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Direct numerical simulation is performed to investigate the flow physics of a supersonic
turbulent boundary layer subjected to a longitudinal concave surface. Two physically
consistent approaches are exploited to determine the boundary layer edge, and it is found
that this turbulent boundary layer becomes noticeably thinned on the concave surface,
which reflects the pronounced role of rise in density during this flow compression. In
general the boundary layer is highly distorted, as manifested by wall pressure properties.
Examinations of velocity statistics reveal that the scaling well established in canonical
turbulence is violated in this distorted case. Mean streamwise velocity neither conforms
to the universal log law nor obeys the velocity-defect law. Considerable increase is
observed for Reynolds stresses throughout the concave surface, pointing to the effect of
turbulence amplification. Nevertheless, the stress-bearing turbulent motions have barely
changed in character, as evidenced by the quadrant analysis and structure parameter. The
turbulence amplification is then understood by inspecting the production term of turbulent
kinetic energy. We demonstrate that the outer boundary layer holds an increasingly
important contribution to the total turbulence production throughout the concave surface.
Accordingly, the amplification of turbulent kinetic energy is prominent in the outer layer.
More insights are provided by inspecting the energy spectra. We find the outer-layer large
structures are highly energized, even with an energy peak appearing in the lower-wake
region, and they superimpose substantial large-scale energies on the near-wall region.
Structural analyses demonstrate the organized turbulent motions, which are well scaled in
canonical turbulence, have generally changed in their characteristic lengthscales under the
influence of concave surface. Importantly, the flow visualization reveals stronger footprints
overlaid onto the near-wall region, which suggests enhanced inner-outer interactions. This
perspective, aided by the spanwise two-point correlations, is moreover supported by the
quantification of amplitude modulation through a mathematical diagnostic tool. Results
demonstrate that turbulence modulation is still governed by log-region superstructures,
whereas the modulation strength has noticeably increased throughout the concave surface.

DOI: 10.1103/PhysRevFluids.4.044602

I. INTRODUCTION

The design of high-speed vehicles has invigorated fundamental researches on compressible
turbulent boundary layers (TBLs). Lots of endeavors [1–4] have been devoted to the canonical
cases (i.e., without external perturbations), and they collectively point to the perspective that
supersonic turbulence possesses a general similarity with the incompressible counterpart since
principal differences between two flow regimes can be scaled out by mean density variations
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following Morkovin’s hypothesis [5–6]. Nevertheless, more prevalent in practice are perturbed
flows over various curved geometries (e.g., scramjet intake). Such curved surfaces can bring about
intense turbulence distortions and hence lead to quite complicated operating conditions for vehicles.
Therefore understanding the potential physics is significant for effective flow control methodologies
as well as for novel hypersonic vehicle designs. Despite some experimental studies available in
literature, a profound understanding regarding the concave surface remains lacking.

The first investigation on curved wall surfaces dates back to the period when Ludwig Prandtl
had just set up the foundations of boundary layer theory (see Ref. [7]). Later, it was the remarkable
work by Bradshaw [8] that provided a framework to classify these effects into different kinds of
extra strain rates e, e.g., strain rates associated with streamline curvature (∂V/∂x), bulk compression
(∇ · U ), and so on. Despite existing studies in the incompressible case, investigations directly
conducted in the supersonic regime are in practice mandatory to understand the involved extra strain
rates, because an incompressible analogy is not readily available owing to the unique character of
supersonic flow (density changes more rapidly than velocity as pressure varies) [6]. Generally for
supersonic flows, concave streamline curvature, bulk compression, and adverse pressure gradient
(APG) belong to destabilizing extra strain rates [9,10], since the conservation of angular momentum
leads to the increase in spanwise vorticity due to the reduction of cross-sectional area in the
wall-normal-streamwise plane [11]. The opposite is true for the counterparts of the extra strain
rates. In practical configurations, it is very likely that more than one kind of perturbations occur
simultaneously. For instance, the supersonic flow subjected to a longitudinal concave surface
undergoes the combined destabilization effects of concave streamline curvature, bulk compression,
and APG. In contrast to interests in understanding separate contributions of each extra strain rate
(e.g., Ref. [10]), the present paper focuses on the combined effects related to the concave wall
surface, which is practically valuable since the overall effects cannot be predicted by a simple
summation of their separate components (the involved extra strain rates interact nonlinearly) [12].

To date the effects of longitudinal concave surface on supersonic TBLs have been understood
mostly through experiments. It is clear that, contrary to the incompressible case [13], the concave
surface in supersonic flows generally leads to thinned boundary layer and increased wall-shear stress
(e.g., Refs. [14,15]), since the increase in density overrides the decrease in velocity beyond low
Mach number and the stream tubes are compressed [6]. The mean velocity property with concave
surface has been frequently discussed, and it is revealed that the van Driest transformed streamwise
velocity is characterized by a dip below the universal log law [16–18]. The physics underlying
this feature of a dip are that the lengthscales of turbulent motions increase more rapidly in the
perturbed turbulence than in the canonical case [8], as further evidenced by the observation that the
most energetic motions in the near-wall region shift towards lower frequency [17]. Interestingly,
it was revealed that this dip is directly linked to the presence of streamline curvature, relatively
irrelevant to APG [19]. Exceptions, however, to the appearance of a dip over the concave wall
exist in literature [20]. Another prominent influence of the concave surface is to amplify turbulence
intensities across the whole layer [17–18], and this amplification is most striking in the outer region
since extra strain rates have their strongest relative effect due to the continuous decrease in principal
shear ∂U/∂y away from the wall [12]. It is stemming from an assumption of rapid perturbation
that the influences of extra strain rates e can be evaluated by the total impulse I = ∫

edt [6]. It was
revealed that the perturbation strength, if strong enough, can notably alter the structure angle and
lengthscales of organized turbulent motions [16]. Nevertheless, the perturbation rate, i.e., the path
taken by perturbation, does play its role. For example, turbulent structures would remain essentially
unaltered if the perturbation rate is slow enough to permit readjustment of the turbulence to new
boundary conditions [17]. Despite in-depth understanding gained from the above-cited work, an
experimental scope is sometimes restricted due to the measuring difficulties in supersonic regimes.
For instance, up to 15% uncertainty is commonly encountered in determining the wall-shear stress
[21].

Contrasting with the early experiments, there currently are few studies making the best of direct
numerical simulation (DNS) in accurately predicting such distorted turbulence, and we are therefore
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motivated to make one contribution of this kind. Particularly, DNS provides direct access to detailed
three-dimensional flow fields, and facilitates investigations of turbulent organized motions, in light
of the newly discovered flow phenomena within the last two decades or so [22–24]. The current
understanding of wall turbulence has unveiled a self-sustaining near-wall cycle based on insightful
low-Reynolds-number simulations [25,26], and has also highlighted a new type of outer-scaled
organized structures, termed very large-scale motions [27] or superstructures [28]. Importantly,
there exist intense interactions between the near-wall cycle and superstructures [29,30], the study
of which is important not only for modeling near-wall statistics [31,32] but also for drag reduction
strategies [33,34]. Nevertheless, the relevant issues are not well addressed in the distorted cases.
The questions that then emerge are how the organized motions respond and whether the inner-outer
interactions are influenced by curved wall surface.

In this paper, numerical simulations have been conducted to investigate a supersonic turbulent
boundary layer subjected to a longitudinal concave surface. A relatively complete document is
provided regarding the turbulence statistics and organized motions. Particular attentions have
been paid to the turbulence amplification as well as inner-outer interactions. For clarity, when
mentioning the influence of concave surface in the following, we are referring to the combined
effects, which comprise the contributions from concave streamline curvature, bulk compression, and
adverse pressure gradients. The paper is organized as follows. In Sec. II the simulation approach is
briefly introduced, together with the assessment of DNS databases. The basic statistics are given in
Sec. III A. Flow organizations are investigated in Sec. III B, followed by the analysis of nonlinear
inner-outer interaction in Sec. III C. Finally, concluding remarks are given in Sec. IV.

II. DIRECT NUMERICAL SIMULATION

A. Numerical strategy

In the present simulation, the governing equations are the three-dimensional Navier-Stokes
equations in the conservative form for a perfect gas, which are solved in the curvilinear co-
ordinate by using a transformation from the Cartesian physical space to the computational
space. The viscous stress tensor is computed by adopting the constitutive relations for a
Newtonian fluid, and the heat flux vector is calculated through Fourier’s law of heat con-
duction. The molecular viscosity μ is assumed to obey Sutherland’s law, and the thermal
conductivity is given by k = μcp/ Pr, with the molecular Prandtl number being 0.72. Finite
differences are employed to discretize the governing equations. The flow solver [35–36] re-
lies on the WENO-SYMBO scheme [37] to compute the inviscid terms with Steger-Warming
flux splitting, and utilizes an eighth-order central scheme to calculate the viscous terms.
Third-order TVD (total variation diminishing) Runge-Kutta method is implemented for time
advancement.

As sketched in Fig. 1, the present flow configuration mimics the Model II devised by Jayaram
et al. [17] but with a lower reference Reynolds number (i.e., Reθ,ref = 2920 in our DNS). Note
that the experimental Reynolds number (i.e., Reθ ≈ 8 × 104) is too high to be afforded by DNS
nowadays. It then follows that comparisons with the experiment are meaningful when the outer
coordinate is employed, based on the assumption that outer-scaled statistics of TBL are insensitive
to Reynolds number. We also note that the rest flow conditions are identical to the experiment,
such as the free-stream temperature, Mach number, thermal wall condition, and concave surface
curvature. To be specific, the upstream flow conditions are T∞ = 102 K and M∞ = 2.87. An
isothermal boundary is adopted here by setting the wall temperature as the nominal adiabatic
value Taw/T∞ = 1 + r(γ − 1)/2M2

∞, with the recovery factor being r = Pr1/3. A laminar solution
is prescribed as the inflow condition, and a tripping scheme [2] is exerted slightly downstream to
establish the turbulent state. A long distance is adopted here to allow for boundary layer transition
and post-transitional effect fading. One streamwise location in the fully turbulent regime (i.e., L1)
is taken as the reference incoming flow for the downstream concave surface, which is characterized
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FIG. 1. A sketch of the flow configuration. The bottom shows the velocity projection from the Cartesian
coordinates to the orthogonal coordinates.

by a turning angle of 8◦ and radius of 50δref (δref being reference boundary layer thickness). This
means that the supersonic turbulent boundary layer will experience the perturbation impulses of
Ip = 0.41 (from bulk compression) and Iθ = 0.14 (from streamline curvature) over a distance of
7δref , and develop into a nonequilibrium state during distortion. Downstream from the curved
region, the turbulent boundary layer starts relaxation on the following flat plate. Presently, it is
our main aim to investigate the distortion stage. The stage of relaxation, which requires rather long
distance to cover its full process, is left for future study (as discussed in Sec. III A). In the present
paper, analyses have been conducted by comparing three typical streamwise locations, i.e., the
reference location L1, midpoint L2, and end L3 of the concave surface. Accordingly, the statistics are
collected in the interested domain (with a height of 2δref ) encircled by the dotted line in the sketch,
which is devised carefully to guarantee sufficient mesh resolutions for the enclosed turbulence.
For meaningful representations of the flow physics, an orthogonal coordinate system originated at
the onset of the curvature is introduced here, in which s denotes the streamwise distance parallel
with the model surface and n refers to the distance normal to the wall. The orthogonal coordinates
facilitate the projection and decomposition of velocities over the curved surface, as adopted by
previous studies [7,17]. It is worth noting that the axis s roughly matches the local streamlines [as
shown in Fig. 3(a)] if neglecting the influence of flow tube compression, and the resulting velocity
fluctuations are endowed with a clear physical meaning, as will be discussed in Sec. III A.

A side view of the sample grid is depicted in Fig. 2. The computational domain is bounded by the
laminar inflow, isothermal wall boundary, and nonreflecting top and outflow boundaries. Periodicity
is prescribed in the spanwise direction. A testing simulation (case 1) was conducted in advance
for determining the computational domain, grid resolution, and distribution; the resulting statistics
turn out to be in good agreement with the well-accepted literature data (as discussed below), which
verifies the proper numerical setup. For improved resolution of the turbulent structures, a refined
mesh grid (case 2) is adopted for the present paper. Parameters of two cases are summarized in
Table I. The domain height is much larger than the boundary layer thickness; however, the grid
points in the wall-normal direction are clustered near the wall to fully resolve the turbulent flow,
with 120 points (for case 2) located within the interested domain. The domain width, set as 3δref ,
is wide enough to sufficiently accommodate the turbulence dynamics; this is posteriorly validated
by the decaying of spanwise two-point correlations at the tails (see Figs. 14 and 16). The concave
surface is followed by a short flat plate of 7δref . A fringe region with coarsened mesh resolutions
is moreover attached at the outflow boundary, for the purpose of further damping the possible
disturbance reflections towards the domain inside. Throughout the paper, u, v, and w denote the
velocity components in the x, y, and z directions in the Cartesian coordinates, and the superscript
“o” (e.g., uo) denotes the velocity projected onto the orthogonal coordinates. Following the standard

044602-4



DIRECT NUMERICAL SIMULATION OF A SUPERSONIC …

x/ ref

-40
-20

0
20

40
60

y/
re
f

0

10

20

30

40

z/
ref

2 4

X

Y

Z

periodic
fringe region

u

FIG. 2. A sample grid for the direct numerical simulation.

Reynolds decomposition ( f = f + f ′), the overbar or capitalized variable denotes the temporal
mean, and the prime symbol refers to the fluctuating component. The Favre decomposition is then
denoted as f = f̃ + f ′′, where f̃ = ρ f /ρ.

B. Assessment of the DNS data

Before the collection of statistics, a washout time of seven eddy turnovers (i.e., 7δref/uτ measured
at the reference location) was initially discarded from the simulation, which sufficiently allows
for the TBL to be arranged onto a statistically stationary state. Equally spaced time samples are
collected at the selected locations L1–L3 spanning a total time period of �Ts ≈ 15δref/uτ , which
is comparable to the well-accepted DNS (e.g., Ref. [38]). As an aside, we have confirmed that
this sampling period is long enough to guarantee that our results reported below are sufficiently
converged, although the details are omitted here. The datasets of simulation case 2 are assessed in
the following, and the testing case 1 is included for checking grid sensitivity.

For a visual impression, Fig. 3 depicts one snapshot in the (x, y) plane, with the fringe region
being omitted. As can be seen, transition commences shortly downstream from the tripping location
and the boundary layer quickly becomes turbulent with the striking appearance of large-scale bulges
in the outer region. The turbulent boundary layer develops naturally into high Reynolds number
under zero-pressure gradient (ZPG) until affected by the concave surface, over which the flow
deflects with the formation of an oblique shock far outside the boundary layer. It should be noted
that this flow configuration was deliberately devised by Jayaram et al. [17] to avoid the influence
of shock on the turbulent boundary layer. This point can be easily checked by examining the mean

TABLE I. Summary of parameters. Reθ shows the Reynolds numbers covered by the DNS. Lx , Ly, and Lz

are the box dimensions along three axes; Nx , Ny, and Nz are the grid sizes. The mesh resolutions (� values)
are only reported for the interested domain. The superscript + refers to quantity made nondimensional with
the friction velocity uτ = (τw/ρw )1/2 and viscous length scale δν = νw/uτ . The mesh spacing in wall-normal
direction is reported at the boundary layer edge (�y+

δ ), while the value at the wall (�y+
w) is kept no larger

than 1.

Case Reθ (Lx, Ly, Lz )/δref Nx, Ny, Nz �x+ �y+
δ �z+

1 550−3900 106 × 35 × 3 2700 × 100 × 256 8−13 18−25 4.5−6.5
2 550−3900 106 × 35 × 3 2900 × 140 × 320 6−10 10−15 3.5−5.5
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FIG. 3. A snapshot colored by temperature. Shock (thick white line) forms well above the boundary layer.
The turbulence gets organized after tripping (left arrow), and provides a region of equilibrium ZPG state
(of the streamwise length s0 ≈ 10δref ), where one station (right arrow) is adopted as the reference TBL for
the downstream concave region. Subfigures are the enlarged portion of the concave region (dashed box) and
show streamlines overlaid on total pressure contour p0/(ρ∞u2

∞) (a), mean pressure isolines p/p∞ overlaid on
temperature contour (b), and instantaneous numerical Schlieren |∇ρ|δ/ρ∞(c).

pressure property depicted in plot (b). One can notice that there is no intersection of mean pressure
isolines (within the enlarged scope), and thus the average flow is without the presence of shock
inside the boundary layer. By inspecting the numerical Schlieren in plot (c), we note that the shock
wave is as well absent in the instantaneous flow fields. Actually, the shock is formed well above the
boundary layer, roughly at a wall-normal height of 6δ. To put it briefly, the inviscid flow passing
right above the boundary layer experiences isentropic compression. As an aside, reflected by the
numerical Schlieren are the large-scale bulges residing in the outer boundary layer, the backs and
fronts of which are featured by large density gradients.

As mentioned previously, the numerical setup is devised with caution to produce an equilibrium
turbulent boundary layer upstream from the concave surface. One effective approach to quantify
the turbulent state developed from artificial techniques is by examining the skin friction coefficient
Cf = 2τ̄w/(ρ∞u2

∞), as commonly done in literature [38–40]. In detail, the onset of turbulence from
the artificial perturbations is marked by an overshoot of skin friction at the late stage of transition
[2], and a fully developed state is achieved when the post-transitional effect fades, with the skin
friction collapsed onto the equilibrium correlation. For assessment of the reference location L1, we
examine the skin friction coefficient according to the van Driest II theory [41,42] with the following
transformation:

Cf i = FcCf , Reθ i = μ∞/μwReθ (1)

where

Fc = Tw/T∞ − 1

arcsin2 α
, α = Tw/T∞ − 1√

Tw/T∞(Tw/T∞ − 1)
. (2)

It turns out that the reference TBL is characterized by a momentum Reynolds number Reθ i =
1280 (with Reθ = 2920) and skin friction Cf i = 4.09 × 10−3, which means the transformed
skin friction falls within 2% uncertainty with the incompressible empirical correlation Cf i =
0.024Re(−1/4)

θ i [43]. This discrepancy is actually negligible and lies within the 5% tolerance adopted
by Schlatter and Örlü [40] in assessing the published high-quality DNS datasets. Thus the present
simulation is reliable. It is also worth noting that a region of equilibrium ZPG TBL (of the distance
s0 ≈ 10δref ) is available upstream from the concave surface (see Fig. 3), where the transformed skin
friction remains within 2% uncertainty with the empirical correlation.
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FIG. 4. (a) The van Driest transformed velocity at the reference location with Reτ = 375. Symbols
denote DNS data by Pirozzoli and Bernardini [44] at Reτ = 250 (upside-down triangles) and Schlatter and
Örlü [40] at Reτ = 360 (triangles). Thin lines denote the linear and logarithmic regions by U +

VD = y+ and
U +

VD = 1/0.41 log(y+) + 5.2, respectively. (b) The mean defect velocity, compared with experimental data by
Bookey et al. [45] (left triangles) and Piponniau et al. [46] (squares). The inset compares the simulation case 2
(line) with case 1 (solid circles).

We continue to assess the velocity evolvement at the reference location. Since the turbulent
boundary layer possesses different speeds in convergence from transition to an equilibrium state
(the outer layer has relatively slower convergence than the inner layer [39]), the assessment is
here conducted separately regarding the inner and outer layers, as shown in Fig. 4. As an aside,
the bounds of two layers are adopted following Pope [47]. To check the inner-layer convergence,
Fig. 4(a) shows the streamwise mean velocity, by using van Driest transformation (dUVD =
(ρ̄/ρ̄w )1/2dU ). It can be seen that the van Driest transformed velocity follows the incompressible
law of the wall very well, consistent with the notion of weak compressibility hypothesis [5]. Note
that the logarithmic region is adopted here by a lower limit of y+ = 30 and an upper bound of
y/δ = 0.2. The log-law distribution is connected with the attached eddy hypothesis [48], and its
existence is universal in wall turbulence [49]. In the present paper, the log-law constants are found
to be von Kármán constant κ = 0.41 and C = 5.2. To examine the outer-layer convergence, Fig. 4(b)
depicts the mean defect velocity in outer units. The present result is in very good agreement with the
supersonic experiments in the defect layer. This means that the upstream and history effects within
the outer region are forgotten, and thus validates the present simulation. Furthermore, the inset of
plot (b) includes the velocity from testing case 1 (solid circles). The observation that two velocity
profiles collapse very well thus validates the adequacy of grid resolution of the present simulation
(case 2). Briefly, converged results, which are independent of mesh resolutions, are achieved.

To further assess the development of small-scale structures in the inner layer, Fig. 5(a) depicts
the root-mean-square (rms) vorticity fluctuations in wall units. The streamwise component shows
a local minimum and maximum at y+ = 4 and 17, respectively, which reflect the signature of
an average streamwise vortex located at y+ = 17 with a radius of r+ = 13, consistent with the
previous finding [50]. The vorticity fluctuations are closely related with the tilting and stretching
effects by near-wall streaks, and hence play a significant role in the self-sustaining process of
wall turbulence (see Refs. [51,52]). The present vorticity fluctuations exhibit excellent agreement
with the supersonic DNS [44], indicating the underlying structures are accurately reproduced. To
validate the flow convergence in the outer layer, Fig. 5(b) reports the distribution of streamwise
Reynolds stress in the outer coordinate, and Morkovin’s scaling [6] is employed for comparisons
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diamonds denote experiments by DeGraaff and Eaton [53]. Upside-down triangles denote the data by Pirozzoli
and Bernardini [44] at Reτ = 250 in both (a) and (b). The inset compares datasets case 2 (line) with case 1
(solid circles).

with literature data of different flow conditions. The agreement is excellent (in the outer layer) with
both the supersonic and incompressible data, meaning that the large-scale structures therein are of
a genuine equilibrium state. The inset also includes the results obtained from datasets case 1 (solid
circles). Very good collapse is observed across the whole layer, which verifies the present simulation
(case 2) is free from the influence of grid resolutions.

Overall, it can be said that a generic turbulent boundary layer, free from post-transitional effect,
is achieved upstream from the curved region, and thus allows for reliable quantification of the
turbulence distortion. In the data validation and following investigations, available incompressible
studies have been frequently cited to aid our analyses. This is because there exists a general
similarity between the canonical incompressible and compressible turbulence under the hypothesis
of weak compressibility [5,6], as validated by extensive endeavors (e.g., Refs. [1–4]). The good
agreement with well-accepted literature data confirms that our simulation is one DNS of high quality
and reliability.

III. RESULTS AND DISCUSSIONS

A. Basic statistics

The turbulent boundary layer would be severely distorted in the presence of a concave surface,
and its development behaves differently from the canonical counterpart. A basic picture of the
supersonic boundary layer response is given in this section. We investigate the distortion of the
mean turbulent boundary layer and try to understand the turbulence amplification.

1. Boundary layer thickness and wall pressure

The determination of boundary layer edge in this kind of distorted flow deserves detailed
discussions. According to the profound theory of boundary layer by Ludwig Prandtl, viscous effects
would be confined to a thin layer along the (nonslip) solid surface for wall-bounded flows of
(comparatively) high Reynolds numbers, and it is beyond this thin layer that the flow behaves like
it is inviscid (see Ref. [54]). Such a thin region occupies only a small portion of the total flow field,
but is responsible for significant momentum transfer or velocity gradient from the potential flow
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to the wall. The underlying scenario is one whereby the fluid flow variable (say the streamwise
velocity U) changes rapidly across the viscous region, and at the outer edge it achieves some
value (say Ue), which is dependent on the incoming free stream (say U∞) and the shape of the
wall surface. It then follows that the boundary layer thickness can be practically determined as the
position where the streamwise velocity reaches a certain percentage of the outer-edge value. For
instance, in canonical flows the percentage 99% (and hence δ99) is commonly adopted by the fluid
community. This determination, however, is hardly suitable for the distorted flow, such as the one
inspected here, because the inviscid supersonic flow is decelerated during the compression and the
outer-edge velocity cannot be easily or precisely measured beforehand.

Nevertheless, one should keep in mind that the total pressure exhibits rapid increases across
the viscous region [see Fig. 3(a)], and it theoretically remains unchanged in the upper inviscid
region during this isentropic compression. It follows that the total pressure can be adopted for
determining the boundary layer thickness (say δ). Herein we consider a normalized quantity (say
p∗

0), which is defined as the ratio of the difference between the total pressure and wall pressure with
respect to the free-stream value [18] or expressed as p∗

0 = (p0 − pw )/(p0,∞ − pw,∞). Normally,
one would expect this normalized quantity approaches the unit beyond the viscous flow region.
For plausible measurement of δ, imposing a threshold value (say thp0

) is probably inevitable.
Normally, a larger threshold value leads to a thicker measurement of the boundary layer. In
the present paper, we aim to make the resulting thickness δ the quantitative analogy or best
estimate of the traditional δ99, otherwise it will be hard to include the investigations of canonical
turbulence for meaningful comparisons. Specifically, we consider the upstream equilibrium ZPG
region available in our simulation (see Fig. 3), where the definitions of both δ99 and δ are applicable,
the thickness δ is calculated for different magnitude of thp0

ranging from 0 to 1, and we compute
the mean-square error (MSE) between the traditional δ99 and the resulting δ on this ZPG region,
i.e., MSE = ∫ 0

−1 (δ − δ99)2 d (s/s0) with the streamwise length being s0 ≈ 10δref . To obtain the
best estimate of δ99, the mean-square error should be minimized by the threshold value, that is
adopted for determining δ. Displayed in the inset of Fig. 6(a) is the mean-square error versus
different magnitude of thp0

. Indeed, a minimum appears at certain large magnitude. Accordingly,
the threshold value is found to be thp0

≈ 0.86. Meanwhile we note that this choice of threshold is
applicable to our present flow configuration, whereas for its extension to others caution should be
taken. This choice of threshold value, on the other hand, is indispensable for making δ collapse onto
δ99 on the upstream ZPG region, as illustrated in Fig. 6(a). Regarding the influence of the concave
surface, we find that the boundary layer is considerably thinned, and the wall-shear stress exhibits
notable increase (not shown here), consistent with previous studies.

From another angle, Prandtl’s concept of boundary layer underlines the absence of viscosity
effect or eddy viscosity in the flow region passing overhead, and it then follows that the edge
of the turbulent boundary layer can be defined as the height where the uppermost turbulent
motions can reach. Keeping this inspiration in mind, we determine the boundary layer thickness
by considering the intermittency function γ , which by definition renders the probability of turbulent
fluids protruding a certain wall-normal height. The implementation contains two steps.

The first step is to distinguish the turbulent fluids from the inviscid flow or, equivalently, to
identify the turbulent-nonturbulent interface (TNTI) [55] prevalent in the outer boundary layer.
Among the available detecting approaches for TNTI [56], we herein adopt the vorticity magnitude
criterion, i.e., |ω+| ≡ (ω+

i ω+
i )1/2, similar to other boundary layer studies [57,58]. The vorticity

criterion has a clear physical basis in that vorticity fluctuations can be produced by turbulent motions
but not inviscid mechanisms, and therefore the turbulent flow can be separated from the nonturbulent
region by a vorticity isosurface of low-magnitude value (i.e., the threshold thω). For determining the
threshold value, we consider the whole flow field and calculate the volume fraction of the fluids
the vorticity magnitude of which is greater than a particular value. As shown in Fig. 6(b), the
profile of volume fraction decreases with increasing |ω+|. Importantly, the volume fraction exhibits
a particular shape: it creates an inflection point at the intermediate value region where the decreasing
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FIG. 6. (a) Boundary layer thickness δ (black line) for the whole domain, compared with δ99 (circles)
for the upstream ZPG region. Red squares denote the thickness δγ measured from the γ profile by adopting
the threshold thγ = 0.01, and blue squares are wall-normal positions with γ = 0.3. The inset describes the
thresholding thp0

≈ 0.86 at the error minimum (marked by dashed lines). (b) Volume fraction of regions with
vorticity magnitude larger than |ω+|. (c) Measurement of thickness δγ . Upside-down triangles are data from
Borrell and Jiménez [60], and diamonds are from Chauhan et al. [61]. (d) A snapshot illustrating the boundary
layer thicknesses.

rate slows down (sketched by a slope). In practice, any value around the inflection point can be
taken as the threshold for TNTI detection [59]. Meanwhile it is worthwhile noting that three profiles
collapse very well around the inflection point, suggesting that a uniform threshold can be adopted
throughout the concave surface. As a consequence, the threshold is determined as thω = 0.01 for the
whole flow. The proper TNTI detection allows a binary representation of the flow field. The regions
with |ω+| > thω are considered as turbulent and assigned a value of 1, and the rest are assigned
a value of zero. The ensemble average of the binary representation directly gives the profile of
intermittency function, as shown in the top plot of Fig. 6(c). The present intermittency function
falls in very good agreement with the incompressibility data [60], meaning that the intermittency
characteristics of two flow regimes remain similar, consistent with Morkovin’s hypothesis [5]. As
a side note, a large portion of turbulent fluids exceeds the commonly used δ99 or equivalently the
present δ.

The second step measures the boundary layer thickness from the intermittency function, based
on the idea of boundary layer edge constraining turbulent motions. For a meaningful measurement,
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empirical prediction (diamonds) for the canonical turbulence.

we adopt a low-magnitude threshold (say thγ ) for the intermittency function, and the threshold
value is determined by reference to available investigation [61]. To be more specific, the resulting
boundary layer thickness (denoted by δγ for convenience) is equal to the intercept of the γ profile
with the threshold value (i.e., thγ = 0.01 in the present analysis) on the wall-normal axis n. The
bottom plot of Fig. 6(c) utilizes δγ as the outer unit and compares the resulting γ profile with
previous investigation [61], where the boundary layer thickness is determined by thresholding the
probability distribution of TNTI.

Relying on this two-step procedure, the resulting boundary layer thickness is shown in Fig. 6(a)
by red squares. We note that the thickness δγ follows the same trend with the thickness δ and is
roughly 30% larger throughout the concave region. This means that two sets of thicknesses are
physically consistent since they are simply connected by a fixed proportional factor. Furthermore,
investigations have been conducted to figure out the connections between the intermittency and
the thickness δ determined previously. We find that the wall-normal position with γ = 0.3 (blue
squares) coincides very well with the boundary layer thickness δ. This demonstrates that the total
pressure criterion leads to a uniform definition of boundary layer thickness, in the sense that the
thickness δ possesses the uniform level of intermittency throughout the concave surface. As an
aside, there exist other alternatives for defining the boundary layer thickness, such as the approach
of utilizing the pseudovelocity (calculated through the integral of vorticity) [62]. Figure 6(d) shows
two sets of boundary layer thicknesses in one snapshot, where the detected TNTI is overlaid on
the contour of instantaneous temperature. This visualization conveys that the turbulent motions
frequently protrude beyond the thickness δ but are well bounded by thickness δγ . We also note
that the boundary layer thickness δ can work as a reasonable analogy of δ99 and is adopted in the
following analysis to ease comparisons with other studies.

A useful quantity in characterizing the development of turbulent boundary layer is the friction
Reynolds number Reτ , which, defined as the ratio of boundary layer thickness δ to viscous
lengthscale δν (i.e., Reτ = δ/δν), manifests the scale separation across the whole layer. Figure 7(a)
shows Reτ versus wall-parallel distance. The observation is that the scale separation between the
inner and outer layers is enlarged throughout the concave surface, as evidenced by the rapid increase
in Reτ compared with the canonical counterpart. This additionally implies that viscous lengthscale
decreases more severely than boundary layer thickness during the flow distortion.

The wall pressure can be conveniently used to exhibit the flow response. Figure 7(b) depicts
the mean pressure and rms values versus the wall-parallel distance. As expected, the mean wall
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velocities.

pressure is invariable on the upstream flat plate, it exhibits a rapid increase upon the concave
wall, and it approaches the isentropic prediction downstream through a gradual variation. Good
agreement is found with the experiment [17], being another validation. In addition, the inviscid
flow is characterized by a decrease in Mach number from 2.87 to 2.50, a rise of density by a factor
of 1.5, and a decrease in velocity by a factor of 0.95. The rms level p′

rms is compared with the
predicted value utilizing the empirical correlation [63], which is established for the canonical flows
and expressed as

p′2
rms/τ

2
w = 2.27 log Reτ − 7.36. (3)

The agreement is very good on the upstream ZPG region. Notably, the p′
rms level exhibits

considerable increment upon the concave surface, indicating that the pressure-carrying eddies
passing overhead are energized. Downstream from the curved region, the p′

rms level drops towards
the unperturbed level, demonstrating the boundary layer enters the stage of relaxation. Nevertheless,
we note that the downstream flat plate (roughly 7δref long) is insufficient to cover the full relaxation
stage, and the related issues are left for further studies.

2. Velocity statistics and turbulence amplification

The streamwise mean velocity is first investigated for insights into the flow distortion. For
meaningful comparisons, the velocity is projected onto the wall-normal coordinate n, and van Driest
transformation is implemented to scale out the weak compressibility. Figure 8(a) highlights that the
mean velocity well maintains the linear distribution in the viscous sublayer but deviates from the
universal logarithmic distribution in the log region, with the appearance of a dip. This observation
is consistent with the previous finding [17]. The formation of a dip is explained as that the turbulent
lengthscales in this perturbed turbulence grow faster than in the unperturbed case [8], and this
explanation is further aided by the present structural analysis shown in Sec. III B. Figure 8(b) depicts
the mean defect velocities. It is noted that the velocity-defect law is violated in this distorted case,
with the appearance of larger velocity deficit in the outer layer.

For an overall view of the turbulence evolution, Fig. 9 illustrates the absolute levels of streamwise
turbulent intensity at various longitudinal stations, in company with the (high-Reynolds-number)
experiment [17]. We note that these comparisons are meaningful since outer scales are employed
for normalization, assuming that outer-scaled statistics are insensitive to Reynolds number (in
the outer boundary layer). This assumption can be understood through a dimensional analysis of
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outer-layer statistics, and has been moreover examined by us through compilations of literature
DNS datasets (e.g., Ref. [40]). Normally, one would expect this assumption to be more applicable
for high Reynolds numbers wherein sufficient scale separation is present. As can be seen in Fig. 9,
our DNS generally agrees with the experiment, and this agreement is fairly good in the outer region
of TBL. By careful inspections, we note that discrepancies appear approaching the wall, but they
are already emerged from the upstream ZPG TBL, where our data collapse excellently with one
comparable DNS of ZPG TBL [63]. Basically, this implies that the existing discrepancies can be
(partly) attributed to the disparity in Reynolds number: the outer-layer statistics of our simulation
suffer certain low-Reynolds-number effect. Another important finding is that the inspected turbulent
intensity exhibits considerable increase throughout the concave surface, which points towards the
phenomenon of turbulence amplification.

The scaling of Reynolds stresses is examined at the streamwise locations L1–L3, as shown in
Figs. 10(a) and 10(b). The Reynolds stresses mathematically correspond to the mean products
of velocity fluctuations derived from Reynolds-stress transport equations, and they are herein
computed in the Cartesian coordinates. As can be seen in Fig. 10(a), the profiles for the streamwise
turbulent stress are different in shape, and the outer scaling does not succeed in collapsing them
(nor does the inner scaling). Notably, considerable increase is observed for the streamwise turbulent
stress throughout the concave surface, even though the weak compressibility (i.e., mean density
variations) has been compensated here. This observation conveys that the turbulent motions are
highly energized throughout the concave surface. The evolution of Reynolds shear stress is included
in Fig. 10(b), where a pronounced increase is indeed observed in the outer layer. We should note
that the reduction and even negative value observed for shear stress (−R+

12 < 0 near the wall) are
not contradictions to the turbulence amplification. Rather, those are caused by the mathematical
contaminations between longitudinal and wall-normal velocities in Cartesian coordinates, since the
influence of flow turning is not offset therein, as explained in the following.

For insights into the stress-bearing eddies, we conduct the quadrant analysis [64], which exploits
the joint probability density function of velocity fluctuations in the u − v plane, as sketched
in Fig. 10(c). We also note that the orthogonal coordinates are considered for investigating the
character of stress-bearing eddies, because in that way the artifacts induced by flow turning can be
eliminated. From a mathematical standpoint, quadrant analysis conveys that the velocity fluctuations
in wall turbulence have a dominant distribution in the second quadrant (ejection event) and fourth
quadrant (sweep event), which produce positive contribution to the total mean product, namely, the
shear stress. Particularly, the quadrant analysis has a close connection with the physical model of
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τ . (c) Quadrant analysis and hairpin
paradigm. (d) Probability of ejections and sweeps. (e) Structure parameter. In (d) and (e), colored circles
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results in Cartesian coordinates. (f) The distributions of turbulence production P∗ (top) and its premultiplied
counterpart n+P∗ (bottom) in the local inner coordinate for three streamwise locations L1–L3. The asterisk
means normalization by reference wall units to exhibit absolute level. The shaded area denotes the outer-layer
contribution.
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the hairpin [65] in the sense of accounting for shear stress production. The ejections and sweeps can
be regarded as the outward and inward inrush flows caused by the hairpin vortex, and the creation
of shear stress corresponds to the net transport of axial momentum in the transverse direction (i.e.,
the direction normal to the mean streamline). With this aspect, we note that the coordinate s roughly
matches the mean streamlines [see Fig. 3(a)], and thus the influence of flow turning can be offset
when investigating the velocity fluctuations in the orthogonal coordinates system.

Figure 10(d) shows the probability of ejection and sweep events (colored symbols) for the
selected locations L1–L3. Results obtained in the Cartesian coordinates system (colored lines) are
still included for comparisons. It is surprising to find that the occurrences of ejections and sweeps
are (essentially) unaffected by the concave surface, demonstrating that the stress-bearing eddies have
not changed in character. This implies that the amplification of Reynolds stresses can be attributed
to the alteration of the hairpin vortex in number or strength. This opinion agrees with the conjecture
by Bradshaw [66] that the large scales can be considered as universal in shape, changing only
by velocity and lengthscale factors. As an aside, the velocity fluctuations obtained in Cartesian
coordinates (colored lines) lose the dominant distributions in second and fourth quadrants near the
wall, which explains the appearance of negative shear stress therein. Illustrated in Fig. 10(e) is the
structure parameter a1 = −u′v′/u′

iu
′
i. Indeed, the structure parameter displays rather less variation

than the Reynolds stresses themselves, which also supports the perspective of stress-bearing eddies
being unchanged, at least for the concave surface specified here. This finding would be valuable
for modeling turbulence dynamics since it conveys that the coherent motions remain unchanged in
organizing the distributions of Reynolds stresses even in the distorted case.

So far, the mechanism of turbulence amplification remains less clear, and insights are herein
gained by inspecting the production term of turbulent kinetic energy, which is expressed as
P = −ρu′′

i u′′
j ∂ ũi/∂x j . To figure out the amplification, we illustrate the turbulence production by

its absolute level and adopt the reference wall units for its normalization. The top plot of Fig. 10(f)
depicts the production term in its local inner coordinate (n+) for three streamwise locations L1–L3.
It is highlighted that turbulence production locally attains the highest level in the near-wall region,
and this peak is well situated within the thin buffer layer (roughly at n+ ≈ 12), even under flow
distortion. This semilogarithmic plotting, as frequently adopted in literature, however, provides
few visual impressions regarding the local contribution (i.e., the product Pdn+) of turbulence
production at a particular wall-normal position. For a graphical representation of the relatively local
importance, premultiplied plotting is herein employed, as shown at the bottom of Fig. 10(f). To
be more specific, equal area under each curve profile indicates equal integral contribution to the
total turbulence production. This point is clear considering the mathematical equivalence between
Pdn+ and n+Pd (logn+). As can be seen, the most difference between two plots lies in the outer
layer: the premultiplied plotting unveils the increasingly pronounced contribution of the outer layer
(shaded region), which is otherwise masked by the original plotting. For a quantitative assessment
of outer-layer importance, we calculate the proportion of the shaded area to the total area under each
curve profile. Again, the bounds of the outer layer are adopted following Pope [47]. This proportion
turns out to be 37, 53, and 67% for streamwise locations L1–L3, respectively. It is to be expected
that for a low-Reynolds-number ZPG turbulent boundary layer (i.e., at the reference location) the
turbulence production is dominated by the near-wall region. This situation, however, has changed in
the distorted case. Our analysis convincingly demonstrates that throughout the concave surface the
outer layer holds an increasingly important role in turbulence production and can even override the
near-wall region to become the dominant contributor.

For a global picture of the turbulence amplification, Fig. 11(a) illustrates the turbulent kinetic
energy (i.e., k = 1/2ũ′′

i u′′
i ) throughout the entire concave surface, normalized by local wall units. It

is highlighted that the turbulent boundary layer is continuously energized as passing the concave
surface, and this trend is eye-catching in the outer layer. This makes sense because the destabilizing
effect of the concave surface accumulates and larger perturbation leads to larger turbulence
amplification. To understand the response process, we calculate the amplification ratio of turbulent
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FIG. 11. (a) Contour of turbulent kinetic energy k normalized by local wall units throughout the entire
concave surface. (b) Contour of amplification ratio k/kref . Contour lines (solid black) are shown at levels of
1.2, 1.5, and 1.8. White lines enclose the minor regions with k/kref < 1. In (a) and (b), the dashed line marks
the lower bound of the outer layer.

kinetic energy for each wall-normal position in the local outer coordinate n/δ, and Fig. 11(b)
shows the contour of k/kref as the function of wall-parallel distance and wall-normal height. Two
observations can be made. First, the outer layer (bounded by the dashed line) experiences larger
amplification than the near-wall region. This finding is in line with the above notion that the
turbulence production is more pronounced in the outer layer. Second, the amplification ratio is
not uniform across the wall-normal direction, and the amplification process is initiated by a peak
value close to the wall, the wall-normal position of which departs outwards as the flow passes
downstream (sketched by arrow). This observation supports the scenario whereby the response of
the boundary layer propagates outwards from the wall. Furthermore, this process can be traced to
the same mechanism found in wall-bounded turbulence that the outer layer is relatively slow in
fading the upstream or history effects [39].

Until now, it is still unclear what kind of turbulent structures is responsible for the observed
turbulence amplification. We herein investigate the premultiplied spanwise spectra of streamwise
velocity fluctuations, with the aim of figuring out energy distributions versus different wavelengths.
We take the reference TBL as an example for basic descriptions [see Fig. 12(a)]. As can be seen,
an energy peak appears in the thin buffer layer and is characterized by a spanwise wavelength of
λ+

z ≈ 100. This dominant peak, commonly denoted as the “inner site,” corresponds to the energetic
signature of elongated low- and high-speed streaks [67]. It is worthwhile noting that recent studies
towards high Reynolds numbers unveil another energy peak residing in the log region (i.e., the “outer
site”), which represents the very long meandering features of low-momentum fluids flanked by high-
momentum regions [28]. However, the outer site is not present here due to the current low Reynolds
number. By examining Figs. 12(b) and 12(c), two observations can be made regarding the influence
of the concave surface. First, the large-scale structures are energized in the outer layer, and even lead
to a new energetic peak situated in the lower wake region (n/δ ≈ 0.4), which coincide with the wall-
normal position of peak turbulence amplification. This suggests close connections between outer-
layer large-scale structures and turbulence amplification. Second, the near-wall region, although
still dominated by near-wall streaks, exhibits convincing evidence of large-scale energy overlaid by
outer-layer structures. This observation points to enhanced interactions between the inner and outer
layers, as will be elaborated in Sec. III C.
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B. Flow organization

Keeping in mind the close relationship between statistics and structures, we herein investigate
the responses of typical organized motions populating the turbulent boundary layer. Specifically,
the streaky motions residing in the buffer and log layer are studied in the wall-parallel planes,
which correspond to the wall-normal positions of n+ = 12 and n/δ = 0.15, respectively. This
analysis combines spanwise two-point correlation with instantaneous visualizations to figure out
the structural modification.

1. Near-wall streaks

The fluctuations of streamwise velocity (shown in Fig. 13) highlight the typical alternating
streaky pattern in the near-wall region, with the low- and high-speed streaks rendered by dark and
white speckles, respectively. These streaks, along with the accompanying quasistreamwise vortices,
constitute the well-known near-wall cycle [25], which is responsible for turbulence sustaining. We
note that the dynamics of near-wall streaks remain essentially unchanged throughout the concave
surface: they meander significantly in the spanwise direction and branch in some instances when
advected downstream. By careful inspections, we notice that near-wall streaks become progressively
smaller in terms of their physical dimensions, and meanwhile there appears striking emergence
of large-scale organization, which is comparable to the dimension of boundary layer thickness.
These opposite trends in physical dimensions visually support the enlargement of scale separation
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FIG. 13. Instantaneous fluctuations for streamwise velocity (top) and temperature (bottom) in a wall-
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0.2, from dark to light shades.

throughout the concave surface. It is worth noting that the large-scale patterns, being present in
the buffer layer, exhibit remarkable similarity with the log-region events (see Fig. 15). This means
that they are actually the footprint of outer-layer motions passing overhead, consistent with the
large-scale energy superimposition in energy spectra. Importantly, we observe that over the concave
surface the near-wall streaks tend to be clustered as packages, and groups of streaks can be found
residing within the positive or negative large-scale footprint. This visual impression points to the
strengthening of inner-outer interactions, and will be quantitatively assessed in Sec. III C. An
examination of the temperature field shows the similar streaky patterns but with the fluctuations
(roughly) oppositely signed against the streaky patterns of u, providing a picture whereby outward
ejections transport the low-speed and high-temperature fluids towards the upper layers.

For statistical evidences, two-point correlations of streamwise velocity fluctuations are used
to characterize the spanwise dimension of turbulent structures, as shown in Fig. 14(a). The
correlation function exhibits the typical positive-negative pattern, which reflects the alternating
distribution of low- and high-speed streaks. Taking the reference TBL for basic descriptions, the
correlation drops rapidly from the unit, and it attains the (first) minimum at a spanwise separation
of 2�z+ ≈ 100, which corresponds to the average spacing of adjacent streaks. Regarding the
influence of the concave surface, we observe that the first minimum moves to higher values
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FIG. 14. (a) Spanwise two-point correlations of streamwise velocity fluctuations for streamwise locations
L1–L3. (b) Distributions of characteristic lengthscales in the local inner coordinate, the measurement of which
is sketched in the inset of (a). The Mach number effect covers the variations from the incompressible flow
regime (square) [50] to a very high compressible regime (diamond) [4] at M∞ = 20.
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FIG. 15. Same as in Fig. 13 but extracted at wall-normal position n/δ = 0.15.

(it even disappears), and a second flat minimum appears at larger spanwise separations. This
demonstrates that there exists a wider modulation onto the small-scale streaky structures, in line
with the visualizations. Another observation is that the crest portion of the correlation function (i.e.,
at small �z+) is widened, indicating that the widths or characteristic lengthscales of individual
streaks have increased throughout the concave surface. For quantitative assessment, we determine
the characteristic lengthscales following Hutchins et al. [68]. To be specific, at each wall-normal
position we calculate the intercept of Ruu with a nominal threshold (i.e., thR = 0.05) on the positive
axis, and the characteristic lengthscales of near-wall streaks are given by double the intercept, as
sketched in the inset. Displayed in Fig. 14(b) is the resulting characteristic lengthscale, as the
function of the wall-normal position in the inner coordinate. With little doubt, it can be said the
characteristic lengthscales of turbulent structures have generally increased throughout the concave
surface, suggesting the violation of the scaling for the near-wall region under turbulence distortion.
Particularly, the characteristic lengthscales rise along with the wall-normal position, and this rising
trend becomes more severe on the concave region than the unperturbed region, consistent with the
previous notion [8].

We note that a convergence study has indeed been conducted regarding the correlation analyses
(not detailed here), and it turns out that the reported data are sufficiently converged (although
the correlations are not extremely smooth), which guarantees our conclusions are drawn with
sufficient credibility. This convergence is probably to be expected because our sampling time period
(�Ts ≈ 15δref/uτ ), comparable to the well-accepted DNS (e.g., Ref. [38]), is long enough to make
the correlations converged. For instance, the convergence of the characteristic lengthscales shown
in Fig. 14(b) has been examined by considering another compilation, which covers a sampling
time period of �Ts/2, and it turns out that the maximum MSE between the two compilations is
MSE/l2

R(0) ≈ 3 × 10−3, meaning that the existing numerical uncertainty is far from severe enough
to contaminate the physics. One might still be curious whether this change in lengthscale growth
[shown in Fig. 14(b)] is the byproduct of Mach number variations during the inviscid turning (the
present Mach number decreases from 2.87 to 2.50). However, it turns out to be not the case. We have
included available literature data (symbols) covering from M∞ = 0 to 20, and the Mach number
effect is actually outside the modifications incurred by the concave surface.

2. Superstructures

An overview of the log-region structures is illustrated in Fig. 15 by fluctuations of streamwise
velocity and temperature. In this plot, very long meandering regions of alternating negative and
positive u fluctuations are clearly visible, which are termed superstructures in boundary layers
[28]. This set of motions, maintaining a streamwise dimension of exceeding 6δ, is the outer-scaled
dominant structures in the log region, in contrast to the large-scale motions (LSMs), which
are characterized by the streamwise coherence of 2 − 3δ [69]. It is also worth mentioning that
superstructures are confined to the logarithmic region of boundary layers, contrasting with the far
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FIG. 16. (a) Spanwise two-point correlations of u fluctuations at n/δ = 0.15. Diamonds denote incom-
pressible data [28] at Reτ = 1120. (b) The characteristic spanwise lengthscales for log and lower-wake regions.
The vertical dashed line marks the upper bound of the log region. Circles are data by Hutchins et al. [68].

extent of very large-scale motions in internal flows [27], and confusion should not be made between
these two motions considering the structural differences [70]. From a three-dimensional view,
the superstructures are forward-leaning with a mean inclination angle of 14◦ [71], accompanied
by a pair of counter-rotating roll modes [30]. Particularly, they bring about complex inner-outer
interactions by imposing a footprint onto the near-wall region. From the visualization, we note
that these δ-scaled superstructures are modified by the concave surface: their streamwise and
spanwise dimensions have increased. An examination of the temperature field demonstrates that
the anticorrelation between streamwise velocity and temperature fluctuations is well maintained at
this height.

Figure 16(a) illustrates the spanwise two-point correlations. Again, the incompressible (ZPG)
data are included for comparison. We observe that the correlation function of the reference TBL
agrees well with the experiment, consistent with the notions that compressibility remains weak
at moderate Mach number [44] and superstructures are outer-scaled (i.e., insensitive to Reynolds
numbers) [28]. Notably, a continuous increasing trend is observed for the spanwise length of
superstructures, as evidenced by the widening of correlation functions throughout the concave
surface. For an overall impression, Fig. 16(b) displays the characteristic lengthscales as determined
previously but in local outer coordinates. As expected, considerable increases are observed for
the characteristic lengthscales of log-region superstructures as well as for outer-layer LSMs. This
observation demonstrates that the scaling of outer-layer turbulent structures (well established in
canonical wall turbulence) is violated in the distorted case.

C. Turbulence modulation

The near-wall region, which had been believed to follow a purely viscous scaling in canonical
turbulence, is by recent studies revealed to experience intense inner-outer interactions, since
they live underneath the environment of large-scale energies from the outer layer. The modern
perspective points out that these interactions comprise not only a purely linear superimposition
of energy but also a subtle nonlinear effect termed amplitude modulation [29,72]. The linear
superimposition is visible from the energy spectra, as shown in Sec. III A, while the nonlinear
interaction is addressed in this section.

The amplitude modulation (AM) phenomenon was lately investigated by Hutchins and Marusic
[73], where they found a high-degree coupling between the high- and low-pass-filtered components
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FIG. 17. Two-point AM covariance maps for the streamwise velocity component, with (a)–(c) correspond-
ing to the streamwise locations L1–L3, respectively. White lines mark the boundary layer thickness δ, and black
contour line marks a value of zero. Crosses mark the location (0.15Reτ , 7).

of near-wall fluctuations. A mathematical diagnostic tool was further developed by Mathis et al.
[29] to quantify this relationship, which relies on a decoupling procedure by means of Hilbert
transformation. Specifically, a spectral filter is first used to split the streamwise velocity fluctuations,
of which the large-scale component (i.e., u′

L) acts as the modulating signal and the small-scale
component (i.e., u′

S) is processed with the aid of Hilbert transformation to obtain the filtered
envelope (i.e., u′

EL), and then a meaningful correlation coefficient RAM
u (for u velocity) can be defined

by correlating the large-scale fluctuations u′
L with the large-scale envelope u′

EL with the expression

RAM
u = u′

Lu′
EL√

u′2
L

√
u′2

EL

. (4)

This AM coefficient, at its very beginning, was proposed by Mathis et al. [29] to quantify the
effect of amplitude modulation at two specific wall-normal points, which are separately located in
the near-wall and log regions; nevertheless, it is argued that the implementation conducted at the
same single point serves as a reasonable surrogate so that an overall view of AM effect can be
provided across the whole layer. The latter attitude, however, had been critiqued by Schlatter and
Örlü [74], who have mainly uncovered the close dependence of modulation coefficient on the data’s
skewness in mathematics. This difficulty was later on reconciled by Mathis et al. [75], who had
shown that the modulation effect is actually embodied by one component of the skewness factor after
scale decomposition and thus the mathematical dependence does not exclude physical meanings.
These debates had pushed the AM coefficient towards a genuine two-point AM analysis. Bernardini
and Pirozzoli [76] proposed a refined measure by traversing all the wall-normal positions, and
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FIG. 18. Same as in Fig. 17, but with AM covariance for v velocity and crosses marking the location
(0.15Reτ , 12).

utilized the AM covariance CAM
u (y1, y2) = u′+

L (y1)u′+
EL(y2) (for u velocity) to quantify the absolute

modulation effect of large structures located at wall-normal position y1 on small structures at y2. The
AM covariance provides a genuine representation of the top-down interaction, and is here adopted
for the following analysis.

The AM covariance maps computed through a probe pair (i.e., wall-normal positions n1 and n2)
are reported in Figs. 17–19 for the streamwise, wall-normal, and spanwise velocities, respectively.
As a side note, no shifting in the streamwise direction has been made for the probe pair, since no
quantitative difference can be caused by the inclination of coherent structures [76], and the extension
of AM covariance to the transverse velocity components is simply by replacing the filtered envelope
u′+

EL with the transverse counterparts. Following Bernardini and Pirozzoli [76], we have utilized
a spectral filter (with the cutoff wavelength being λz= 0.5δ, as sketched in Fig. 12) to split the
velocities into large and small components in the spanwise direction. In addition, the Cartesian
velocities are projected onto the orthogonal coordinates in order to avoid possible contamination
between u and v velocity components, and the superscript “o” has been omitted in the following just
for convenience.

We start our discussions with respect to u velocity, as depicted in Fig. 17. All the covariance
maps show the typical two-peak pattern: a diagonal and off-diagonal peak. The former is mainly
due to the high fluctuation intensity of u′

s near the wall, while the latter is linked with the genuine
influence of the top-down nonlinear interaction. It is to be expected that positive values are observed
in the near-wall region, providing a scenario in which the small-scale energy is enhanced by
positive large-scale signals and depressed by the negative ones. In other words, the amplitude
modulation is quantified by how much the positive large-scale events from the log layer override
the negative ones in creating small-scale energy in the near-wall region. We also note that although
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FIG. 19. Same as in Fig. 17, but with AM covariance for w velocity and crosses marking (0.15Reτ , 6).

the covariance map is roughly symmetric with respect to the diagonal line at the reference location
L1 the contour is intensely distorted under the influence of the concave surface, forming a strongly
amplified off-diagonal peak. By closer inspection, we find that the off-diagonal peak roughly occurs
at the positions n+

1 = 0.15Reτ and n+
2 = 7 for all streamwise locations. This demonstrates that

the amplitude modulation invariantly takes place between the log-region superstructures and the
near-wall streaks over the concave surface, despite the energetic presence of LSMs in the lower wake
region (see Fig. 12). Importantly, we find an increasing trend for the off-diagonal peak throughout
the concave surface, which indicates enhancement to the inner-outer interactions, consistent with
the flow visualizations. Regarding the AM covariance for transverse velocities shown in Figs. 18
and 19, we find that all the covariance maps exhibit similarities to the streamwise counterpart: they
display the two-peak pattern with the modulating and modulated signal situated in the log region
and buffer layer, respectively, and the concave surface highly increases the off-diagonal peak value,
manifesting enhanced top-down modulation effect.

An overall picture provided by the phenomenon of amplitude modulation is one in which the
near-wall energy is intensified under the high-speed large-scale events, due to the creation of a high
local velocity gradient, and the opposite is true for the low-speed events [73]. To put it another way,
the large-scale signature can penetrate onto the wall and produces local variations of wall-shear
stress, which in turn serves as the input of small-scale energy in the near-wall region. It is currently
known that the amplitude modulation holds a Reynolds number dependence [76]. In this sense, one
could think of intense inner-outer interactions when scale separation is guaranteed by a sufficiently
high Reynolds number. Keeping this in mind, it would be intriguing to figure out whether the present
enhancement of modulation effect is merely a consequence of Reynolds number increasing during
the flow distortion [see Fig. 7(a)] or due to the direct influence of the concave surface. In other
words, the gain from Reynolds number effect should be separated for understanding the genuine
contribution from the concave surface.
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FIG. 20. Distributions of the off-diagonal peak in AM covariance for u (circles), v (triangles), and w

(upside-down triangles) velocities. Squares denote DNS data for u [76], the fitted correlation of which, i.e.,
0.17 log(Reτ ) − 0.93, is shown by the dashed line.

We report the off-diagonal peak values as a function of Reτ in Fig. 20 for three velocities, along
with the DNS data from the canonical case [76]. We start our discussions regarding the streamwise
component. Very good agreement is first observed for the reference TBL with the empirical correla-
tion (denoted by dashed line), which confirms the reliable implementation of the AM quantification
procedure. Note that there is a generally logarithmic growth for the modulation effect versus friction
Reynolds numbers [76]. Two observations can be made regarding the influences of the concave
surface. First, we note that the AM strength conforms to the Reynolds-number-dependent trend very
well up to the midpoint of the curved region, for the flow configuration specified here. This means
that during the early stage of flow response the enhancement in modulation effect can be accounted
for by the increase in friction Reynolds number. It is in this sense that the influence of the concave
surface appears in an indirect manner. Second, a high magnitude well above the empirical prediction
is observed at the end of the concave surface. This additional increment cannot be explained by
the data scatter, and should be attributed to the genuine influence of the concave surface. This
makes sense because the interacting components of the modulation process, i.e., the superstructures
and near-wall streaks, are intensely modified by the concave surface, as evidenced by the growth
in energy and characteristic lengthscales. As a consequence, the intensified superstructures create
stronger footprints on the inner layer, and cluster more near-wall streaks together to form larger
packets. Similar increasing trends are observed for the transverse velocities, although with different
magnitudes. In addition, the AM effect magnitude for the wall-normal velocity is noticeably lower
than the others, which is likely due to the blocking effect of the impermeable wall condition.

IV. CONCLUDING REMARKS

We have used DNS to study the flow physics of a supersonic turbulent boundary layer (M∞ =
2.87) in response to a short region of the concave surface. The inspected boundary layer stands
for a class of curvature-driven engineering flows, which are collectively influenced by the effects
of concave streamline curvature, bulk compression, and adverse pressure gradients (their separate
contributions are left for future study).

Overall, the turbulent boundary layer is severely distorted. Two consistent approaches are first
employed to reasonably define the boundary layer thickness: one relies on total pressure, and the
other exploits the intermittency function. It is confirmed that the concave surface generally leads to
boundary layer thinning and wall-shear stress increasing, as the reflection of rapid rises in density.
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As revealed by wall pressure, the turbulence is continuously amplified throughout the concave
surface, and then starts relaxation on the following flat plate. The present paper focuses on the
former stage of turbulence amplification.

Investigations of velocity statistics reveal that the scaling well established in canonical wall
turbulence is generally violated in this distorted case. The mean streamwise velocity features a
dip below the logarithmic distribution, and exhibits a larger velocity deficit in the wake region. The
Reynolds stresses exhibit considerable increase across the boundary layer, which points towards the
phenomenon of turbulence amplification. By examining quadrant events and structure parameter,
we find that the stress-bearing eddies have not changed in character, suggesting their changes
in number or strength finally lead to the increase in Reynolds stresses. The source of turbulence
amplification is understood by investigating the production of turbulent kinetic energy. We reveal
that an increasingly large proportion of turbulence production is contributed by the outer boundary
layer, which on its largest level could account for twice as much as the near-wall counterpart (for
the present configuration). We further reveal that the striking amplification of outer-layer turbulence
is linked with the energization of large-scale motions therein, as evidenced by the energy spectra.

Structural analysis reveals that the organized coherent motions, which are well scaled in
canonical wall turbulence, are modified by the concave surface, and they exhibit a general
increasing trend in terms of characteristic lengthscales. Notably, we observe that the log-region
superstructures overlay stronger footprints on the near-wall streaks, suggesting enhanced inner-outer
interactions. More insights are gained by assessing the nonlinear component of the interactions
using a mathematical tool. It is confirmed that the amplitude modulation is still dominated by
log-region superstructures, despite the energization of large-scale motions in the lower-wake region.
Importantly, we find the concave surface causes considerable enhancement to the turbulence
modulation. The present paper collectively points towards the perspective that the concave surface
endows the outer-scaled motions with a more prominent role in the turbulence dynamics, which
may have implications for flow control strategies (e.g., drag reduction) targeting the large-scale
structures.
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