) and
tμ = μ/(ε2E 2) (which is a characteristic time for the Maxwell stress to deform the drop), we obtain
te/tμ = PeEb/χ

2, where the Peclet number Pe = γ R/(μD). Using the above parameters, we find
te/tμ << 1 for a millimeter drop when χ � 1, but when χ � 1 it is necessary for R � 10 μm to
satisfy the condition on timescales. The latter estimate shows that the equilibrium assumption is
consistent with a Debye layer thickness on the order of drop size only for a 10 μm or smaller drop.
Finally, the dimensionless potential is estimated as β � 103. This suggests that |βφ1| may not be
small, except in the perfect conductor limit χ � 1 or Q � 1, in which case φ1 << 1 (see, e.g.,
Appendix B). However, as noted, we will apply the Debye-Hückel approximation, even when it
may not be formally valid.

B. Steady-state drops

In this section, we show the computed steady states of drops in a uniform imposed electric field.
We note that unless specified otherwise, the reported simulation time is rescaled following [74]
as t = t̃γ /2πRμ(1 + λ), where t̃ is dimensional time. Following other work, we measure drop
deformation using the Taylor deformation parameter

D f = l − b

l + b
, (29)

where b and l are semiaxes of the drop at steady state perpendicular to and along the applied electric
field, respectively. To compute the steady response curve, we use continuation in the parameter Eb:
Once a steady-state solution is obtained, we increase Eb to a larger value and use the steady solution
at the previous Eb as initial data.

Figure 3 compares the drop deformation for fixed permittivity ratios Q = 5 and Q = 50 and a
range of χ . The deformation curves follow small deformation theory [see (B6) in Appendix B] when
Eb is relatively small. The deformation is seen to be greater when χ is larger, with the same imposed
electric field Eb. This is because capillary pressure has a reduced effect, relative to electrostatic
stresses, as χ is increased, per (21). This permits a more deformed surface before a local force
balance between the capillary force and Maxwell (electrostatic) traction is reached. Increasing Q
also tends to increase the deformation at a fixed imposed field strength.

1. Conducting drops

In our model, there are two ways to approach the conducting drop limit: either χ → ∞ or Q →
∞. The surface potential φs in either case tends to zero, as can be seen by taking the appropriate limit
in the small deformation theory (see Appendix B). This theory also shows that the deformation for
χ � 1 and Q � 1 is given by D f ≈ (9/16)Eb, for Eb � 1. Figure 4 shows the steady deformation
curves for various values of Q and χ which all correspond to a highly conducting liquid drop.
As expected, the deformation curves nearly overlap each other. The critical value of Eb at which
point steady solutions no longer exist is roughly the same for each branch and is about 0.21, which
is consistent with the value reported for a perfectly conducting drop by Karyappa et al. [53] and
Dubash and Mestel [51]. The maximum interface potential over all the steady solutions represented
in the figure is less than 0.03.
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FIG. 4. Steady-state deformation curves for various Q and χ , corresponding to a highly conducting drop,
compared with the small deformation result Df = (9/16)Eb.

2. Dielectric drops

When χ is small and Q is not too large (i.e., χ � 1 and Q � 101), the drop is close to a perfect
dielectric suspended in an insulating medium (e.g., see the case χ = 0.1 and Q = 5 in the left panel
of Fig. 3). We caution that time-dependent solutions to our model are unphysical in this perfect
dielectric limit, as noted in Sec. IV A, since the ratio of charge relaxation timescale to timescale for
fluid motion, te/tμ, is not small. Nevertheless, comparison of the simulations with the theoretical
steady response curve provides a useful validation of the numerics. Steady solution branches for
such nearly dielectric drops are shown in Fig. 5, which extends the plot in Fig. 3 to smaller values
of χ and larger imposed field strength Eb. Instead of plotting the deformation as in Fig. 3, we

FIG. 5. Comparison of drop deformation for various χ and Q = 5 together with the analytical results based
on a spheroidal approximation for χ = 0.
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FIG. 6. Steady drop deformation for Q = 50 and various χ . Theoretical steady-state response curve using
a spheroidal approximation for χ = 0 [14,37] is shown by a dashed curve. The subplot provides an enlarged
view of the numerical data near the first turning point. The drop profile for Eb greater than the turning point on
the lower branch exhibits unsteady pointed ends.

plot the aspect ratio l/b which is better suited to the wide range of Eb used here. We also overlay
both the analytical solution using the spheroidal approximation at χ = 0 and the boundary integral
solution for a perfect dielectric drop in an insulating medium (the analytical expression for the
spheroidal approximation is available in Pillai et al. [14]). It is seen that the computed deformation
curves for χ = 0 and 0.01 almost exactly lie on top of the analytical curve. For χ = 0.1, differences
between the curves only occur when Eb is sufficiently large. Consistent with previous observations
at small deformation, increasing χ promotes larger deformation for a given Eb. For χ = 0.2 and
0.25, deviation from the insulating drop limit occurs at smaller Eb, as expected. An aspect ratio of
l/b ≈ 4.4 is quickly reached at about Eb = 1.6 for χ = 0.25, beyond which the drop is found to be
unstable and steady solutions no longer exist.

For larger Q (e.g., Q = 50 in Fig. 6), the spheroidal approximation gives an S-shaped curve
[14,37]. The steady solutions computed by our time-dependent simulations converge to the lower
branch of the theoretical response curve as χ → 0. Using our model, it was not possible to capture
the jump to the upper branch of the deformation curve. Instead, for Eb greater than the critical value
Eb � 0.25 at the turning point on the lower branch, an unsteady pointed drop develops and the
numerics eventually break down, as discussed more fully in Sec. IV C. This is similar to the results
of Ref. [13] using a dielectric model, but contrasts with the time-dependent simulations of Ref. [14]
using a full electrokinetic model, which evolve to steady solutions on the upper branch. The latter
discrepancy may be due to the equilibration time for the Debye layer charge, which is here assumed
to be fast, but can evolve more slowly in the model of Ref. [14].

It is natural to carry out a slender-body analysis when a highly elongated drop is obtained. In
Appendix C, we assume a highly deformed drop and obtain an asymptotic approximation of the
electric field for a spheroidal drop; see (C15). The field is shown to be almost uniform. Our results
serve as a correction to the result in Ref. [15] by taking into account the presence of ions. Integration
of the field gives the electric potential, and the theoretical drop shape and electrostatic potential are
compared to our numerically computed solutions in Fig. 7. In the upper panels of the figure, the drop
is highly elongated with aspect ratio about 10 (i.e., slenderness parameter ε = b/l ≈ 0.1). Both the
shape and electric potential are in excellent agreement with theory. In the bottom panels, the drop
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FIG. 7. Comparison of drop shape with a spheroid that has the same aspect ratio. Top left: aspect ratio
l/b ≈ 10 for a slightly conducting drop with χ = 0.1, Eb = 6.5, Q = 5. Bottom left: aspect ratio l/b ≈ 4.4
with χ = 0.25, Eb = 1.6, Q = 5. Right: comparisons between calculated surface potentials and slender-body
approximation, for same parameter values as in left panels.

shape is shown to deviate from a spheroid with the same aspect ratio (about 4.4). The interfacial
potential is also slightly different from the prediction of slender-body analysis but the agreement is
still reasonably good.

C. Breakup behavior

In this section, we investigate drop deformation for parameter values in which steady-state
solutions do not exist. Several different types of unsteady solution are observed (depending on
parameter values), which are classified into three groups: (i) conical end formation, (ii) end
splashing, and (iii) open end stretching: A few case studies are presented before a summary is
given.

1. Conical end formation

In Fig. 8, conical end formation is shown for conducting drops with Q = 50 and χ = 0.1, 1, 10.
In the upper panel of the figure, a time sequence of unsteady drop shapes are shown for χ = 10,
Q = 50, starting from an initially spherical shape. In the lower panel, drop shapes at the point at
which the simulation is terminated are shown for χ = 0.1, 1, 10, which all show the formation of
unsteady conical drop tips that are similar to the shapes reported in Refs. [13,15,16]. The simulation
is terminated when the tip curvature κtip becomes sufficiently large that the number of grid points
and time steps required to resolve the interface make the simulation too computationally costly.
It is argued in Appendix C 2, based on Eq. (C16), that conical end formation can occur only for
sufficiently large Q, or more precisely Q � 15, regardless of χ .
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FIG. 8. Upper panel: Evolution of drop with Q = 50, χ = 10, and Eb = 0.26. Bottom panel: Drop shapes
at breakdown of the numerical scheme for Q = 50 and Eb = 0.26.

Fontelos et al. [17] present an analysis of conical singularity formation for a charged, perfectly
conducting drop in an insulating medium. They find that the singularity formation is self-similar
with κtip = O(τ−δ ) and Un,tip = O(τ δ−1), where τ = ts − t is the time to singularity formation
(i.e., the singularity occurs at t = ts) and δ is a similarity exponent that depends on the opening
angle of the cone. Although our model incorporating electrokinetic effects in the drop interior via
the linearized Poisson-Boltzmann equation is different from Fontelos et al. [17], this form of the
similarity scalings seems to remain unchanged based on our numerical results. We will determine
δ from numerical data, but one difficulty in doing so is that the singularity time ts is unknown.
While it can be estimated from numerical data, we take a different approach. Assuming the above
self-similar scalings, then τ ∼ 1/(κtipUn,tip ), and since accurate values for κtip and Un,tip are provided
by the numerical data, we can replace τ by 1/(κtipUn,tip ) in a log-log plot to determine δ. Such a
plot of the time evolution of tip curvature κtip versus 1/(κtipUn,tip ) for a drop which forms conical
tips is shown in Fig. 9. The figure shows linear behavior for log κtip with a slope that is very slightly
dependent on χ . We estimate the slope magnitude or similarity exponent to be very near δ = 0.71,
which is close to the value of 0.72 reported in Fontelos et al. [17]. Our simulations give slightly
different results for the cone angles than Betelú et al. [16] and Fontelos et al. [17]. We find the
semiangles are between 21 and 24 deg for the different χ values. In the work of Betelú et al. [16],
the semiangle is shown to be dependent on the viscosity ratio and is about 25 deg for λ = 1. A
slightly different result of about 27.5 deg is reported in Fontelos et al. [17] (for a different model).
While we cannot completely rule out numerical error as a source of the variation of cone angle with
χ found here, resolution studies suggest that the computed angles are well resolved. We note that
the current numerical method is only able to resolve about two decades of scaling in the space-time
neighborhood of the singularity, which is similar to the other cited studies. For much more than this,
and for a more detailed investigation of cone angles, it is anticipated that a specialized numerical
treatment of the emerging singularity is needed.

2. End-splashing mode

When χ is large enough (see Fig. 13 for precise values), conical end formation is replaced by
a small finger that is emitted from the tip, nearly perpendicular to the axis of symmetry or z axis.
This behavior persists even in the highly conducting drop limit of large χ . The interface shape near
the ends eventually evolves into a “snail head” that forms in the vertical direction. We call this the
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FIG. 9. Evolution of interface tip curvature κtip vs 1/(κtipUn,tip ) for the three cases in Fig. 8. Here, Un,tip

is the normal velocity at the tip. Following the scaling law κtip = O(τ−δ ) and Un,tip = O(τ δ−1) from Fontelos
et al. [17], we plot κtip vs the time to singularity τ ∼ 1/(κtipUn,tip ). The estimated or average slope δ ≈ 0.71 is
shown as a black solid line.

end-splashing mode. Representative examples of end splashing are plotted in the top two panels
of Fig. 10. For these simulations, N = 320 and the profile is well resolved up to the point when
bulbous ends first form, which marks the onset of snail-head finger formation (see bottom panel).
Resolution studies of the fully developed snail head profile, e.g., at the final time in the upper panel
of Fig. 10, show similar shapes, but slightly decreased snail head length, as resolution is increased.
In a 3D view, the drop end looks like a disk or nearly flat cone with a ring rim. This is similar
to the so-called dimple formation and lobe-breakup solution reported by Karyappa et al. [53] (see
their Fig. 11, for example). This interface morphology is distinctly different from that observed
by Taylor [10], Betelú et al. [16], Grimm and Beauchamp [75], and Fontelos et al. [17], where a
Taylor-cone-like solution first develops and then is followed by the ejection of a thin fluid thread in
the axial direction.

The end-splashing breakup mode has not been observed in simulations of the leaky dielectric
model, although for highly conducting fluids, similar breakup behavior has been reported in
experiments and simulations of a perfect conductor model by Karyappa et al. [53]. The experiments
have NaCl added to the drop phase, suggesting that ions in the drop may contribute to the
fingering instability. More recently, Mohamed et al. [56] observed a similar end-splashing mode in
experiments and simulations using an electrokinetic model for conducting fluids in a pendant drop
problem, although there it was attributed to the effect of a more viscous fluid in the surrounding
medium. In the current study, this behavior is also obtained when the viscosity ratio is one. The
middle panel of Fig. 10 shows a similar fingering instability for the larger value χ = 30, except that
a narrower finger is formed. Our numerical results show a trend of decreasing finger width with
increasing χ .

3. Open end stretching

When both χ and Q are moderate in size (roughly of the order 100 to 101), our model exhibits
relatively long drops, i.e., with ε = b/l < 0.01. One such example is presented in Fig. 11 for Eb

slightly larger than the critical value for nonexistence of steady sates. The top two panels show
the drop shape and interface potential, respectively, while the bottom panel plots the maximum
normal velocity. As it evolves, the drop forms a cylindrical central thread and the electrostatic field
is nearly uniform and directed along the axis of symmetry. During the evolution, the normal velocity
decreases and the drop nearly settles into an elongated steady state. However, the elongational
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FIG. 10. Breakup of a viscous drop for Q = 10 and Eb = 0.26 with χ = 10 in upper panel (t =
0, 0.25, 0.49, 0.74, 0.98, 1.23, 1.47, 1.66, 1.77, 1.83, 1.86, 1.88, 1.90, 1.92, 1.94) and χ = 30 in the middle
panel (t = 0, 0.30, 0.60, 0.90, 1.20, 1.35, 1.50, 1.56, 1.58, 1.59, 1.61). The inset of the middle panel show
local finger formation before breakup for χ = 30. The lower two panels show tip profiles at different resolution
N for χ = 30 at times before (left) and after (right) the snail head is formed. The profiles are well resolved, at
least up to the onset of snail formation.

velocity is re-established after about t ≈ 30 as the electric traction overwhelms surface tension. Two
“blobs” develop at the drop ends in a manner similar to the initial stages of the end-splashing mode
in Fig. 10. However, due to its highly elongated cylindrical thread, we classify this as a third breakup

FIG. 11. Breakup of a viscous drop for Q = 5 and Eb = 1.65 with χ = 0.25. Top: drop profiles at times
t = 0, 1.73, 29.31, 32.14, 33.56, 34.41. Middle: interfacial potential φs vs s, at the same t as top. Bottom:
maximum normal velocity vs t .
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FIG. 12. Boundaries separating steady (S-region) and unsteady (U -region) solutions in the Eb − χ plane
for various Q.

mode, open end stretching. The simulation in Fig. 11 was stopped when the drop aspect ratio
exceeded 100. The open-end stretching found here is similar to end-pinching solutions computed
using the leaky dielectric model (see, e.g., Refs. [30,33]). We do not find multilobe end-pinching
solutions, i.e., with internal circulation, like that in Figs. 7 and 9 of Ref. [30] (see also Ref. [33]).
We believe these differences may be due to the absence of surface charge and tangential interfacial
electric stress in our model.

4. Summary of breakup modes

We summarize our results in Figs. 12 and 13. Figure 12 shows numerically determined curves
in Eb − χ space that separate regions where steady drop shapes exist (or S regions) from those
with purely unsteady dynamics (U regions). Toward the conducting drop limit, i.e., for sufficiently
large Q, the U region is roughly independent of χ and occurs above Eb ≈ 0.22. For moderate
or small Q, a narrow S region occurs when χ is sufficiently small, i.e., as the perfect dielectric
limit is approached. Alternatively, Fig. 13 plots the phase diagram in Q − χ space with a fixed
electric field strength, Eb = 0.5. The behavior in the U region is further classified by breakup mode.
When Q � 15, we find the S region for small χ and end-splashing breakup modes [Fig. 13(a)]
for large χ , while for χ in between we find open end stretching modes as shown in Fig. 13(c).
When Q � 15, conical end solutions are found for sufficiently small χ [Fig. 13(b)], consistent
with the asymptotic theory in Appendix C 2, whereas for larger χ we find end-splashing breakup
modes.

We conclude this section by noting that only the three aforementioned breakup modes are
observed in the current study when the viscosity ratio is unity. Other than end splashing,
solutions which develop topological singularities, i.e., where the drop fractures into two or
more droplets, are not seen in the electrokinetic model considered here. Preliminary computa-
tions show that other breakup modes can occur in our model for λ < 1 and will be reported
elsewhere.

V. CONCLUSION

We have developed a robust and accurate numerical method to evaluate Green’s functions for the
linearized Poisson-Boltzmann equation and applied it to solve the moving boundary problem for
Stokes flow, including electrostatic forces. The method is used to investigate the steady deformation
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FIG. 13. Phase diagram of steady shapes and breakup modes in Q − χ space with Eb = 0.5. Interface
shapes at markers (a)–(c) on the phase diagram are shown in panels at right and below. (a) End splashing
(Q = 5, χ = 10), (b) conical end formation (Q = 20, χ = 2), and (c) open end stretching (Q = 10, χ = 0.5).

of an electrolyte drop suspended in an insulating fluid medium, for viscosity ratio λ = 1. We
demonstrate that the conducting drop limit can be approached through either Q → ∞ or χ → ∞,
and in these limits, the electric field inside the drop vanishes. For large but finite Q, however, the
electric field inside the drop is nonzero and can contribute to the deformation. The perfect dielectric
drop limit is χ → 0, and for small χ we find that a highly elongated steady drop is possible.
For given imposed field strength Eb, the presence of electrolyte enhances the deformation, and
increasing χ leads to more deformed drops. When the drop is long and slender, results from our full
numerical simulations agree well with approximate solutions based on slender-body theory. Finally,
we study drop breakup behavior by choosing parameters in the regime where steady solutions no
longer exist. In addition to conical end formation, we find other two breakup modes, which we call
end splashing and open end stretching. The type of breakup depends on parameter values and an
example phase diagram is presented which illustrates the dependence on two of those parameters
(Q and χ ), for fixed Eb.

Finally, we note that the electrokinetic model and numerical method developed here can
provide a framework for extensions that incorporate additional physics, including surface charge
or electrolytic effects in the exterior fluid.
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APPENDIX A: COMPUTATION OF AXISYMMETRIC GREEN’S FUNCTIONS
AND THEIR DERIVATIVES

In this section, we present the derivatives of the axisymmetric Green’s functions (24) and (22).
Gradients of the axisymmetric Green’s function for Laplace’s equation are given by

∂G0

∂z
= − (z − z0)k3E (k)

8π (rr0)3/2(1 − k2)
, (A1)

∂G0

∂r
= − k3

8π (rr0)3/2

[(
r − r0

1 − k2
− 2r0

k2

)
E (k) + 2r0

k2
K (k)

]
, (A2)

where K (k) is the complete elliptic integral of the first kind [see (23)] and

E (k) =
∫ π/2

0

√
1 − k2 cos2 θdθ (A3)

is the complete elliptic integral of the second kind. For the axisymmetric Green’s function Gχ of the
modified Helmholtz equation, we find that the Green’s function gradient is given by

∂Gχ

∂z
= kz

2π (rr0)1/2

∫ π/2

0

1 + �(1 − k2 cos2 θ )1/2

(1 − k2 cos2 θ )3/2
exp(−�[1 − k2 cos2 θ ]1/2)dθ, (A4)

∂Gχ

∂r
= 1

2π (rr0)1/2

∫ π/2

0

1 + �(1 − k2 cos2 θ )1/2

(1 − k2 cos2 θ )1/2

(
kr

1 − k2 cos2 θ
− k

2r

)

× exp(−�[1 − k2 cos2 θ ]1/2)dθ. (A5)

For the general calculations of Green’s functions for Laplace equation, details can be found in
Ref, [66].

In Tables I to III, we show data from a computation of Gχ comparing the Gauss-Chebyshev
method and Gauss-trapezoidal method (or Alpert quadrature), for χ = 0.1, 1, 10, and different n
or number of quadrature points. The points of evaluation are (z0, r0) = [cos(π/4), sin(π/4)] and
(z, r) = [cos(π/4 + π/4096), sin(π/4 + π/4096)], so that (z, r) is slightly different from (z0, r0).
When (1 − t2)−1/2 is treated as a weight function in (25), the integration, for a regular function f (x),
can be done by Gauss-Chebyshev quadrature

∫ 1

−1

f (t )

(1 − t2)1/2
dt = π

n
�n

j=1 f (t j,n) + 2π

22n(2n)!
f (2n)(η) (A6)

TABLE I. χ = 0.1, Gauss-trapezoidal parameters j = 7, k = 6, n = j + k + m.

Gauss-trapezoidal Gauss-Chebyshev

n Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.95602152 207.50604021 −208.60234657 1.95602514 207.50604303 −208.60234683
32 1.95602152 207.50604021 −208.60234657 1.95602243 207.50604261 −208.60234833
64 1.95602152 207.50604021 −208.60234657 1.95602175 207.50604218 −208.60234839
128 1.95602152 207.50604021 −208.60234657 1.95602158 207.50604176 −208.60234809
256 1.95602152 207.50604021 −208.60234657 1.95602154 207.50604134 −208.60234770
512 1.95602152 207.50604021 −208.60234657 1.95602153 207.50604093 −208.60234730
1024 1.95602152 207.50604021 −208.60234657 1.95602153 207.50604057 −208.60234693
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TABLE II. χ = 1.

Gauss-trapezoidal Gauss-Chebyshev

n Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.66552053 207.50556904 −208.52289051 1.66588210 207.50585107 −208.52291721
32 1.66552054 207.50556904 −208.52289050 1.66561085 207.50580881 −208.52306613
64 1.66552056 207.50556904 −208.52289048 1.66554306 207.50576654 −208.52307180
128 1.66552057 207.50556904 −208.52289048 1.66552612 207.50572433 −208.52304161
256 1.66552057 207.50556904 −208.52289048 1.66552191 207.50568240 −208.52300272
512 1.66552057 207.50556904 −208.52289048 1.66552087 207.50564156 −208.52296267
1024 1.66552057 207.50556904 −208.52289048 1.66552063 207.50560466 −208.52292600

for some −1 < η < 1 and

t j,n = cos

(
2 j − 1

2n
π

)
. (A7)

For χ = 0.1, both quadrature methods work well; however, the Gauss-trapezoidal quadrature is
more accurate than Gauss-Chebyshev for moderate and large χ , as seen in Tables II and III. In
particular, when χ = 10, it is seen that convergence is poor for the Gauss-Chebyshev method. For
example, Gχ

r obtains only one digit of precision at the largest n. In this paper, we therefore employ
Gauss-trapezoidal quadrature since it has performed well in our tests. We have not performed an
extensive investigation of quadrature methods, as this is beyond the scope of current paper.

APPENDIX B: SMALL DEFORMATION THEORY

Small deformation analysis of an electrolyte droplet immersed in a dielectric fluid and deformed
by a nonuniform electric field is provided by Ref. [49], from which the following solution for a
uniform field can be easily recovered. When the drop is spherical, the general solution for the electric
potential is given in spherical radial and polar coordinates r̄, θ̄ by

φ1 = −A1(r̄) cos(θ̄ ), φ2 = −
(

1 − A2

r̄3

)
r̄ cos(θ̄ ), (B1)

with

i1(x) = x cosh(x) − sinh(x)

x2
, (B2)

TABLE III. χ = 10.

Gauss-trapezoidal Gauss-Chebyshev

n Gχ Gχ
z Gχ

r Gχ Gχ
z Gχ

r

16 1.12249190 207.47248568 −208.10737309 1.15507371 207.50023604 −208.11656235
32 1.12249346 207.47248566 −208.10737197 1.13128003 207.49634418 −208.12532268
64 1.12249500 207.47248564 −208.10737086 1.12472887 207.49220608 −208.12550479
128 1.12249602 207.47248562 −208.10737012 1.12305031 207.48800774 −208.12247820
256 1.12249628 207.47248562 −208.10736994 1.12262964 207.48382016 −208.11859296
512 1.12249621 207.47248562 −208.10736999 1.12252599 207.47973719 −208.11458941
1024 1.12249620 207.47248562 −208.10737000 1.12250164 207.47604760 −208.11092268
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i2(x) = (x2 + 3) sinh(x) − 3x cosh(x)

x3
, (B3)

A1(r̄) = 3i1(χ r̄)

(Q + 2)i1(χ ) + Qχ i2(χ )
, (B4)

A2 = (Q − 1)i1(χ ) + Qχ i2(χ )

(Q + 2)i1(χ ) + Qχ i2(χ )
. (B5)

When deformability is included, first-order perturbation can be used to approximate the shape of
the drop. Assuming the shape is perturbed slightly when Eb � 1, authors of Ref. [49] derived an
expression for the deformation

D f ≈ 3Ebh(χ, Q)

4 + Ebh(χ, Q)
≈ 3

4
Ebh(χ, Q) + O

(
E2

b

)
, (B6)

where

h(χ, Q) = 1

12Q

[
(Q − 1)(1 + 2A2)2 + (χ2 + 1 − Q)A2

1(r = 1)Q
]
. (B7)

It is instructive to note some limits in these formulas. First consider the limit of a conducting drop:
As Q → ∞ or χ → ∞, we have φ1(r̄) = 0 and φ2(r̄) = (r−2 − r) cos θ . Inside the drop, both φ1r̄

and φ1θ̄ tend to zero, that is, the electric field is zero for r̄ < 1, but on the drop surface there is
a nonzero normal component given by Qφ1r̄ |r̄=1= φ2r̄ |r̄=1= −3 cos θ̄ . The surface deformation
function satisfies limχ→∞ h(χ, Q) = (12Q)−1[9(Q − 1) + 9Q−1], and limQ→∞ h(χ, Q) = 3/4. In
the limit χ → 0 of a dielectric drop, φ1(r̄) = −[3r/(Q + 2)] cos θ and φ2(r̄) = [(Q − 1)/(Q +
2)](1/r2 − r) cos θ , from which the electric field is easily obtained by differentiation. The surface
deformation function satisfies limχ→0 h(χ, Q) = (3/4)[(Q − 1)/(Q + 2)]2.

APPENDIX C: SLENDER-BODY ANALYSIS

We carry out slender-body analysis on the boundary-integral equations, following Stone et al.
[15]. Define a slenderness parameter ε = b/l , where l and b are the half-length and half-width of a
drop, respectively. The existing dimensionless equations are adapted for the slender-body scales by
making the substitution

S → ε

ν
Ŝ, z → 1

ν
ẑ, (C1)

where ν = R/l and variables with a hat are O(1).
For a slender drop, i.e., ε = b/l � 1, the electric field inside the drop is to leading order in the

axial direction, i.e., Et ≈ E (z) = νÊ (ẑ). As a result, the normal stress balance (11) simplifies to

Eb(Q − 1)

2

(
QE2

1n + E2
t

) + �p = Eb(Q − 1)ν2

2ε2

(
QÊ2

1n + ε2Ê2
) + � p̂ ≈ ν

εŜ
− ενŜẑẑ − α

2
φ2

1 ,

(C2)

where r̂ = Ŝ(z) is the drop surface shape and � p̂ is the constant pressure difference between drop
interior and exterior. The second term on the right-hand side of (C2) is the contribution to surface
tension from the axial curvature, which is commonly retained despite being higher order. Since
∇ · E = −χ2φ1, the internal field can be estimated to leading order as

Êr̂ ≈ − 1
2ε2Ŝ(Êẑ + ν−2χ2φ1), (C3)

and hence (see also Ref. [15]),

Ê1n ≈ − ε2

2Ŝ
[(Ŝ2Ê )ẑ + ν−2χ2Ŝ2φs]. (C4)

053702-22



DEFORMATION AND STABILITY OF A VISCOUS …

The potential exterior to the slender drop is approximated following [74]. Starting from the
boundary integral representation of the exterior potential, we subtract (14) from (13) to obtain

φ1(x0) − φ∞ +
∫

S
φ1

(
∂Gχ

3D

∂n
− ∂G0

3D

∂n

)
dS =

∫
S

∂φ1

∂n

(
Gχ

3D − QG0
3D

)
dS, (C5)

which is equivalent to the integral equation used in Refs. [15,33] when χ = 0. Following [76], we
focus on the contribution of the integral from εŜ � |ẑ − ẑ0| � 1. For a point on the drop centerline
(0, z0), the Green’s function (24) is expanded before evaluating along drop surface r̂ = Ŝ,

Gχ

3D = ν
e(− χ

ν
[(ẑ−ẑ0 )2+ε2 r̂2]1/2 )

2[(ẑ − ẑ0)2 + ε2r̂2]1/2
= ν − χ [(ẑ − ẑ0)2 + ε2r̂2]1/2 + χ2

2ν
[(ẑ − ẑ0)2 + ε2r̂2]

2[(ẑ − ẑ0)2 + ε2r̂2]1/2
+ · · · .

(C6)

Substituting into (C5) yields

φ1(ẑ0) − φ∞ + χ2

4ν2

∫ 1

−1
φ1

ε2Ŝ2

[(ẑ − ẑ0)2 + ε2Ŝ2]1/2
dẑ

= −(1 − Q)
∫ 1

−1

ŜÊ1n

2[(ẑ − ẑ0)2 + ε2Ŝ2]1/2
dẑ − χ

2ν

∫ 1

−1
Ê1nŜdẑ + · · · . (C7)

which is further evaluated to be

φ1 − φ∞ + ε2χ2 ln(1/ε)

2ν2
φ1Ŝ2

= (1 − Q)
ε2 ln(1/ε)

2
[(Ŝ2Ê )ẑ + ν−2χ2Ŝ2φ1] − χ

2ν

∫ 1

−1
Ê1nŜdẑ + · · · . (C8)

This is coupled with the equation for drop volume,∫ 1

−1
Ŝ2dẑ = 4ν3

3ε2
, (C9)

which readily yields ν = ε2/3.

1. Electric field inside a spheroid

For a spheroid, Ŝ2 + ẑ2 = 1 and Eq. (C8) with χ = 0 is satisfied by a uniform electric field E1D,

E1D = 1

1 + ε2 ln(1/ε)(Q − 1)
∼ 1 − ε2 ln(1/ε)(Q − 1) + · · · , (C10)

which agrees with the approximation by Stone et al. [15]. For order 1, χ > 0 and χ/ν � 1, (C8) at
leading order (after taking one derivative with respect to ẑ) becomes

−Ê1D + 1

ν
≈ −Q

ε2χ2 ln(1/ε)

2ν2
(φ1Ŝ2)ẑ. (C11)

Assume Ê1D ∼ ν−1 + �(ẑ) so that φ1 ∼ −ν−1ẑ − ∫ ẑ
�(s)ds. After denoting F = ∫ ẑ

�(s)ds, we
arrive at

−F = Q
ε2χ2 ln(1/ε)

2ν2
[(1 − ẑ2)(ν−1ẑ + F )]. (C12)

This is rewritten as

F = −K
ẑ

ν

1 − ẑ2

1 + K (1 − ẑ2)
∼ −K

ẑ

ν
(1 − ẑ2), (C13)

053702-23



QIMING WANG, MANMAN MA, AND MICHAEL SIEGEL

where K = Q χ2ε2 ln(1/ε)
2ν2 � 1. After some algebra, we arrive at an approximation for the electric field

inside the drop, which holds for Q � ν2

χ2ε2 ln(1/ε) :

Ê1D = ν−1 + Fẑ − ε2 ln(1/ε)(Q − 1)ν−1 + · · ·

= 1

ν
− Q

ε2χ2 ln(1/ε)

2ν3
(1 − 3ẑ2) − ε2 ln(1/ε)(Q − 1)

ν
+ · · · . (C14)

After using E = νÊ , the electric field is recovered under the original scaling to yield

E1D ≈ 1 − ε2 ln(1/ε)(Q − 1) − Q
ε4/3χ2 ln(1/ε)

2
[1 − 3(ε2/3z)2]. (C15)

This is consistent with results of Stone et al. [15] for χ = 0, and the term with χ provides a
correction due to the presence of ions. The field is used to compare to the full boundary-integral
simulation when the drop is elongated.

2. Drop with conical ends

For a drop with conical end, locally Ŝ ∼ 1 − ẑ and ε = tan θ0. It is seen in normal stress balance
(C2) that E ∼ (1 − ẑ)−1/2, then (C8) shows the terms with χ serve as higher order corrections, and
we still have the same equation from Stone et al. [15],

Q = 1 − 8

3 tan2 θ0 ln(tan θ0)
, (C16)

which reflects a local balance of force contributions from the electric field and surface curvature.
Therefore, to leading order, the formation of a conical drop is independent of χ , i.e., the influence
of ions. Thus, as for a drop without electrolyte, a conical end is only expected when Q is sufficiently
large regardless of χ . To be specific, Stone et al. [15] gives a minimum Q around 15.5, above which
a conical tip is possible.

Finally, we note that the slender drop shape can be analyzed by coupling (C8), (C2), and (C9)
(see work by Stone et al. [15], Sherwood [77], Rhodes and Yariv [78]). Our preliminary results
show a mild singularity between a conical and a rounded end exists (same in Refs. [77,78]) and
Eb(Q − 1)ε7/3 ln(1/ε) ∼ O(1). However, we do not pursue this further in the current study as the
predicted shape using slender body is usually in poor comparison with the full simulation.
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