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Maximum entropy modeling of oxygen vibrational excitation and dissociation
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The vibrational excitation and dissociation of oxygen are modeled using different
approaches with a range of fidelity, including the conventional two-temperature model,
the state-specific method, and two variations of a model based on the maximum entropy
principle. Comparison of the post-shock predictions with recent shock tube experimental
data shows that the maximum entropy quadratic model predicts similar trends to the
state-specific method and the experimental data. Although the maximum entropy quadratic
model has significantly fewer equations than the state-specific method, no gain in com-
putational efficiency is seen. Hence, the former model is further simplified by assuming
that the vibrational relaxation can be described by the Landau-Teller formulation, with the
corresponding relaxation times for O2-O2 and O2-O interactions determined from state-
specific calculations of relaxation in a heat bath. The post-shock simulations indicate that
the modified maximum entropy quadratic model maintains sufficient prediction accuracy
while significantly improving computational efficiency. The proposed model could be used
in computational fluid dynamics solvers for hypersonic nonequilibrium flow simulations.
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I. INTRODUCTION

Thermochemical nonequilibrium phenomena are frequently encountered during hypersonic
flights. Across the strong shock wave generated by a hypersonic vehicle, a large amount of kinetic
energy in the freestream is converted into molecular or atomic translational energy. The internal
energy modes of the fluid are excited at a finite rate due to the high translational temperature.
Meanwhile, chemical reactions including dissociation, neutral exchange, and ionization can occur
among reactive species. In most circumstances, thermal nonequilibrium and chemical reactions are
coupled. For instance, the vibrational energy level populations of molecules affect the dissociation
rates and dissociation, in turn, causes the removal of vibrational energy, which is commonly referred
to as vibration-dissociation coupling effects. Such effects dominate the flowfields around hypersonic
vehicles at relatively low velocities, such as capsules reentering from low Earth orbit and hypersonic
cruisers. Further developments in hypersonic flight technologies will require an accurate modeling
of this phenomenon.

The two-temperature (2-T) model is perhaps the most widely used approach to describe
vibrational excitation and dissociation. It is commonly assumed that the vibrational mode of
molecules relaxes according to the Landau-Teller theory [1]. Various models (Park [2], Hansen
[3], Marrone–Treanor [4], Hammerling [5], Macheret-Fridman [6], etc.) have been proposed in the
past several decades to calculate the nonequilibrium rate coefficients and the vibrational energy
added or removed due to recombination and dissociation. Benefiting from a simple description of
the internal energy level populations with a vibrational temperature, these models have been partly
successful at hypersonic nonequilibrium simulation. However, the highly empirical assumptions and
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parameters involved in the 2-T model inevitably introduce modeling errors, especially for strongly
nonequilibrium flows.

Recent advances in computational resources have promoted the use of high-fidelity modeling,
namely, the state-specific method. This approach traces the temporal and spatial variation of
each vibrational level by solving a system of master equations and thus represents the complete
description of the nonequilibrium state of the gas. However, it requires the solution of substantially
more equations. The memory access to large data sets of kinetic rate coefficients is also expensive.
Consequently, detailed state-specific simulations have been applied only to one-dimensional and
two-dimensional inviscid flows [7–9].

To reduce the computational expense, a new method termed the “coarse-grained model” [10–14]
has been proposed, in which the internal levels are divided into groups and the level populations in
each group are reconstructed based on the maximum entropy (ME) principle [15]. In the literature,
the ME principle has been applied to model vibration-dissociation coupling for computational
fluid dynamics (CFD) [16], direct simulation Monte Carlo (DSMC) [17,18], and state-specific
simulations [19,20]. Most of these studies adopted the ME approach to interpret state-specific
cross sections and build reduced models of vibrational relaxation and dissociation. This approach
was recently generalized in Refs. [10–14] to express the logarithm of the vibrational distribution
profile as either a linear or quadratic function to capture the non-Boltzmann behaviors. Heat
bath calculations for N2-N interactions have shown that the process of vibrational excitation and
dissociation could be captured accurately with only a few groups. Such a method is very promising
for CFD applications.

This study aims to reproduce the complete process of vibrational excitation and dissociation of
oxygen behind a normal shock wave using the ME linear and quadratic models and to compare
the predictions with high-fidelity state-specific results and recent shock tube experimental data.
Notably, O2-O2 interactions are considered in this study, which also aims to further simplify the ME
quadratic model to reduce the computational expense. A model suitable for incorporation in CFD
solvers is established.

II. THERMOCHEMICAL NONEQUILIBRIUM MODELS

In this section, various models of the vibrational excitation and dissociation of oxygen are
presented, including a conventional 2-T model, two improved models based on ME principles, and
a high-fidelity state-specific method. For all models, it is assumed that the rotational energy mode of
molecular oxygen is fully excited and in equilibrium with the translational mode, corresponding to
a translational-rotational temperature Ttr . In addition, only the ground electronic state is considered.
These assumptions generally hold at temperatures below 10 000 K [21]. The thermochemical
nonequilibrium flow downstream of a normal shock wave is governed by the one-dimensional
compressible flow equations, comprising the conservation equations of species mass, mixture
momentum, and total energy. Additional equations related to the vibrational energy modes are
included in the 2-T and ME models.

A. Conventional two-temperature model

Under the conventional 2-T assumption, molecular oxygen is treated as a harmonic oscillator
relaxing via the Boltzmann distribution in terms of a vibrational temperature Tv. The corresponding
governing equations can be expressed as

∂

∂x
(ρsu) = ωs, s = 1, 2,

∂

∂x
(ρu2 + p) = 0,
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∂

∂x

[
ρu

(
h + 1

2
u2

)]
= 0,

∂

∂x
(ρuev) = ωv, (1)

where ρs is the density of species s; ρ, u, p, h, and ev are the mixture density, velocity, pressure,
enthalpy, and vibrational energy, respectively; ωs is the mass production rate of species s due to
chemical reactions; and ωv is the source term of the vibrational energy equation.

According to the law of mass action, ωs can be readily obtained for O2 and O as follows:

NAv

MO2

ωO2 = kM
V−D,bnOnOnM − kM

V−D, f nO2 nM, (2)

ωO= − ωO2 , (3)

where NAv is the Avogadro constant, Ms is the species molecular mass, ns is the species number
density, and kV−D, f and kV−D,b are the global dissociation and recombination rate coefficients,
respectively, with their superscripts (M) representing the third particle. The global rate coefficients
can be evaluated by

kM
V−D, f = ZkM

V−D, f ,eq, kM
V−D,b = kM

V−D, f ,eq

Keq
, (4)

where Z is the nonequilibrium factor, kV−D, f ,eq is the global dissociation rate coefficient at
equilibrium, and Keq is the equilibrium constant.

ωv can be further decomposed into two parts as

ωv = ωV−T + ωV−D, (5)

where ωV–T represents the energy transfer between the vibrational and translational modes, and ωV–D

represents the added or removed vibrational energy induced by recombination and dissociation.
This paper adopts Park’s chemical reaction model [22] to calculate the equilibrium rate coef-

ficients. ωV–T is modeled using the Landau-Teller model [1], in which the vibrational relaxation
times are calculated with the Millikan-White expression [23]. For O2-O2 and O2-O interactions, the
original Millikan-White parameters were adjusted by Park [24] based on experimental data. Park’s
correction [22] is introduced to avoid underprediction of the relaxation times at high temperatures.
The Marrone-Treanor model [4], also called the coupled vibration-dissociation-vibration (CVDV)
model, is used to account for the vibration-dissociation coupling effects, which assumes that the
dissociation probabilities scale exponentially with the vibrational levels. The corresponding Z can
be expressed by

Z = Qv(Ttr )Qv(TF )

Qv(Tv)Qv(−U )
, (6)

where Qv is the vibrational partition function, U is an adjustable parameter in kelvins, and TF is
defined by

1

TF
= 1

Tv
− 1

Ttr
− 1

U
. (7)

ωV–D can be obtained by

ωV−D = ωbE (−U ) − ω f E (TF ). (8)

In this expression, ω f and ωb are the forward and backward mass production rates of O2, and the
weighted average vibrational energy is evaluated by

E (T ) = Rθv

exp(θv/T ) − 1
− Rθd

exp(θd/T ) − 1
, (9)
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where R, θv, and θd are the gas constant, the characteristic vibrational temperature, and the char-
acteristic dissociation temperature of O2, respectively. Based on the comparison with state-specific
data obtained using the forced harmonic oscillator (FHO) model and the quasi-classical trajectory
(QCT) method, the semi-empirical parameter U is set to θd/3 as reported by Hao et al. [25].

B. Maximum entropy models

The ME principle [15] proposes that molecular collisions tend to produce post-collision distri-
butions that maximize entropy. It has been applied to interpret the state-specific cross sections of,
and to build reduced models of, vibrational relaxation and dissociation, assuming appropriate prior
distributions and surprisal functions. The idea was recently generalized in Refs. [10–14] and blended
with modern numerical techniques by introducing group and reconstruction concepts. Specifically,
the vibrational state population density can be expressed as

ln nO2(i) = α + βεi + γ ε2
i + · · · , (10)

subject to the macroscopic constraints∑
i

nO2(i) = nO2 ,
∑

i

nO2(i)εi = ev,
∑

i

nO2(i)ε
2
i = fv, (11)

However, it is important to note that including the nonlinear terms seems to be a purely numerical
treatment without experimental justification.

In this work, two generalized ME models are established for oxygen, representing the logarithms
of distribution functions by linear and quadratic functions, respectively. The entire vibrational
energy ladder is treated as a single group.

1. Maximum entropy linear model

In the ME linear model, the vibrational state population distribution is given by

ln nO2(i) = α + βεi, (12)

where α and β are the Lagrange multipliers, and εi is the vibrational energy of the ith vibrational
quantum state. Evidently, the ME linear model acknowledges that the vibrational level distribution
can be described by the Boltzmann distribution. The vibrational temperature Tv is related to β via

β = − 1

kBTv
, (13)

where kB represents the Boltzmann constant. The governing equations are the same as Eq. (1). To
evaluate ωs and ωv, the ME linear model abandons the relatively rigorous assumptions adopted by
the conventional 2-T model but accounts for the elementary kinetics instead. The ME linear model
can therefore be regarded as the upper performance limit of a 2-T model.

In this paper, vibration-vibration-translation (V-V-T) bound-bound transitions induced by O2

impacts, vibration-translation (V-T) bound-bound transitions induced by O impacts, and vibration-
dissociation (V-D) bound-free transitions are considered and can be expressed as follows:

O2(i) + O2( j) ↔ O2(l ) + O2(m), (14)

O2(i) + O ↔ O2( j) + O, (15)

O2(i) + M ↔ O + O + M, (16)

where i, j, l , and m represent the vibrational quantum numbers of O2.
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ωs for O2 and O can also be evaluated via Eqs. (2) and (3). The global dissociation and
recombination rate coefficients are obtained by

kM
V−D, f =

∑
i

kM
V−D(i → c)

nO2(i)

nO2

, (17)

kM
V−D,b=

∑
i

kM
V−D(c → i), (18)

where kV−D(i → c) and kV−D(c → i) are the forward and backward rate coefficients of the V–D
transitions, respectively. Furthermore, ωV−T can be obtained by

ωV−T =
∑

i

εi

∑
j

∑
l

∑
m

kV−V−T(l, m → i, j)nO2(l )nO2(m)

−
∑

i

εi

∑
j

∑
l

∑
m

kV−V−T(i, j → l, m)nO2(i)nO2( j)

+
∑

i

εi

∑
j

[
kV−T( j → i)nO2( j)nO − kV−T(i → j)nO2(i)nO

]
, (19)

where kV−V−T(i, j → l, m) and kV−T(i → j) are the forward rate coefficients of the V-V-T and V-T
transitions, respectively. ωV−D can be written as

ωV−D = ωbEb − ω f E f , (20)

where the terms that represent the forward and backward weighted average vibrational energy, E f

and Eb, are given by

E f =
∑

i

εi
kM

V−D(i → c)

kM
V−D, f

nO2(i)

nO2

, (21)

Eb =
∑

i

εi
kM

V−D(c → i)

kM
V−D,b

. (22)

In the ME linear model, the 47 vibrational levels given by Andrienko and Boyd [26] are
considered for molecular oxygen in the ground electronic state. The O2-O2 V-V-T transition rate
coefficients are generated using the FHO model [27,28]. According to the state-specific results of
Hao et al. [7], multi-quantum V-V-T transitions with jumps larger than 5 are neglected to reduce the
computational burden. The O2-O2 V-D rate coefficients are taken from the FHO analysis of Lino da
Silva et al. [29], and the O2-O V-T and V-D rate coefficients are obtained from the QCT calculations
of Andrienko and Boyd [30,31]. Note that all jumps are considered for the V-T and V-D transitions.
The rate coefficients of the forward and backward processes can be correlated using the principle of
detailed balance.

2. Maximum entropy quadratic model

In the ME quadratic model, the vibrational state population distribution is given by

ln nO2(i) = α + βεi + γ ε2
i , (23)

where γ is the third Lagrange multiplier. In contrast to the ME linear model, the ME quadratic model
assumes that the logarithm of the distribution function is quadratic. The vibrational temperature Tv

controlling the slope of the distribution at lower vibrational levels can be defined by

β = − 1

kBTv
. (24)
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In addition, a dissociation temperature Td that describes the slope at higher levels can be defined
as

γ = 1

2εd

[
1

kBTv
− 1

kBTd

]
, (25)

where εd is the dissociation energy. If the vibrational energy ev is regarded as the first-order moment
in terms of the vibrational energy level populations, the second-order moment fv can be defined as

fv = NAv

MO2

∑
i

ε2
i

nO2(i)

nO2

. (26)

To close the governing equations, an additional conservation equation of fv is required and can
be expressed as

∂

∂x
(ρu fv) = ω′

v. (27)

After the upgrade of ev and fv, Tv and Td can be evaluated using Newton’s iteration, and thus the
vibrational populations are obtained.

In this model, ωs and ωv are calculated in the same way as in the ME linear model. Similar to ωv,
ω′

v is also composed of two parts, ω′
V−T and ω′

V−D, the expression of which can be readily obtained
by replacing εi in Eqs. (19), (21), and (22) with ε2

i as follows:

ω′
V−T =

∑
i

ε2
i

∑
j

∑
l

∑
m

kV−V−T(l, m → i, j)nO2(l )nO2(m)

−
∑

i

ε2
i

∑
j

∑
l

∑
m

kV−V−T(i, j → l, m)nO2(i)nO2( j)

+
∑

i

ε2
i

∑
j

[
kV−T( j → i)nO2( j)nO − kV−T(i → j)nO2(i)nO

]
, (28)

ω′
V−D = ωb

∑
i

ε2
i

kM
V−D(c → i)

kM
V−D,b

− ω f

∑
i

ε2
i

kM
V−D(i → c)

kM
V−D, f

nO2(i)

nO2

. (29)

The vibrational energy ladder and the transition rate coefficients are the same as those incorpo-
rated in the ME linear model.

C. State-specific method

The state-specific method traces the temporal and spatial variation of each vibrational energy
state and thus significantly increases the number of equations to be solved; however, it no longer
makes assumptions on the formulation of the vibrational level distribution. The state-specific
method can be regarded as the most rigorous approach to describe vibrational excitation and
dissociation and thus a reliable reference to evaluate reduced models. The corresponding governing
equations are given by

∂

∂x
[ρO2(i)u] = ωO2(i), i = 0, 1, . . . , 47,

∂

∂x
(ρOu) = ωO,

∂

∂x
(ρu2 + p) = 0,

∂

∂x

[
ρu

(
h + 1

2
u2

)]
= 0. (30)
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TABLE I. Flow conditions for shock tube experiments [32].

Case no. Vs (m/s) p1 (Torr) T1 (K)

1 3070 2.0 295
2 3950 1.0 295
3 4440 0.8 295

The mass production rate of O2 at the ith vibrational level can be readily calculated based on the
kinetic rates as

NAv

MO2

ωO2(i) =
∑

j

∑
l

∑
m

kV−V−T(l, m → i, j)nO2(l )nO2(m)

−
∑

j

∑
l

∑
m

kV−V−T(i, j → l, m)nO2(i)nO2( j)

+
∑

j

[
kV−T( j → i)nO2( j)nO − kV−T(i → j)nO2(i)nO

]
+ kM

V−D(c → i)n2
OnM − kM

V−D(i → c)nO2(i)nM. (31)

One can easily identify the contributions of different types of transitions in Eq. (31). The
vibrational energy ladder and the transition rate coefficients are the same as those in the ME linear
model. For comparison with the results of the other models and experimental data, a vibrational
temperature Tv is defined as

Tv = ε1 − ε0

kB ln[nO2(1)/nO2(0)]
. (32)

Notably, this Tv is defined based on the first-level vibrational energy.

III. RESULTS

A. Comparison with experiments

In this section, thermochemical nonequilibrium flows of oxygen behind normal shocks are
investigated under conditions corresponding to a set of experiments conducted by Ibraguimova
et al. [32]. The focus will be on comparing the predictions of the 2-T and ME models with the
state-specific results and the experimental data.

The test cases represent a relevant range of conditions that might be encountered during
hypersonic flight. The recent experiments by Ibraguimova et al. [32] determined the vibrational
temperature profiles of oxygen behind the shock fronts in a shock tube, with the translational
temperature immediately across the shock ranging from 4000 to 10 800 K. Herein, the stationary
test gas in the low-pressure chamber is pure oxygen. Table I summarizes the three cases considered
for the present simulations, where Vs represents the velocity of the shock wave, and p1 and T1 are
the pressure and temperature ahead of the shock front, respectively. The post-shock distributions of
the translational-rotational temperature and the concentration of atomic oxygen were also calculated
by solving the gas dynamics equations at the measured vibrational temperatures. With the increase
of the post-shock translational temperature, the process of vibrational excitation and dissociation
becomes increasingly intense from cases 1 to 3.

In the shock reference frame, the governing equations given in Sec. II can be solved using
the space-marching method. The initial condition is derived from the Rankine-Hugoniot relations
assuming frozen vibrational mode and chemical composition. The explicit fourth-order Runge-
Kutta scheme is used for numerical integration.
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FIG. 1. Post-shock profiles for case 1 (a) Translationalrotational temperature, (b) Vibrational temperature,
(c) Mass fraction of O, and (d) Mixture density.

Figures 1–3 show the post-shock profiles of translational-rotational temperature, vibrational
temperature, mass fraction of O, and mixture density predicted using different modeling approaches
for cases 1–3, respectively. Also shown in the figures are the experimental data, if available. Note
that time is related to the distance from the shock via t = x/Vs.

For case 1, every model yields similar temperature distributions and agrees well with the
high-fidelity state-specific method and the experiments. In fact, case 1 corresponds to a relatively
moderate condition in which Ttr immediately across the shock is equal to 5300 K. As a result, there
is only a small amount of O, as seen in Fig. 1(c). At t = 1 μs, the mass fractions of O predicted
by the models are less than 2%. Under this condition, the vibration-dissociation coupling effects
are weak and the flow is dominated by vibrational relaxation due to O2-O2 interactions, which is
well described by the Landau-Teller model. In addition, because the non-Boltzmann effects are
insignificant, only slight differences are observed between the results from the two ME models.

For case 2, the post-shock Ttr reaches 8620 K, leading to much greater dissociation. As seen
in Fig. 2, the 2-T model fails to reproduce the state-specific results and the experimental data,
presenting a much lower Ttr and larger degree of dissociation. The mixture density is inversely
proportional to Ttr and is thus significantly overestimated. The ME linear model yields more accurate
predictions than the conventional 2-T model. The differences can be attributed to the modeling errors
in the 2-T model, especially regarding the vibration-dissociation coupling. However, room remains
for improvement in the ME linear model.

Notably, when the non-Boltzmann effects are accounted for in the ME quadratic model,
good agreement with the state-specific results is obtained in terms of the translational-rotational
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FIG. 2. Post-shock profiles for case 2 (a) Translationalrotational temperature, (b) Vibrational temperature,
(c) Mass fraction of O, and (c) Mass fraction of O.

temperature, mass fraction of O, and mixture density. The ME quadratic behaviors also closely
follow the shock tube data. It is well known that higher vibrational levels are significantly overpopu-
lated as a result of vibrational excitation during the incubation time (i.e., t < 0.1 μs). Afterward, dis-
sociation dominates the nonequilibrium process, leading to an underpopulation of the higher levels.
The large difference between the two ME models indicates that such non-Boltzmann distribution ef-
fects play an important role under conditions similar to case 2. Figure 2(b) shows that the vibrational
temperature profile predicted by the ME quadratic model deviates from the state-specific result. This
deviation is reasonable because of the different definitions of Tv in these two approaches. In fact, the
Tv shown in the figure for the state-specific method is defined using the first level, whereas in the ME
quadratic model it represents the overall behavior of the lower levels. Separating the vibrational lev-
els into more groups would reduce the difference; however, the present results suggest that the use of
one group is enough to capture the macroscopic flowfield quantities under the considered conditions.

Case 3 corresponds to the highest degree of nonequilibrium among the three cases, with Ttr of
10 820 K immediately across the shock. Similar to case 2, the 2-T and ME linear models fail to
accurately describe the trends of the state-specific results and the experimental data. In contrast,
the ME quadratic model makes an accurate prediction. Note that the experimental data of the
species mass fraction are available for case 3, as shown in Fig. 3(c). The results from the ME
quadratic model and the state-specific method almost perfectly overlap, and generally match the
measurements. However, some discrepancies appear in the vicinity of t = 0.2 μs, which can be
attributed to the modeling errors of vibrational kinetic rates and to the measurement uncertainties.
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FIG. 3. Post-shock profiles for case 3 (a) Translationalrotational temperature, (b) Vibrational temperature,
(c) Mass fraction of O, and (d) Mixture density.

In general, the ME quadratic model accurately captures the vibrational excitation and disso-
ciation, especially in terms of the post-shock translational-rotational temperature, species mass
fraction, and mixture density. However, it is important to note some disagreements between the
vibrational temperatures predicted by the ME quadratic model and the state-specific method for
all three cases. These disagreements result from representing the entire vibrational energy level
populations using a quadratic function, which inevitably introduces errors. The errors could be
compensated by separating the vibrational levels into several groups [12]. Nevertheless, the results
of this study verify that the use of only one group is adequate for accurate prediction of the flow
quantities. This argument is further supported by the post-shock profiles of specific vibrational
energy predicted by the various models for cases 1–3 as shown in Fig. 4. Although the vibrational
temperature is not captured correctly, the vibrational energy is accurately predicted, which indicates
that the energy allocation among the internal energy modes is well described by the ME quadratic
model.

The good performance of the ME quadratic model highlights the role of non-Boltzmann
effects in vibrational nonequilibrium modeling. Another approach to consider the non-Boltzmann
distributions is to divide the vibrational energy ladder into larger numbers of groups in the ME
linear model. Figure 5 shows the post-shock distributions of temperature and species mass fraction
predicted using the ME linear model with different internal groupings for case 3, and compares
the results with those obtained using the ME quadratic model and the state-specific method. Note
that the vibrational energy ladder is divided uniformly for each grouping. As seen in the figure, the
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FIG. 4. Specific vibrational energy profiles for different cases (a) Case 1, (b) Case 2, and (c) Case 3.

predictive accuracy of the ME linear model is significantly improved by including more groups.
However, the number of equations to be solved increases with the number of internal groups, which
is detrimental to the model’s application for large-scale simulations.
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FIG. 5. Post-shock profiles for case 3 showing the effects of a larger number of internal groups (a)
Translationalrotational temperature, and (b) Mass fraction of O.
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TABLE II. CPU time per 1000 iterations for different models.

Model 2-T ME linear ME quadratic Modified ME quadratic State specific

CPU time (s) 0.0624 240.6471 236.7627 0.8892 225.8738

B. A modified model for CFD applications

Despite treating the entire vibrational ladder as a single group, the ME quadratic model is still
computationally expensive, hindering its CFD applications. Note that 484 rate coefficients would be
required to construct a complete data set for the O2-O2 V-V-T transitions at a given Ttr . By invoking
the principle of detailed balance and neglecting multi-quantum jumps larger than 5, the number of
V-V-T rate coefficients is significantly reduced; however, the use of such a large-scale database in
practical calculations still causes high memory and CPU usage.

Table II presents the CPU times consumed by different models for 1000 iterations of the post-
shock calculations. The 2-T model is the most computationally efficient, with a CPU time less
than 0.03% of that for the state-specific method. Interestingly, the ME models consume even more
CPU time than the high-fidelity approach. This reflects the use of Newton’s iteration in the ME
models to determine Tv and Td, which increases the computational cost despite the reduced number
of equations to be solved.

In the 2-T interpretation, vibrational excitation and dissociation are modeled separately. The
relaxation of the vibrational energy is described by the Landau-Teller theory, which assumes that the
transitions occur only between the neighboring states and that the transition rates are proportional to
the quantum number [22]. These assumptions are invalid under strongly nonequilibrium conditions;
however, the general behavior of vibrational relaxation can be largely captured using appropriate
relaxation times [33]. Therefore, it is proposed in this paper to simplify the ME quadratic model into
a computationally affordable form by representing the evolutions of both ev and fv in the Landau-
Teller expression.

1. Heat bath calculations

Heat bath calculations are the usual approach to study vibrational relaxation while excluding the
process of dissociation. Various state-specific calculations [26,31,33,34] in O2-O mixtures under
heat bath conditions have been conducted. The resulting relaxation times are in good agreement with
existing experimental data, presenting a different temperature dependence from the Millikan-White
expression. This study has no intention of reproducing the vibrational relaxation times but focuses
on the behavior of the second-order moment fv.

Two heat bath conditions are considered in this paper, similar to those reported by Andrienko and
Boyd [31]. The initial number density is set to 1018 cm−1. All particles are assumed to be O2 when
studying the O2-O2 system, whereas the mole concentration of O is set to 0.99 for O2-O interactions.
The initial population of the vibrational states is assumed to be in the Boltzmann distribution at
100 K. Furthermore, the environmental temperatures range from 1000 to 10 000 K and remain
unchanged during the calculation.

The heat bath calculations are performed using the state-specific method. The corresponding
equations are similar to Eq. (28), except that the convective term is replaced by the temporal term of
conserved variables. Again, the explicit fourth-order Runge-Kutta scheme is adopted for numerical
integration.

If the nonequilibrium process is assumed to follow the Landau-Teller equation, the temporal
evolutions of ev and fv can be expressed as

dev(t )

dt
= ev,eq − ev(t )

τe
, (33)

d fv(t )

dt
= fv,eq − fv(t )

τ f
. (34)
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FIG. 6. Evolutions of ev and fv for O2-O interactions at heat bath temperature of 10 000 K.

In these expressions, ev,eq and fv,eq represent the equilibrium values that correspond to the
environmental temperature, and the relaxation times τe and τ f can be obtained using the e-folding
method. The corresponding e-folding values are defined by

ev,efold = 1

e
ev(0) +

(
1 − 1

e

)
ev,eq, (35)

fv,efold = 1

e
fv(0) +

(
1 − 1

e

)
fv,eq. (36)

Figure 6 shows the evolutions of ev and fv obtained from the state-specific calculations for O2-O
collisions at a heat bath temperature of 10 000 K. Note that ev and fv have been normalized by the
respective equilibrium values. Because ev and fv at the initial state are negligible compared with
their final values, the dash-dotted lines standing for normalized ev,efold and fv,efold almost perfectly
overlap. The relaxation times can be readily determined from this figure. Similar results can be
derived by the e-folding method for O2-O2 collisions.

TABLE III. Vibrational relaxation curve-fitting coefficients for O2-O2 interactions.

Coefficients pτ e pτ f

c−3 8.9666 11.1073
c−2 −28.3842 −36.1095
c−1 49.9322 65.4861
c0 −34.5109 −41.7713
c1 −4.2005 −6.9750
c2 2.7543 × 10−1 5.0196 × 10−1

c3 −1.1132 × 10−2 −2.2584 × 10−2

c4 1.9522 × 10−4 4.3745 × 10−4

c5 16.2030 25.0828
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TABLE IV. Vibrational relaxation curve-fitting coefficients for O2-O interactions.

a b C d e

pτe 9.7511 × 10−4 −2.1780 × 10−2 1.3094 × 10−1 8.8263 × 10−1 1.0567
pτ f 1.3222 × 10−3 −2.8042 × 10−2 1.4436 × 10−1 1.4014 7.4968 × 10−1

The resulting vibrational relaxation times for O2-O2 interactions can be curve-fitted by a
polynomial function as

pτ = exp

[
4∑

k=−3

ck

(
Ttr

1000

)k

+ c5 log

(
Ttr

1000

)]
. (37)

As suggested by Andrienko and Boyd [26], the vibrational times for O2-O interactions can be
well represented by the following function:

pτ = 10−8

[
a

(
T

1000

)4

+ b

(
T

1000

)3

+ c

(
T

1000

)2

+ d

(
T

1000

)
+ e

]
. (38)

In the above equations, p is the pressure in atmospheres and the curve-fitting coefficients are
given in Tables III and IV.
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FIG. 7. Post-shock profiles for case 3 (a) Translationalrotational temperature, (b) Mass fraction of O,
(c) Mixture density, and (d) Specific vibrational energy.
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FIG. 8. Vibrational energy level populations for case 3 (a) t = 0.01 μs, (b) t = 0.5 μs.

2. Post-shock flows

A modified ME quadratic model can be established by acknowledging that the relaxation of
ev and fv can be described by the Landau-Teller model. When applied to post-shock flows,
the governing equations are similar to those given in Sec. II B 1. The only modification is to
reformulate the vibration-translation terms ωV−T and ω′

V−T using the Landau-Teller expression with
the relaxation times given in Sec. III B 1.

In this section, the post-shock flow conditions corresponding to the experiments of Ibraguimova
et al. [32] are revisited to validate the established model. Only case 3 with the strongest nonequi-
librium is considered here. Figure 7 shows the post-shock profiles of translational-rotational tem-
perature, mass fraction of O, mixture density, and specific vibrational energy for case 3. For clarity,
the results from the ME linear model are excluded. Note that the vibrational temperature profiles
are not presented, because capturing the vibrational energy is more relevant than reproducing
the experimental data of Tv. The modified model shows some differences from the results of
the ME quadratic model. Nevertheless, the modified model generally captures the state-specific
and experimental behaviors and achieves a significant improvement over the 2-T model. Most
importantly, the CPU time is reduced to 0.8892 s per 1000 iterations, which makes it feasible to
incorporate this model in CFD solvers.

To further demonstrate the effect of the proposed model on the process of vibrational excitation
and dissociation, the normalized populations of vibrational energy levels predicted using different
models at t = 0.01 and 0.5 μs for case 3 are compared in Fig. 8. Also shown in the figure are the
Boltzmann distributions calculated under local conditions. Note that the Boltzmann distributions are
exactly straight lines in logarithmic coordinates. It is seen that the proposed model with the Landau-
Teller formulation for vibrational excitation can reproduce the distributions predicted by the original
ME quadratic model, and both can capture the state-specific behaviors qualitatively. Compared with
the Boltzmann distributions, the high-lying levels are overpopulated due to vibrational excitation at
t = 0.01 μs, whereas an obvious underpopulation of the upper energy states occurs at t = 0.5 μs
due to preferential dissociation. Increasing the number of groups would improve the accuracy of the
original and modified ME quadratic models; however, this study suggests that the use of a single
group is adequate given that macroscopic quantities are of more concern for CFD applications.

IV. CONCLUSIONS

Various models of vibrational excitation and dissociation with a range of fidelity were used to
simulate nonequilibrium flows behind a normal shock under conditions corresponding to recent
shock tube experiments. The results were compared with the experimental data.
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A conventional 2-T model, two improved models based on the ME principle, and the state-
specific method were considered. The 2-T calculations used the Landau-Teller model and the CVDV
model to describe vibrational relaxation and vibration-dissociation coupling effects. The ME linear
and quadratic models were established on the assumption that the vibrational energy levels can be
interpreted by linear and quadratic functions. Finally, the state-specific method traced the temporal
and spatial variation of each vibrational energy state and thus had the highest fidelity.

The post-shock simulations demonstrated that the 2-T results significantly deviated from the
experiments, especially under conditions of strong nonequilibrium. The ME linear model showed
some improvement but still lacked sufficient accuracy. By contrast, the ME quadratic model
accurately captured the state-specific and experimental behaviors in terms of translational-rotational
temperature, mass fraction of atomic O, mixture density, and specific vibrational energy. However,
this model was still very computationally expensive.

To reduce the computational cost, it was proposed that the relaxation of the first-order and
second-order moments could be described by the Landau-Teller formulation. The corresponding
relaxation times were determined from state-specific heat bath calculations. The post-shock flows
were revisited using the modified ME quadratic model. The new model maintained sufficient
prediction accuracy while reducing the CPU time significantly, indicating its feasibility to be further
incorporated in CFD solvers.
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