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Free-shear-flow turbulence with sufficiently fast advection speeds radiates Mach waves,
with steepened and skewed pressure profiles. These form within about a mixing layer
thickness and dominate the sound field. Their generation and propagation is investigated
through comparison of numerical simulations of a temporally developing mixing layer with
a series of model-flow simulations designed to isolate physical mechanisms. The first of
these are numerical simulations of nonlinearly saturating instability waves, which despite
being much simpler than corresponding turbulence reproduce key features of the sound.
Motivated in part by this agreement, instability analysis is used to motivate the inclusion of
artificial sources in turbulence simulations that are designed to induce specific alterations to
the turbulence structures, leaving most of its broadband spectrum unchanged. Comparisons
show how insensitive the radiation is to the particular structure. To assess how strongly the
near-field sound is coupled to the turbulence, a high dilatational dissipation is imposed
to suppress the waves. This significantly reduces radiated pressure intensity, but little
changes the Reynolds stresses (<8%), which supports a source-plus-sound perspective.
Given this, a low-dimensional nonlinear gas-dynamic mechanism is proposed for the
generation and near-field propagation of the waves. The analysis uses a second-order
wavy-wall asymptotic solution, and it reproduces the key observations: the sound-field
structure, pressure skewness, and even the radiated pressure levels to within a factor of 2.
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I. INTRODUCTION

High-speed shear-flow turbulence is well known to radiate intense directional sound, which
has consequences. Near jet engines, such as those currently on some military aircraft, it causes
hearing loss for personnel. Furthermore, spurious sound radiated by supersonic boundary layers has
long been known to potentially mask mechanisms in studies of turbulence transition [1]. Unlike
at subsonic speeds, the near field is dominated by shocklike waves with fronts approximately
perpendicular to the direction of peak sound intensity [2–4]. For jets, this angle θ is typically
between 30◦ and 50◦ from the jet axis, depending on the speed. It can be anticipated that the
character of acoustic radiation should indeed change when the turbulence structures advect at
supersonic speeds, which provides them a wave-number-frequency makeup that can directly couple
to propagating solutions of a scalar wave equation, with the implication that they can be particularly
efficient acoustic sources [5,6]. In contrast, at lower speeds, it is the more subtle changes to the
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FIG. 1. Iso-surfaces (iso.) of pressure (piso. − p∞ = −0.027 ρ∞�U 2) when δm/δo
m = 10: (a) M = 2.5

and (b) M = 0.9. [(c), (d)] Corresponding pressure at y/δm = 4 with p = p∞ ± 0.4 ρ∞�U 2 for M = 2.5
and p∞ ± 0.1 ρ∞�U 2 for M = 0.9. Positive perturbations are red. [(e), (f)] Dilatation at y/δm = 4 with
∇ · u = ±0.1 �U/δm for M = 2.5 and (f) ±0.001 �U/δm for M = 0.9. Compressions are black. Only a small
part (one-eighth) of the simulation domain in the y direction is shown.

energetic structures that couple with propagating waves [6,7]. Phillips [8] anticipated “eddy Mach
waves” at angles near the Mach angle anticipated based on the speed of advecting turbulence
structures. Based on a linear model, such waves should orient with the outgoing characteristics angle

θ = sin−1

(
c∞

U1 − Uc

)
, (1)

which for advecting turbulence is based on the relative advection speed U1 − Uc > c∞ for
free-stream (or jet) velocity U1 and the nominal eddy velocity Uc. Murray and Lyons [9] measured
the distribution of wave orientations for jets and used (1) to infer the corresponding distribution
of source speeds, finding agreement with measurements [10,11]. Similarly, direct numerical
simulations (DNS) of temporally developing mixing layers also show a range of compression wave
orientations near the turbulence [12]. The distribution of wave angles (and wave strengths) lead
to nonlinear interactions; distinct waves merge as they propagate [12]. Figures 1(a), 1(c) and 1(e)
show an example from a Mach M = 2.5 temporally developing free-shear turbulent flow we study.
These have Reynolds number up to Reδm = 2100 and Mach numbers M = 0.9 and 2.5, based on the
difference of the free-stream velocities �U = U1 − U2, the momentum thickness δm, and ambient
speed of sound c∞. They were initialized with random perturbations to a laminar profile, which
grows to be 35 times its initial thickness δo

m in a spanwise- and streamwise-periodic computational
domain (Lx = 1536 δo

m and Lz = 512 δo
m), with absorbing far-field boundary conditions at ±Ly/2 =

800 δo
m. After an initial transient, during which the turbulence becomes approximately statistically

stationary, we analyze data from δm(t ) = 10 δo
m to 35 δo

m. Many details of the methods and results
from these simulations are reported elsewhere [12,13]; here we are considering some specific new
questions. The sound field appears, as expected, to be dominated by thin shocklike features oriented
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at approximately the expected Mach angle [14,15], as previously analyzed for this configuration
[12]. Still, it includes additional peculiarities. For M � 2.5, the pressure is positively skewed,
often with skewness Sk � 0.4 [12], matching that commonly measured near round jets [4,16,17].
These both suggest that nonlinear mechanisms underlie the generation and affect the propagation
of these waves. Past analysis of this flow shows that near the M = 2.5 turbulence, nonlinear effects
are significant in the transport budget of Sk within y � 20 δm from the source, where δm is the
momentum thickness of the shear layer [12]. Though the basic mechanism of Mach-wave generation
and propagation is understood for idealized flows [18], the sound generated by turbulence has
additional complexity, particularly its intricate three-dimensional pressure field with significant Sk .

Wave-packet models, which are motivated by the growth and decay phenomenology of instability
waves, have been proposed to provide mechanistic models of noise sources in free-shear flows
[19–21], and they are successful. The far-field sound intensity of supersonic advecting wave packets,
in particular, follows the expected high-speed M3 scaling [19], which is consistent with general
theoretical results [5] and data [22,23]. Unlike subsonically advecting wave packets, whose sound is
strongly sensitive to the space-time details of the wave packet, the radiation efficiency for supersonic
advection depends mainly on the Mach number and not on the wave-packet structure per se [24],
though a weak dependence on structure has been observed [25]. Despite the reasonable success of
linear wave packets to predict the levels and peak radiation direction [26–29], discrepancies in the
intensity remain unresolved. On top of their limitations in describing turbulence, they also do not
form shocklike waves and skewed pressure statistics, so prominent in observations. This suggests
a role of nonlinear mechanisms, such as has been studied in detail for two-dimensional mixing
layers, where it was found to be important [28]. For a broadbanded input, there are significant
differences between solutions of the linearized equations and of the full equations, even for modes
that contribute most to sound levels near jets, for which linear theory might be expected to be
most successful [30]. The strength of the pressure waves radiated by high-speed flows is also
strong enough that nonlinearity could alter its propagation [18,31,32], which has been quantified
for turbulent jets [33,34]. Here we consider that finite-amplitude effects may also potentially be
coupled to the underlying turbulence as it is generated.

Another partial description of Mach-wave radiation from turbulence is based on a wavy-wall
flow analogy, where the flow speed and wall perturbation wavelength are taken to correspond
to instability waves [15,35]. This can be seen as replacing the turbulence (or wave packet) by
a kinematic boundary condition that radiates into the domain. As with the wave-packet models,
this linear description is also limited in that it cannot reproduce some prominent features of the
sound. However, within this framework, and in conjunction with turbulence DNS, we augment it
to include additional nonlinear mechanisms. The first involves the finite displacement of the flow,
which is modeled by the wall streamline in the wavy-wall model. In the corresponding asymptotic
solution, second-order terms in the boundary conditions introduce harmonics [36–38]. The second
is a consequence of the Navier-Stokes equations involving both nonlinear convection and equation
of state effects. Convection mechanisms, involving (u · ∇u)-like terms, are well understood to
steepen waves as they propagate, leading to a standard N-wave [18]. However, this description
is incomplete since, unlike for turbulence, the waves have antisymmetric positive and negative
peaks and thus zero skewness (Sk = 0), so additional mechanisms must be responsible for radiating
skewed pressure signals. Supersonic wave packets simulated in a uniform flow (supplying a finite
amplitude of p ≈ 0.06 p∞ perturbation along the streamwise axis) do reproduce features like those
observed in the sound radiated by a high-speed jet: large skewness (Sk > 0.4) and wave steepening
[39]. However, it remains unclear if the essential nonlinearity arises from finite-fluid displacement,
convection mechanisms, the equation of state, or some mix of these. The objective of this paper is to
further examine nonlinear mechanisms of sound generation in high-speed flows, specifically their
importance to sound radiation by turbulence. In particular, we seek to differentiate the nonlinear
mechanisms that might lead to Sk = 0 N-waves from those that yield the Sk � 0.4 waves observed
near turbulence. Turbulence simulations provide a specific point of reference between the model
mechanisms and turbulence sound sources.
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In Sec. II, we simulate the sound and onset of nonlinearity from saturating instability modes.
Their nascent sound with Sk > 0 is similar to that from turbulence. These simulations provide the
connection between the flow speed, mode structure, and the effect of increasing nonlinearity on
the radiated sound field. These observations are used in Sec. III to design source terms in auxiliary
simulations that alter the turbulence structure of a M = 2.5 mixing layer to assess its role on the
sound strength p′

rms and Sk . Section IV considers nonlinearity associated with the gas properties by
modifying them. In particular, the gas is stiffened to assess the importance of the pressure-density
nonlinearity in the equation of state. Similarly, the strength of two-way coupling between the strong
sound and the turbulence is assessed using simulations with significantly increased dilatational
dissipation. With this information, in Sec. V we introduce a weakly nonlinear wavy-wall model
flow, informed by DNS, and use it to illustrate the nonlinear gas dynamics leading to behaviors
observed for turbulence. As for high-speed flow turbulence, the model’s radiation has Sk > 0 and
depends mainly on the Mach number and perturbation amplitude, and it is relatively insensitive to
spatial structure. Section VI provides a summary of the results.

II. ACOUSTIC RADIATION FROM NONLINEARLY SATURATING INSTABILITY WAVES

Before considering turbulence in the following section, the simulations in this section are
designed to assess the onset of nonlinear source and sound mechanisms, before subsequent
nonlinear effects obscure them. Linear theory is used to select initial conditions for these model-flow
DNS. The Mach number range, 0.9 � M � 3.5, was chosen to match the corresponding turbulence
DNS [12] to facilitate subsequent comparisons. Figures 2(a) and 2(b) illustrate the basic behavior
for such an instability for M = 2.5, with details of the setup following in this section. In this case,
because of its cp < 0 phase velocity, the selected linearly amplifying mode radiates mostly above
the shear layer (y > 0) at the anticipated Mach angle (1). However, the pressure waves, which are
initially harmonic with Sk ≈ 0 [Fig. 2(b)], become increasingly positively skewed (peaks higher
than the troughs) in Fig. 2(d). As the perturbation intensity

Mt (t ) = (u′
iu

′
i )

1/2

c∞
, (2)

based on u′
i velocity perturbations to the base flow measured at y = 0, increases exponentially in

time [Figs. 3(a) and 3(b)], the Sk increases approximately linearly with Mt . This is true both at
y = 0 and in the sound field, as shown in Figs. 3(c) and 3(d). By t = 1000δo

m/c∞, a shock is nearly
formed [Fig. 2(d)] by standard wave steepening (e.g., Ref. [31]). Yet, its tendency to also form
positive Sk is not universal to wave steepening and requires additional explanation.

The stability of flows of this kind has been extensively analyzed [40–42], and further documen-
tation of this specific configuration and the corresponding simulations are reported elsewhere [13].
The perturbations we consider have the usual form

�q(x, t ) = ε �Q(y) exp[i(αx + βz − ωt )], (3)

where �q = [u′, v′,w′, ρ ′, p′]T and �Q = [û, v̂, ŵ, ρ̂, p̂]T. In the simulations, the initial amplitude is
ε = 10−3, which is sufficiently small for initial amplification to match growth predicted by the
imaginary component ωi of the eigenvalue ω = ωr + iωi. The corresponding phase speed is cp =
ωr/α, whose difference from the free stream, U1 − cp, defines a nominal structure relative speed

Uc = (U1 − cp) cos φ, (4)

where cos φ = α/
√

α2 + β2. A similar relation has been used to explain the acoustic inefficiency
of oblique subsonic modes with Uc < c∞ [43]. In Figs. 2(a) and 2(c), we see Machlike waves with
θ ≈ 39◦, which correspond to the instability eigenvalue. However, below the shear layer (y < 0), the
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FIG. 2. Direct numerical simulation of the unstable mode with (α, β ) = (0.289, 0)/δo
m, where δo

m = δm(t =
0), for M = 2.5: [(a), (b)] δm = 1.25δo

m and [(b), (d)] δm = 1.5δo
m; panels (a) and (c) show dilatation (grays:

|∇ · u| < 0.1 �U/δm) and vorticity (color: ∇ · u < 0.5 �U/δm) fields and corresponding streamwise pressure
in panels (b) and (d) at the indicated y locations.

relative speed is subsonic |(U2 − cp) cos(φ)| < c∞, precluding Mach waves, though of course there
are corresponding cp > 0 modes that could coexist with these and that would radiate predominantly
into the y < 0 region. Saturating two-dimensional instabilities radiate more intensely with larger
Sk than φ > 0 oblique modes. Contributions to Sk transport in turbulence DNS support a similar
observation: Three-dimensional (in-plane) contributions to Sk were not significant [12].

Subsonic flow behavior is counter to this: The most unstable mode has β = 0 and, also similar to
developed turbulence, they have negative Sk inside the shear layer, as seen in Fig. 3(c). The pressure
decreases exponentially for small |y| (not shown), consistent with evanescent radiation, and waves
with Sk ≈ 0 [Fig. 3(d)] persist to larger |y|, consistent with those near mixing layer turbulence [12].
Likewise, Fig. 4(a) shows that for the modes we consider (summarized in Table III in Appendix A),
the radiated sound-field intensity shows both U 8 and U 3 scaling, consistent with theoretical
considerations [5,7] and observations for turbulence [12]. Along with increasing intensity, the
corresponding skewness also increases with U [Fig. 4(b)], consistent with trends observed in the
turbulence. However, the relation of U to advection speed of turbulent structures is not necessarily
simple, especially in high-Mach-number flows, for which turbulence structures are less correlated
across the mixing layer. To anticipate its impact, we consider a range of possible advection
speeds based on the local mean flow speed at y = 0, ±δm, and ±2δm. These reflect the turbulence
advection speeds based on their y-dependent space-time correlations (see Appendix C). This y
range includes the most intense velocity fluctuations (see Fig. 6), and corresponding velocities also
encompass linear instability phase velocities. These observations, confirming multiple similarities
between radiation from saturating instabilities and turbulence, motivate the following section, which
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FIG. 3. [(a), (b)] Growth of Mt (2) at y = 0 for the discrete modes of Table III in Appendix A: (a) M =
0.9 and (b) M = 2.5. For reference, the horizontal lines indicate the approximately stationary Mt from
corresponding turbulence DNS [12]. [(c), (d)] Dependence of pressure skewness on disturbance amplitude
Mt : (c) y = 0 and (d) y = 20 δm.

examines the effect of a narrow-band forcing of linear-mode-like structures in the turbulence to
assess sensitivity of radiated sound to structure. In doing this, we particularly assess the role of the
oblique (φ �= 0) stability modes, which are most amplifying yet have subsonic velocity Uc < c∞,
versus the supersonic φ = 0 modes.

III. MODIFIED LARGE-SCALE TURBULENCE STRUCTURE

The saturating instabilities of the previous section radiate sound with signatures of nonlinear
mechanisms similar to fully developed turbulence at similar conditions, depending on their relative
speed. The visualizations for M = 2.5 and 0.9 in Fig. 1 also support a link to their structure, with
the high-speed turbulence and its corresponding sound appearing more three-dimensional than the
corresponding lower speed flow. However, the results also indicate that for fixed M the near-field
pressure depends primarily on the mode’s relative Mach number. Larger pressure fluctuations
come from higher U/c∞ and less oblique (more two-dimensional) modes, which are not the most
amplified by linear mechanisms in higher speeds.

To quantify the role of structure itself on the radiated sound, we introduce an artificial source
that reallocates perturbation energy between different types of structures, with the goal of otherwise
minimally disrupting the flow. Similar modifications to the flow equations have been used, for
example, to study the maintenance of wall turbulence [44]. Similarly, experiments with near-nozzle
shear-layer excitation have probed noise generation mechanisms of large-scale structures, though
with far less control over the specific excitation [45,46]. Here, energy is extracted from the most
unstable oblique Fourier components, as predicted by linear theory, by a source added to the
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FIG. 4. Comparison of saturating instabilities and turbulence based on relative free-stream speeds: (a) pres-
sure intensity and (b) pressure skewness at y/δm(t ) = 20. For saturating instabilities, the relative velocity
U = Uc is defined using (4). For turbulence, an anticipated range of advection velocities are based on y-location
mean speed u(y) (see text). The results are shown for U = �U/2 − u(y): y = 0 (symbol), y = ±1δm (inner
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N (�q) = 0 flow equations (for �q = [ρu, ρv, ρw, ρ, ρe]T):

N (�q) = −AωiW (y)

⎡
⎢⎢⎢⎢⎣

ρ(u − ut ) + u(ρ − ρt )
ρ(v − vt ) + v(ρ − ρt )

ρ(w − wt ) + w(ρ − ρt )
(ρ − ρt )

(p−pt )
(γ−1) + ρui(ui − ut

i ) + 1
2 uiui(ρ − ρt )

⎤
⎥⎥⎥⎥⎦, (5)

where A is a strength parameter, ωi is the growth rate of the most unstable mode from (3), and W (y)
restricts its support to |y| � 1

2δ99(t ):

W (y) = 1

2

{
tanh

[
5

δm(t )

(
y + δ99(t )

2

)]
− tanh

[
5

δm(t )

(
y − δ99(t )

2

)]}
. (6)

In (6), δ99 is the distance between the y locations having 99% of ambient flow speeds. Each q
component of �q is discrete Fourier transformed in the periodic x and z directions (see Fig. 1):

q̂kxkz (y) = 1

NxNz

Nz−1∑
m=0

Nx−1∑
n=0

qnm(y) exp

[
−2π ikxn

Nx

]
exp

[
−2π ikzm

Nz

]
. (7)
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FIG. 5. Effect of source strength A on the y = 0 pressure spectra when δm(t )/δo
m = 10: (a) streamwise and

(b) spanwise directions. The dashed lines indicate the initial and final modulated target wave numbers.

The superscript t in (5) indicates the target field, with corresponding transform

q̂t
kxkz

=

⎧⎪⎨
⎪⎩

0, kx = k1, kz = |k2| ← damps oblique

q̂kxkz

√
E1,0+E1,2+E1,−2

E1,0
, kx = k1, kz = 0 ← excites β = 0

q̂kxkz , otherwise ← leave others unchanged

. (8)

The mode energy is Ei, j = q̂kik j q̂


kik j

, where the 
 indicates complex conjugate. The wave-number
pair (k1,±k2) is the most linearly amplified mode pair (supported by the discretization at the
time forcing is initiated). For the M = 2.5 case, it is (k1,±k2) = (0.289,±0.537) δm(t ), with
corresponding growth rate ωi = 0.096 �U/δm(t ). The coefficients in (8) are designed to conserve∑

Ei, j . We note that the unstable linear mode depends on the momentum thickness, which grows
approximately linearly in time; k1 and k2 change in time to track this dependence.

Any source terms such as in (5) can potentially generate sound directly, which is confirmed by an
acoustic analogy formulation [6] in Appendix B to be less consequential than the direct turbulence
sound sources. Thus, changes in the sound are due to changes in the turbulence caused by the
forcing, not the forcing itself.

The numerical methods for (5) are standard high-order finite-difference methods and reported in
full elsewhere [13]. The domain of size Lx × Ly × Lx = 1536 δo

m × 800 δo
m × 192 δo

m is discretized
with Nx × Ny × Nz = 1536 × 801 × 192 uniformly spaced mesh points. The turbulence, initialized
from broadband velocity fluctuations [47], develops naturally until δm(t ) = 5 δo

m. By design, forcing
the turbulence to the two-dimensional target state increases the z correlations [13]. However, we
emphasize that the effect on the overall range of turbulence scales is modest: The near-field pressure
spectra in Fig. 5 appear unchanged aside from the depletion in energy near k = k1 due to (8), which
is more pronounced for larger A. Otherwise, there is a broad range of scales similar to the baseline
case.

Since the energy is removed from the most amplified mode, it is anticipated that the shear
layer growth rate will be suppressed, though this too is modest. Between times with δm = 5 δo

m to
10 δo

m, growth rate decreases from δ̇m = 0.0066 �U for A = 0 in (5) to 0.0042 �U for A = 2. The
Reynolds stresses shown in Figs. 6(a)–6(d) and mean u velocity (not shown) are similarly insensitive
for A � 1 [13].

However, despite these modest changes to the turbulence intensity and structure, Fig. 7 shows
that the sound fundamentally changes for A = 1. Spanwise correlated pressure waves are obvious,
yet they are only modestly more intense and skewed than for A = 0. Figure 8(a) shows that the
intensity increases by only a factor of 2 even for the most strongly forced A = 2 case. That spanwise
correlation might increase acoustic efficiency is not unexpected, especially based on the instability
mode sources in Sec. II. There it was shown that β = 0 modes have U/c∞ > 1, which leads to
larger pressure fluctuations and Sk > 0.
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Despite the change in structure and intensity, there is only a 7% increase in Sk [Fig. 8(b)] within
the turbulence, and Sk is insensitive to A beyond y/δm > δ99. The metric

Sk |y|>δ99
= 1

Ly − δ99

∫ Ly

|y|>δ99

Sk dy (9)

only varies from Sk |y|>δ99
= 0.456 for A = 0 to Sk |y|>δ99

= 0.485 for A = 2, despite the increase in
the turbulence intensities (Fig. 6, especially for A = 2). The results of simply depleting (A = 1) and
enhancing (A = −1) the energy in the three-dimensional unstable modes, without corresponding
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−0.025 < p′/(�U 2ρ∞) < 0.025 for M = 2.5 at y/δm(t ) = 10 when δm(t )/δo

m = 10.
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FIG. 8. Effect of source strength A on the pressure (a) intensity and (b) skewness for conservative forcing
by (8) and nonconservative forcing by (10).

reallocation of the energy, which is accomplished by the source

q̂t
kxkz

=
{

0, kx = k1, kz = |k2| ← damps oblique

q̂kxkz , otherwise ← leave others unchanged
, (10)

are also shown in Fig. 8. For energy removal with A = 1, the pressure intensity at all y is less than
its corresponding A = 1 reallocation using (8), though Sk is essentially unchanged. This result also
shows that further departures from strict conservation of N (�q) = 0 using (10) versus (8) has similar
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FIG. 9. Effect of the advection-based sources on the Reynolds stresses: (a) u′u′, (b) v′v′, (c) w′w′, and
(d) −u′v′.
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FIG. 10. Effect of the advection-based source modification on the pressure (a) intensity and (b) skewness.

radiation as the baseline A = 0. When the energy is added (A = −1), we observe little change in
intensity and Sk up to y < 10δm. Beyond y � 10δm, however, the trends diverge. The excited three-
dimensional modes, which have subsonic advection speeds, support mainly evanescent disturbances
and thus lower intensity further from their source. This is consistent with the instability modes of
Sec. II.

The saturating instabilities of Sec. II show that intensity and skewness are particularly sensitive
to Uc defined in (4). So, as an additional experiment, we deplete energy in modes based on their
orientation-dependent speeds using

q̂t
kxkz

=
{

0, �U
2

α√
α2+β2

> 1 ← damps supersonic modes

q̂kxkz , otherwise ← leave others unchanged
(11)

and

q̂t
kxkz

=
{

0, �U
2

α√
α2+β2

< 1 ← damps subsonic modes

q̂kxkz , otherwise ← leave others unchanged
. (12)

Figure 9 confirms that changes to the Reynolds stresses are similar to the conservative (8) forcings.
Likewise, the radiated pressure intensity shows little change and Sk � 0.4 in Fig. 10.

Overall, altering the turbulence structure has little influence on the radiated pressure intensity and
Sk . Unlike the saturating instabilities, on which the forcing was based, these high-speed flows still
possess broadband, finite-amplitude turbulence fluctuations and sound with approximately the same
characteristics is radiated. We next consider more directly the influence of gas-dynamic mechanisms
on the radiated pressure by altering the gas itself. This leads to the wavy-wall model of Sec. V, which
further isolates mechanisms leading to the sound intensity and its Sk , independent of structure.

IV. MODIFIED GAS PROPERTIES

The insensitivity of the Mach waves to turbulence structure suggests that their key features are
more closely linked to the gas and its dynamics, which we alter by adjusting the gas stiffness.
Similarly, we assess the influence of the waves on the turbulence by strongly damping them with a
significantly increased bulk viscosity μb.

To adjust gas stiffness, we take

p = ρe(γ − 1) − γ ps, (13)
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TABLE I. Simulation parameters for stiffened equation of state.

Description M �U ps c∞ ρ∞
∂ p
∂ρ

|so
1
2

∂2 p
∂ρ2 |so

Baseline 0.9 0.9 0.0 1.0 1.0 1.0 0.2
Stiffened 0.9s 2.5 4.8 2.8 1.0 7.7 1.5
Baseline 2.5 2.5 0.0 1.0 1.0 1.0 0.2
Relaxed 2.5s 0.9 − 0.6 0.4 1.0 0.1 0.03

which recovers an ideal gas for ps = 0. This is a standard stiffened-gas model, which is typically
parameterized first with a ps that matches some shock speed then a γ to match the sound speed

c2 ≡ ∂ p

∂ρ

∣∣∣∣
s

= γ (p + ps)

ρ
. (14)

We adjust ps to either stiffen (increase sound speed at fixed temperature) or relax the gas, keeping
γ = 1.4. The parameters used, which are summarized in Table I, were selected based on airlike
M = 0.9 and M = 2.5 cases. For one new case, the gas for M = 0.9 is stiffened, which is
anticipated to augment any contribution of equation of state nonlinearity to the observed pressure
intensity and skewness. Similarly, a M = 2.5 case is simulated with a relaxed gas, which is more
easily compressed. The specific ps and γ are selected such that the stiffened M = 0.9 (case 0.9s)
free-stream momentum flux ρ�U 2 matches the baseline M = 2.5 case. Likewise, the free-stream
momentum flux of the relaxed-gas M = 2.5 (case 2.5s), matches that of the baseline M = 0.9 case.

Within the turbulence, the effect of gas stiffening is obvious in Fig. 11(a). Relative to the
perfect gas limit, the stiffened gas has decreased density fluctuations for the same range of
pressure fluctuations, and vice versa for the relaxed gas in Fig. 11(b). Of course, in turbulence,
the distributions do not collapse exactly along any p′ ∼ ρ ′ line, due to entropy fluctuations [48].

Despite these changes to the pressure-density distribution, Fig. 12 shows that the Reynolds
stresses for the same Mach numbers are essentially unchanged from the perfect gas limit. The
radiated pressure, quantified in Figs. 13(a) and 13(b), also show relative independence from gas
stiffness, both for intensity and Sk , respectively. Even upon changing γ , Figs. 13(c) and 13(d) show
little change to pressure statistics beyond y � δ99.

ps = 4.80
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FIG. 11. Effect of gas stiffness on the joint pressure and density distribution at y = 0 when δm/δo
m = 20 for

(a) M = 0.9 and (b) M = 2.5. Isolevels range from 1% to 90% and are filled for the baseline case (ps = 0)
and shown with just lines otherwise. For reference, isentropic approximations to the gas laws are provided:
linearized (dashed) and full (solid).
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FIG. 12. Effect of gas stiffness on the Reynolds stresses: (a) u′u′, (b) v′v′, (c) w′w′, and (d) −u′v′.

The relatively small effect of significant gas stiffness on nonlinear dynamics is consistent with
the expansion of pressure for uniform entropy,

p(ρ) = p(ρ∞) + (ρ − ρ∞)
∂ p

∂ρ

∣∣∣∣
so

+ 1

2
(ρ − ρ∞)2 ∂2 p

∂ρ2

∣∣∣∣
so

+ O[(ρ − ρ∞)3], (15)

where the linear- and quadratic-term coefficients are listed in Table I for the cases considered.
Though (15) is approximate, the orientation (slope) of pressure-density distributions in Fig. 11
confirm that this is a reasonable model. However, significant curvature is not apparent, meaning that
there is only a slight deviation from the linearized version of (15) in Fig. 11(b), and the nonlinearity
of (15) is inconsequential. Other gas-dynamic effects are more important for Sk and intensity.

Gas stiffness is not a compressibility effect per se since it does not directly affect ∇ · u, and
indeed Fig. 14(a) confirms its negligible effect on dilatation for the M = 2.5 relaxed-gas case. To
confirm that the intense near-field pressure waves do not couple strongly back into the turbulence
dynamics of the source, we suppress them by increasing the dilatational dissipation via the bulk
viscosity μb in the viscous stress tensor

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
+ μbδi j

∂uk

∂xk

from its standard-case value μb = 0 up to 100μ. Though ideal gases are thought to have large ranges
of μb (μb/μ = 0 to 1000 [49]), and its effect has been studied for turbulence dynamics in relatively
extreme conditions [50,51], the present numerical experiments use μb simply as a means to assess
the suppression of ∇ · u on the turbulence.

Despite strong damping of the radiation [Fig. 14(a) through 14(d)], the turbulence stresses are
virtually unchanged, with maximum change of +8% for u′u′. This is consistent with observations
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FIG. 13. Effect of gas stiffness on pressure (a) intensity and (b) skewness and the effect of γ on the pressure
(c) intensity and (d) skewness.

that the turbulence intensity is insensitive to compressibility per se; instead, it depends mostly on
finite speed of sound effects, which in turn depend on the Mach number M [48,52]. The radiated
waves remain directional, though they are obviously thicker and weaker, especially for μb = 100μ.
For |y| � 5 δm in Fig. 15, the bulk viscosity decreases the sound intensity and also its Sk , though
Sk remains constant over the propagation range. For the same M and Mt (y = 0), Sk is reduced for
μb � 10μ, supporting a link between the Sk and sound intensity via gas-dynamic compressibility.

V. GAS-DYNAMIC MECHANISMS

Sections III and IV showed that the signatures of nonlinear wave dynamics in the radiated
pressure are insensitive to the turbulence structure and gas thermodynamic properties. Suppressing
fluid dilatation significantly suppressed the radiation and near-field velocity divergence, but it did
not alter the turbulence intensities. Together, these observations suggest that the wave features,
including Sk , originate from nonlinear mechanisms distinct from turbulence hydrodynamics.

To isolate the underlying mechanisms, we appeal to the established simple case of steady
supersonic flow adjacent to a wavy wall [36], which has been previously used in regard to sound
generation by turbulence [15], and now includes quadratic nonlinearities. Figure 16 shows the basic
configuration. The irrotational steady supersonic flow over a wavy wall at y = εg(x, z) in Fig. 16(a)
has the boundary condition

u · ∇S = 0, (16)
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FIG. 14. (a) The effect of μb on the average dilatation intensity across the mixing layers. [(b)–(d)]
Dilatation visualization at z = Lz/2 when δm/δo

m = 10: (b) μb/μ = 0, (c) 10, and (d) 100. The gray scale
for panels (b) and (c) is |∇ · u| < 0.15 �U/δm and (d) is |∇ · u| < 0.03 �U/δm, with black indicating
compression.

where S(x) = y − εg(x, z) = 0. To order ε at y = 0, this boundary condition is [36,37]

ϕy = (1 + ϕx )εgx + ϕzεgz − ϕyyεg, (17)

where ϕ is a velocity potential such that u = U∞∇(x + ϕ). The corresponding first-order potential
solution of the isentropic two-dimensional Euler equations is [18,36,53]

ϕ = − ε√(
M2∞ − 1

) g
(
x − y

√(
M2∞ − 1

))
, (18)
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FIG. 15. Effect of bulk viscosity on the pressure (a) intensity and (b) skewness.
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FIG. 16. Uniform flow adjacent to (a) a wavy wall and (b) a corresponding v-velocity distribution
along y = 0. (c) The deviation of the boundary pressure distribution from the linear theory (p′

l ) for the
two-dimensional wavy wall M = 1.75 shown in panels (a) and (b). Modifications to the model formulation
for entropy change, �s = 2.5 × 10−2 c


p, is shown for reference (c

p is the constant-pressure heat capacity).

and its normal velocity perturbations ϕy at the wall are proportional to the local slope of the wall
εgx. The bumps and depressions in the wall streamline generate disturbances that radiate along their
characteristics with constant strength at the Mach angle θ = sin−1(1/M∞). Van Dyke [36] carried
this analysis to order ε2 using (17), which yields

p′

ρ∞U 2∞
= εgx√(

M2∞ − 1
) + (γ + 1)M4

∞ − 4
(
M2

∞ − 1
)

4
(
M2∞ − 1

)2 (εgx )2. (19)

The solution, interpreted as a y = 0 boundary condition on v per (17), is visualized in Fig. 16(b) and
provides the analogy we analyze. In particular, we recognize in (19) that the pressure has stronger
p′ > 0 peaks for gx > 0 than corresponding p′ < 0 for gx < 0 and thus Sk > 0. This is quantified
(relative to the linear solution) in Fig. 16(c) for M∞ = 1.75 free-stream velocity. The DNS data,
also shown in Fig. 16(c), tracks this behavior closely. Of course, the DNS is not exactly isentropic
as is the model. Still, it all falls within a band, tracking the wavy-wall model. This band thickness
matches the observed entropy extrema in the data (�s = 2.5 × 10−2 c


p). This value from the DNS is
used to anticipate the bounds displayed for the corresponding linear and order-ε2 wavy-wall results.

An extension of the weakly nonlinear solution to three dimensions has not been found, so
direct simulations are used, with turbulence-based velocities providing boundary data. The specific
configuration is shown in Fig. 17 and solved using the same high-order finite-difference methods
as for the corresponding turbulence DNS [12]. The computational domain is periodic in x and
z with Lx × Ly × Lz = (34.8 × 20 × 12.8) δm and discretized with Nx × Ny × Nz = 1536 × 801 ×
512 uniformly spaced mesh points. For vw = ϕy in (17), we use the y = 0 velocity from the
turbulence DNS shown in Figs. 17(b)–17(d). The v′ component defines the effective shape of the
wall g to order ε, then with g, the y = 0 values for u′ and w′ and the normal derivative of v′ form the
remaining terms of the right side of (17). Though not shown here, the sound is insensitive to spatial
structure of the wall, consistent with Sec. III and shown in more detail elsewhere [13]. Within
this model, we can independently adjust both vw perturbations and the free-stream momentum flux
∝ U∞ to examine their respective roles in the near-field sound radiation.

For the free stream, the most obvious choice is U∞ = �U/2. However, this implies that the Mach
waves are generated just at y = 0, although the advection of the average velocity perturbations
follow closely to the local mean flow (with appropriate y dependence) [54], which is also shown
in Appendix C for the current shear-layer configuration. Based on observed wave angle and the

044605-16



INTENSE SOUND RADIATION BY HIGH-SPEED FLOW: …

M∞ = U∞/c∞

absorbing boundary zone

vw

5δm

15δm

34.8δm

12.8δm

(a) (b)

(c)

(d)

34.8δm

12.8δm

(e)

FIG. 17. (a) Computational domain of supersonic flow adjacent to a plane of cross-stream velocity
fluctuations. Spatial distributions of vw from (b) M = 1.5, (c) M = 2.5, (d) M = 3.0, and (e) M = 3.5 DNS of
mixing layers colored from −0.3 < vw/�U < 0.3 velocities.

Mach-angle formula (1), we deduce an advection speed that is faster than would be anticipated for
M/2 (or �U/2) [12], similar to the observations of Oertel [14] in shear-layer turbulence. In those
experiments, the speed of the structures correlated with

Mc = 1

2

(�U + c∞)

c∞
, (20)

which also agrees with average wave angles near turbulence [12]. Thus, the free-stream Mach
M∞ is set using (20) for each mixing layer M as listed in Table II. Additional simulations are
designed to assess sensitivity to this choice of M∞ and implications for how this might influence the
intensity and Sk . The vw boundary condition at y = 0 is implemented using a standard simultaneous-
approximation-term (SAT) approach designed for (17) [55]. The boundary at y = Ly has a typical
damping region that suppresses reflections into the domain [13]. The initial transient solution is
integrated to steady state with a standard fourth-order Runge-Kutta scheme.

Figures 18(a) and 18(b) show that this kind of boundary condition and uniform advection
produces an array of waves at Mach angle (θ ≈ 35◦) associated with the M∞ = 1.75 used for
this flow. The nominally linear field, shown in Fig. 18(a), computed by the same methods but
with a factor of 10−4 reduced amplitude at y = 0, shows similar directional waves though these
lack the shocklike structure of their nonlinear counterpart [Fig. 18(b)]. The compressions and
expansions in this linear case also have approximately the same amplitude so Sk ≈ 0. The waves
in the DNS [Fig. 18(c)] are similarly directional, but as expected, due to the finite-time correlation
of the turbulence, are finite along the wavefront. There are also additional perturbations between
the obvious compressions due to the turbulence character of the source. Normal to the streamwise

TABLE II. Simulations of supersonic flow adjacent to wall-like disturbances.

M∞ Figure 17 frame vrms/c∞ of vw

1.25 (b) 0.150
1.75 (c) 0.255
2.00 (d) 0.296
2.25 (e) 0.343
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FIG. 18. Dilatation |∇ · u| < 0.1U∞/δm at z = Lz/2 for the M∞ = 1.75/M = 2.5 case: (a) linear, (b) non-
linear, and (c) turbulence DNS. The dashed line at 35◦ from the x axis indicates the nominal Mach angle. The
color map in panel (c) correspond to |∇ · u| < 0.5 �U/δm. The dilatation in panel (a) has been scaled by 104.
(d) Pressure traces for panels (a)–(c) at y = 10δm and data from a Mach 2 jet [57] at r/Dj ≈ 61 (based on the
jet diameter Dj and jet velocity Uj).

flow, Fig. 19 shows that the model also reproduces the three-dimensional Mach-wave structure
from turbulence, with arched waves that cross one another. From this view, the limiting linear field
[Fig. 19(a)] little resembles the turbulence DNS [Fig. 19(c)]. The qualitative similarities between
the nonlinear model and the turbulence DNS is partly due to large-scale eddies being long lived
compared to the acoustic timescales, which makes them more like stationary bumps. Turbulence
integral timescales (Appendix C) relative to the acoustics confirms its slow evolution. Furthermore,
perturbations in high-Mach-number flow are more acoustically efficient than in subsonic flow,

FIG. 19. Streamwise view of dilatation |∇ · u| < 0.1�U/δm at z = Lz/2 for the steady M = 1.75 (a) linear
and (b) nonlinear model and (c) y > 0 from the DNS M = 2.5. The color map in panel (c) corresponds to
|∇ · u| < 0.5�U/δm. The dilatation in panel (a) has been scaled by 104.
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In panel (b), for the wavy-wall model, the U/c∞ = M∞ are listed in Table II. For turbulence, an anticipated
range of advection velocities are based on y-location mean speed u(y) (see Sec. II). The results are shown for
U = �U/2 − u(y): y = 0 (symbol), y = ±1δm (inner bar), and y = ±2δm (outer bar).

and their radiation is relatively insensitive to the time dependence of their source [24,56], which
facilitates further comparison between the turbulence and the steady-flow model to examine its
mechanisms.

In Fig. 18(d), the p′ peaks of the linear-limiting case have similar magnitude and rounded shape
as the troughs; however, the nonlinear model flow reproduces the steep compressions followed by
shallower, rounded expansions seen in the DNS. This figure also includes data from a Mach 2
jet [57], showing the similarity with the computed pressure traces. The sharp compressions reach
≈ 4 p′

rms, consistent with measurements [4,58,59] and simulations [60] of jets. The domain average
Sk ,

〈Sk〉 = 1

Ly − w

∫ Ly−w

y=0
Sk (y) dy, (21)

neglecting the absorbing-sponge region (w = 5 δm), is shown in Fig. 20. Like the turbulence DNS,
it increases approximately linearly with p′

rms and also with M∞. The trend and magnitude of Sk

for 1.25 � M∞ � 2 also agrees with those observed in the turbulent mixing layers. On the other
hand, for the M = 3.5 turbulence, the model underpredicts Sk using advection speed (20). This
might suggest that larger advection speeds in the M = 3.5 turbulence are causing larger Sk , which
is possible since Machlike waves were observed at even shallower angles than those corresponding
to speeds in (20) [12].

Both the two-dimensional (19) and the three-dimensional model flows show that Sk can arise
from both finite-fluctuation amplitudes ∼(εgx )2 and the free-stream momentum flux ∼M∞. These
are shown separately in Fig. 21. The Sk increases with M∞, up to Sk ≈ 0.4 for M∞ � 1.5 in
Fig. 21(a). Rescaling vw at fixed M∞ shows the 〈Sk〉 < 0.4 for vrms/c∞ < 0.2 so turbulence-
like fluctuation levels are necessary to support the nonlinearity producing the observed Sk . The
approximate linear growth of Sk in Fig. 21(b) with vrms for 0 < vrms/c∞ < 0.2 is also consistent
with instability amplitude dependence in Figs. 3(c) and 3(d). Dissipation mechanisms suppress Sk

in the sound field [12], which likely contributes to the leveling off of Sk for the more intense waves,
while for the inviscid model (19), Sk would increase with M∞.
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FIG. 21. Two routes to increasing Sk in the model flow: (a) due to mean flow M∞ and (b) due to fluctuation
intensity vrms/c∞. Filled symbols indicate the reference case in Table II, M∞ = 1.75 and vrms/c∞ = 0.255,
based on a corresponding M = 2.5 turbulence case.

VI. CONCLUSIONS

The main conclusion of this paper is that the peculiarly asymmetric pressure amplitudes with
Sk � 0.4 arise from a nonlinear gas-dynamic effect near, yet only one-way coupled, to the turbulence
source. A second-order extension of a wavy-wall model shows this in two dimensions; a three-
dimensional direct numerical simulation with a boundary condition in the same asymptotic limit
and based on a frozen turbulence field reproduces all the key features: Sk values, Mach waves in x-y
planes, curved and intersected shocklike waves in z-y planes, and intensity to within a factor of 2.
The root of the Sk behavior is the nonlinearity intrinsic in gas dynamics. The usual assumption that
sound does not significantly affect the turbulence, which is a lynchpin of analysis of aerodynamic
sound at lower speeds [6,7], is needed to make this statement, and this was confirmed by strongly
suppressing the amplitude and shocklike character of the radiation with elevated bulk viscosity.
Similarly, the turbulence was insensitive to the gas stiffness, so long as the momentum fluxes were
set to match the baseline flows. We similarly confirm that the key observations coincide with the
nonlinear saturation of linear instabilities, and simulations with source terms designed to alter the
turbulence structure show that it is not of primary importance for the observations. It is instead a
consequence of finite-amplitude disturbances with relative supersonic advection speed.
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APPENDIX A: SUMMARY OF INSTABILITY-SATURATION SIMULATIONS

The results presented in Sec. II summarized the main results from many simulations. The
parameters of these simulations are shown in Table III for reference and completeness.

APPENDIX B: SOUND SOURCES FROM ARTIFICAL SOURCE TERMS

For the simulations of Sec. III, to which sources are added to alter the turbulence structure, it is
important to assess the direct consequences of these artificial additions as direct acoustic sources.
To do this, we rearrange the governing equations, following the usual approach of formulating an
acoustic analogy [6], to form

∂2ρ

∂t2
− a2

o

∂2ρ

∂xi∂xi
= ∂2Ti j

∂xi∂x j
+ ∂M

∂t
− ∂Fi

∂xi
, (B1)
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TABLE III. Simulation parameters of unstable modes.

M α β θ ωi ωr/α Uc/c∞

0.9 0.78 0.00 0 0.28 0.00 0.45
0.9 0.78 0.26 18 0.27 0.00 0.43
0.9 0.78 0.49 32 0.25 0.00 0.38
0.9 0.78 0.62 38 0.23 0.00 0.35
0.9 0.78 0.69 41 0.22 0.00 0.34
0.9 0.78 0.90 49 0.18 0.00 0.30
1.5 0.55 0.01 2 0.16 0.00 0.75
1.5 0.55 0.04 5 0.16 0.00 0.75
1.5 0.55 0.10 11 0.16 0.00 0.74
1.5 0.55 0.15 15 0.17 0.00 0.72
1.5 0.55 0.20 20 0.17 0.00 0.71
1.5 0.55 0.25 24 0.17 0.00 0.68
1.5 0.55 0.33 31 0.17 0.00 0.65
1.5 0.55 0.39 35 0.18 0.00 0.61
1.5 0.55 0.48 41 0.18 0.00 0.56
1.5 0.55 0.57 46 0.17 0.00 0.52
1.5 0.55 0.67 51 0.16 0.00 0.48
1.5 0.55 0.79 55 0.15 0.00 0.43
1.5 0.55 0.94 60 0.13 0.00 0.38
1.5 0.55 1.22 66 0.08 0.00 0.31
2.5 0.29 0.01 2 0.02 −0.27 1.51
2.5 0.29 0.11 21 0.02 −0.22 1.37
2.5 0.29 0.16 29 0.02 −0.18 1.25
2.5 0.29 0.19 34 0.02 −0.14 1.16
2.5 0.29 0.23 38 0.02 −0.07 1.04
2.5 0.29 0.24 40 0.03 0.00 0.96
2.5 0.29 0.28 44 0.06 0.00 0.90
2.5 0.29 0.31 47 0.07 0.00 0.86
2.5 0.29 0.33 49 0.08 0.00 0.82
2.5 0.29 0.37 52 0.08 0.00 0.78
2.5 0.29 0.40 54 0.09 0.00 0.73
2.5 0.29 0.43 56 0.09 0.00 0.70
2.5 0.29 0.46 58 0.09 0.00 0.67
2.5 0.29 0.48 59 0.10 0.00 0.64
2.5 0.29 0.52 61 0.10 0.00 0.61
2.5 0.29 0.56 63 0.10 0.00 0.57
2.5 0.29 0.59 64 0.10 0.00 0.55
2.5 0.29 0.61 64 0.09 0.00 0.54
2.5 0.29 0.64 66 0.09 0.00 0.51
2.5 0.29 0.68 67 0.09 0.00 0.49
2.5 0.29 0.72 68 0.09 0.00 0.46
2.5 0.29 0.74 69 0.09 0.00 0.45
3.5 0.23 0.04 9 0.01 −0.45 2.17
3.5 0.23 0.13 31 0.01 −0.38 1.84
3.5 0.23 0.22 44 0.01 −0.30 1.48
3.5 0.23 0.25 48 0.01 −0.26 1.35
3.5 0.23 0.29 52 0.01 −0.21 1.22
3.5 0.23 0.33 56 0.01 −0.15 1.07
3.5 0.23 0.31 54 0.01 −0.18 1.14
3.5 0.23 0.32 54 0.01 −0.17 1.12
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TABLE III. (Continued.)

M α β θ ωi ωr/α Uc/c∞

3.5 0.23 0.36 58 0.01 0.00 0.93
3.5 0.23 0.37 59 0.03 0.00 0.90
3.5 0.23 0.39 60 0.03 0.00 0.88
3.5 0.23 0.41 61 0.04 0.00 0.85
3.5 0.23 0.42 62 0.04 0.00 0.82
3.5 0.23 0.44 63 0.05 0.00 0.79
3.5 0.23 0.46 64 0.05 0.00 0.77
3.5 0.23 0.48 65 0.05 0.00 0.74

where M and F are the effective mass and momentum sources due to the additional term, and
Ti j = ρuiu j − σi j + (p − a2

oρ)δi j is the usual Lighthill stress. Of course, the added sources also
alter Ti j , so T o

i j designates the corresponding Lighthill stress for unforced turbulence, with M = 0
and Fi = 0. The space-time average of the sources in (B1) are shown in Fig. 22. Unlike low-Mach-
number flow, we are not in a compact-source regime, and there is no expectation of a quadrupolar
(or similar canceling polar character), which would significantly suppress the efficiency of Ti j as
a sound source, so we simply make a direct comparison. The acoustic sources due to the added
mass and momentum sources are small compared to the Reynolds stresses in Ti j . For y � 5δm,
the |(Ti j )i j − (T o

i j )i j
| > |(M)t | + |(Fi )i| result suggests that any change in the sound arises from

turbulence Ti j modifications, which results in Sec. III confirm do not change significantly.

APPENDIX C: TURBULENCE ADVECTION SPEED

To examine advection velocities in high-speed free-shear turbulence, we use the space-time
correlation of streamwise velocity perturbations

Cxt (�x,�t , y) = u′(x, y, z, t )u′(x + �x, y, z, t + �t )

u′(x, y, z, t )u′(x, y, z, t )
, (C1)

some of which are shown in Fig. 23(a) for M = 2.5. Figure 23(b) shows an integral space-time scale
defined by

L(U , y) =
∫

Cxt (U�t ,�t , y) d�t , (C2)

FIG. 22. The effect of turbulence modification for A = 2 on acoustic sources.
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FIG. 23. (a) Space-time correlations of streamwise velocity perturbations for M = 2.5 between 0 �
y/δm � 3. Five levels indicate normalized correlations from 0.5 � Cxt � 0.9 and dashed lines indicate the
direction along the maximum integral space-time scale shown in panel (b) with the maximum indicated
by triangles. (c) The advection velocity based on the direction of maximum integral space-time correlation
compared to the mean streamwise velocity.

which is parameterized by velocity U = �x/�t . The U that maximizes (C2), Uxt , is confirmed to
agree with the orientation of correlation contours in Fig. 23(a). Because of the symmetry of the
flow, the same space-time advection velocities, with opposite sign, are found for y < 0. Shown in
Fig. 23(c), this deduced turbulence speed at discrete y is close to the local mean streamwise velocity
profile, Uxt ≈ u, which is similar to behavior observed in simulated boundary layer turbulence [61].
Similar results confirm that this behavior holds for the range of 0.9 � M � 3.5 of interest here.
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