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Anti-phase and in-phase flickering modes of dual buoyant diffusion flames were
numerically investigated and theoretically analyzed in this study. Inspired by the flickering
mechanism of a single buoyant diffusion flame, for which the deformation, stretching, or
even pinch-off of the flame surface result from the formation and evolution of the toroidal
vortices, we attempted to understand the anti-phase and in-phase flickering of dual buoyant
diffusion flames from the perspective of vortex dynamics. The interaction between the
inner-side shear layers of the two flames was identified to be responsible for the different
flickering modes. Specifically, the transition between anti-phase and in-phase flickering
modes can be predicted by a unified regime nomogram of the normalized flickering
frequency versus a characteristic Reynolds number, which accounts for the viscous effect
on vorticity diffusion between the two inner-side shear layers. Physically, the transition of
the vortical structures from symmetric (in-phase) to staggered (anti-phase) in a dual-flame
system can be interpreted as being similar to the mechanism causing flow transition in the
wake of a bluff body and forming the Karman vortex street.
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I. INTRODUCTION

The interaction of multiple flames is a crucial problem that concerns flame stability and fire
safety in industrial and environmental applications [1–4]. Probably due to its intrinsic unsteadiness,
this problem has not been sufficiently understood, even for the simplest scenario—the interaction
of two flames [5–9]. In fact, the unsteadiness could originate from a single flame, for example,
the “flickering” or “puffing” of a buoyant diffusion flame [10–21]. Flickering is a periodic flame
oscillation phenomenon. The flame is elongated vertically and contracted horizontally to form a
“neck,” the upper portion (above the neck) of the flame is pinched off, the lower portion (below the
neck) of the flame retracts, and then the next cycle starts [14].

For single diffusion flames without or with small initial velocity, buoyancy is the main source
that induces the flame to evolve into a self-sustained oscillation mode [12,13,22,23]. The occurrence
of flame oscillation phenomena, such as flame pinch-off and flame flickering, can be determined
by a Rayleigh number criterion and a Froude number criterion, respectively proposed by Carpio
et al. [14] and Moreno-Boza et al. [15]. Recently, a scaling relation for the frequency of flickering
diffusion flames has been analytically obtained by Xia and Zhang [24] based on vortex-dynamical
analysis. Physically, flame flickering has been attributed to the dynamics of toroidal vortices [13], as
illustrated in Fig. 1(a). The lower-density hot gas around the nonpremixed flame sheet is accelerated
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FIG. 1. (a) Illustration of the periodic flickering process of a single pool flame. (b) Schematic of the
computational domain and definition of main parameters in the dual-flame system.

upwardly by buoyancy, leading to the formation of a thin shear layer (or equivalently a vortex
sheet) immediately outside the flame sheet at stage 1. Starting from the flame anchoring base, the
shear layer rolls up into a toroidal vortex at stage 2, which grows and convects upwardly, gradually
deforms the flame to form a thin neck at stage 3, and eventually breaks the neck and causes the
flame pinch-off at stage 4. The detached flame pocket is then lifted in a flow driven by the detached
toroidal vortex [13,14], while a new vortex sheet starts to grow outside the attached flame sheet to
form the toroidal vortex of the next cycle.

Flickering also exists in multiflame systems. Recent experimental studies [25–29] have reported
that for candle or jet flames in pairs or arrays the flickering of each individual flame spontaneously
synchronizes with each other, rendering special synchronized flickering modes. According to
Kitahata et al. [25], the interaction between two side-by-side oscillating flames exhibits two distinct
modes, in-phase and anti-phase, depending on the distance between the flames. In the in-phase
flickering, the two flames stretch and pinch off in a simultaneous manner as if there were only
one flickering flame. In the anti-phase flickering, each flame experiences pinch-off alternatively in
a “seesaw” manner. Forrester [27] experimentally identified an initial-arch-bow-initial “worship”
oscillation mode for four candles arranged within a closed loop. Okamoto et al. [28] reported four
distinct synchronized flickering modes for three coupled candle flames in a triangular array. Despite
the complexity of these multiflame systems, the crucial component of them is the interaction of a
dual-flame system, which is largely affected by the gap distance. Researchers proposed hypotheses
to explain the coupling interaction by using the Hopf bifurcation theory based on heat transfer [25]
and the conceptualized vortex-based conjecture [28]. However, no evidence of the flow field was
provided to substantiate these hypotheses.

As discussed above, a single buoyant diffusion flame flickers under the periodic flow induced by
the formation and detachment of the toroidal vortices. Two identical flames with sufficiently large
separation distance are expected to have independent flickering processes with the same frequency.
As the flames are closer to one another, each of them undergoes a disturbance from the other, which
breaks the symmetry of the established flow pattern around each flame. Naturally, the toroidal vortex
together with the flow would become asymmetric, which could in turn cause the anti-phase flame
flickering. As the flames are so close to nearly merge with each other, it is also intuitive to perceive
the in-phase flickering of the flames, which could have a different flickering frequency as the result
of changed flame shape and flow field. Apparently, the above conjectures need to be verified and the
underlying physics must be elucidated.

The present study aims to theoretically analyze the in-phase and anti-phase flickering modes of
a dual-flame system from the vortex dynamics perspective. The existing literature does not provide
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enough details about the flow field information required by the analysis, which will be obtained in
the study by means of numerical simulation. By analyzing the interaction between the shear layers
of the two flames, we revealed the fundamental mechanism that governs the flickering modes.

II. NUMERICAL METHODS

In the present study, we were mainly concerned with the flickering mechanism of the pool flame
duet as the result of their interaction, so two interacting laminar flames from square-shaped pools
were considered without loss of generality, as illustrated in Fig. 1(b). The two pool bases are of the
same dimensions with a fixed edge length, d , while the gap distance, l , in between was adjusted
to obtain different interactions between the flames. It is recognized that the flickering frequency
is subject to more factors such as the geometry of the pools, the boundary conditions, the fuel
thermochemistry, the transport of gases, and probably the turbulent flow. The present study does
not, however, aim to precisely predict the frequency by considering the secondary effects caused
by the many factors, but it focuses on using the simplified flame system to unravel the controlling
vortex-dynamical mechanism underneath the different flickering modes.

The present work employed the computational fluid dynamics method implemented in the
widely used open-source code, Fire Dynamics Simulator (FDS) [30], to solve the unsteady,
three-dimensional, incompressible (variable-density) flow with chemical heat release, the governing
equations for which are expressed as

∂

∂t
(ρ) + ∇ · (ρu) = ṁF (1)

∂

∂t
(ρYα ) + ∇ · (ρYαu) = ∇ · (ρDα∇Yα ) + ṁα + ṁF (2)

∂

∂t
(ρu) + ∇ · (ρuu) = −∇ p̃ − ∇ · τ + (ρ − ρ0)g (3)

∂

∂t
(ρhs) + ∇ · (ρhsu) = Dp̄

Dt
+ Q̇ − ∇ · q̇ (4)

ρ = p̄W̄

RT
, (5)

where ρ is the density, u the velocity vector, and ṁF the mass production rate per unit volume of fuel
by evaporation; Yα and Dα are the mass fraction and diffusion coefficient of species α, respectively;
ṁα is the mass production rate per unit volume of species α by chemical reactions; p̃ is the pressure
perturbation, τ the viscous stress tensor, ρ0 the background density, g the gravity vector, hs the
sensible enthalpy under low Mach number approximation, p̄ the back pressure, Q̇ the heat release
rate per unit volume, q̇ the vector of heat flux per unit area, W̄ the molecular weight of gas mixture,
R the universal gas constant, and T the temperature. In the past decade, FDS has been proven to
be suitable for capturing unsteady and dynamic processes in fire-driven flows [31–38]. Xin et al.
[33] quantitatively reproduced the velocity field of a 1-m-diameter methane pool fire using FDS.
Hietaniemi et al. [34] verified that for heptane pool fires of various diameters the simulated burning
rates agree well with experiments. The radiation solver of FDS was testified in modeling small pool
fires by Hostikka et al. [35].

For simulation setup, the gray exterior surfaces in Fig. 1(b) are applied to the open boundary
condition, which allows gases to flow into or out of the computational domain depending on
the local pressure gradient. Specifically, the Poisson solver requires a Dirichlet condition for the
quantity, � = p̃/ρ + u · u/2, which means that � should remain constant along a streamline. Thus,
for incoming flow, �ext at the boundary equals that at infinity of the ambient flow, whereas for
outgoing flow �ext is set to the value of its adjacent interior grid cell. It is noted that a similar
Dirichlet condition setup is also adopted at an open boundary for other fluid properties, such as
temperature and species mass fractions. The blue surface denotes the liquid fuel of heptane, whose
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vaporization rate is a function of the liquid temperature and the vapor concentration according to the
Clausius-Clapeyron relation [39]. The base of each pool is enforced with the solid-wall boundary
condition, which is impermeable, nonslip, and adiabatic. The discretization is performed using a
kinetic-energy-conserving central difference schemes while the time is advanced by an explicit
second-order predictor/corrector scheme [30]. The combustion is considered as the mixing-limited,
infinitely fast reaction of lumped species [30], which is a good approximation for the present
nonpremixed flames far from extinction. Although radiation is unlikely to be significant in the
present small-scale flames, the radiation transport equation, which is routinely included in the
applications of FDS, is solved using a finite volume method without modeling the soot formation.
A typical computational domain has a dimension of 16 cm × 16 cm × 24 cm with a grid resolution
of 160 × 160 × 240, which was determined based on the domain and grid independent studies in
Sec. III. Both the computational domain and mesh are adjusted accordingly as the gap distance
enlarges.

III. FLCKERING OF A SINGLE POOL FLAME

The flickering of a representative single heptane flame was simulated to validate our numerical
method. The Reynolds number, Re = Ud/νA, is about 550, where the characteristic velocity U
is estimated as the convective velocity of the vortex scaled on

√
gd with g = 9.8 m/s2; νA =

1.6 × 10−5 m2/s is the kinematic viscosity of air at room temperature. The evolution of the
simulated temperature and vorticity contours during a time period (denoted by �t = 1/ f , where f
is the flickering frequency) are presented in Fig. 2(a), which qualitatively reproduces the flickering
phenomena of Fig. 1(a). It is clearly seen that the flame pinches off between 0.6�t and 0.8�t as a
result of vorticity accumulation inside the toroidal vortex illustrated by the spiral streamlines, which
induces high velocity near the center and causes the deformation and then rapture of the flame neck.
After the flame pinch-off, the upper portion of the separated flame is convected downstream with
the toroidal vortex. The right column of Fig. 2(a) presents the temperature distributions in three
transverse planes at z/d = 2.5, 3.5, and 5.5 of the instant t = 0.6�t , justifying that the rectangular
pool shape only affects the flame up to about 1.5d downstream of the fuel inlet.

To facilitate the following parametric study, a balance between computational accuracy and
efficiency is desirable. The grid- and domain-independence studies were conducted by comparing
the characteristic frequencies of four cases of different domains and mesh sizes listed in Table I.
These frequencies were obtained by applying the fast Fourier transform (FFT) to analyze the mass
burning rate of fuel for 10 s at a sampling rate of 1000 Hz so that the maximum and minimum of
burning rates were converged, an example for which is shown in Fig. 2(b). The results indicate that
the burning rate varies periodically with time, corresponding to a primary frequency of f0 which
is also the flickering frequency. The flickering flame has a subharmonic frequency f1, which is
twice the primary frequency. Physically, the harmonics is closely related to the breakup of the main
toroidal vortices in the downstream, which was found to be sensitive to environmental disturbances
in previous experiments of laminar diffusion flames [15,17,19]. Based on the result of Table I, the
setting of case 3, which features a domain of 16 cm × 16 cm × 24 cm and a structured, uniform,
and staggered grid of 160 × 160 × 240, was adopted as the standard domain and mesh for all single
flame simulations.

Recently, we adopted vortex-dynamical theory to analytically derive the flickering frequency
of a buoyancy-dominated diffusion flame as f = 0.48

√
g/d [24], which recovers the prominent

scaling relation obtained from previous experimental studies [40,41]. This scaling indicates that the
flickering frequency depends largely on gravity and burner size, but less on the nozzle geometry, the
fuel type, or the initial fuel velocity. This allows us to conduct a numerical experiment of flickering
flames and adjust the flame parameters to check the performance of the current numerical approach.
Here, different single pool flames with varying g (4.9, 9.8, and 19.6 m/s2) and d (10, 15, 20, 30 mm)
were simulated, and the simulation results in Fig. 3 agree well with previous experiments [42–45]
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FIG. 2. (a) Visualization of time-varying single pool flame with d = 20 mm based on the flame sheet
colored by temperature contour and vorticity on the X−Z plane, Y = 0. (b) The burning rate in time domain
and frequency domain (case 3).

and the scaling relation [24,40], verifying that the present numerical methods are suitable for
studying the flickering of pool flames.

To study the essence of dual flickering flames, it is necessary to summarize the existing
perspectives on interpreting the unsteady characteristics of a single flickering flame. In the present

TABLE I. The grid- and domain-independence studies.

Cases Domain (mm × mm × mm) Mesh f0 (Hz) f1 (Hz)

Case 1 80 × 80 × 240 160 × 160 × 480 10.0 20.0
Case 2 80 × 80 × 240 80 × 80 × 240 9.8 19.5
Case 3 160 × 160 × 240 160 × 160 × 240 9.9 19.8
Case 4 240 × 240 × 240 240 × 240 × 240 9.9 19.9
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FIG. 3. Validation of single pool flames with the scaling law [40] and experiments obtained by Schönbucher
et al. [42] ( ), Maynard [43] ( ), Baum and McCaffrey [44] ( ), and Fang et al. [45] ( , ).

study, we have the perspective that the flickering flame is physically caused by the dynamics of
vortices, as confirmed by numerous experimental studies, and modeled the flickering frequency
by calculating the formation and detachment of the main toroidal vortex that is synchronized with
the dynamics of the flame [24]. In another perspective, Moreno-Boza et al. [15] and others [11,46]
interpreted the flickering as a hydrodynamic global instability. As such, the dynamics of the vortices
are not modeled physically but treated as a perturbation, which could grow and propagate in the
form of instability waves. It should be noted that both perspectives have been adopted extensively
to study flow instability problems, among which a prominent one is the vortex shedding in the wake
of a bluff body that renders the Karman vortex street. Admittedly, in terms of stability analysis, the
introduction of the concepts of global/convective instabilities [47] enabled the successful application
of the Landau equation [48] in modeling the onset of vortex shedding and led to the identification
of the critical Reynolds number [49], at which the stability mode transitions from a fixed point to
a limit-cycle oscillation physically known as the vortex street. However, this more recent progress
does not negate the earlier contributions by vortex dynamicists, including von Karman [50] and
Saffman [51,52], who modeled the fully developed vortex street with an infinite array of staggered
counter-rotating vortices, resulting in the predictions of the characteristic Strouhal number based on
linear stability theory. Therefore, the stability-analysis perspective based on the Landau equation
predicts the onset of the instability, whereas the vortex-dynamics perspective dictates the shedding
frequency by assuming established instability of the vortex street. Apparently, these perspectives
focus on the different stages of the vortex street development and are complementary to each other.

In the present study, there are two key advantages in applying the vortex-dynamics approach
to study flame flickering. The first is the clear physical picture, which might be hidden in a pure
mathematical approach simply treating a vortical structure as a wave disturbance. Second, it handles
the unsteadiness by nature since vortices are the essence of flow motions. However, the stability-
analysis approach generally requires starting from a stable base flow; thereby its applicability is
limited to only a certain (often very short) period of time after the onset of instability.

IV. PHENOMENA OF ANTI- AND IN-PHASE FLICKERING OF DUAL POOL FLAMES

A. Anti-phase flickering mode

For two identical pool flames with a considerable separation distance in between, Kitahata
et al. [25] reported the existence of an anti-phase synchronized flickering, and their experimental
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FIG. 4. Snapshots of flickering flames in the anti-phase mode. (a) The brightness from the experiment [25]
based on two sets of three candles, (b) the heat release, and (c) the vorticity from the present simulation based
on two pool flames with d = 20 mm and l = 30 mm.

images during one period of flickering are shown in Fig. 4(a). It is seen that each flame still
stretches and shrinks in a periodic manner, while the flickering of the dual-flame system displays a
“seesaw” pattern. It is evident that the flame pinch-off occurs at 0 ∼ 0.2�t for the left flame and at
0.4�t ∼ 0.6�t for the right flame, and that the two flames are in opposite phases to each other.
Thus, this oscillation mode is defined as “anti-phase” in this study.

The simulated heat release field is presented in Fig. 4(b) for comparison. It should be clarified
that this simulation does not replicate the exact conditions of the original experiment [25] and,
therefore, is not a numerical reproduction. This is because the experiment was conducted by using
candle flames, with each “single” flame created by bundling three 6-mm-diameter small candles
together, so that the large “single” flame could pinch off [25]. Consequently, the differences in both
the fuel inflow condition and the geometric shape of the fire base could cause the simulated pool
flames to differ from the experimental candle flames. Nevertheless, the simulation still qualitatively
captures the pinch-off of each individual flame as well as the “seesaw” oscillation pattern of the
dual-flame system. Furthermore, it can be observed from the pinch-off behaviors of the simulation
that the phase difference between the two flames is also around half a period, quantitatively verifying
the establishment of the same anti-phase flickering.

Figure 4(c) presents the vorticity contours corresponding to the flame snapshots of Fig. 4(b). The
black contour is obtained based on the stoichiometric mixture fraction to represent the flame sheet,
which agrees well with the flame sheet visualized by heat release in Fig. 4(b). It can be observed
that the flame sheet is accompanied by strong vortex flows, which is similar to the flame-vortex
configuration of a single flame. Specifically, the flame deformation is related to the initial roll-up
and growth of the shear layer, the flame neck appears with the growth of the toroidal vortex, and the
flame pinch-off is synchronized with the detachment of the toroidal vortex. However, the difference
is that the symmetry associated with each individual flame is disrupted as the flame and the shear
layer seem to bend outward, away from each other, as illustrated by the red arrows in Fig. 4(b).
This can be understood in that each single flame (denoted F1) is perturbed by the shear layers of the
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FIG. 5. Snapshots of flickering flames in the in-phase mode. (a) The brightness from the experiment [27]
based on two candles, (b) the heat release, and (c) the vorticity from present simulation based on two pool
flames with d = 20 mm and l = 10 mm.

other flame (denoted F2), whose net effect is to induce a velocity field indicated by the outwardly
deflected streamline and to cause the outward deflection of F1. It should be noted that, since the
inner-side shear layer of F2 is closer to F1 than the outer-side shear layer, F1 is dominated by the
inner-side shear layer so that the induced velocity is deflected outwardly.

B. In-phase flickering mode

As the distance between the two flames becomes sufficiently small, the flickering mode changes
dramatically that the two flames exhibit an in-phase synchronized oscillation. Figure 5(a) shows the
experimental snapshots of Forrester [27], who conducted a similar experiment to that of Kitahata
et al. [25] using a single candle instead of bundled candles. The simulation results of heat release
based on pair pool flames are illustrated in Fig. 5(b). Both results show that the two flames flicker
along with each other symmetrically as one flame, which is termed “in-phase” in the present study.
The agreement in flame deformation, necking, and pinch-off between experiment and simulation
is good in general, except the shape of the flame pocket during flame pinch-off (from 0.4�t to
0.5�t). The discrepancy is likely to reflect the different setup between the experiment and the
present simulation, for example, the different fuel and inflow conditions between candle flame and
pool flame.

To investigate this in-phase mode of flame flickering, we again refer to the vorticity evolution
during one flickering period, as shown in Fig. 5(c). It is interesting to note that the dynamics of
the flames is still synchronized with the evolution of the vortical structures. Specifically, the flame
deformation, necking, and pinch-off are respectively coupled with the initial roll-up, growth, and
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detachment of the toroidal vortex. However, the vortex sheet configuration for each individual flame
displays a distinct asymmetric feature that the shear layer only rolls up into a vortex on the outer side
with the inner side remaining a rather linear shear layer, as observed at 0.4�t and 0.5�t in Fig. 5(c).
Furthermore, the contour of each flame tends to deflect inward toward each other as indicated by
the red arrows in Fig. 5(b), opposite to the outward flame deflection in the anti-phase mode. This
again can be explained by the velocity-induction mechanism discussed in Sec. IV A; however, the
inward deflection of the current in-phase mode shares the same velocity direction as that induced
by the outer-side shear layer of the other flame, as illustrated by the inwardly deflected streamline
through the flame tip at 1�t of Fig. 5(b). As the outer-side shear layer is farther away, it turns out
that the outer-side shear layer together with the rolled-up vortex must have a significantly larger
strength in order to dominate over the inner-side shear layer. These observations suggest that there
is an imbalance of vortex strength between the outer and inner shear layers, the detailed mechanism
for which will be investigated further in the next section.

V. VORTEX-DYNAMICAL INTERPRETATION OF DIFFERENT FLICKERING MODES

A. Vorticity transport mechanism

To further understand the basic mechanisms for the anti- and in-phase flickering modes of the
dual-flame system, we recall that the flickering of a single flame is attributed to the periodicity
of the toroidal vortices [13,14,40]. Our recent work [24] has demonstrated that the flickering
frequency can be rigorously derived from the periodic generation and detachment of the toroidal
vortices by applying vortex-dynamical principles. A key mechanism here is the formation of the
toroidal vortices, which is closely related to the generation and transportation of vorticity inside the
flame-induced shear layer and is governed by the vorticity transport equation for incompressible
flow,

Dω

Dt
= ∂ω

∂t
+ (u · ∇)ω︸ ︷︷ ︸

(A)

= (ω · ∇)u︸ ︷︷ ︸
(B)

+ 1

ρ2
(∇ρ × ∇ p̃)︸ ︷︷ ︸

(C)

+ ρ0

ρ2
(∇ρ × g)︸ ︷︷ ︸

(D)

+ νA∇2ω︸ ︷︷ ︸
(E )

(6)

where the term (B) only accounts for the vorticity change associated with the stretching and tilting
effects of the flow, the term (E) is a diffusion term causing the redistribution of vorticity, and both
terms are not a source of vorticity. Vorticity generation is attributed to the baroclinic term (C) and
the gravitational term (D), both of which entail the density gradient caused by the heat release
of combustion. For buoyancy-driven flames, |∇ p̃| � ρ0g so the dominant contributor to vorticity
generation is term (D). From the observation of Sec. IV, it is evident that the roll-up of toroidal
vortices also presents in both flickering modes of two flames, indicating that the mechanism of the
growth and evolution of the shear layers of a single flame might be extended to understand the case
of two flames.

The mechanism responsible for the anti-phase mode can be further interpreted based on the
above discussion. For each individual flame in Fig. 4(c), the growth of the vortex sheet and the
roll-up of the toroidal vortex resemble those in a single flame, so the main vorticity source is still
term (D) in Eq. (6). The effect of flame F2 on F1 can be treated as a small perturbation, which from
a vortex dynamics perspective results in an asymmetric vorticity convection term (A) in Eq. (6).
This corresponds to an induced velocity field and slightly deforms flame F1. One would expect this
effect to be marginal; however, the interactions between the shear layers as well as the toroidal
vortices of the two flames clearly form a staggered distribution of the vortical structures, which is
translated into the half-period phase difference between the two flames. As will be further discussed
in Sec. VI, such staggered vortex configuration is typical in canonical fluid dynamics phenomena
[53,54], for example, the vortex street of a wake, and is usually the outcome of the development of
flow instabilities.
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FIG. 6. Comparison between instantaneous dimensionless vorticity, ωy/(g/d )1/2, and dimensionless Lapla-
cian of vorticity, |∇2ωy|/(g1/2d−5/2), in (a) in-phase and (b) anti-phase flickering modes.

The analysis from Sec. IV B points to the existence of a mechanism that causes the inner-side
shear layers of the two flames to be weaker than the outer-side shear layers. From the vorticity
contours of Figs. 4 and 5, it seems that the inner-side shear layers only become staggered without
being diminished in the anti-phase mode, whereas the vortex strengths of the inner-side shear
layers are notably weakened compared with the outer-side in the in-phase mode. This effect is
quantitatively verified in Fig. 6, which shows that vorticity diffusion between the two inner-side
shear layers causes a significant vorticity annihilation in the center plane of the two flames of the
in-phase mode. Mathematically, the vorticity diffusion corresponds to term (E) of Eq. (6), which
intensifies with increasing vorticity gradient, and thus decreasing distance between the vortices. This
explains the strong vorticity annihilation observed in the in-phase mode when the two inner-side
shear layers approach each other. As will be further analyzed in the next section, this diffusion
mechanism has a decisive effect on the transition between the two different flickering modes. It is
noted that as the gap between the two flames decreases the density gradient across the inner-side
shear layers could become smaller owing to thermal diffusion. As a result, it could also contribute
to the reduction of vorticity of the inner shear layers. However, we believe that this heat diffusion
effect should be secondary to the vorticity diffusion mechanism in determining the flickering modes,
for which a detailed argument and analysis is provided in the Appendix.

B. Helicity analysis

Before moving on to the next section, we shall make a few notes to justify the approach of
applying two-dimensional (2D) flow analysis to the current three-dimensional (3D) problem. First,
the interaction between two flames mainly happens in the plane connecting them, away from
which the interaction causes secondary effects. Furthermore, the instabilities and interactions of
the vortices, which may enhance the 3D effects, mainly occur in the far field and thereby do
not affect the laminar flow in the near field. This can be demonstrated by the helicity plots in
Fig. 7, where the helicity density is given by h = u · ω [55] with ω being the vorticity vector.
This definition means that helicity is generated by the “nonorthogonality” of the vorticity and
velocity vectors. Physically, helicity in fluid dynamics is a measure of the knottedness and/or
linkage of the vortex lines, and its volumetric integral inside an ideal Euler flow is an invariant
given no vorticity crossing at the boundary. In the current context, the helicity may serve as a
reference for the intensity of 3D interactions between the vortical structures. It is evident from
Fig. 7(a) that in both in-phase and anti-phase flickering modes vortex lines located approximately
below z/d = 5, where the streamlines become spiral and flame pinch-off occurs, are in regular 2D
shape and black color (low h value), indicating relative weak knottedness or linkage of the laminar
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FIG. 7. (a) The distribution of vorticity in the X−Z plane for in-phase (left) and anti-phase (right) flickering
modes. The flame sheets are represented by the orange contours. The streamlines are denoted by the gray lines,
and the vortex lines are colored by the helicity density, h = u · ω. (b) The area integral of helicity density,
dH/dz = ∫∫

hdx dy (x � 0, y � 0), along the z direction for in-phase (black solid lines) and anti-phase (red
dash-dotted lines) flickering modes. The two curves of each mode correspond to the upper and lower limits of
dH/dz during an entire flickering period.

vortical structures in the near field. However, the vortex lines in the downstream become twisted
and irregular, and dyed in high h-value colors, which implies strong 3D interactions between the
vortices. This can be understood that the flow is mainly dominated by 2D vortex interactions in
the near field where the shear layers remain laminar so that the out-plane velocity component is
insignificant; whereas the vortex interactions become 3D in the far field when the shear layers evolve
into more complex vortical structures and are entangled with each other. This understanding can be
further demonstrated in Fig. 7(b), which shows the maximum and minimum of the areal integral
of helicity density, dH/dz = ∫∫

hdx dy (x � 0, y � 0 ), within a flickering period at different z
locations. It is seen that in both flickering modes the helicity integral in the near field at z < 5d is
almost negligible while it increases notably in the downstream after the flame pinch-off location.
Furthermore, the larger amplitude of helicity integral of the anti-phase mode compared with the
in-phase mode clearly indicates a stronger 3D effect in the downstream of the anti-phase mode,
reflecting a more unstable nature of flickering.
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VI. CRITERION FOR FLICKERING MODE TRANSITION

Hereto, we have attributed the anti-phase and in-phase flickering modes of a dual-flame system
to the interaction and evolution of vortical structures in the flow field. This contrasts with the view
proposed by Kitahata et al. [25] that the synchronization is owing to radiation, which was combined
with the symmetric Hopf bifurcation theory [28] to predict the different flickering modes. The
validity of the model by Kitahata et al. was later questioned in their other work [29] as it completely
ignored the fluid dynamical effect. A more reasonable conjecture was given by Nakamura et al.
[26] that the viscosity suppresses the hydrodynamic disturbance and leads to the mode transition
of double flickering jet flames. It is worth mentioning that Dange et al. [56] recently provided a
direct experimental support to our hypothesis [57] that the mode transition is determined by the
interactions between the buoyancy-induced vortices. In this section, we shall focus on quantifying
the interaction between the inner-side shear layers of the two different flames to reveal the nature of
the transition between the two flickering modes.

A. Dimensional analysis

We first plot the nondimensional frequency of double flickering flames, f / fs, against l/d in
Fig. 8(a), where fs is the frequency of a single flickering flame, based on the experiment of candle
flames of Kitahata et al. [25], the experiment of jet flame of Nakamura et al. [26], and the current
simulations of pool flames. For the experiment of Kitahata et al., the effective diameter of the
bundled candles is estimated to be 13 mm, which is the diameter of a virtual cylinder wrapping
the candles. It is seen that in all cases the in-phase and anti-phase modes are distinguished by a
frequency “jump,” where f / fs increases from below 1 to above 1 within small ranges of l/d as
marked by the line segments in the figure. This frequency variation trend agrees well with existing
literature [25,26,58]. However, the transition regions for different cases are scattered in Fig. 8(a),
indicating that the synchronized flickering mode of two flames is not dictated by the nondimensional
gap distance l/d .

Next, we perform dimensional analysis to study the parameters governing the transition between
the different flickering modes. Based on the phenomenal findings and physical understandings from
Secs. IV and V, the frequency f of double flickering flames is a function of the pool size d , the
gravity g, the gap distance l , and the ambient air viscosity νA as

f = F (d, g, l, νA), (7)

which yields

f

fs
∼ f√

g/d
= G

(
l

d
,

√
gd3

νA

)
= G(α, Gr1/2), (8)

where α = l/d and Gr = gd3/ν2
A is the Grashof number [39] measuring the relative effects between

buoyance-induced convective acceleration and viscous forces. A further observation of Fig. 8(a)
suggests two limiting cases. As α → 0 by letting l → 0, f / fs tends to approach a constant around
0.9, which agrees with 0.866 calculated according to the formula given by Tang et al. [59]. As
α → ∞ by letting l → ∞, f / fs approaches 1 suggesting the desynchronization between the two
flames [25,28]. It is evident that in both limiting cases f / fs depends more on α rather than Gr1/2.

The similarities in these asymptotic behaviors and the “jump” pertaining to the transition between
the different flickering modes inspire us to find a sole parameter that dictates the variation of f / fs

from unity to another constant. According to previous analysis, such a parameter, if existing, must
be a combination of both α and Gr1/2, and it should share the same asymptotic behaviors with α

in the two limits, α → 0 and α → ∞. As a result, we found αGr1/2 to be the desired parameter
which can be used to collapse the f / fs data of different cases onto a single trend line as shown in
Fig. 8(b), and the different transition regions in Fig. 8(a) are shrunk to a narrow band of the range
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FIG. 8. Comparison of (a) normalized f / fs at different l/d and (b) normalized f / f0 at different αGr1/2.
The red solid and blue empty symbols correspond to in-phase and anti-phase flickering modes, respectively.
The line segments mark the transition between the two distinct modes, for instance, the flame and flow patterns
of which correspond to case A and case B, respectively. The circle symbols are from the experiment of Kitahata
et al. [25], the diamond ones from the experiment of Nakamura et al. [26], and the square and triangle symbols
from present simulation.

300 < αGr1/2 < 420. This verifies the message from Eq. (8) that α and Gr1/2 together govern
the nondimensional flickering frequency of two flames, including the transition between the two
different flickering modes. Considering the vast differences between the candle, jet, and pool flames,
this result also suggests that the synchronized flickering is less sensitive to the nature or geometry
of the flame, and αGr1/2 could serve as a unified criterion to predict the flickering transition of a
general dual-flame system.

B. Physical interpretation

It is noted that the product of α and Gr1/2 should not be seen as an arbitrary combination, but
an integral parameter identified experimentally based on the hypothesis of a single criterion for
the flickering mode transition. In the following we demonstrate that its underlying mechanism is
consistent with physical interpretation. For this purpose, αGr1/2 can be rewritten as

αGr1/2 =
√

gdl

νA
∼ Ul

νA
= ReA, (9)

where U ∼ √
gd is the characteristic velocity. Equation (9) implies that the transition between the

anti- and in-phase flickering modes is dictated by the Reynolds number ReA, which is defined
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based on the two inner-side shear layers of the gap flow. This Reynolds number mechanism can
be understood by comparing the interaction between the inner-side shear layers of the two flames
to that of the wake of a bluff body, e.g., the flow around a cylinder [53]. One similarity is the
directions of the vorticities in the two counter-rotating shear layers. Furthermore, both flows involve
a transition of the shear-layer configuration from symmetric to staggered, which is also known as the
Karman vortex street [54]. From the analysis of Sec. V, we are more convinced to make this analogy
because the transition is closely related to viscosity in both cases. For the canonical flow around a
cylinder [53], this flow transition is predicted by a Reynolds number, Re, which quantifies the effect
of inertia relative to viscosity. It was found that the transition from symmetric vortical structures to a
staggered vortex street usually happens around a critical Reynolds number from several decades to
a hundred. In the current study of double flames, the transition from in-phase to anti-phase has been
identified to occur at a few hundreds of ReA. This confirms that the transition of the two different
flickering modes of a dual-flame system is governed by the gap flow between the inner-side shear
layers, which resembles the transition mechanism from stable to unstable in the development of a
von Karman vortex street.

To further support the analogy between the gap flow of the two flames and the wake flow, we
calculated the spacing ratio, l/h+, for the staggered vortical structures in the simulated anti-phase
flickering flames, where h+ denotes the intercore spacing of the main vortices in each inner-side
shear layer. This definition is consistent with that for the classical Karman vortex street, and a
sample calculation is shown in Fig. 9. Here, the vortex core, denoted by a black cross, is identified
by calculating the second invariant Q [60] and then finding the local maximum along each branch of
the shear layers as demonstrated in Fig. 9(b). It is noted that this calculation should be performed in
the near field where the staggered vortical structures are prominent and not greatly interfered with
by the 3D effects in the far field. In practice, h+ is the averaged vertical height between two vortex
cores and obtained by averaging the instantaneous values over nine phases of a period as shown in
Fig. 10. As a result, the phase-averaged spacing ratio l/h+ for different anti-phase flickering flames
is estimated to vary between 0.20 and 0.33. This is in reasonable agreement with the theoretical
value 0.28 suggested by von Karman [54] and the experimental values around 0.2 measured from
different types of wakes [61], especially considering that the strength of the buoyancy-induced shear
layers are growing gradually along the flame and the vortex pattern in the near field is not yet fully
developed.

C. Further validation and discussion

So far, this study has pointed to the conclusion that the mode transition of two flames is primarily
dominated by fluid mechanics, through the viscous diffusion of vorticity. For further validation,
Fig. 11 shows the mode transitions for the double pool flames of diameter d = 20 mm, at three
different gap distances, 10, 14, and 20 mm, by numerically tuning the viscosity. We can observe
that the mode transitions from in-phase to anti-phase as the viscosity coefficient decreases from
0.50 νA, 1.10 νA, and 1.35 νA to 0.45 νA, 1.05 νA, and 1.30 νA, respectively. This directly verifies
our proposed mechanism that the viscosity plays an essential role in the interaction between the
inner shear layers of the flames. It should be noted that in previous studies all mode transitions of
double flames were achieved through adjusting the gap distance, whereas our simulation shows the
first evidence that the transition is possible by changing the viscosity alone. Another interesting
observation is the flame interaction mode of Fig. 11(e), which is termed the “amplitude death”
mode [56] meaning no flickering. While future investigation is necessary, we believe this mode
happens when the viscous diffusion of each single flame is so strong that it prevents the shear layer
from growing and rolling up into toroidal vortex, meanwhile the interaction between the inner shear
layers is still in the small ReA regime so that the flame system maintains a symmetric configuration.
Therefore, this is considered as a special in-phase mode in the present study.

To further verify the mode transition criterion, we apply Eq. (9) to calculate the ReA transition
ranges for the three gap distances of Fig. 11 to be 554–616, 353–370, and 410–426, respectively. The
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FIG. 9. Five instantaneous (a) vorticity and (b) Q-criterion contours of anti-phase flickering flames (d =
2 cm) with a 30 mm gap. The black cross denotes the position of a vortex core identified by the local maximum
Q criterion [60]. h+ is the vertical height between two adjacent vortex cores.

ReA ranges for the gap distances of 14 and 20 mm are in reasonable agreement with the predicted
ReA range of 300–420 from Fig. 8; however, the ReA range for l = 10 mm is notably above the
prediction. We believe that this mismatch should be attributed to the increased viscosity associated
with the increased temperature of the gap flow as the gap shrinks. It can be corrected by modifying
Eq. (9) as

ReE =
√

gdl

νE
, (10)
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FIG. 10. The spacing ratio l/h+ during a period for four anti-phase flickering modes, which are marked
by black (l = 30 mm), blue (l = 20 mm), green (l = 16 mm), and red (l = 14 mm), respectively.
The solid line is the theoretical value of 0.28 given by von Karman [50] and the dashed line represents the
experimental value around 0.2 [61].

where νE is the effective kinematic viscosity estimated from Sutherland’s law as

νE

νref
=

(
TE

Tref

)5/2 Tref + S

TE + S
, (11)

with Tref = 298 K being the room temperature, νref the reference viscosity at Tref , TE the effective
temperature, and S = 110.4 K for air. Note that the reduction of the density terms in Eq. (11) is
based on the ideal gas law. Since the temperature of the gap flow is highly unsteady, TE is only
evaluated approximately based on spatial and temporal averaging. For each case in Fig. 11, we first
identify the white line corresponding to the isocontour of zero vorticity within the gap. Thus, the
time-averaged temperature along the white line, which is plotted in Fig. 12, is considered to be
that of the ambient flow outside the inner shear layers. Furthermore, we believe that the flickering
mode is decided by the vortex interaction upstream of the pinch-off location, zpo, which is marked
by the dashed lines in Fig. 12. Consequently, TE for each case can be calculated by averaging the
corresponding temperature curve of Fig. 12 for z up to zpo. This allows the estimation of ReE based
on Eqs. (10) and (11), and the results are presented in Table II. We can see that the agreement

FIG. 11. The contours of heat release for different simulation cases, showing the mode transition at
different gap distances by changing the viscosity alone. The white lines are isocontours of zero vorticity, along
which the ambient flow temperature is estimated.
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FIG. 12. The time-averaged temperature vs height along the white lines in Fig. 11 for different in-phase
and anti-phase flame modes at different gap distances. The dashed lines correspond to the flame pinch-off
locations, zpo.

between the ReE transition ranges and the range of 300–420 in Fig. 8 is significantly improved,
especially for the l = 10 mm case.

In Sec. V A and the Appendix, we have demonstrated that the increased flow temperature within
the flame gap could cause reduced vorticity generation in the downstream, although this has a
limited impact on the upstream interaction between the two flames. In this part, we have shown
that the heat effect could still affect the mode transition indirectly via temperature-dependent fluid
properties, such as density and viscosity. Last, our model has certain limitations as it is based on
each individual pool flame being flickering and laminar. This means that the pool diameter should
vary in a range approximately between 10−2 and 10−1 m [15,62], so that the dimension of the flame
is large enough to flicker but small enough to not develop turbulence in the near field. The frequency
prediction of the dual-flame system is also beyond the scope of this work.

TABLE II. Reynolds number for mode transition by changing viscosity.

Gap distance l = 10 mm l = 14 mm l = 20 mm

Mode In-phase Anti-phase In-phase Anti-phase In-phase Anti-phase

νref 0.50νA 0.45νA 1.10νA 1.05νA 1.35νA 1.30νA

ReA 554 616 353 370 410 426
TE 398.5 K 398.8 K 365.5 K 310.7 K 312.6 K 309.0 K
νE/νref 1.660 1.662 1.430 1.076 1.088 1.066
ReE 334 371 247 344 377 400
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VII. CONCLUDING REMARKS

The flickering of dual pool flames was studied numerically and theoretically to understand
the dynamic flame behaviors. The anti-phase and in-phase synchronized flickering phenomena
visualized by the experiments of Kitahata et al. [25] and Forrester [27], respectively, were
successfully captured by the present simulation. The heat and flow field information obtained
from this simulation provide an insight into the correlation between vortex dynamics and flame
flickering. Specifically, the periodic pinch-off of each individual flame in the dual-flame system is
induced by the formation, evolution, and detachment of the toroidal vortex, which are also known
as the mechanism for a single flickering flame. The interaction of the two flames leading to distinct
flickering modes was attributed to the coupling effect between the inner-side shear layers of the
two flames. Furthermore, the transition between the anti-phase and in-phase flickering modes can
be dictated by a characteristic Reynolds number, ReA, which is defined based on the properties
of the inner-side shear layers of the two flames. This finding was verified by the collapse of the
nondimensional flickering frequency as a function of ReA, with data from the current simulation
and the experiments of Kitahata et al. and Nakamura et al. [25,26]. Considering the similarities in
the configuration of the vortical structures and the crucial effect of viscous diffusion, the transition
mechanism for the different flickering modes is analogous to the transition of the shear layers in a
wake flow to form a von Karman vortex street.

The understanding of the current study is not limited to the buoyancy-induced dual-flame system,
as the analysis based on the interaction between two interacting shear layers may be extended
to the interactions within a multiple-flame system. For example, a planar triflame system might
be regarded as the interaction of two parallel “von Karman”–type of shear layers to yield more
flickering modes, in analogy to the double parallel vortex streets in the wake of double bluff bodies
[63–65]. In addition, the current work, although focusing on the laminar flames, could shed a light
on the study of turbulent flames. Particularly, fires in nature are usually large scale and turbulent,
and the interactions of multiple fires are more destructive and uncontrollable [5–9]. In such turbulent
flames, the flame height is determined by a crucial factor, the air entrainment, which is the outcome
of the interactions of multiple flames and vortices, and thus is highly unsteady. In this sense, the
current work is an elementary one which contributes to understanding the more complex problem
of turbulent flames.
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APPENDIX

This Appendix discusses the relative importance between the viscous diffusion effect and the heat
diffusion effect in reducing the vorticity of the inner shear layers of two adjacent flames. It has been
concluded from the discussion in Sec.V A that for a single flame the main contributor to vorticity
generation is the buoyancy term [term D in Eq. (6)]. The justification for neglecting the viscous
diffusion effect (term E) is that the diffusion mechanism only grows the thickness of a standalone
vortex sheet while not affecting its total vorticity (circulation). This is, however, not the same for
a vortex sheet which is in close contact with another vortex sheet of the opposite-sign vorticity. In
this case, the vorticity diffusion between a pair of counter-rotating vortices could be quite strong
owing to the large vorticity gradient and would cause a rapid drainage of vorticity from each vortex,
known as the vorticity annihilation. Physically, it can be imagined that the annihilation mechanism
becomes prominent when the distance between the two vortex sheets are in the same order of or less
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FIG. 13. The vortex sheet configurations for (a) a single flame and (b) two adjacent flames of opposite
vorticity.

than the local thickness of the otherwise undisturbed vortex sheet, which is approximately
√

ν�t
where ν is kinematic viscosity and �t is the characteristic flickering period. In the following, we
further provide a brief demonstration for this argument.

Figure 13(a) below shows the configuration of a flame-induced vortex sheet. For simplicity, we
assume that the vortex sheet is in the vertical direction. According to our previous study [24], the
rate of generation of total vorticity (circulation) on a vortex sheet segment of height �z caused by
the buoyancy effect can be calculated as

d	

dt
=

∮
Du
Dt

· ds =
∮

−ρ2 − ρ

ρ
g · ŝ ds = −g�z

(
ρ2

ρ1
− 1

)
. (A1)

Since 	 also satisfies 	 = ∫∫
ω dn ds, we can obtain a rough estimation of ω on the flame side

as ω f ≈ −[∫ 2g(ρ2/ρ1 − 1)dt]/dv, where dv is the thickness of the vortex sheet, assuming a linear
gradient of ω in the n̂ direction. On the other hand, we can calculate d	/dt for a coupled vortex
sheet in Fig. 13(b) as

d	

dt
=

∮
Du
Dt

· ds = −g�z

(
ρ2

ρ1
− 1

)
+ ν

∮
∇2u · ŝ ds = −g�z

(
ρ2

ρ1
− 1

)
+ ν

∂ω

∂n
�z, (A2)

where we have retained the viscous diffusion term at the vorticity annihilation plane. It is
noted that the derivation of Eq. (A2) involves the identity, ∇2u = −∇ × (∇ × u) + ∇(∇ · u).
Now, the vorticity on the flame side grown after an entire period �t is derived to be ω f ≈
−2g(ρ2/ρ1 − 1)�t/dv, based on which we attain an estimation of the vorticity gradient, ∂ω/∂n ≈
(0 − ω f )/dv ≈ 2g(ρ2/ρ1 − 1)�t/d2

v . Plugging ∂ω/∂n into Eq. (A2), we have

d	

dt
= −g�z

(
ρ2

ρ1
− 1

)(
1 − 2ν�t

d2
v

)
(A3)

We can see that the condition for the viscous term being negligible is dv 
 √
2ν�t ; otherwise,

the vorticity annihilation would be significant, which is consistent with our physical understanding.
Furthermore, Eq. (A3) tells that the vorticity generation associated with the temperature differ-

ence is proportional to (T1/T2 − 1), which is always a positive value since the flame temperature T1

is generally greater than the ambient temperature T2. Thus, the heat diffusion mechanism would at
most decrease the generation of vorticity. However, the vorticity annihilation term can be negative
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FIG. 14. The contours of (a) vorticity, (b) diffusion of vorticity, and (c) temperature for the in-phase
flickering flames of Fig. 6(a).

and even order-of-magnitude amplified depending on dv. Thus, the viscous diffusion should play
a larger role than the heat diffusion effect in reducing vorticity when the two flames are brought
together. An example is presented in Fig. 14 below, which shows that the region of significant
vorticity diffusion occurs in an upstream location of the rolled-up toroidal vortex, whereas the
region of significant heat accumulation is mostly in the downstream of the toroidal vortex. This
provides direct evidence that the vorticity diffusion mechanism happens before the heat effect, and
therefore is the primary cause for the reduction of vorticity of the inner shear layers and their
subsequent dynamics. Actually, we believe that the extended heat accumulation region observed
in Fig. 14(c) is the result of the convective heat transfer induced by the inner shear layers rather than
only heat diffusion, as the distance between the inner flames in this region is enlarged by the flame
deformation. Nevertheless, the increased temperature of the inner ambient flow could contribute to
a slower vorticity generation in the downstream, although it is unlikely a determinant factor for the
flickering mode in the upstream.
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