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When a stable stratification between two miscible fluids is excited by a vertical and
periodic forcing, a turbulent mixing zone can develop, triggered by the Faraday instability.
The mixing zone grows and saturates to a recently predicted final value Lsat [Gréa and Ebo
Adou, J. Fluid Mech. 837, 293 (2018)] when resonance conditions are no longer fulfilled.
Notably, it is expected from the Mathieu stability diagram that the instability may evolve
from a harmonic to a subharmonic regime for particular initial conditions. This transition
is evidenced here in the full inhomogeneous system using direct numerical simulations
with 10243 points: the analysis of one-point statistics and spectra reveals that turbulence
is greatly enhanced after the transition, while the global anisotropy of both the velocity
and concentration fields is significantly reduced. Furthermore, using the concept of sorted
density field, we compute the background potential energy eb

p of the flow, which increases
only after the transition as a signature of irreversible mixing. While the gain in eb

p strongly
depends on the control parameters of the instability, the cumulative mixing efficiency is
more robust. At saturation of the instability, available potential energy is partially released
in the flow as background potential energy. Finally, it is shown numerically that for fixed
parameters, a multiple-frequency forcing can modify the duration of the harmonic regime
without significantly altering the asymptotic state.
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I. INTRODUCTION

When a two-layer system of immiscible fluids is vertically excited by a periodic forcing term,
the interface can be destabilized as a result of the Faraday instability [1]. This parametric instability
is well known for producing a great variety of structures at the interface, whose pattern formation
has been widely investigated [2,3].

For miscible fluids as considered here, a turbulent mixing zone L(t ) may appear and grow in size
[4,5]: turbulent kinetic and potential energies are produced by the periodic forcing as long as internal
gravity waves keep being excited by the parametric resonances [6]. However, this mechanism cannot
be sustained since the mean density gradient decreases when L(t ) increases. This leads to a final
state characterized by an asymptotic mixing layer of width Lend. Most of the research on this topic,
numerical and experimental, focused on the onset of the instability more than its asymptotic state,
until recently: indeed, in Ref. [7], the authors derived analytically a prediction for the asymptotic
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size of the mixing zone when the instability saturates,

Lsat = 2At G0

ω2
(2F + 4), (1)

where G0 is the gravitational acceleration, F the acceleration ratio or forcing intensity, ω the forcing
pulsation, and At = ρ1−ρ2

ρ1+ρ2
the Atwood number for the heavy and light fluids of density ρ1 and

ρ2, respectively. In Ref. [7] the final sizes of the mixing zone Lend obtained numerically were
successfully compared to the prediction Lsat for a wide range of parameters and initial conditions.
The assumptions made to derive (1) are not recalled here for the sake of brevity and can be found in
Ref. [7].

In Ref. [7] it was notably recovered that the instability is dominantly subharmonic as in
Refs. [3,4,6,8]: more precisely from the experimental point of view, the various perturbations in
concentration c and velocity u oscillate at frequency ω/2, half as fast as the vessel containing the
two fluids. Meanwhile, it can be shown that the mixing zone L(t ) oscillates at frequency ω in the
subharmonic regime.

An additional outcome of Ref. [7] was the observation, for some particular initial conditions,
of a harmonic to subharmonic transition of the instability, namely, at short time, the concentration
and velocity fluctuations oscillate at frequency ω as fast as the forcing. This is quite intricate to
observe since the harmonic regime is rather short: indeed, as soon as the mixing zone size L(t )
grows slightly from its initial value, the instability rapidly becomes subharmonic, as illustrated
later. However, this transition was observed only with direct numerical simulations (DNSs) within a
homogeneous framework. In such a case, the computational domain is centered in the mixing zone
where the mean concentration gradient is linear. The transition was not observed with DNSs of the
full inhomogeneous system.

Therefore, the challenge of the present work is to observe the harmonic to subharmonic transition
of the Faraday instability between two miscible fluids in the full inhomogeneous system, using
high-resolution DNSs. The underlying objective is to characterize this transition in terms of global
anisotropy and turbulent features using one-point statistics and scale-by-scale information. Notably,
it will be shown numerically that the global anisotropy and turbulent intensity significantly differ
between the harmonic and subharmonic regimes, and that the transition of the instability triggers
the turbulence from the initial (almost) laminar slightly perturbed state.

An additional challenge is to determine the amount of irreversible mixing induced at small scales
by the turbulent stirring. To do so, the concepts of sorted concentration fields and background
potential energy are used [9]: this notably permits us to link the increase of background potential
energy �eb

p to the saturated mixing zone size Lsat and to further compute the cumulative mixing
efficiency ηc

b of the flow [10].
Finally, using a multiple-frequency forcing, we propose a way to shorten the duration of the

harmonic regime when a constraint on the forcing intensity F is imposed: the multiple-frequency is
chosen such that the final state prediction (1) is not altered.

Hence, the main new features addressed in the present work are threefold:
(1) The transition from the harmonic to subharmonic regime in the full inhomogeneous system

is evidenced here. In Ref. [7] it was observed only within a homogeneous framework, and there was
no guarantee it would be the case starting from an interface. This transition is then characterized
using one-point turbulent statistics.

(2) With the background potential energy, we quantify the irreversible mixing of this turbulent
instability. In particular, we explain why in Ref. [7] the final size of the mixing zone obtained
numerically Lend slightly exceeds the prediction Lsat. Among three definitions for the mixing
efficiency, we exhibit a robust one and show some dependence on the control parameters.

(3) We show how a multiple-frequency forcing can impact the harmonic regime.
The paper is organized as follows: the main equations and stability analysis are given in Sec. II,

along with some details about the DNSs. All the results regarding the transition are gathered in
Sec. III. More precisely, we first investigate the time evolution of the mixing zone; then one-point

044502-2



HARMONIC TO SUBHARMONIC TRANSITION …

statistics and global anisotropy are used to characterize the turbulent structures dynamics. Moreover,
a scale-by-scale analysis of turbulent spectra is proposed as well. Afterwards, the background
potential energy is analyzed in Sec. IV to quantify the irreversible mixing produced by the flow
and to evaluate the associated mixing efficiency. In Sec. V effects of a multiple-frequency forcing
on the harmonic regime duration are briefly discussed. Conclusions are gathered in the last section.

II. PREDICTION, STABILITY, AND NUMERICAL DETAILS

In this section, the equations for the velocity and concentration fields are given, along with the
main steps yielding the prediction for the saturated mixing zone size (1), and then some technical
details about the DNSs are provided.

A. The saturated mixing zone size

The starting point is the equations for the total velocity U and concentration C fields under
vertical periodic forcing within the Boussinesq approximation:

∂U
∂t

+ (U · ∇)U = −∇P − 2At G0 n3[1 + F cos(ωt )]C + ν∇2U , (2)

∂C

∂t
+ (U · ∇)C = κ∇2C, (3)

where ν and κ are the kinematic viscosity and scalar diffusivity, respectively, and P the reduced
pressure. The heavy fluid is such that C(ρ1) = 1 and the light one such that C(ρ2) = 0, with for the
density fluctuation ρ ′,

ρ ′

ρ0
= 2At

(
C − 1

2

)
, (4)

where ρ0 = (ρ1 + ρ2)/2 is the reference density. The concentration field being inhomogeneous in
the vertical direction n3, it is convenient to define a spatial average for the two horizontal directions
〈·〉H . Hence, one has C = c + 〈C〉H , where the fluctuating part verifies 〈c〉H = 0. Of particular
interest, the equation for the fluctuating concentration field becomes

∂c

∂t
+ u j

∂c

∂x j
= −u3

∂〈C〉H

∂x3
+ ∂〈u3c〉H

∂x3
+ κ∇2c. (5)

Within the homogeneous framework [11], the mean concentration profile can be approximated by
∂3〈C〉H = −1/L, where the mixing zone size is defined as

L(t ) = 6
∫

〈C〉H (z, t )[1 − 〈C〉H (z, t )] dz. (6)

After some algebra detailed in Refs. [7,11], where viscous effects and fluctuation-fluctuation
nonlinearities are discarded, one eventually obtains the following equation:

∂2C
∂t2

+ L̇

L

∂C
∂t

+ N2(t ) sin2(θ )[1 + F cos(ωt )]C(t, θ ) = 0, (7)

where N2 = 2At G0/L is the stratification (or Brunt-Väisälä) frequency, and θ is the angle formed by
the vertical axis n3 and the wave vector k. The convenient variable C is the square root of the k = |k|-
integrated concentration variance spectrum: hence, the concentration variance can be expressed as
〈c2〉 = ∫ π

0 C2(t, θ ) sin(θ ) dθ , where 〈·〉 is the volume average. For a given mixing zone size L(t ), one
can investigate the fluctuations around this turbulent state, which yields an infinite set of decoupled
Mathieu oscillators

∂2C
∂t2

+ N2 sin2 θ [1 + F cos(ωt )]C = 0. (8)
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FIG. 1. Mathieu diagram: stability curves (black) separate stable regions (gray) from harmonic and
subharmonic unstable regions. The marginal stability curve is displayed as a dashed red curve. The various
initial conditions, delimited by crosses (×; from θ = 0 to θ = π/2), are discussed in the text.

The stability diagram of this equation can be obtained by performing a classical Floquet analysis
[12–14] by expanding C = ∑

n ynei(α+nω)t , where α = 0 and α = ω/2 are for the harmonic and
subharmonic stability curves, respectively. This yields the stability diagram of Fig. 1, with the
forcing parameter F as a function of the eigenvalues (N sin θ/ω)2. The details on how to read and
understand the stability diagram are given below.

For a given initial condition at a fixed F , a whole horizontal segment delimited by two crosses is
excited: the left-hand side extremity corresponds to θ = 0, and the right-hand side (rhs) to θ = π/2.
Hence, at each time t , the extent of the segment is [0; (N/ω)2], where the rhs extremity (N/ω)2

corresponds to the mixing zone size L. Two cases should be distinguished:
(1) The instability is not triggered, and the mixing zone size remains at its initial value L(t =

0) = L0. This corresponds to the initial segment being entirely in the gray stable region at left, such
as the one delimited by the two red crosses in Fig. 1.

(2) The instability is triggered when the rhs extremity (N/ω)2 of the excited segment falls
beyond the marginal stability curve. Some θ -modes are excited, and hence L(t ) grows in size. Thus,
(N/ω)2 decreases and goes toward the left of the diagram, indicated by arrows.

There are two unstable configurations:
(1) The initial condition is in the first subharmonic region (green cross). Hence L(t ) grows as a

result of the instability, and thus the rhs extremity of the initial excited segment evolves up to the
marginal stability curve given by 2F + 4 = ω2/N2. The saturated state Lsat, whose prediction (1)
was first given in Ref. [7], is indicated by a square.

(2) The initial condition is in the harmonic region (yellow and blue crosses) or beyond. Both
harmonic and subharmonic θ -modes are excited. In the cases pictured in Fig. 1, the most unstable
modes (θ � π/2) are in the first harmonic tongue, so that the harmonic regime will be more
observable. At some point during the growth of L(t ), the rhs extremity of the segment [0; N2/ω2]
will cross the gray stable zone, indicated by a circle in Fig. 1. This corresponds to a size Ltr where
no more θ -modes are in the harmonic region: this is precisely the phenomenon we wish to observe
numerically.

From now on, we define the harmonic to subharmonic transition as the size Ltr of the mixing zone
(and corresponding time) from which no more harmonic modes are excited. Two regimes for the
transition are illustrated in Fig. 1, namely, at small (F = 1) and larger (F = 2) forcing parameters.
One may think that the F = 2 configuration permits us to better observe the transition since the
harmonic tongue is larger. This is misleading, since in fact for a stronger F , the mixing zone evolves
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sharply at short times [see Fig. 3(a) below], so that the harmonic regime can hardly be seen. Hence,
the harmonic regime can be well observed for moderate F (like F = 1), but not too small as well,
otherwise most of the excited modes are either in stable regions or damped by viscous effects [13].
Before moving on with the numerical setup, we come back to the assumptions yielding (8). It will
be shown in what follows that the saturation criterion (1) is well verified by the DNSs, in agreement
with Ref. [7]. The reasons why this criterion works well are twofold. First, the model equation (8)
implicitly takes into account some effects of turbulence through the time evolution of N (t ): hence,
even though nonlinear transfers are neglected, the nonlinear interaction between fluctuations and
the mean field is kept. Second, large scales are mainly driven by linear production of energy: this is
well illustrated by small values of the Froude number in Fig. 6(a) below. This shows that turbulence
is weak compared to the buoyancy production and therefore cannot decisively change the stability
of the flow particularly close to the saturation.

B. Numerical setup

We perform direct numerical simulations (DNSs) of the Navier-Stokes-Boussinesq equations
(2) and (3) on a triply periodic cubic box of size 2π × 2π × 2π . A classical spectral Fourier
collocation method is used with two-third rule dealiasing. The code is parallelized using Message
Passing Interface (MPI) and slab-shaped domain decomposition, so that the present simulations
with 10243 points are performed using 1024 cores. The time increment is determined using a
third-order low-storage strong-stability-preserving Runge-Kutta scheme, with implicit treatment of
viscous terms.

In the present numerical work, which uses a pseudospectral code, one has to ensure periodicity in
the vertical inhomogeneous direction: this was not an issue in the DNSs of Ref. [7], performed either
in physical space or within a homogeneous framework. To overcome this difficulty, we choose an
initial condition in which the scalar field changes sharply from its light to heavy value at the vertical
boundaries:

C(x, t = 0) = 1

2

[
1 + tanh

(
z − π

σ

)]
+ Cinh(x),

Cinh(x) = −1

2

{
tanh

(
z

0.01

)
+ tanh

[
z − (2π − 2π/N )

0.01

]}
. (9)

The first term is the true concentration profile, in which the parameter σ is used to modify the initial
mixing zone size L0 = L(t = 0). In the present simulations, we set σ = 0.01, so that L0 � 0.07 for
At = 0.01 and L0 � 0.04 for At = 0.02. The remaining term Cinh ensures vertical periodicity at the
boundaries. Perturbations of intensity 〈c2〉(t = 0)/5, smoothed by a Gaussian filter, are added to
this initial concentration profile (9).

However, without a particular treatment at the vertical boundaries, a Rayleigh-Taylor instability
can be triggered in the two unstable regions introduced at the top and bottom of our domain to ensure
periodicity. To avoid this undesirable phenomenon, a penalization method is implemented, inspired
from Ref. [15]. In other words, two penalized bands are added at the top and bottom of the box,
namely, for z ∈ [0; Lη/2] and z ∈ [2π − Lη/2; 2π ], where Lη/2 is the height of each penalized band.
Basically, a new term is added in the rhs of (2) to mimic a porous media, ∂t u + (u · ∇)u = · · · −
χu/η, where η is the penalization parameter, and χ the mask function. The penalization parameter
is set either to η = 5 × 10−3 or η = 10−2 for an explicit time-integration scheme, with no noticeable
differences. The penalization mask χ is here a simple door function D(x), equal to 1 in the “solid”
domain and 0 in the fluid one. To avoid Gibbs oscillations, the mask is further filtered in spectral
space using

D(x) =
{

0 for Lη/2 � z � 2π − Lη/2,

1 for z otherwise, , χ (k) = D̂(k) exp

(
− Cη

k2

N2

)
, (10)
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FIG. 2. Run F1A01 at ωt = 76. (a) Vertical profiles in the nonpenalized domain: horizontal average of the
concentration 〈C〉H , variance 〈c2〉H , and energies 〈u2

i 〉H (normalized by max〈u2
z 〉H ), with total concentration

C(x = y = 0, z). (b) Snapshot of the 3D concentration field.

where ·̂ denotes the Fourier transform. N is the number of points in one direction, and we choose
Cη = 256, which preserves both the shape and intensity of the mask. Multiplying or dividing the
value of Cη by a factor 2 does not modify the results with our spatial resolution. If we call dinh the
length where the vertical periodicity is ensured by Cinh, it is fully covered by the penalized bands
with Lη > 2dinh, which guarantees the reliability of the results. Obviously, in what follows, these
penalized bands were excluded when computing averaged quantities.

In conclusion, the penalization method ensures periodicity in the vertical inhomogeneous
direction and fully prevents the triggering of the Rayleigh-Taylor instability. Multiple DNSs (not
presented) were conducted with both 5123 and 10243 points to verify that the mask holds on even
for large forcing parameters (4 � F � 8). An example is provided in Fig. 2(a) for run F1A01,
defined hereafter in Table I. The strong oscillations of the concentration field are well smoothed
by the horizontal averaging, resulting in the almost linear mean concentration profile between the

TABLE I. Parameters of the DNSs with 10243 points, ordered by increasing F . Forcing intensity F ;
Atwood number At ; pulsation ω; Integral wave number of the concentration field kpeak; kinematic viscosity
ν = κ; gravitational acceleration G0; initial size of the mixing zone L(t = 0) = L0; predicted saturated size Lsat ;
gain in background potential energy �eb

p and final cumulative mixing efficiency ηc
b, both defined in Sec. IV;

multiple-frequency parameter b, defined in Sec. V.

Run name F At ω kpeak ν G0 L0 Lsat �eb
p ηc

b b

F055A015 0.55 0.015 3.46 20 1 × 10−4 65 0.06 0.83 0.058 0.420 0
F07A045 0.7 0.045 4.29 20 1 × 10−4 65 0.04 1.72 0.958 0.410 0
F1A01 1.0 0.01 0.7 30 1 × 10−4 10 0.07 2.45 0.079 0.415 0
F1A01b05 1.0 0.01 0.7 30 1 × 10−4 10 0.07 2.45 0.064 0.421 0.5
F1A01b1 1.0 0.01 0.7 30 1 × 10−4 10 0.07 2.45 0.063 0.415 1
F1A02 1.0 0.02 1.0 30 1 × 10−4 10 0.04 2.40 0.154 0.420 0
F1A02L0 1.0 0.02 1.0 30 1 × 10−4 10 0.30 2.40 0.154 0.420 0
F1A02k5 1.0 0.02 1.0 5 1 × 10−4 10 0.04 2.40 0.154 0.420 0
F1A1 1.0 0.1 2.2 30 2 × 10−4 10 0.03 2.48 0.734 0.413 0
F2A01 2.0 0.01 0.8 30 1 × 10−4 10 0.07 2.50 0.081 0.391 0
F5A01 5.5 0.01 1.0 30 1 × 10−4 10 0.31 3.00 0.114 0.254 0
F8A02 8.0 0.02 2.0 30 1 × 10−4 10 0.05 2.00 0.111 0.198 0
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regions where C = 0 and C = 1 for the light and heavy fluids, respectively. The three-dimensional
(3D) concentration field at the same time is presented in Fig. 2(b).

Finally, the parameters of the different DNSs presented in this work are summarized in Table I.
The kinetic energy is initially zero and is thus fully created by the instability. The Schmidt
number is unit, meaning ν = κ . The wave number kpeak corresponds to the maximum of the initial
concentration variance spectrum.

The idea behind the choice of parameters in Table I is the following one: the runs with 1 �
F � 2 and b = 0 yield similar asymptotic states Lsat, but with different transients, and are analyzed
in Sec. III. The two runs with b �= 0 are compared with run F1A01 in Sec. V for the multiple-
frequency case. The runs with either F < 1 or F > 2 are briefly presented in Appendix. The impact
of changing the initial conditions such as L0 and kpeak is investigated with runs F1A02, F1A02k5,
and F1A02L0. The gain in background potential energy �eb

p and final cumulative mixing efficiency
ηc

b are defined and discussed later in Sec. IV.

III. THE HARMONIC TO SUBHARMONIC TRANSITION

In this section, the results regarding the harmonic to subharmonic transition of the Faraday
instability are given. First, the time evolution of the mixing zone is addressed, with various transients
yielding similar asymptotic states. Then, the emphasis is put on one-point statistics and the global
anisotropy of the velocity and concentration fields to characterize turbulent structures. Finally, a
scale-by-scale study of turbulent spectra is proposed.

A. Mixing zone size

In this section we are interested in the time evolution of the mixing zone size L(t ), defined in
Eq. (6), on the triggering of the instability and on the asymptotic states. Four runs are presented in
Fig. 3(a): for some of them, 3D videos of the scalar field made with Paraview are proposed. These
configurations have almost the same prediction Lsat (see Table I), and hence comparable final size
Lend in the asymptotic state, but different transients.

The transition size Ltr , defined in Sec. II, corresponds to the size from which harmonic modes
are no longer excited, as shown in Fig. 1. The values of Ltr are quite similar for the runs presented
in Fig. 3(a): Ltr � 0.44, reported as −· horizontal lines. Since all modes θ ∈ [0; π/2] are excited
at each time, this value of Ltr can be crossed several times, like for F = 1, or only once, like for
F = 2. The last time for which Ltr is crossed corresponds to the transition from the harmonic to
subharmonic regime and is indicated by a vertical dashed line: for instance, this is at ωt = 44 for
run F1A01.

As anticipated, the transition occurs much more rapidly for F = 2 than for F = 1; see videos for
runs 1 and 2 in the Supplemental Material [16]. On the contrary, at F = 1, the transition is delayed
with an increasing Atwood number in Fig. 3(a); see videos for runs 1 and 3 [16] for At = 0.1. This
is expected since it is requires more energy to mix fluids with a greater density contrast. Additional
time evolutions of L(t ) are discussed in the Appendix for larger and smaller F .

In each case, the mixing zone size increases with intense oscillations only from the transition
and during the subharmonic regime, where vertical structures develop, consistently with the vertical
energy being greater than the horizontal one in Fig. 2(a). The mixing zone size L(t ) eventually
saturates to a state which is larger than the prediction (1) by roughly 15%. This feature was already
noticed in Ref. [7] and attributed to the simplicity of the model used to derive the saturation
criterion. An important theoretical contribution of the present work is an explanation for this
apparent discrepancy, which is provided in Sec. IV.

For illustration purposes, the concentration field of run F1A01 is presented in Fig. 3(b) at four
different moments: close to the initial condition, in the harmonic regime where the oscillations are
still quite small, after the transition within the subharmonic regime where the turbulent mixing zone
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FIG. 3. (a) Mixing zone size L(t ) for runs F1A01 (black), F1A02 (dark green), F1A1 (red), and F2A01
(light blue); horizontal dashed lines correspond to the prediction (1). Vertical dashed lines indicate the
separation between the harmonic and subharmonic regimes. Inset: Fourier transform of L̇ as function of the
normalized frequency for run F1A01. (b) Snapshot of the 3D concentration field of run F1A01 at four different
times: colorbar same as Fig. 2(b).

size grows violently, and finally in the asymptotic state where the oscillations are smoother because
of the weaker turbulence due to the instability saturation.

In the 3D videos of runs 1 and 3 with F = 1 [16], the transition is quite visible: the oscillation
period of the small initial deformation is twice as fast as the later large amplitude beatings. However,
from Fig. 3(a), the transition is hardly visible on L(t ). The Fourier transform of L̇ is presented
in the inset as function of the normalized frequency 2π f /ω. The first and most intense peak at
f = ω/(2π ) corresponds to the subharmonic regime. The second peak at f = ω/π corresponds
to the harmonic regime. This is an observation of the harmonic to subharmonic transition: a more
convincing proof is proposed in the next section.

Finally, we analyze in Fig. 4 the effects of changing the initial conditions kpeak and L0 for a given
set of control parameters At , F and ω. The configuration of run F1A02 is used as a reference; in run
F1A02L0, the initial mixing zone size is increased with the same kpeak, and on the contrary, kpeak is
decreased in run F1A02k5 with the same L0. The outcomes of Fig. 4 are threefold.

First, the asymptotic state Lend does not depend on kpeak or L0, but only on the control parameters
At , F , and ω: this feature has been verified for other configurations in DNSs at lower resolution,
not presented here for the sake of brevity. Second, increasing L0 does not trigger the instability
earlier, but decreasing kkeap does: indeed, the initial perturbation is less damped by viscous effects
and is thus directly injected into the modes that will be amplified by the parametric instability:
see videos of runs 1 and 4 [16] to observe the effects of the initial perturbation size. Third, the
harmonic to subharmonic transition can be observed directly on L(t ) for run F1A02L0, with a clear
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FIG. 4. Effects of initial conditions for the configuration of run F1A02 (green) reported here as a reference.
Larger L0 for run F1A02L0 (red) and smaller kpeak for run F1A02k5 (dashed black): horizontal and vertical lines
as in Fig. 3(a). The shaded region corresponds to the inset, where L(t ) is plotted for run F1A02L0 as function
of ωt/(2π ): square symbols delimit the periods.

change of period in the inset of Fig. 4, unlike for runs F1A02 and F1A02k5. The reason is that
for run F1A02L0, N2

0 /ω2 = 1.33 falls directly into the first harmonic tongue, whereas for F1A02
and F1A02k5, N2

0 /ω2 = 10, meaning that additional subharmonic tongues are excited and probably
hide the harmonic resonance.

In conclusion, we have observed in the full inhomogeneous system that distinct sets of control
parameters [F , ω, At ] may yield similar asymptotic states Lend with different transient regimes: in
particular, a larger F shortens the harmonic regime, whereas a larger At lengthens it. For a given set
[F , ω, At ], the initial conditions kpeak and L0 only alter the transient, not the asymptotic state.

B. Structures and global anisotropy

Are the structures different in the two unstable regimes? To answer this question, we analyze
the global anisotropy of the flow. The vertical anisotropy of the velocity field is defined as
〈b33〉H (z) = 〈u2

z 〉H/q2 − 1/3, where q2 = 〈uiui〉H . The usual volume average b33 is obtained by
integrating 〈b33〉H along z (excluding the penalized bands). Remark that because of the initial
condition with zero kinetic energy, b33 is not defined at t = 0.

The vertical anisotropy indicator b33 is presented in Fig. 5(a) for runs F1A01 and F1A1 with
F = 1. The transition of the instability from a harmonic to a subharmonic regime can be seen since
in the subharmonic part, the period is twice the one of the harmonic regime. This is better evidenced
in Fig. 5(b), where we have zoomed in for run F1A1, as a function of ωt/(2π ). In the harmonic
regime, there are eight periods against four in the subharmonic one.

In the harmonic regime (ωt � 44 for run F1A01, and ωt � 70 for run F1A1), b33 is strongly
different from the isotropic state b33 = 0, meaning that the velocity field is highly anisotropic
and vertically elongated, consistently with gravity waves having an orientation close to θ = π/2.
Gravity waves with a smaller θ are excited as well in the first subharmonic tongue (see stability
diagram in Fig. 1), which explains why two successive peaks of b33 do not have the same amplitude
in the harmonic regime.

At the onset of the transition, the turbulence becomes stronger and global anisotropy decreases.
Turbulent structures are also more inclined toward the horizontal plane, thus reducing the vertical
anisotropy b33: indeed, the modes with θ � π/2 become temporarily stable between the harmonic
and subharmonic tongues, meaning that smaller angles dominate. Finally, when the gravity waves
have again an angle of θ = π/2 in the subharmonic regime, there is somehow a balance between
structures being once again vertically elongated, and an enhanced return to isotropy due to a
strengthening of turbulence.
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FIG. 5. Global anisotropy for runs F1A01 (black), F1A1 (red), and F2A01 (light blue); vertical dashed
lines indicate the separation between the harmonic and subharmonic regimes. (a) Vertical anisotropy of the
velocity field b33. (b) Zoom for run F1A1 as a function of ωt/(2π ). (c) Concentration field anisotropy sin2 γ .

For run F2A01 with F = 2, because of the stronger forcing intensity, the transition happens more
rapidly so that the vertical anisotropy decays faster. In the asymptotic state, the vertical anisotropy
for F = 2 is smaller than for F = 1, very likely because for F = 2 the highly anisotropic harmonic
regime is shorten and the instability has quickly saturated.

We now move on with the concentration field global anisotropy, using the dimensionality param-
eter sin2 γ , which reflects the directional anisotropy of a scalar field for statistically axisymmetric
configurations [11,17,18]:

sin2 γ =
∫ ∞

0

∫ π

0 Ecc(k, t ) sin3 θ dθ dk∫ ∞
0

∫ π

0 Ecc(k, t ) sin θ dθ dk
, (11)

where Ecc(k) = Ecc(k, θ ) = ĉ(−k)ĉ(k)/2, so that
∫∫

k2Ecc(k, t ) sin θ dθ dk = 〈c2〉/2. Note that
other anisotropic descriptors for scalar fields exist [19], and that for an isotropic state sin2 γ = 2/3
unlike b33.

The time evolution of sin2 γ is presented in Fig. 5(c) for runs F1A01, F1A1, and F2A01. For
F = 1, the transition between the harmonic and subharmonic regimes is once again clearly visible.
The conclusions regarding sin2 γ are similar to those of b33. Anisotropy is maximal in the harmonic
regime and increases (sin2 γ departs from 2/3): since the limit sin2 γ = 0 corresponds to sheetlike
structures, the information provided by sin2 γ is consistent with structures being more and more
tilted while approaching the transition. Then global anisotropy decays (sin2 γ tends to 2/3) after the
transition and during the subharmonic regime due to more intense turbulent transfers. The increase
of sin2 γ is consistent with structures being dominantly vertically aligned. In the asymptotic state,
sin2 γ roughly oscillates close to the isotropic value 2/3 and slightly departs from it as time goes
by due to the domination of stratification over turbulence. The scenario is a bit different for F = 2:
while vertical anisotropy b33 suddenly decreases, the concentration field is less anisotropic since
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FIG. 6. Turbulent quantities for runs F1A01 (black) and F2A01 (light blue). (a) Froude number Fr; on the
right y axis, Reynolds number ReL for run F1A01. (b) Eddy diffusivity κt .

structures do not have time to be significantly tilted. In the asymptotic state, the concentration field
is slightly more anisotropic with F = 2 than for F = 1: this is justified in the next section as well.

In this section, we have shown that the harmonic regime is highly anisotropic compared to the
more turbulent subharmonic regime. Structures are dominantly vertically stretched and temporarily
tilted toward the horizontal plane at the transition.

C. Turbulent quantities

In what follows, we pursue our analysis of one-point statistics to better characterize the transition
between the harmonic and subharmonic regimes. In Sec. III A, it appeared that the growth of the
mixing zone mainly occurs in the subharmonic regime, whereas in Sec. III B, global indicators
revealed that the harmonic regime was more anisotropic than the subharmonic one. Hence, there is
a severe change in the dynamics at the transition that we wish to better understand.

In the following, we investigate the Froude number Fr = εuu/(NKuu), where Kuu = 〈uiui〉/2 is
the kinetic energy and εuu its dissipation rate, and the eddy diffusivity κt = −L〈u3c〉. The time
evolution of Fr is presented in Fig. 6(a) for runs F1A01 and F2A01. In the harmonic regime for
F = 1, Fr is rather small because of the strong stratification. Then, from the transition and during the
subharmonic regime, Fr significantly increases because turbulent exchanges become more intense,
consistently with the strong growth of the mixing zone size L(t ) observed previously. Additional
time evolutions of Fr are presented in the Appendix for larger and smaller F . Conjointly with the
growth of Fr after the transition, the eddy diffusivity increases as well in Fig. 6(b). Note that κt

changes sign due to the correlation 〈u3c〉, showing that turbulent exchanges develop and that part
of the mixing is reversible. In the asymptotic state, both Fr and κt decrease with the decay of the
turbulence intensity due to the saturation of the instability.

For F = 2, the harmonic regime is almost not visible, as pointed out previously for global
anisotropy. The Froude number strongly increases towards larger values than for F = 1, as expected
since production is more intense. The instability saturates more rapidly as well, the consequence
being that b33 is asymptotically smaller for F = 2 than for F = 1. On the contrary, κt is weaker than
for the case F = 1, very likely because the mixing occurs more rapidly. Hence, the concentration
field is less turbulent for F = 2 than for F = 1, which is also in agreement with the scalar anisotropy
sin2 γ being smaller for F = 1 than for F = 2.

The Reynolds number ReL = K2
uu/(νεuu), displayed in Fig. 6(a) for run F1A01, also shows the

great enhancement of turbulence after the transition. From almost 0, it reaches its maximum value
∼9.103 in the subharmonic regime and then settles around 103 in the asymptotic saturated state.
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FIG. 7. Spherically averaged spectra for run F1A01. (a) Ecc at four different times during the subharmonic
regime, corresponding to various extrema of L(t ); vertical dashed lines indicate the Ozmidov wave number kO.
(b) Ecc during one period in the asymptotic state. (c) Compensated spectra Ecc(k) and Euu(k), along with the
Ozmidov kO and Kolmogorov kη wave numbers; the period average is done for ωt ∈ [107; 114] corresponding
to the spectra of panel (b).

The intensification of turbulent features and the creation of small scales participate as well to the
reduction of global anisotropy from the transition, as mentioned in the previous section.

In this section, we have characterized the transition from the harmonic to subharmonic regime
of the instability as a transition to turbulence. Indeed, the eddy diffusivity, the Froude number and
the Reynolds number strongly increase at the transition, showing the enhancement of turbulent
exchanges in the subharmonic regime.

D. Scale-by-scale analysis

In this section, we proceed with a scale-by-scale analysis of run F1A01 using the spherically
averaged concentration variance and kinetic energy spectra

Euu(k, t ) = 1

2

∫
Sk

ûi(k)ûi(−k) d2k, Ecc(k, t ) = 1

2

∫
Sk

ĉ(k)ĉ(−k) d2k, (12)

where ûi and ĉ are the Fourier transforms of the fluctuating velocity and concentration fields,
respectively, and Sk is the sphere of radius k. For the sake of brevity, results from other runs are
not presented since scalings are quite similar.

We are interested only in time-averaged spectra Ecc and Euu in the asymptotic state. Indeed,
investigating the scalings of the kinetic energy and concentration variance spectra at various times
during the growth of L(t ) makes no sense since the flow is highly unsteady: the intensity and slopes
of Ecc and Euu strongly vary. This is illustrated in Fig. 7(a), where Ecc is displayed at various times
during the subharmonic regime, corresponding to different extrema of L(t ). At moderate ωt , all
scales strongly change, whereas at later times, only the largest scales are modified. Note that the
Ozmidov wave number kO =

√
N3/εuu significantly varies as well because of the sharp variations

of L(t ).
The oscillations of Ecc are much smoother in the asymptotic state since the mixing is complete,

as revealed in Fig. 7(b): only the largest scales are still slightly affected by the periodic forcing.
Therefore, the spectra are period-averaged on the range ωt ∈ [107; 114] for further analysis.
Averaging over six periods in the asymptotic state yields very similar results, with spectra slightly
less intense, however, since the concentration variance decays over time.

The period-averaged spectra Ecc and Euu are presented Fig. 7(c). The concentration spectrum
exhibits a well-defined classical scaling Ecc ∼ εcc εuu

−1/3k−5/3, with a plateau of order unity: this
is expected since the concentration field experiences almost no more mixing mechanisms due to
the instability, and consequently progressively returns to isotropy. On the contrary, there is no clear
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FIG. 8. (a) Spatial anisotropy of the concentration field sin2 γ (k) for run F1A01: period-averaged (black),
and the same four times as Fig. 7(a). (b) Budget terms of the equations for Ecc (black) and Euu (blue) for run
F1A01: − nonlinear transfers, −− dissipation, and −· production.

k−5/3 scaling for Euu, or at least much narrower than for Ecc, probably because of the forcing term;
this might also be a consequence of the moderate Reynolds number.

Indeed, because of the moderate Reynolds number in the asymptotic state [1000 � ReL � 1500;
see Fig. 6(a)] large scales are still dominantly affected by the anisotropy due to stratification. This is
well illustrated by the Ozmidov wave number, which is quite close to the Kolmogorov wave number
kη = (ν3/εuu)1/4 in Fig. 7(c) . At larger Reynolds numbers, the return to isotropy would be more
efficient, and thus kO would go towards smaller wave numbers.

Now, we briefly address the scale-by-scale anisotropy of the concentration field using the spatial
dimensionality parameter

sin2 γ (k, t ) =
∫ π

0 Ecc(k, t ) sin3 θ dθ∫ π

0 Ecc(k, t ) sin θ dθ
, (13)

shown in Fig. 8(a) for run F1A01. For the same reason as before, the period average in the
asymptotic state is presented (in black), and kO roughly separates anisotropic large scales from less
anisotropic smaller ones. The spatial dimensionality parameter sin2 γ (k) is presented as well at the
four same times of Fig. 7(a) and oscillates strongly at large scales. At the time where L(t ) is maximal
(ωt = 69), and thus where kO is the smallest, there is a clear separation between anisotropic large
scales and more isotropic small scales. On the other hand, at ωt = 48.6, the Reynolds number is too
small to distinguish large and small scales, with kO out of the visible range.

Finally, we are interested in the budget terms of the equations for Euu and Ecc, which read

∂Exx

∂t
+ 2νk2Exx(k, t ) = Txx(k, t ) + Pxx(k, t ), (14)

where xx denotes either the velocity field uu or the concentration field cc, with ν = κ . Txx

is the spherically averaged nonlinear transfer, and Pxx the production term, with, respectively,
Puu = −2At G0[1 + F cos(ωt )]F3 and Pcc = F3/L, with F3 the spectrum of the mixed velocity-
concentration correlation. The viscous, nonlinear, and production terms of these two equations are
presented in Fig. 8(b), after averaging over the same period as in Fig. 7(c). The nonlinear transfers
Tcc and Tuu are negative at large scales, and positive at smaller scales, showing that both kinetic
energy and concentration variance are transferred from large to small scales. The dissipative term
−2κk2Ecc balances quite well Tcc at small scales, whereas 2νk2Euu is more intense than Tuu: the
latter feature probably explains why Euu does not scale in k−5/3. The production terms Puu and
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Pcc cover the entire range. Two noticeable features are that (1) for most wave numbers, Pcc(k) > 0
whereas Puu(k) < 0, meaning that the main contribution of the flux F3 is to extract kinetic energy and
to convert it into concentration variance. And (2) the Ozmidov wave number quite well separates
the large-scale region (k < kO) dominated by stratification where Pxx > Txx, from the smaller scales
dominated by the turbulence where Pxx < Txx.

A difficulty of this turbulent instability is its unsteadiness. Consequently, spherically averaged
spectra were presented only in the asymptotic state, where the Reynolds number has decreased due
to the saturation of the instability: there is not a clear separation of scales between the Ozmidov
and Kolmogorov wave numbers, indicating that large scales are more anisotropic and damped by
stratification. Nevertheless, the concentration variance spectrum exhibits a k−5/3 inertial range, and
the kinetic energy and concentration variance are both transferred from large to small scales.

IV. THE IRREVERSIBLE MIXING

Now that the transition between the harmonic and subharmonic regimes has been characterized
and interpreted as a transition to a turbulent state where the mixing zone grows significantly, we
now wish to quantify the irreversible mixing of the flow using mixing efficiency and background
potential energy.

A. Potential energies

To disentangle reversible exchanges from irreversible mixing, it is proposed to use the concepts
of sorted density fields and background and available potential energies [9,10,20,21]. Recall that
within the Boussinesq approximation, the density variations are linked to concentration through
ρ ′ ∼ 2Atρ0c. The total potential energy being Ep = ∫

ρ ′gz dV , we refer hereafter unambiguously
to the normalized potential energy per unit surface as

ep(t ) = Ep(t )

4π2ρ0
= 2At G0

∫ 2π−Lη/2

Lη/2
〈C〉H (z, t )z dz, (15)

where the penalized volume of the simulations characterized by Lη has been discarded. Since ep

can be modified by adiabatic processes, i.e., reversible mixing, we are interested in the sorted
concentration field C(z∗), which depends only on the probability density function (p.d.f.) of the
concentration field f (C). z∗ is the position in the state of minimum potential energy attainable
through an adiabatic redistribution of C. This minimum potential energy, called the background
potential energy, is defined as

eb
p(t ) = 2At G0

∫ zmax

zmin

C(z∗)z∗ dz∗ (16)

and reflects the amount of gravitational potential energy ep expanded in mixing the two fluids. The
reference state is computed from the p.d.f. as in Ref. [20] according to

z∗(C) = zmin + (zmax − zmin)
∫ C

0
f (C′)dC′, (17)

where zmin and zmax are the boundaries of the fluid domain in which the p.d.f. is built, and C′
a dummy variable. Here zmin = Lη/2 and zmax = 2π − Lη/2, and f (C) is built with 4096 points
[we have checked that more points for the p.d.f. do not modify z∗(C)]. Then, the available
potential energy ea

p = ep − eb
p corresponds to the energy that would be released during an adiabatic

transformation toward the background state. In other words, ea
p is the fraction of total potential

energy which can be converted into eb
p through irreversible mixing.

We are now interested in the energy contents of run F1A01. The p.d.f. of the concentration field
is presented in the inset of Fig. 9(a) at three different times. Initially, f (C) is sharply peaked around
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FIG. 9. Potential energy and mixing efficiency for run F1A01. (a) Total, background, and available
potential energies ep, eb

p, and ea
p. First inset: p.d.f. at increasing time: t = 0, ωt = 40, and ωt � 69 when L(t )

is maximal. Second inset: unsorted L(t ), sorted L̃(t ). (b) Instantaneous mixing efficiencies ηPE (blue) and ηb

(black), along with the cumulative mixing efficiency ηc
b (red).

C = 0 and C = 1. At ωt = 69 when L(t ) is maximum, there is a noteworthy bump around C = 0.5
reflecting that there is more and more mixing.

The time evolution of the three potential energies is displayed in Fig. 9(a): the background po-
tential energy (red) increases monotonically as the irreversible mixing of the two fluids progresses,
which also results in a decrease of the available potential energy (blue). Notably, eb

p increases
substantially only after the transition, and this is verified for all runs. The gain of background
potential energy over the whole simulation can be evaluated as follows, assuming a profile in three
parts for C(z∗) (constant, linear, and constant):

�eb
p = At G0

12

(
L̃2

end − L2
0

)
. (18)

In the previous formula, L̃end is the final mixing zone size computed with the sorted profile C(z∗),
close to but slightly smaller than Lend. For run F1A01, �eb

p = 0.079, which is in good agreement
with the plot of Fig. 9(a). The gain in background potential energy for the other runs is indicated
in Table I. One may remark that �eb

p can vary by more than one order of magnitude (see runs
F07A045 and F055A015) and is thus quite sensitive to the choice of parameters: in particular, for
two simulations with similar Lsat, �eb

p may differ since it depends linearly on At .
An additional essential outcome of this section is the following one. The available potential

energy ea
p is maximal in Fig. 9(a) when L(t ) reaches the saturation prediction Lsat at ωt � 70. This

explains why in Ref. [7] and in Fig. 3(a) the final size Lend always exceeds the prediction. Indeed,
Lsat corresponds only to the saturation of the instability. After the saturation, the available potential
energy is released in the flow, either as kinetic or background potential energy. This additional
background potential energy pursues the irreversible mixing and L increases towards values slightly
larger than Lsat.

B. Mixing efficiencies

In this section, we wish to estimate the mixing efficiency of our turbulent flows, if any sense can
be given to an instantaneous mixing efficiency in a framework with a periodic forcing. We consider
three different possibilities to compute the mixing efficiency hereafter.

A first definition is borrowed from Ref. [22], where the mixing efficiency reads

ηPE = εPE

εPE + εuu
, εPE = N2εcc

(
d〈C〉H

dz

)−2

(19)
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and is like a flux Richardson number, with εPE the dissipation of potential energy. According to the
authors of the latter reference, this definition is more robust than others which rely on the scalar flux
〈u3c〉. Indeed, 〈u3c〉 accounts for reversible mixing. Nevertheless, this definition intrinsically takes
into account both reversible and irreversible mixing since it is not based on C(z∗). The instantaneous
mixing efficiency ηPE is given in Fig. 9(b) for run F1A01: the oscillations are quite wide because
εuu and εcc oscillate in phase opposition. After the transition, ηPE decays due to the strengthening of
the turbulence, i.e., the increase of εuu. In the saturated state, ηPE roughly settles around 0.35, which
is a common value for mixing efficiency in stratified turbulent flows [22].

The second definition can be found in Refs. [10,21,23] and is based on the background potential
energy, so that it should be more relevant in terms of quantifying the irreversible mixing. The
instantaneous mixing efficiency reads

ηb = εb

εb + εuu
, εb = 1

V

dEb
p

dt
(20)

where εb is the dissipation rate of the background potential energy density, with V the volume of
the fluid domain. The time evolution of ηb in Fig. 9(b) is quite similar to the one of ηPE , but with
oscillations of smaller amplitudes: this is expected since reversible mixing is excluded while using
εb rather than εcc. Note that in the asymptotic state, in average ηb � 0.42 > ηPE .

However, although necessary to capture the different regimes of the instability, it becomes clear
that there is no real meaning to an instantaneous mixing efficiency in a periodically forced system.
Instead, we compute the cumulative mixing efficiency [10]

ηc
b(t ) =

∫ t
0 εb(t ′) dt ′∫ t

0 εb(t ′) dt ′ + ∫ t
0 εuu(t ′) dt ′ . (21)

This definition gives a smooth time evolution compared to the previous instantaneous mixing
efficiencies ηPE and ηb. The final value for run F1A01 is ηc

b = 0.415, which is close to the final
value of the instantaneous mixing efficiency ηb. Final values of ηc

b for the other runs are gathered
in Table I as well: it is worth noting that ηc

b is much less sensitive to the control parameters than
�eb

p. A remarkable result is that the cumulative mixing efficiency tends to decrease with larger F ,
irrespective of Lsat. This is expected since with larger F , the instability saturates rapidly, and thus
there is less time for mixing.

C. Conclusions regarding mixing

The particularities here are that the flow is unsteady because of the periodic forcing, and that most
of the mixing happens in the subharmonic regime, which represents a short time of the simulation,
and in a small domain between the two reservoirs of pure fluids. Nevertheless, using the concept of
sorted density field, we have been able to compute the background potential energy of our flow. This
is a completely unique feature compared to the paper at the origin of the theory [7]. Four important
findings should be stressed:

(1) Irreversible mixing starts only with the growth of the mixing zone after the transition.
(2) The gain in background potential energy �eb

p strongly depends on the control parameters of
the instability: hence, configurations with similar Lsat can have different �eb

p.
(3) At saturation, available potential energy ea

p is maximal and partially released as background
potential energy, which causes the mixing zone to increase beyond Lsat.

(4) The final cumulative mixing efficiency ηc
b decreases with larger forcing parameters F

because the instability, and thus mixing, is shortened.
Although there is a conceptual complexity of evaluating mixing efficiency in a transitory and

periodically forced system, the different estimations tend to qualify the Faraday instability as an
efficient mixing process.
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V. MULTIPLE-FREQUENCY FORCING

Is it possible, given a set of control parameters (At , F , ω), to shorten the duration of the harmonic
regime? It is proposed to answer this question here, which is motivated by the following reason: it
has been shown in Sec. IV that no mixing occurs during the harmonic regime. Then, by reducing
the harmonic regime one should get the final size of the mixing zone more rapidly. There are two
obvious possibilities to shorten the harmonic regime: (1) According to Fig. 3(a), one can increase
F . (2) By choosing wisely At , ω, and L0, the initial condition 2At G0/(L0ω

2) could be only in the
first subharmonic tongue of Fig. 1.

However, from a practical point of view, the control parameters are related through Am =
FG0/ω

2, where Am is the amplitude of the vertical periodic forcing [24]. Let us further assume
that one cannot exceed F = 1 for some reasons: At and L0 being imposed by the nature of the
fluids, the initial condition could fall beyond the first subharmonic tongue.

In such a case under the constraint F � 1, we propose to use a multiple-frequency forcing.
This idea is not new and was notably used in Ref. [3] for immiscible fluids to study pattern
formation at the interface. Here the modulated gravity G0[1 + F cos(ωt )] is basically replaced by
G0[1 + F cos(ωt ) − bF cos(2ωt )], where b � 1 is the multiple-frequency parameter. The idea is
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that the subharmonic regime of cos(2ωt ) may affect the harmonic regime of cos(ωt ). In terms of
stability, the classical Mathieu diagram of Fig. 1 is modified as in Fig. 10(a), where two noticeable
features should be pointed out: (1) the first harmonic tongue is made quite larger for moderate
forcing parameters F � 1: this is not a priori what we want; and (2) the marginal stability curve is
not modified, so that the saturation prediction (1) remains valid for this kind of multiple-frequency
forcing.

Two cases are investigated in Fig. 10(b) for both b = 0.5 (run F1A01b05) and b = 1 (run
F1A01b1). It appears that the harmonic regime is more than twice as short (b = 1) as the case
without multiple frequency (b = 0): this is not intuitive given the extension of the harmonic tongue
in Fib. 10(a). In fact, the multiple-frequency forcing acts as an initial booster for the growth of the
mixing zone, so that N2/ω2 leaves rapidly the harmonic tongue. After this initial sudden growth,
L(t ) evolves smoothly, before increasing significantly a second time. The maximum of L(t ) is thus
reached later after the transition compared to the case b = 0.

Moreover, it is worth noting that for both b = 0.5 and b = 1 in Fig. 10(b), the final size of
the mixing zone Lend is closer to the prediction than for b = 0. This is because when L > Lsat,
the available potential energy ea

p is smaller with b �= 0 than with b = 0, as revealed in Fig. 10(c) for
b = 1, consistently with the argument proposed in Sec. IV. Note that despite the multiple frequency,
eb

p still increases only after the transition. The final cumulative mixing efficiency ηc
b for b = 0.5 and

b = 1 is similar to the one with b = 0, as summarized in Table I.
In conclusion, we have proposed a way to reduce the duration of the harmonic regime under

a constraint of control parameters. This simple multiple-frequency forcing enhances the turbulent
mechanisms linked to the transition and yields a final size of the mixing zone Lend closer to the
prediction Lsat. Note that more complex forcing terms could be analyzed, for instance, with an
additional phase shift cos(ωt ) − b cos(2ωt + φb), or with a combination of sine and cosine, but this
is out of the scope of this study. The advantage of this simple multiple-frequency forcing is that it
preserves the saturation prediction (1).

VI. CONCLUSIONS

When a stable stratification of two miscible fluids is vertically and periodically excited, a
turbulent mixing zone can grow in size as a result of the Faraday instability, depending on the
control parameters. It reaches a final state when parametric resonances terminate: the final saturated
size Lsat was predicted in Ref. [7] and assessed for a wide range of parameters, mainly with DNSs
of 2563 and 5123 points. In the latter reference, a transition of the instability from a harmonic to a
subharmonic regime was observed for simulations in a homogeneous framework.

In the present work, we have observed numerically for the first time the transition of the miscible
Faraday instability from a harmonic to a subharmonic regime in the full inhomogeneous system
accounting for the two reservoirs of pure fluids. To this end, multiple DNSs with 10243 points were
performed using a pseudospectral code. To ensure the periodicity of the concentration field in the
vertical inhomogeneous direction, a penalization method was implemented. The unique features of
this study, with respect to Ref. [7], are the analysis of turbulent one-point and two-point statistics in
the full inhomogeneous system, along with the investigation of irreversible mixing through mixing
efficiencies and background potential energy, and multiple-frequency forcing. The main findings
are summarized below.

First, we identified a robust scenario describing the dynamics of structures before and after the
transition. In the harmonic regime, the velocity and concentration fields are highly anisotropic
because vertically elongated structures develop. A sudden decrease in anisotropy occurs at the
transition since structures are temporarily tilted horizontally, and turbulence is strongly enhanced,
which creates small scales that partially restore isotropy. Then, in the subharmonic regime, global
anisotropy slightly increases because structures align again in the vertical direction. In the saturated
state, global anisotropy roughly oscillates around a constant value. For larger forcing parameters,
the harmonic regime is shorter so that the global anisotropy immediately decreases. Regarding the
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mixing zone size L(t ), it strongly increases only from the transition. For similar final states Lend,
various transients can be observed depending on the control parameters.

One-point turbulent quantities such as the Froude number, the Reynolds number, and the eddy
diffusivity clearly confirm that the harmonic to subharmonic transition is a sharp transition to
turbulence. In the asymptotic regime, after the saturation of the instability, the Reynolds number
remains moderate: as a consequence, the Ozmidov wave number is close to the Kolmogorov one,
meaning that most scales of the flow are damped by stratification. Nevertheless, the time-averaged
concentration variance spectrum Ecc exhibits a k−5/3 range, and kinetic energy and concentration
variance are transferred from large to small scales.

Afterwards, using the probability density function of the concentration field, we have computed
the time evolution of the background potential energy eb

p. This is a measure of the irreversible
mixing of the flow, which starts only after the transition. The gain of background potential energy
�eb

p between the initial and final states strongly depends on control parameters, so that two
configurations with the same Lsat can give different �eb

p. A major outcome of this analysis is that
at saturation of the instability, available potential energy ea

p is partially released as background
potential energy eb

p in the flow: this additional irreversible mixing causes L to grow beyond Lsat.
This notably explains why in Ref. [7] the final size obtained numerically Lend always exceeds the
prediction Lsat.

Then three different definitions of the mixing efficiency were compared: we argue that it might
not be relevant to investigate instantaneous mixing efficiencies since our flow is highly unsteady
and mixing occurs within a limited time and space domain. The cumulative mixing efficiency ηc

b,
however, has a smooth evolution. It is worth noting that its final value decreases with larger forcing
parameters F , irrespective of Lsat: indeed, with larger F , the instability saturates quickly and the
mixing process is shortened.

Finally, it was shown that under some constraints of the control parameters, the harmonic regime
can be shrunk by using a multiple-frequency forcing, with pulsations ω and 2ω. Our particular
choice preserves the saturation criterion.

In conclusion, the harmonic regime is highly anisotropic and almost no mixing occurs. Its
duration can be reduced with the use of multiple-frequency forcing. At the transition, the turbulence
is triggered, and irreversible mixing is greatly enhanced. In the subharmonic regime, the mixing
zone grows significantly. At saturation of the instability, the final size exceeds the prediction because
available potential energy is released as background potential energy in the flow, which produces
more mixing.
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APPENDIX: INFLUENCE OF THE FORCING PARAMETER

In this Appendix, we are interested in the impact of the forcing parameter F on the triggering of
the instability and turbulent intensity.

In Fig. 3(a), it was shown that with F = 2 the instability was triggered much before the cases
with F = 1. Afterwards, it was revealed that the turbulence was more intense with F = 2 than with
F = 1 with the Froude number in Fig. 6(a). These two features are recovered from F = 0.7 to
F = 8 in Figs. 11(a) and 11(b), using the results of the DNSs gathered in Table I.

First, when the forcing parameter F is increased, the growth of Fr happens earlier and is more
intense. Namely, for F = 5.46 and F = 8, the turbulence is three to four times more intense than for
F = 1: accordingly, the harmonic regime does not exist. The conclusions are similar in Fig. 11(b)
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FIG. 11. Time evolutions for increasing F , corresponding to the DNS runs of Table I. (a) Fr; (b) L(t )/Lsat .

for the mixing zone size L(t ): the larger F , the shorter the harmonic regime. Note that at larger F ,
the initial growth of L(t ) is always very sharp and hardly depends on kpeak, unlike at small F in Fig.
4 for F = 1.
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