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Are extreme dissipation events predictable in turbulent fluid flows?
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We derive precursors of extreme dissipation events in a turbulent channel flow. Using a
recently developed method that combines dynamics and statistics for the underlying attrac-
tor, we extract a characteristic state that precedes laminarization events that subsequently
lead to extreme dissipation episodes. Our approach utilizes coarse statistical information
for the turbulent attractor, in the form of second-order statistics, to identify high-likelihood
regions in the state space. We then search within this high-probability manifold for the state
that leads to the most finite-time growth of the flow kinetic energy. This state has both high
probability of occurrence and leads to extreme values of dissipation. We use the alignment
between a given turbulent state and this critical state as a precursor for extreme events and
demonstrate its favorable properties for prediction of extreme dissipation events. Finally,
we analyze the physical relevance of the derived precursor and show its robust character
for different Reynolds numbers. Overall, we find that our choice of precursor works well at
the Reynolds number it is computed at and at higher Reynolds number flows with similar
extreme events.
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I. INTRODUCTION

Turbulent fluid flows have been the most challenging paradigm of chaotic behavior with
signatures of persistent and intermittent (i.e., over finite-times and at arbitrary time instants)
instabilities leading to nonlinear energy transfers between scales. These nonlinear energy transfers
are responsible for both the broad band character of the spectrum but also for the non-Gaussian
statistics. More specifically, while nonzero third order statistics are primarily responsible for
the persistent nonlinear energy transfers (turbulent cascades) and the shape of the spectrum
[1,2], intermittent events, such as dissipation bursts, are primarily responsible for the heavy tail
characteristics [3–7].

Here we are interested in the formulation of precursors for predicting these extreme events. These
are important in problems related to atmospheric and climate science, fluid-structure interactions,
and turbulent fluid flow control, just to mention a few. We present our analysis on a standard
configuration of a turbulent fluid flow, namely the channel flow, that exhibits extreme events in the
form of large dissipation episodes occurring in random times [8,9]. These extreme events rise out of
a high-dimensional turbulent attractor essentially without any clear warning. They have the form of
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a short-time excursion towards laminarization of the flow and a subsequent burst of turbulent kinetic
energy which leads to a large dissipation episode pushing the flow away from the laminar state.

Many aspects of these intermittent bursts remain elusive primarily because of the intrinsic
high dimensionality of the underlying turbulent attractor that limits the applicability of existing
mathematical approaches [10,11]. In particular, extreme events due to their rare character cannot be
“seen” effectively by energy-based methods, such as proper orthogonal decomposition (POD). Even
if one tries to consider conditional POD modes during extreme events these will not necessarily give
the modes related to the triggering of the extreme events, as these do not necessarily obtain high
energy, even during the extreme event.

A different class of methods focus on the spectral analysis of the underlying Koopman operator
[12,13], and strive to extract unstable modes associated with certain observables of the system.
Such unstable modes are typically estimated by dynamic mode decomposition (DMD) [14–16].
This analysis, however, can only detect modes associated with long-term instabilities which do not
seem to explain short-term intermittent events observed in turbulent flows [17,18]. Other variants,
however, such as multi-resolution DMD [19] have been demonstrated to work well in systems with
relatively low-dimensional attractors.

Extreme events in complex dynamical systems have also been analyzed recently using large
deviation theory (LDT), e.g., in nonlinear water waves [20]. The basic idea is to search the phase
space for initial conditions associated with a given magnitude of the objective function (observable
of interest) and then from those pick the one with the highest probability of occurrence. However,
these efforts have shown to work well in systems where the core of the attractor has Gaussian
statistics. For different cases there is no rigorous foundation for LDT to operate. Even in the
Gaussian case, the resulting optimization problem has very high dimensionality to be practically
solvable for an application like the one considered here—see Ref. [21] for a detailed discussion.

Here we apply a recently developed framework for the discovery of precursors to extreme events
[3]. This framework formulates the precursors as solutions to a constrained optimization problem
(note that a formally similar approach was presented in Ref. [22] to identify small perturbations
of the laminar flow for transition to turbulence). In contrast to LDT, in the present approach we
consider a set of high-probability initial conditions, based on a rough approximation of the attractor,
and then search within this set for the initial state that has the highest growth for the quantity of
interest. An adjoint solver is employed to compute the gradient of the objective function. Because
the search is constrained within a low-dimensional (but high-probability) set, the feasibility set, the
resulted optimization problem is computationally tractable. The solution provides with an initial
state that has high probability to occur and leads to rapid growth of the objective function (in our
case the kinetic energy). We discuss the physical relevance of the derived critical state in the context
of the turbulent channel flow and use the alignment with this critical state as a scalar precursor for
the prediction of future extreme events. We measure the effectiveness of the precursor through direct
numerical experiments and examine its robustness over different Reynolds numbers. The success of
our approach to an intermittently turbulent channel paves the way for studying transitional flows,
such as bypass transition of boundary layers.

This paper is organized as follows. In Sec. II we described the minimal channel flow used in
this work and discuss various aspects of the problem. The optimization problem for discovering the
precursor to extreme events is presented in Sec. III. In Sec. IV we present a statistical analysis
quantifying the predictive power of the optimal precursor. Finally, our concluding remarks are
presented in Sec. V.

II. TURBULENT CHANNEL FLOW-PHENOMENOLOGY

A. The minimal flow unit for channel flows

Turbulent channel flow has been a staple of numerical studies of turbulence for many years [8].
The chaotic nature of these simulations makes it difficult to analyze local spatiotemporal events and
physical mechanisms in them, such as the formation and destruction of individual hairpin vortices
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in the near-wall region. To isolate these physical mechanisms and others, work has been done to find
“minimal flow units” for various regions of the channel. Jimenez and Moin [23] found the minimal
flow unit for near wall turbulence for several low Reynolds number flows by considering turbulent
channel flow simulations with domains that were considerably smaller than conventional channel
flow simulations. These smaller domains eliminate larger scale turbulent structures but accurately
resolved the near-wall turbulent flow, matching turbulent flow statistics from experiments and prior
numerical studies up to 40 wall units in the wall-normal direction.

Various minimal flow units have been used in a range of different studies because of its isolation
of a few physical mechanisms and its relatively low computational cost. Carlson and Lumley used
the minimal flow unit to study flow control strategies for turbulent boundary layers [24]. Minimal
flow units have also been used to study near-wall and log-layer turbulence [25–27]. These studies
use forcing functions to achieve turbulent flows in half-channels, and to selectively damp larger scale
flow structures. Recently, near-wall minimal flow units have been used to study and characterize the
effects of wall-roughness on wall-bounded flows and to build models of wall roughness effects
[28,29]. The near-wall minimal flow unit has also been used to demonstrate shadowing-based
adjoint sensitivity analysis [30].

In addition, the near-wall minimal flow unit simulations routinely show highly intermittent
behavior which is of interest for the purposes of our study. In certain low Reynolds number
simulations, the flow on one wall exhibits turbulent behavior while the other remains laminar.
The flow on both walls transitions at seemingly random intervals: the laminar wall would become
turbulent, and then the turbulent wall would become laminar. Turbulent flow in the near-wall
minimal flow unit is itself intermittent when it occurs. Time series of wall shear stress show that
turbulence undergoes a cycle where it proliferates rapidly or “bursts,” then decays slowly. This
observation led to numerous subsequent studies into the intermittent nature of near-wall turbulence
using minimal flow units (see Refs. [31,32], for comprehensive reviews).

B. Flow solver

In this study we consider near-wall minimal flow units similar to those considered in Ref. [23].
We use a Discontinuous-Galerkin spectral-element method (DGSEM) framework to simulate the
minimal flow unit with the compressible Navier-Stokes equations [33]. The DGSEM framework has
been successfully applied to a range of different flows including channels flows and the near-wall
minimal flow unit [34–36]. Also, it has an adjoint capability [37] that has been validated for the near-
wall minimal flow unit in Ref. [30]. A detailed description of the discretization and implementation
of this solver is available in Refs. [38] and [39].

We run a direct numerical simulation (DNS) of the channel flow with the compressible Navier-
Stokes equations with a constant forcing in the axial direction to drive the channel. Since the
Mach number is low, the effective governing equations reduce to the incompressible Navier–Stokes
equations,

∇ · u = 0, (1a)

∂t u + u · ∇u = f0

ρ
e1 − 1

ρ
∇p + ν�u, (1b)

u(x, 0) = u0(x), (1c)

where u = (u, v,w) denotes the three-dimensional velocity field with streamwise component u,
wall-normal component v and spanwise component w. The constant forcing in the streamwise
direction is denoted by f0 and e1 = (1, 0, 0) is the unit vector in the streamwise direction. The
boundary conditions are no-slip at the walls so that u(x,±δ, z, t ) = 0, and periodic in the spanwise
and streamwise directions. Here, the channel height in the wall-normal direction is 2δ.
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C. Numerical experiment setup

The case we consider has a domain size of πδ × 2δ × 0.34πδ in the streamwise, wall-normal,
and spanwise directions, respectively. The channel half-height δ was set to 1.0. The flow considered
is at Reynolds number Re = 2200 (corresponding to the friction Reynolds number Reτ = 110)
unless stated otherwise. The Reynolds number Re is defined as Re = ρUδ/μ where ρ is the fluid
density, U is the centerline velocity of a laminar flow with the same mass flow rate (as in Ref. [23]),
and μ is the dynamic viscosity. As in Ref. [30], U was chosen so that the Mach number of the
flow was under 0.3 and therefore the flow is nearly incompressible. Note that the Reynolds number
corresponding to bulk velocity for this case is roughly 1500.

The friction Reynolds number Reτ is defined as Reτ = ρuτ δ/μ where uτ = √
τw/ρ is the friction

velocity and τw is the average shear stress at the wall. The channel constant forcing f0 is set to
balance the mean shear stress of the walls, so it is set by the choice of Reynolds number Re, and the
friction Reynolds number Reτ as follows:

f0 = τw

δ
= Re2

τ

Re
ρU . (2)

The domain is discretized with a 4 × 16 × 2 mesh with eighth-order spatial elements, resulting
in a 32 × 128 × 16 distribution of nodes (65 536 total), similar to the mesh used in Ref. [23]. The
choice of Reτ = 110.0 results in grid resolutions of �x+ ≈ 11 and �z+ ≈ 7 wall units per node,
where x+ = uτ x/ν, y+ = uτ y/ν, and z+ = uτ z/ν.

The wall-normal spacing corresponds to �y+ ≈ 0.6 for the nodes closest to the walls, which
ensures that the simulations are well resolved. We used space-time elements that were 4th order
in time and the time slab (temporal element) was �t = 0.05te, where te = δ/U denotes the eddy
turnover time, the timescale associated with the largest possible eddy in the channel.

The DGSEM flow solver used here has been validated for the minimal flow unit at Re = 3000
(equivalent to bulk velocity Reynold number of 2000) [30] and we carried out a similar validation
study for the Re = 2200 case. Note that the statistics at Re = 2200 were only computed over time
intervals when both walls had turbulent flow, as was done in Ref. [23] for low Reynolds number
cases. This was necessary because the Re = 2200 flow exhibited intermittent behavior similar to
that observed in previous studies of minimal flow units.

D. Extreme events

The intermittent behavior of the flow at Re = 2200 can be seen in Fig. 1 from the spikes in
kinetic energy E (t ) and dissipation Z (t ). We define the kinetic energy,

E (t ) =
∫∫∫

	

ρu · u dx dy dz, (3)

where 	 is the flow domain. Note that this is the total kinetic energy, comprised of both the mean
and turbulent kinetic energy of the flow. Energy dissipation rate Z (t ) is defined as

Z (t ) =
∫∫∫

	

tr(τ∇u) dx dy dz, (4)

where τ denotes the stress tensor, defined as τ = μ(∇u + ∇u�) for an incompressible flow.
Figure 1 shows that large increases in E (t ) are followed by spikes in Z (t ) and a subsequent

decrease in E (t ). These large spikes in kinetic energy occur when there is laminar flow near one
wall, and nearly laminar flow near the other wall. Laminar flows correspond to higher kinetic energy
E (t ) because the channel is driven by a constant body force in the axial direction. This body force
acts as a fixed axial pressure gradient. The body force and wall shear stress balance one another
when the flow is in an equilibrium state where we have

μ
∂u

∂n
= δ

∂ p

∂x
, (5)
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(a) (b)

FIG. 1. Time evolution of the kinetic energy (a) and the energy dissipation rate (b) for the near-wall minimal
flow unit at Re = 2200.

where n is the wall-normal direction. For a given centerline velocity, a laminar flow will exert less
shear stress μ∂u

∂n on the walls than a turbulent flow, so for a given wall shear stress μ∂u
∂n the laminar

flow will have a larger centerline velocity than a turbulent flow.
Therefore, the large spikes in E (t ) are the result of a flow laminarization event. Of course, the

flow never completely reaches the laminar state, though it gets very close it. Figures 2 and 3 show
an example of a typical laminarization event where the flow undergoes the following stages:

(1) The flow on the bottom wall becomes laminar [Fig. 3(b)].
(2) The flow on the top wall becomes nearly laminar [Fig. 3(c)].
(3) As the entire channel becomes nearly laminar, the axial velocity increases.
(4) The higher velocities make the effective Reynolds number of the flow larger. This increases

the likelihood of turbulent burst occuring since the flow is less stable to perturbations at a larger
Reynolds number.

(5) A turbulent burst occurs on the top wall, which causes Z (t ) to increase rapidly [Fig. 3(d)].

FIG. 2. Time evolution of E (t ) and Z (t ) during the first laminarization event shown in Fig. 1. The vertical
lines indicate the times that snapshots in Fig. 3 correspond to. The first and last snapshot correspond to the start
and end of the time horizon shown above.
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FIG. 3. Snaphots of Q-criterion colored by axial velocity and wall shear stress. The axial velocity lies in
the interval [0,0.3] and the wall shear stress lies in [0, 4 × 10−4].

(6) The bottom wall transitions to turbulence [Fig. 3(e)].
(7) The turbulent flow on both walls causes E (t ) to decrease as it returns to the equilibrium

mean turbulent flow profile [Fig. 3(f)].
These flow laminarization events, and the resulting bursts of energy dissipation rate, are the

extreme events we will consider in this paper.

III. OPTIMAL STATES FOR EXTREME EVENTS

We now describe the constrained optimization problem whose solutions determine the most
likely triggers of extreme events. The method is presented in detail in Ref. [3] and is reviewed
here for completeness. We describe the optimization problem in the context of the channel flow,
outline the numerical method for obtaining its solutions and present our numerical results.

A. High-likelihood triggers of extreme events

We seek initial states u0 that after a given integration time τ realize the largest possible energy
growth. More precisely, we seek initial states u0 such that E [u(τ )] − E (u0) is maximized. This
is a PDE-constrained optimization problem, since the velocity field u(t ) is required to satisfy the
channel flow Eq. (1).

In addition to this PDE constraint, we also enforce a feasibility constraint, by requiring the initial
state u0 to belong to the system attractor. This second constraint is essential to guarantee that the
optimal solution is probabilistically relevant. As in many dissipative PDEs, the channel flow has
an attractor towards which the solutions converge asymptotically after an initial transient. We are
interested in the self-sustained and recurrent extreme events on this attractor as opposed to transient
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extreme events off the attractor that may occur but are not recurrent. To prevent the optimizer from
considering such transient events, we enforce a feasibility constraint which is further elucidated in
Sec. III B.

With this prelude, the optimization problem can be formulated as

max
u0∈U

{E [u(τ )] − E (u0)}, (6a)

u(τ ) satisfies Eq. (1) with u(0) = u0, (6b)

u0 ∈ A ⊂ U , (6c)

where τ > 0 is a prescribed time, related to the growth timescale of a typical extreme event. The
constraint Eq. (6b) implies that u(τ ) is a solution of the channel flow. Constraint Eq. (6c) ensures that
the optimizer belongs to the attractor A and is therefore probabilistically relevant. Here, U denotes
some appropriate function space. In the next section, we describe the method used to approximate
the attractor A.

B. Feasibility constraint and proper orthogonal decomposition

The attractors of dissipative dynamical systems are often very complex sets. Their estimation has
been the subject of many studies (see, e.g., Ref. [40]). Here, we approximate the attractors via proper
orthogonal decomposition (POD) of long-term simulations of the channel flow (this method is also
known as the principal component analysis). The POD approximation assumes that the attractor has
a Gaussian distribution with mean u(x) and covariance matrix C(x, x′), where

u(x) = lim
T →∞

1

T

∫ T

0
u(x, t )dt, (7a)

C(x, x′) = lim
T →∞

1

T

∫ T

0
[u(x, t ) − u(x)] ⊗ [

u(x′, t ) − u(x′)
]
dt . (7b)

Let the vector fields vvvi : 	 → R3 denote the eigenfunctions of the covariance tensor, so that∫
	

C(x, x′)vvvi(x′)dx′ = λivvvi(x), i ∈ N, (8)

where λi ∈ R are the corresponding eigenvalues. The eigenvectors are ordered such that λ1 � λ2 �
· · · . Since the covariance tensor is symmetric and positive definite, the eigenvalues are real-valued
and nonnegative, and furthermore the eigenfunctions are orthogonal with respect to the L2 inner
product, i.e., 〈vvvi, vvv j〉L2(	) = δi j . We refer to the eigenfunctions vvvi as the POD modes.

In the POD approximation, any state on the attractor is approximated as

u(x, t ) = u(x) +
n∑

i=1

ξi(t )vvvi(x), (9)

which is a finite-dimensional truncation to the first n POD modes. Each component of the vector
ξ = (ξ1, · · · , ξn) ∈ Rn is given by ξi(t ) = 〈u(t ) − u, vvvi〉L2(	).

With this POD approximation of the attractor, the optimization problem Eq. (6) can be written
more explicitly as

max
ξ∈Rn

{E [u(τ )] − E (u0)}, (10a)

u(x, τ ) satisfies Eq. (1) with u(x, 0) = u0(x), (10b)

u0(x) = u(x) +
n∑

i=1

ξivvvi(x), (10c)

n∑
i=1

ξ 2
i

λi
� r2

0 , (10d)
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FIG. 4. A sketch of the proper orthogonal decomposition of the turbulent data. The attractor is approx-
imated as an ellipsoid in the subspace spanned by the POD modes {vvv1, · · · , vvvn}. The origin is the mean
flow u.

where r0 ∈ R is a prescribed parameter that is set equal to 1.0 in this study. Note that the form of
the constraint essentially restricts our optimization within states that have the highest probability,
given second-order statistics for the attractor. Constraint Eq. (10c) enforces that the mean-zero initial
condition u0 − u belongs to the subspace spanned by the first n POD modes. Constraint Eq. (10d),
which describes an ellipsoid in the subspace span{vvv1, · · · , vvvn}, ensures that the initial conditions
are not two far from the mean flow u (see Fig. 4).

Although the initial condition u0 is constrained to the subspace spanned by the first n POD
modes, the final state u(τ ) may not belong to this subspace. This is because the POD decomposition
is only an approximation of the attractor, which represents initial states for our analysis, and not the
exact invariant attractor. However, we take n large enough so that only an insignificant fraction of
the energy content of the states on the attractor are neglected. More precisely, in the following, we
set n = 50 so that the truncation of the turbulent states to these POD modes contain at least 90% of
the kinetic energy, as shown in Fig. 5.

As discussed in Sec. II D, previous studies of the minimal flow unit have shown that intermittent
bursts of the flow originate from the near-wall activities. In light of these observations, we modify

(a) (b)

FIG. 5. The energy content of the POD modes. (a) Energy content of each POD mode. (b) Cumulative
energy content of the POD modes. POD was computed with 1000 snapshots at Re = 2200.
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FIG. 6. A sketch of the weight function qε,h defined in Eq. (12).

the computation of the POD modes by multiplying the zero-mean velocity fields by a weight
function that emphasizes the near-wall contribution of the flow. More precisely, we compute the
weighted velocity fields,

uε,h(x, t ) = [u(x, t ) − u(x)]qε,h(y), (11)

by multiply the original velocity fields u (after removing the mean u) with the weight function

qε,h(y) = 1

2

(
2 + tanh

{
1

ε

[
y − (δ − h)

]} − tanh

{
1

ε

[
y + (δ − h)

]})
. (12)

For ε 
 h 
 δ, the weight function qε,h vanishes near the center of the channel and approaches
unity near the walls at y = ±δ (see Fig. 6). The parameter h is the width of the near-wall region that
we would like to emphasize and the small parameter ε determines how quickly the function qε,h

decays to zero far from the walls.
We note that the weighting Eq. (11) is a linear operation on the velocity field, L(u − u) :=

(u − u)qε,h, where the linear operator L is the multiplication by the weight qε,h. It is straightforward
to verify that L is a self-adjoint operator with respect to the L2(	) inner product so that 〈L(u1 −
u),L(u2 − u)〉L2 = 〈(u1 − u),L2(u2 − u)〉L2 for all square integrable functions u1, u2 ∈ L2(	).
Therefore, introducing the weight function Eq. (11) is equivalent to replacing the L2 inner product
〈·, ·〉L2 with “weighted” inner product 〈·,L2 ·〉L2 .

In practice, the POD modes are computed through the Eqs. (7) and (8) except that in computing
the covariance Eq. (7b) instead of the terms u(x, t ) − u(x), we use the mean-zero weighted velocity
uε,h(x, t ). In the following, we set ε = 0.1 to keep the decay smooth. We selected h = 25δ/110
to emphasize the near-wall flow up to ignore any flow above y+ ≈ 50, where the minimal flow
unit does not capture all length scales. This modified POD not only emphasizes the near-wall
contributions, but also speeds up the convergence of the numerical optimization of problem Eq. (10).

The POD modes were computed using 1000 snapshots taken from flows computed from 10
different randomly chosen, initial conditions. The snapshots were taken at intervals of 50 eddy
turnover times to minimize any correlation in time. Figure 5 shows the energy and cumulative
energy of the POD modes. Almost 80% of the energy is captured by the first six modes, indicating
that near-wall dynamics emphasized by our weight function are low dimensional.

Figure 7 shows a few of these modes. The shape of the most energetic modes is dominated by
long axial streaks which are known to be a main feature of the near-wall region [31]. The more
energetic modes such as modes 1 and 3 contain wider streaks, while less energetic modes such as
mode 11 contain thinner, less coherent streaks that meander slightly.

Finally, we point out that an energy-maximizing optimization similar to Eq. (6) was used in
Ref. [22] in the context of subcritical transition to turbulence from the laminar state in the pipe flow.
It is important to emphasize that the problem of extreme events discussed here is different from the
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FIG. 7. Contours and isosurfaces of axial velocity u for several POD modes. Isosurfaces are defined at
u = ±0.01. Mode indicies are defined as in Fig. 5.

subcritical transition to turbulence. Specifically, despite the formal similarities to the constrained
optimization presented in Ref. [22], the optimal states relevant to extreme events are not lying in
small neighborhoods around the laminar state. In fact, we do not utilize the existence of a laminar
state, since we employ information for the full turbulent attractor, in contrast to Ref. [22] where
all the analysis is formulated around the laminar state. The present study demands that the initial
states belong to the turbulent attractor as enforced through the constraint Eq. (6c) and implemented
numerically in this section. In particular, our constraint is a hyper-ellipsoid around the statistical
mean u [see Eqs. (10c) and (10d)]. This set is not necessarily small and its extent is dictated by the
flow dynamics (i.e., the eigenvalues λi of the covariance matrix).

Similarly, Farano et al. [41] investigated the observed bursts in a turbulent flow similar to our
channel flow. However, they only require that the energy of the optimal state is prescribed, i.e.,
E (u0) = E0 for a prescribed energy level E0. This does not necessarily imply that the optimal state
belongs to the attractor and therefore unphysical optimizers are not ruled out.

C. Numerical implementation

The optimization problem, Eq. (10), was solved using the Python package scipy [42]. Specif-
ically, the “optimize” package was used and the optimization was carried out using sequential
least squares programming (SLSQP). The first constraint, Eq. (10b), is implicitly satisfied by the
flow solver, which is called from Python using the “multiprocessing” module. The second and
third constraint Eqs. (10c) and (10d) and their gradients are implemented directly in Python. The
convergence tolerance for the objective function was set to 10−7. Otherwise, the default convergence
criterion were used. An adjoint solver was used to minimize the cost of computing the gradient of the
objective function Eq. (10a). The DGSEM solver has a dual consistent, discrete adjoint formulation,
details of which are discussed in Refs. [33,37]. This adjoint solver allows us to compute the gradient
at a computational cost similar to solving the primal, which is much cheaper than using finite
differences to compute the gradient with respect to all n = 50 POD modes.

Since we use a gradient-based optimization, SLSQP seeks the local optimizers. Since the
problem is highly nonconvex, we are unaware of optimization methods that can provably guarantee
the convergence to the global optimizer. Therefore, we run the SLSQP algorithm from several initial
guesses u0 in the constraint set A and retain the local optimizer that corresponds to the largest energy
growth among them.

D. Optimization results

The optimization was run from five different initial guesses u0 and with three different integration
times of τ = 52.5te, τ = 105te, and τ = 210te. The integration times correspond to roughly 1/8,
1/4, and 1/2 of the timescale of laminarization event similar to the one shown in Fig. 2. All five
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FIG. 8. Convergence of the objective function for the same initial guess but two different choices of τ .
Solid dots represent instances when the optimizer was restarted.

optimizations with τ = 52.5te and τ = 105te computed very similar optimal solutions u∗
0. All these

optimizers belong to the interior of the constraint set (10d), i.e., they satisfy
∑

i ξ
2
i /λi < 1. This does

not imply that the constraint was not employed. On the contrary, the constraint was utilized during
the optimization process to prevent the convergence to an optimal solution outside the constraint set.
The optimization with an integration time of τ = 210te failed to converge because the adjoint grew
very large in magnitude, and the gradient caused the optimizer to consider a nonphysical solution in
the ensuing line search.

Figure 8 shows the convergence history of a typical optimization for τ = 52.5te. The correspond-
ing POD mode weights for the initial guess and optimal solution are shown in Fig. 9. The two largest
POD modes in the optimal solution are modes 6 and 26, shown in Fig. 10. Together, these modes
create the axial velocity deficit in the near wall region shown in Fig. 11. The maximum velocity
deficit occurs roughly y+ = 18 units from each wall, and decays to zero roughly y+ ≈ 55 units
from the wall.

FIG. 9. POD mode weights for the initial guess and optimal solution.
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(a) Mode 6 (b) Mode 6 Profile

(c) Mode 26 (d) Mode 26 Profile

FIG. 10. Contours, isosurfaces, and spatially averaged profiles of axial velocity for the two most energetic
POD modes in the optimal solution to Eq. (10). Isosurfaces are defined at u ± 0.01.

The region in which the velocity deficit occurs is known to have a major impact on near-
wall turbulence. In Ref. [26] it was observed that damping axial velocity streaks or qua-
sistreamwise vortex structures between y+ ≈ 20 to y+ ≈ 60 led to laminarization of the near
wall region. It appears that our optimal solution modifies the lower portion of this range.
The relative uniformity of the axial velocity deficit results in the absence of axial velocity
streaks and quasistreamwise vortex structures. This is in contrast with the flow snapshots
in Fig. 3, where the presence of low- and high-axial velocity streaks can be inferred from
streaks in the wall shear stress, and quasiaxial structures are revealed by the q-criterion iso-
contours. Without the axial velocity streaks and quasistreamwise vorticity, the “streak-cycle”
mechanism for the regeneration of near-wall turbulent fluctuations is broken and the flow
laminarizes.

Therefore, although the optimal solution u∗
0 is turbulent, the absence of axial velocity streaks and

quasistreamwise vortices make it a precursor for a flow laminarization. By tracking how close a
given state is to u∗

0, we can determine if a laminarization event is likely to occur or not.
Although we can compute the precursor for the relatively low Reynolds number flows considered

in this paper, the adjoint growth issue encountered for τ = 210te suggests that this approach will
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(a)

(b) (c)

FIG. 11. Optimal solution u∗
0 to Eq. (10). (a) Q criterion isosurface for Q = 0.0005, colored by the

streamwise velocity (b) Spatially averaged streamwise velocity profile with the mean axial velocity profile.
(c) Spatially averaged streamwise velocity profile difference. Red-shaded boxes indicate regions from y+ = 20
to y+ = 60 units away from the wall.

not scale well with Reynolds number. The adjoint grows exponentially in time at a rate roughly
equal to the largest Lyapunov exponent of the flow [43]. The maximum Lyapunov exponent grows
in turn as the Reynolds number increases [44]. As a result, computing the optimal solution at
higher Reynolds numbers by a straightforward adjoint optimization may face numerical instabil-
ity issues. Approaches like least squares shadowing have been shown to eliminate exponential
growth of the adjoint for time-averaged objective functions [45], but to the authors’ knowledge
no such approach exists for transient objective functions like that in our optimization problem
Eq. (6).
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(a) (b)

FIG. 12. Time evolution of the indicator λ(t ) with E (t ) and Z (t ) over the same time horizon as shown in
Fig. 2. The horizontal lines indicate the mean (X̄ ) and the mean plus one standard deviation [X̄ + σ (X )] of
E (t ) and Z (t ). The vertical lines indicate the times that snapshots in Fig. 3 correspond to. The first and last
snapshot correspond to the start and end of the time horizon shown above.

IV. PREDICTING EXTREME EVENTS

Figure 12 shows a close-up of the evolution of energy E and dissipation Z together with the
indicator

λ = 〈u − u, u∗
0 − u〉

‖u − u‖2‖u∗
0 − u‖2

, (13)

at Re = 2200. Large values of energy and dissipation are proceeded with relatively large values of
the indicator. This behavior turns out to be generic and not specific to this time window. As a result,
one can use the indicator λ to predict the upcoming extreme events in the channel flow. To quantify
these predictions, we first review some statistical tools in Sec. IV A. Subsequently, in Sec. IV B, we
apply these tools to long-term simulations of the channel flow and report the results.

A. Statistical preliminaries

In this section, we show that the trigger state obtained previously can be used for the prediction of
the extreme events in the channel flow. To make quantitative statements, we use joint and conditional
statistics between the trigger mode and the energetic observables of the turbulent flow, namely,
kinetic energy and energy dissipation rate.

For a given random variable Xt , we would like to find an indicator Yt (another random variable)
whose values signal an upcoming extreme event of Xt . We identify extreme events of Xt as any
instant where Xt > xe for a prescribed extreme value threshold xe. First, we define the maximum
value of the random variable Xt over a future time interval [t + t0, t + t0 + �t] for some t0,�t � 0,

X̃t (t0,�t ) = max
s∈[t+t0,t+t0+�t]

Xs. (14)

The maximum X̃t (t0,�t ) is a new random variable which depends on the parameters t0 and �t .
At any time t , X̃t (t0,�t ) measures the maximum value that Xt will take over the future time
interval [t + t0, t + t0 + �t]. For notational simplicity, we omit the parameters t0 and �t and simply
write X̃t .

The joint probability distribution of the pair (X̃t ,Yt ) is defined by

FX̃t ,Yt
(x, y) = P(X̃t � x,Yt � y) =

∫ x

−∞

∫ y

−∞
pX̃t ,Yt

(x, y)dxdy, (15)
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where pX̃t ,Yt
is the probability density associated with the probability distribution FX̃t ,Yt

. Roughly
speaking, the quantity pX̃t ,Yt

(x, y)dxdy measures the probability that at time t we observe x < X̃t <

x + dx and y < Yt < y + dy.
The conditional probability of X̃t = x given that Yt = y is defined through the Bayes’ formula,

pX̃t |Yt
= pX̃t ,Yt

pYt

, (16)

where pYt is the probability density associated with the random variable Yt . We use the conditional
PDF pX̃t |Yt

to quantify the extent to which the behavior of Yt is indicative of the extreme events of Xt

over the future time interval [t + t0, t + t0 + �t]. More precisely, given an extreme event threshold
xe, we define the probability of upcoming extreme events by

Pee(y) =
∫ ∞

xe

pX̃t |Yt
(x, y)dx. (17)

This quantity measures the probability of an extreme event over the future time interval [t + t0, t +
t0 + �t] given the current value of the indicator Yt = y.

For a reliable indicator, Pee should be monotonic so that the probability of upcoming extreme
events increases with y. More precisely, Pee should be nearly zero for small values of y and increase
monotonically towards 1 as y increases. We predict an upcoming extreme only if Pee > 0.5. This
defines an extreme event threshold ye for the indicator Yt where Pee(ye) = 0.5. If Yt > ye, then an
upcoming extreme event is predicted, and conversely, if Yt < ye, then it is predicted that no extreme
events will occur over the future time interval [t + t0, t + t0 + �t].

This classification leads to four possible prediction outcomes in terms of the indicator value Yt

and the future observable values X̃t :

Correct Rejection (CR): X̃t < xe given Yt < ye,

Correct Prediction (CP): X̃t > xe given Yt > ye,

False Negatives (FN): X̃t > xe given Yt < ye,

False Positive (FP): X̃t < xe given Yt > ye. (18)

Therefore, the skill of an indicator for predicting upcoming extreme events can be quantifies as
follows:

Rate of successful predictions = CP

CP + FN
=

∫ ∞
xe

∫ ∞
ye

pX̃t |Yt
(x, y)dydx∫ ∞

xe

∫ ∞
−∞ pX̃t |Yt

(x, y)dydx
, (19a)

Rate of successful rejections = CR

CR + FP
=

∫ xe

−∞
∫ ye

−∞ pX̃t |Yt
(x, y)dydx∫ xe

−∞
∫ ∞
−∞ pX̃t |Yt

(x, y)dydx
. (19b)

A skillful indicator is one that returns relatively small percentage of false negatives (respectively,
false positives) compared to the number of correct predictions (respectively, correct rejections). In
the following, we use the statistical quantities introduced above to quantify the predictive skill of
the indicator Eq. (13).

B. Prediction results

We first present the joint and conditional statistics for the energy E , dissipation rate Z and the
indicator λ. In this first step, we do not include any time shifts, thus setting t0 = �t = 0 so that
X̃t = Xt in Eq. (14). Figure 13 shows the joint and conditional PDFs of the indicator versus energy E
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FIG. 13. Probability densities at Re = 2200. (a) Joint PDF of the kinetic energy E , energy dissipation Z
and the indicator λ. (b) Conditional PDF pE |λ. (c) Conditional PDF pZ|λ.

and the energy dissipation Z at Re = 2200. This figure is generated from an ensemble of long-term
simulations with data recorded every one eddy turnover time collecting a total of 106 063 data
points.
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FIG. 14. Predictive conditional probability densities. (a) Top row: Conditional PDF pẼ |λ computed with
t0 = te and �t = 10te where te denotes the eddy turnover time. The vertical dashed line marks the threshold Ee

of extreme events that is prescribed as the mean of E plus one standard deviation. The horizontal dashed
line marks the extreme event threshold λe according to the indicator λ. Bottom row: The probability of
upcoming extreme events Pee. The horizontal dashed line marks Pee = 0.5 and the vertical dashed line marks
the extreme event threshold λe so that Pee(λe) = 0.5. (b) Same as panel (a) but the figure correspond to the
energy dissipation Z versus the indicator λ.
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FIG. 15. Prediction quality for varying prediction times t0. In all plots, the length of the future maximum
time window in Eq. (14) is �t = 10. First row shows the conditional PDF pZ̃|λ and the second row shows the
corresponding probability of future extreme events defined in Eq. (17).

The shape of the conditional PDFs pE |λ and pZ|λ shows that the extreme values of the indicator
λ correlate strongly with relatively large energy and large dissipation episodes [see Figs. 13(a) and
13(b)]. We also note that that the correlation is much stronger for dissipation and that λ tends to
increase monotonically with the dissipation Z .

The next step is to introduce a time lag to investigate whether the large indicator values precede
the extreme episodes of energy and dissipation. This is clearly the case in Fig. 12, where the peak
of the indicator precedes the extreme values of energy (and energy dissipation) by about 50 to 100
eddy turnover times. Below we show that this is generally the case during the long-term simulations.
We point out, however, that Fig. 12 depicts an unusual extreme event in that the prediction time t0
is very long. On average the prediction times are much shorter (on the order of a few eddy turnover
times).

Figure 14 shows the conditional PDFs pẼ |λ and pZ̃|λ where the future maxima Ẽ and Z̃ are
computed with t0 = te and �t = 10te [see Eq. (14)]. The extreme value threshold Ee (respectively,
Ze) are set as the mean of energy (respectively, dissipation) plus one standard deviation. Figure 14

FIG. 16. Probability densities at Re = 3000. (a) Joint PDF of the kinetic energy E , energy dissipation Z and
the indicator λ. (b) Conditional PDF of Yt = Indicator and Xt = Energy. (c) Conditional PDF of Yt = Indicator
and Xt = Energy Dissipation.
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TABLE I. The prediction skill of the indicator λ at two Reynolds numbers. The rate of successful rejections
(RSR) and the rate of successful predictions (RSP) are reported for the energy dissipation rate Z . The
parameters t0 and �t denote the prediction time parameters defined in Ref. (14).

Re t0/te �t/te RSP RSR

2200 1 10 86.9% 94.7%
2 10 86.7% 94.3%
3 10 86.4% 93.8%

3000 1 5 79.4% 91.7%
2 5 75.4% 92.6%
3 5 74.9% 92.2%

also shows the corresponding Pee computed from Eq. (17). The extreme event threshold according
to the indicator λ is the point at which Pee(λe) = 0.5.

As the prediction time t0 increases, we expect the prediction skill of the indicator to deteriorate.
This is shown in Fig. 15 where the conditional PDF pZ̃|λ are shown for increasing prediction times
t0. For prediction times as large as t0 = 10te the prediction skill of the indicator is still reasonably
satisfactory. However, as the prediction time increases to close t0 = 25te the predictor returns
significant amount of false positives and false negatives, thus losing its predictive value. The rates
of successful predictions and successful rejections, defined in Eq. (19), are reported in Table I for a
few prediction time horizons.

Similar results are observed at higher Reynolds numbers. Figure 16 shows the joint and
conditional PDFs of the indicator, energy and dissipation at Re = 3000. These PDFs resemble those
of Fig. 13 for the lower Reynold number Re = 2200. This demonstrates clearly the robustness
of the derived indicator. Table I also contains the rates of success in predicting extreme (and
nonextreme) events at Re = 3000. We point out that the channel flow at some intermediate Reynolds
numbers between Re = 2200 and Re = 3000 did not exhibit extreme events in the time horizons
we simulated.

Finally, we recall that the predictability time of chaotic systems is inversely proportional to their
leading Lyapunov exponent [46] because of the exponential growth of uncertainties (this holds for
both extreme and nonextreme events). Therefore, the prediction of extreme events is fundamentally
limited by the predictability time horizon set by the leading Lyapunov exponent. Since the Lyapunov
exponent increases with the Reynolds number, we expect the prediction time t0 to decrease at higher
Reynolds flows.

V. CONCLUSIONS

We have demonstrated an original approach for the derivation of precursors of extreme events
in a challenging problem involving a turbulent channel flow. The extreme events in this case have
the form of random near-laminarization episodes that lead to bursts of the kinetic energy and the
energy dissipation rate. We formulate a constrained optimization problem that searches for initial
states with the most intense growth of kinetic energy, within a constrained set in the core of the
underlying turbulent attractor. By searching over a high-probability set, we achieve a numerically
tractable optimization problem, while at the same time we exclude exotic states that may correspond
to intense growth of energy but have very low probability to occur if we are close to the attractor.

The derived precursor is demonstrated to successfully capture extreme dissipation episodes
several eddy turnover times before the event. We have discussed its physical relevance and have
demonstrated its robustness as the Reynolds number of the flow changes. Because the developed
scheme utilizes the full nonlinear equations and not linearized approximations, it has the potential
to be extended to more complex flows. However, one should exercise caution in using adjoint-based
optimization at higher Reynolds numbers. As we mentioned in Sec. III D, the straightforward
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backward integration of the adjoint equation at high Reynolds numbers is often unstable and
therefore alternative optimization methods should be considered.

Nonetheless, the success of the presented approach to an intermittently turbulent channel flow
implies the potential of the method for studying transitional flows, such as bypass transition of
boundary layers. Our future endeavors include the utilization of these precursors for the control and
suppression of extreme events in these systems.
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