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Velocity fluctuations in a dilute suspension of viscous vortex rings
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We explore the velocity fluctuations in a fluid due to a dilute suspension of randomly
distributed vortex rings at moderate Reynolds number, for instance, those generated by a
large colony of jellyfish. Unlike previous analysis of velocity fluctuations associated with
gravitational sedimentation or suspensions of microswimmers, here the vortices have a
finite lifetime and are constantly being produced. We find that the net velocity distribution
is similar to that of a single vortex, except for the smallest velocities which involve
contributions from many distant vortices; the result is a truncated 5/3-stable distribution
with variance (and mean energy) linear in the vortex volume fraction φ. The distribution
has an inner core with a width scaling as φ3/5, then long tails with power law |u|−8/3, and
finally a fixed cutoff (independent of φ) above which the probability density scales as |u|−5,
where u is a component of the velocity. We argue that this distribution is robust in the sense
that the distribution of any velocity fluctuations caused by random forces localized in space
and time has the same properties, except possibly for a different scaling after the cutoff.
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I. INTRODUCTION

A natural question when faced with a fluid flow with some degree of randomness is how
to characterize its velocity fluctuations. This is a classical problem in turbulence but also in
gravitational sedimentation [1–6] and in suspensions of microswimmers [7–19]. In the case of
sedimentation and microswimmers, the velocity field due to a single particle or swimmer is
commonly used as a building block to understand the velocity distribution in the full system. At
leading order for a dilute suspension, interactions are neglected and much is learned by examining
a random superposition of individual particles or swimmers. In particular, for small velocities the
distribution is typically Gaussian [19], since superimposing many distant sources usually results in
an application of the central limit theorem.

In this paper we study the velocity distribution in a dilute suspension of viscous vortex rings.
We assume some mechanism, such as a colony of jellyfish, generates vortices randomly throughout
time and space, as observed and illustrated in Fig. 1. These vortices decay due to viscosity but are
replenished such that the system is assumed to reach a statistical equilibrium, containing vortices
with some age distribution. Turbulence has been modeled with some success using vortex rings
[20–22], but here we investigate a moderate Reynolds number regime which is still a long way from
turbulence (the jellyfish are assumed to be a few centimeters in size so that the rings they generate
are strongly affected by viscosity). Other related biological systems may also exhibit related velocity
field fluctuations that may have important functional consequences. In particular, nonmotile pulsing
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FIG. 1. (Left) A “suspension” of spotted jellyfish (Mastigias papua) at the Vancouver Aquarium. (Center)
Fast swimming Nemopsis bachei expels a single vortex ring with each rapid pulse (reproduced with permission
from [41]). (Right) Schematic of the problem: we seek the distribution of the fluid velocity u at r0 due to a
randomly distributed suspension of viscous vortex rings in three dimensions.

corals share considerable hydrodynamic similarities with undulating jellyfish, and their repeated
pulsing is known to contribute to fluid mixing, nutrient transport, and the rate of photosynthesis
at intermediate Reynolds numbers [23–25]. A better understanding of the velocity fluctuations in
suspensions may also be of use in the design of biomimetic systems for related purposes [26–28],

One key to developing analytical estimates for velocity fluctuations is to start with a tractable
“building block,” in this case a simple model for a vortex ring. There exists a great wealth of
literature containing analytical, numerical, and experimental results for vortex rings [29–40], but
to study the role of viscous vortex decay, a classical ideal vortex model is insufficient. Instead, we
shall use an intermediate-Reynolds number model of a decaying vortex ring due to Fukumoto and
Kaplanski [35].

In the following pages we show analytically and verify numerically that the probability distri-
bution for the velocity fluctuations of a dilute suspension of vortex rings is a truncated 5/3-stable
distribution. Recall that a distribution is stable if it is invariant under summation of independent
random variables (with the given distribution), up to location and scaling. The standard symmetric
α-stable distribution has the form

�α (u; a) = 1

2π

∫ ∞

−∞
eiku−a|k|α dk (1)

for 0 < α � 2. The 2-stable distribution is a Gaussian, while for α < 2, the distribution has infinite
variance and is tail-heavy:

�α (u; a) ∼ a�(α + 1)

π |u|α+1
sin

(πα

2

)
(2)

as |u| → ∞ [18,42,43]. For a truncated stable distribution, the |u|−α−1 tails only persist up to some
finite value of |u|, with a faster decay beyond the cutoff, similar to Min et al. [44]. These results
are robust in the sense that any flow produced by impulses sufficiently localized in both space and
time will produce the same velocity distribution. The variance of u (mean energy) is shown to be
linear in the vortex volume fraction φ as expected from such a superposition of individual velocity
fields. However, the width of the core scales as φ3/5 rather than φ1/2, suggesting that the tails of the
distribution contribute at leading-order to the energy.

The paper is structured as follows. In Sec. II, we present a model of a viscous vortex ring
due to Fukumoto and Kaplanski [35]. In Sec. III, we build a suspension of viscous vortices by
superimposing the flow fields of individual model vortex rings, and we subsequently derive an
estimate for the energy of the suspension. This analysis is expanded in Sec. IV to determine the
full velocity distribution analytically. These findings are confirmed numerically using simulations
involving the evaluation of transient velocity fields over multiple scales. We show in Sec. V that
under a particular set of conditions, the |u|−8/3 power law observed in the distribution is robust and
is a consequence of swimming occurring in a three-dimensional fluid. Concluding remarks are given
in Sec. VI.

044501-2



VELOCITY FLUCTUATIONS IN A DILUTE SUSPENSION …

FIG. 2. (Left) Diagram of an early-stage vortex ring. (Center) Contours of the streamfunction � normalized
by �0R0 in the laboratory frame from Eq. (4b) at time t = R2

0/ν. (Right) The same normalized streamfunction
in a frame moving with the vortex ring.

II. A SINGLE VISCOUS VORTEX RING

Before analyzing a suspension of vortices, we start by presenting a model of a single viscous
vortex ring due to Fukumoto and Kaplanski [35]. They consider the case of an axisymmetric vortex
filament with initial azimuthal vorticity,

ζ (ρ, z, t = 0) = �0 δ(z) δ(ρ − R0), (3)

where δ is the Dirac δ function, �0 is the initial circulation, R0 is the initial radius of the vortex ring,
ρ and z are the radial and axial directions in space relative to the vortex ring (see the diagram in
Fig. 2), and t is time. In this setting it is convenient to define a stream function �(ρ, z, t ), where
the velocity in the laboratory frame is given by vvv = ρ−1 ∇⊥�, with ∇⊥ = ẑ ∂ρ − ρ̂ ∂z. Defining
the Reynolds number as Re := �0/ν, where ν is the kinematic viscosity, Fukumoto and Kaplanski
[35] find that the swirl-free flow, to leading order in small Reynolds number with initial condition
Eq. (3), takes the form

ζ (ρ, z, t ) = �0R0

4
√

π (νt )3/2
exp

(
− z2 + ρ2 + R2

0

4νt

)
I1

(
R0ρ

2νt

)
, (4a)

�(ρ, z, t ) = 1

4
�0R0ρ

∫ ∞

0

[
emz erfc

(
2mνt + z

2
√

νt

)
+ e−mz erfc

(
2mνt − z

2
√

νt

)]
J1(mR0)J1(mρ)dm.

(4b)

Here J1 and I1 are standard and modified Bessel functions of the first kind, respectively, and
erfc is the complementary error function. The circulation is found to decay in time as �(t ) =
�0[1 − exp(−R2

0/4νt )]. A useful approximation to � is

�(ρ, z, t ) ≈ �0R2
0

2
√

π

(∫ ξ

0
e−ξ ′2

dξ ′ − ξe−ξ 2

)
ρ2

(z2 + ρ2)3/2
,

R0√
4νt

	 max(ξ, 1), (5)

where

ξ (ρ, z, t ) :=
√

(z2 + ρ2)/4νt (6)

is a dimensionless measure of the position relative to the “viscous front” at ξ = 1 associated with
the outward propagation of viscous stresses, which are only significant at the boundary between the
growing vortex ring and the surrounding fluid. Crucially, the form of Eq. (5) is valid even at small
t , as long as we are considering points well outside the vortex ring. Applying small and large ξ
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FIG. 3. Plot of the terms involving ξ inside the parentheses of Eq. (5), along with the small and large ξ

approximations used to derive Eq. (7). We see that the approximations are very good outside of a transition
region with 0.4 � ξ � 2.5.

approximations to Eq. (5), we find an approximate velocity field

vvv(ρ, z, t ) =
⎧⎨⎩

�0R2
0 ẑ

12
√

π (νt )3/2 ξ � 1,

�0R2
0[(2z2−ρ2 ) ẑ+3zρ ρ̂]

4(z2+ρ2 )5/2 ξ � 1,

R0√
4νt

	 max(ξ, 1), (7)

with a relatively sharp transition region around the viscous front ξ = 1. Note that although the two
parts of Eq. (7) were derived in the asymptotic regimes where ξ 	 1 and ξ 
 1, respectively, they
are good approximations for most points (see Fig. 3), except for at small times and in an annulus
surrounding the viscous front 0.4 � ξ � 2.5. Note that the large ξ approximation matches the flow
for an inviscid vortex ring, while fluid inside the vortex ring mostly moves uniformly, so viscous
stresses are only significant in this transition region.

The vortex ring also propels itself forward in time. To find the self-advection of the vortex
ring and incorporate it into the model, Fukumoto and Kaplanski use the Helmholtz–Lamb trans-
formation, from which they determine the instantaneous speed W (t ) of the vortex ring and the
net displacement S(t ) in the positive z direction [35]. Incorporating the vortex speed W into the
streamfunction by subtracting 1

2ρW 2 from � results in the more familiar ellipsoidal envelope
corresponding to � = 0 as shown in Fig. 2 (right).

The model matches previous estimates for the early and late time velocities [30,33,45]. Fukumoto
and Kaplanski [35] also validate their model against experimental results from Cater et al. [34] with
Re = 2000 and find excellent agreement, suggesting Eq. (4) accurately captures the structure of the
fluid flow for a broad range of intermediate Reynolds numbers, including those of various jellyfish
[46–48]. For the Aurelia aurita jellyfish in a Danish fjord studied by Olesen et al. [49], we can
estimate that Re ranges from around 60 to 2160.

The model has a finite second moment (i.e., finite energy). Fukumoto and Kaplanski [35] find
that the energy in the entire fluid at a time t is given by

E1(t ) = 1

2

∫
V

|vvv|2 dV =
√

π �2
0R4

0

48
√

2(νt )3/2
2F2

(
3

2
,

3

2
;

5

2
, 3; − R2

0

2νt

)
, (8)
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FIG. 4. The energy integrated over all space E1(t ) for a single vortex ring normalized by �2
0R0 and

compared with the small and large-time asymptotics in Eq. (9).

where 2F2 is a generalized hypergeometric function. This has asymptotic forms

E1(t ) ∼
⎧⎨⎩

�2
0R0

(
1
4 ln(8R2

0/νt ) + 1
4γ − 1

)
, as t ↓ 0,

√
π �2

0 R4
0

48
√

2(νt )3/2 , as t → ∞,
(9)

where γ is the Euler–Mascheroni constant. These asymptotic forms are plotted in Fig. 4 to indicate
their degree of accuracy when compared to E1. Remarkably, E1(t ) can be integrated over time
exactly, to obtain the total vortex action

E1 :=
∫ ∞

0
E1(t ) dt = �2

0R3
0

6ν
= 1

6
Re2 νR3

0. (10)

A discussion of other moments of the velocity integrated over space and time can be found in
Appendix A. In particular, the moments Mn are only finite when 5

3 < n < 4.

III. ENERGY OF A SUSPENSION OF VISCOUS VORTICES

In this section we find an analytical estimate for the energy of a suspension of viscous vortices,
which will be used in the analysis of the full velocity distribution. Vortex rings are assumed to
come into being uniformly in time, space, and orientation, into an otherwise quiescent infinite
bath. The rate of vortex production is μ vortices per unit time per unit volume, which when
nondimensionalized becomes an effective volume fraction φ := μR5

0/ν. Since vortices decay over
time, there is a natural correspondence between vortex production and volume fraction. Note that
with a high enough rate of production, φ can be greater than one. This is not unphysical, as vortices
can overlap.

In nature, concentrations Aurelia aurita jellyfish have been observed in the range of 1 × 10−6

to 3 × 10−4 medusae per cubic centimeter with mean radius R0 ranging from 0.125 to 2.7 cm
depending on the time of year [49]. Meanwhile, McHenry and Jed [46] found that jellyfish pulsed
at a rate of once per second for smaller medusae, and once per two seconds for larger medusae. We
therefore estimate that, for the suspension of vortices, φ ranges from 3 × 10−8 in early spring to 0.3
in late summer. Thus, we will assume that φ 	 1, and therefore that any vortex-vortex interactions
are negligible.
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Consider the velocity field vvv(r, t ) = ρ−1 ∇⊥�, with ∇⊥ = ẑ ∂ρ − ρ̂ ∂z, for a vortex initially at
the origin and pointing in the ẑ direction as in Fig. 2. Rotating and translating the velocity to
represent a vortex with arbitrary position and direction, we first obtain the rotated velocity field

Q · vvv(Q−1 · r, t ), (11)

where Q is a rotation matrix, and then translate the field to point R (replacing r by r − R):

Q · vvv(Q−1 · (r − R), t ). (12)

Writing the vortex position in time as

R(t ) = R(0) + S(t )Q · ẑ, S(0) = 0, (13)

[recall that S(t ) is the vortex displacement and W (t ) = S′(t ) is the speed], thus results in its induced
velocity field

Q · vvv(Q−1 · (r − R(0)) − ẑS(t ), t ). (14)

Summing the velocity contributions at a point r0 from N independent vortices, which are initially
located at random points Rk , results in

U =
N∑

k=1

Qk · vvv
(
Q−1

k · (r0 − Rk ) − ẑ S(Tk ), Tk
)
, (15)

where the random variable Tk denotes the age of the kth vortex, and Qk is a random rotation matrix,
which enforces isotropy. We assume N = μV τ is constant, where V is the total volume of the
domain and τ is the lifetime of a vortex. Here, V, τ are assumed finite, but we will examine the
infinite volume and time limits shortly.

The expected value of U , 〈U〉, averaged over all positions, orientations, and birth times, is

〈U〉 = N
∫

�

∫ τ

0

∫
V
Q · vvv(Q−1(�) · (r0 − r) − ẑ S(t ), t )

dVr

V

dt

τ

d�

4π
, (16)

with � the solid angle that determines the rotation matrix. With the change of variables

r′ = Q−1(�) · (r0 − r) − ẑ S(t ), t ′ = t, (17)

we have ∂r′/∂r = −Q−1(�), and ∂r′/∂t = −W (t )ẑ. The Jacobian matrix for the transformation is

∂ (r′, t ′)
∂ (r, t )

=
(

−Q−1(�) −W (t )ẑ

0 1

)
, (18)

with determinant −1, so the Jacobian does not modify the integral:

〈U〉 = N
∫

�

∫ τ

0

∫
V ′(r0,t ′,�)

Q · vvv(r′, t ′)
dVr′

V

dt ′

τ

d�

4π
. (19)

Here V ′(r0, t ′,�) is the domain of integration transformed according to Eq. (17).
Similarly, the qth absolute moment of U can be computed as

〈|U |q〉 = N
∫

�

∫ τ

0

∫
V

|vvv(r′, t ′)|q dVr′

V

dt ′

τ

d�

4π
. (20)

Integrating over the orientation angles and dropping the primes,

〈|U |q〉 = N
∫ τ

0

∫
V

|vvv(r, t )|q dVr

V

dt

τ
= μ

∫ τ

0

∫
V

|vvv(r, t )|q dVr dt . (21)
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Setting q = 2, taking V = R3 and τ → ∞ (and dividing by two), we find the expectation of the
energy

〈E〉 = 1

2
μ

∫ τ

0

∫
V

|vvv(r, t )|2 dVr dt = μE1 = φ

6

�2
0

R2
0

. (22)

Thus, the expected energy is μ times Eq. (10), the energy of a single vortex integrated over time and
space. This is reasonable: In this noninteracting dilute limit, the energy of the system is the sum of
the energies of the individual vortices.

IV. VELOCITY DISTRIBUTION

A more refined analysis than that of Sec. III allows us to characterize the entire velocity
distribution, rather than just the moments. This clarifies whether the dominant contribution to the
moments arises from near or far field dynamics, as well as facilitating potential comparisons to
experiments. For small concentrations, we will find stable distributions similar to Zaid et al. [17] or
Zaid and Mizuno [18] for suspensions of microswimmers, though the relationship between spatial
velocity decay and the tail exponents is modified here by the additional temporal behavior of the
vortices.

A. Single vortex

We first consider the velocity distribution due to a single vortex ring, which will be used
in Sec. IV B to derive the marginal distribution for the velocity fluctuations in a suspension of
viscous vortices. We choose a random point r = r0 + (ρ cos θ, ρ sin θ, z) uniformly inside the ball
V = BL(r0) of radius L centered at r0, and choose a random vortex age t uniformly in [0, τ ]. The
probability density function pU 1 (u) for the magnitude of the single-vortex velocity U 1 = |U1| is

pU 1 (u) =
∫ τ

0

∫
V

δ(u − v(r, t ))
dVr

V

dt

τ
, (23)

where v(r, t ) = |vvv(r, t )|. The δ function constrains the integral to a hypersurface v(r, t ) = u:

pU 1 (u) = 1

V τ

∫
v(r,t )=u

1

|∇(r,t )v(r, t )| dSr,t , (24)

where |∇(r,t )v(r, t )| is a Jacobian [50] and dSr,t is the integration element on the hypersurface
v(r, t ) = u. An analytical estimate may be achieved by splitting the integral into two pieces, ξ � 1
and ξ � 1 with ξ = |r|/√4νt , and using Eq. (7), valid for small u, to approximate the velocity. (We
neglect the transition region near ξ = 1.) This straightforward but somewhat messy calculation is
carried out in Appendix B. By combining Eqs. (B1) and (B4), we find that

pU 1 (u) � 0.1514

V τ

�
5/3
0 R10/3

0

ν
u−8/3, ε 	 uR0

�0
	 1, (25)

where

ε = R3
0

min[V, (ντ )3/2]
. (26)

The approximation breaks down as (uR0/�0) ↑ 1 because then the details of the near field of the
vortex become important, and we cannot use Eq. (7) to go from Eq. (24) to (25) as we did above.
The approximation Eq. (25) also breaks down as (uR0/�0) ↓ ε because, at fixed V and τ , the region
v(r, t ) < ε�0/R0 falls outside the domain of integration in Eq. (23). The value of ε is typically
small, indicating a wide range of validity for Eq. (25), as long as the domain radius L is much larger
than the vortex size R0, and the time of integration τ is much longer than the viscous dissipation
time R2

0/ν.
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FIG. 5. The numerically evaluated velocity probability density function for a single vortex ring (solid line)
compared with the analytic approximation Eq. (25) (dashed line). The approximation is about 40% higher than
the numerical values on the segment with 0.001�0/R0 � u � 0.04�0/R0.

To probe the accuracy of this approximation, we computed Eq. (23) via Monte Carlo integration,
finding the velocity at a point r0 using a second-order finite difference approximation of Eq. (4b)
for a single vortex ring (see Sec. IV C for more details) positioned randomly in BL(r0) with �0 =
100ν, L = 100 R0, and τ = 100 R2

0/ν, and continuing to sample until the distribution converged.
Figure 5 shows a comparison between the numerical computation of Eq. (23) and the analytical
approximation Eq. (25). We see that the u−8/3 power law holds over a wide range of values of u.
The analytical prediction Eq. (25) is about 40% too large when compared with the numerics due
to the transition region around ξ ≈ 1. However, this error does not affect the exponent in the −8/3
power law, just the prefactor.

B. Suspension of vortices

We now use the velocity distribution for a single vortex ring to determine the corresponding
distribution for a suspension of vortices, modifying the argument of Thiffeault [51] that charac-
terized the drifts associated with microswimmers. We will use components of the velocity instead
of its magnitude, since components can be added together but not magnitudes. This additivity of
velocity is a good approximation at low volume fractions φ. Since we have assumed isotropy of
the suspension, there is no loss in generality in considering only a single component of the fluid
velocity u.

Starting from the single-vortex distribution pU 1 (u) for the magnitude of velocity, Eq. (23), we
convert to the distribution for the components with

pU1 (u) = pU1 (u|u) pU 1 (u) =
∫

V

∫ τ

0

δ(u − v(r, t ))

4πu2

dt

τ

dVr

V
, u = |u|, (27)

where, due to the isotropy of u, pU1 (u|u) = 1/4πu2 is the uniform distribution on the sphere of
radius u. We then find the marginal distribution for the x component of u, denoted by ux:

pU 1
x
(ux ) =

∫ ∞

−∞

∫ ∞

−∞
pU1 (u) duy duz =

∫
V

∫ τ

0

∫ ∞

−∞

∫ ∞

−∞

δ(u − v(r, t ))

4πu2
duy duz

dt

τ

dVr

V
, (28)
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where the superscript 1 on U 1
x and U1 is a reminder that this is still for a single vortex. Carrying out

the integrals over uy and uz yields

pU 1
x
(ux ) =

∫
V

∫ τ

0

1

2v(r, t )

[
v2(r, t ) > u2

x

] dt

τ

dVr

V
, (29)

where [A] is the indicator function of A, defined as 1 if A is true, and 0 otherwise.
To determine the distribution for multiple vortex rings, we compute the characteristic function〈

eikU 1
x
〉 =

∫ ∞

−∞
pU 1

x
(ux ) eikux dux =

∫
V

∫ τ

0
sinc(kv(r, t ))

dt

τ

dVr

V
, (30)

where sinc(x) := sin x/x for x �= 0 and sinc(0) := 1. We find that〈
eikU 1

x
〉 = 1 − γ (k)

V τ
, (31)

where

γ (k) :=
∫

V

∫ τ

0
{1 − sinc(kv(r, t ))} dt dVr. (32)

Recall that μ is the constant rate of production of vortex rings, per unit space and time. Hence,
after a time τ we have N = μV τ independent vortex rings, which together induce a random velocity
U N

x at the origin. The random variable U N
x has characteristic function

〈
eikU N

x
〉 = 〈

eikU 1
x
〉N =

(
1 − γ (k)

V τ

)μV τ

∼ exp(−μγ (k)) (33)

as V, τ → ∞ [51]. Therefore, for the suspension of vortices, the probability density function of
velocities is obtained from the inverse Fourier transform

pUx (ux ) = 1

2π

∫ ∞

−∞
exp(−μγ (k)) e−ikux dk, (34)

where we have dropped the superscript N → ∞ on Ux.
Since 1 − sinc(x) ∼ 1

6 x2 as x → 0, we have γ (k) ∼ 1
3E1k2 as k → 0, from which we can solve

for an approximate velocity distribution, mathematically valid as φ = μR5
0/ν 
 1:

pUx (ux ) ≈
√

3

4πμE1
exp

(
− 3u2

x

4μE1

)
, (35)

consistent with the central limit theorem. Then 〈u2
x〉 = 2

3 〈E〉 = 2
3μE1, as predicted by Eq. (22).

Recall that technically φ can be greater than one, since vortices can overlap. Of course, in the limit
of large φ our linear superposition assumption breaks down, so Eq. (35) is unlikely to be observed
in practice.

To find an approximation of the probability density function which is valid for small φ, where our
model applies, we can use the probability distribution pU 1 (u) from Eq. (25) to find an approximation
of γ which is valid for large k in the limit as V, τ → ∞, by way of a change of variables to transform
Eq. (32) into an integral over u:

γ (k) = V τ

∫ ∞

0
{1 − sinc(ku)} pU 1 (u) du ∼ 0.1096

�
5/3
0 R10/3

0

ν
|k|5/3 =:

a

μ
|k|5/3 (36)

[with a = 0.1096 μ(�0R2
0)5/3/ν = 0.1096 (�0/R0)5/3φ], where we have compensated for the uni-

form 40% overestimate of pU 1 (u) by Eq. (25), as observed in Fig. 5 by decreasing the prefactor
to match numerical estimates. We can compute Eq. (34) analytically using this γ ; the result is a

044501-9



MORRELL, SPAGNOLIE, AND THIFFEAULT

5
3 -stable distribution Eq. (1). For larger ux, �5/3(ux; a) has tails

pUx (ux ) ∼ 1

2π
�

(
8

3

)
a |ux|−8/3, φ3/5 	 uxR0

�0
	 1, (37)

while for small ux the core region is reasonably well approximated by a Gaussian

pUx (ux ) ∼ 0.2844a−3/5 exp
(−u2

x/3.198a6/5
)
,

uxR0

�0
	 φ3/5. (38)

These forms come into alignment using asymptotic matching when ux ∝ a3/5. Of particular note,
we see here that the width of the core scales as φ3/5. Contrasting these last two equations with the
Gaussian distribution Eq. (35), it is clear that Eqs. (37) and (38) are only valid when φ 	 1; that is,
even though Eq. (38) resembles a Gaussian distribution, it is completely different from the Gaussian
Eq. (35) in the large φ limit. Moreover, the tail distribution Eq. (37) contributes heavily to the energy
μE1, which therefore cannot be deduced from the width of Eq. (38).

The −8/3 power law in Eq. (37) does not persist for arbitrarily large ux, and in fact one can
show using an argument similar to that in Sec. IV A that pUx (ux ) ∝ |ux|−5 as |ux| → ∞ due to
the singular behavior of a vortex ring at ρ = R0 and t = 0. Including the large u behavior in our
calculations changes the distribution from a stable distribution to a truncated stable distribution,
which has finite second moment (and thus finite energy). This observation explains the seemingly
inconsistent large and small φ approximations for pUx (ux ) of a Gaussian and a stable distribution,
respectively. The transition from a truncated stable distribution to a Gaussian distribution occurs
near a volume fraction where the width of the core region is on the same order of magnitude as the
cutoff, which follows immediately from the Berry–Esséen theorem [52]. For further discussion of
the relative contributions of the core and the tails to the energy, both with and without truncation,
see Appendix C.

C. Comparison with numerical simulations

Since a number of approximations were used to derive the distributions in the previous section, a
comparison with numerical simulations is in order. In particular, in computing Eq. (34) we inserted
a cutoff between the −8/3 and −5 power laws, and the use of Eq. (36) is not valid for small k.

Our numerical investigation involves a Monte Carlo integration of Eq. (28): we simulate the
suspension by generating and evolving vortex rings uniformly in time and space in a spherical
volume of radius L = 100R0 for t ∈ [0, τ ] with τ = 100R2

0/ν and computing the velocity at the
origin. We fix the initial single-vortex circulation to be �0 = 100ν, so all the vortices have the same
initial strength. The velocity field due to individual vortices is obtained by differentiating the
streamfunction Eq. (4b) using a fourth-order-accurate finite-difference approximation. The velocity
fields of individual vortices are then superimposed linearly to generate the total velocity field. This
is a reasonable approximation in the dilute regime, φ 	 1, when vortices stay far enough apart so
that they do not significantly interact.

Because of the special functions and the oscillatory integrand, the streamfunction � is pro-
hibitively expensive to evaluate directly. We compute it for several points on two overlapping
grids and form a cubic spline interpolant to evaluate it at arbitrary points in space. One grid
covers ρ, |z| � 20R0 and 0 � t � 20R2

0/ν with 2003 grid points, while another grid with higher
resolution covers 0.75R0 � ρ � 1.25R0, |z| � 0.25R0, and 0 � t � 0.5R2

0/ν, with 2502 × 100 grid
points around the initial singularity. For points outside these grids, � is approximated using Eq. (5).
Since the interpolated values of � do not match Eq. (5) on the boundary of the grid, a buffer region
is established where � is represented as a convex combination of the interpolated value and Eq. (5);
the smoothness of the transition is important to accurately compute the velocity. The integration
required to compute � in Eq. (4b) at any particular grid point is performed using a global adaptive
quadrature (Matlab’s integral function) with absolute and relative error tolerances 10−10 and 10−6,
respectively. A single simulation amounts to placing a random distribution of vortices, each with a
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FIG. 6. The probability density function for the x-component of velocity (normalized by φ3/5�0/R0) for
various φ. We see that the core scales with φ3/5. The dashed curve is the analytical expression �5/3(ux; a), which
agrees closely with the numerics. The dotted curve is a Gaussian distribution with unit standard deviation,
included for reference.

random position, orientation, and age, and using the machinery above to compute the velocity at the
origin at that moment.

For a given value of the effective volume fraction φ = μR5
0/ν we run 15 million simulations on

a distributed computing framework and then compute the probability density function pUx (ux ) for a
single component of velocity by placing the results in exponentially sized bins. Figure 6 shows this
density normalized for a selection of different φ, along with the theoretical expression �5/3(ux; a) as
a dashed line and a Gaussian distribution as a dotted line for reference. The numerical simulations
appear to confirm the accuracy of this analytic estimate for the entire range of φ considered. Note in
particular the scaling of the core width as φ3/5. Figure 7 shows the same distributions on a log-log
scale, with a dashed line of slope −8/3 included for reference. The probability density function
decays as |ux|−8/3 outside the core, as predicted in Eq. (37). We were unable to verify the predicted
|ux|−5 power law for very large velocities due to the extreme resolution needed near the initial vortex
filaments to properly capture the largest velocities.

For large enough velocities, the nearest vortex ring determines the velocity at a point, so that
the many-vortex probability distribution pUx (ux ) has the same tails as the single-vortex pU 1

x
(ux ). In

particular, outside the core of the distribution we have

pUx (ux ) ∼ φ pU 1
x
(ux ) = φ

∫ ∞

|ux |

pU 1 (u)

2u
du,

uxR0

�0

 φ3/5. (39)

Figure 8 compares Eq. (39) (dashed curve) with PDFs divided by φ for several values of φ. There is
excellent agreement outside the core of the distribution, so typical velocities in the suspension are
indeed dominated by the nearest vortex ring except in the case of small velocities.

Figures 6–8 suggest strongly that pUx (ux ) is a truncated stable distribution with smooth cutoff
near ux ≈ ±0.4�0/R0. Note that this cutoff is independent of φ and only depends on the transition
between small and large u asymptotics for the velocity distribution of a single vortex ring. When
φ 	 1, the cutoff is far down the tail, so a stable distribution is a good approximation for the velocity
distribution.
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FIG. 7. The same distributions as in Fig. 6, but on a log-log scale. The additional dashed line verifies the
−8/3 power law for large (but not very large) velocities.

V. ROBUSTNESS

In this section we consider the flow due to an arbitrary impulsive force localized near the origin
in time and space and find the same far-field behavior as in the previous section. Thus, the analysis
from the last section (except for the large-velocity |ux|−5 tails, which are specific to the vortex
model) is generic and carries through to more general flows.

Various aspects of the flow due to an impulsive force have been studied in many contexts
[21,45,53–55]. We follow a combination of Saffman [54] and Bühler [55]. Consider an external

10-3 10-2 10-1 100

10-2

100

102

104

106 =10-6

=10-5

=10-4

=10-3

=10-2
(39)

FIG. 8. Plot of the (normalized) probability density function for the x component of velocity divided by φ

compared with Eq. (39) (the dashed line), showing close agreement, except at small velocities. In particular,
regardless of φ, the distributions transition away from the −8/3 power law at around ux ≈ 0.4�0/R0, regardless
of φ.
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force density

F̃(r, t ) = ρ0 F(r)
1

�t
g(t/�t ), (40)

where ρ0 is the constant fluid density, g(s) is nonnegative with unit integral and with support
contained in [0,1], and F(r) has compact support encompassing the origin. For small �t , a classical
argument (see, for example, Lamb [53] or Bühler [55]) shows that the nonlinear terms in the
incompressible Navier–Stokes equations are negligible when considering the evolution due to this
force of a fluid initially at rest. The pressure p̃ then satisfies a Poisson equation ∇2 p̃ = ∇ · F̃ with
boundary condition ∇ p̃ → 0 as r → ∞. Bühler [55] concludes that p̃ has the same time dependence
as F̃, i.e.,

p̃(r, t ) = ρ0 p(r)
1

�t
g(t/�t ). (41)

The linear momentum equation can be integrated over t ∈ [0,�t], at the end of which

vvv(r,�t ) + ∇p(r) = F(r), (42)

where we neglected the viscous term since it is of order �t after integration. Far away from the
origin, the pressure is harmonic with

p(r) ∼ I · r
4πr3

, r → ∞, where I =
∫
R3

F(r) dV, (43)

so that ρ0I is the total impulsive momentum input [55]. Substituting Eq. (43) into Eq. (42), we find
that v(r,�t ) = O(r−3) in the far field. In fact, for I = π�0R2

0 ẑ, the hydrodynamic impulse for the
model vortex ring, the velocity vvv(r,�t ) found here exactly matches the ξ � 1 limit of Eq. (7).

Similarly, we can determine the velocity distribution for long times knowing only the impulse
(see, for example, Phillips [21] or Saffman [45]). Taking the curl of Eq. (42) gives vorticity
ω(r,�t ) = ∇ × F(r). Note that ω(r,�t ) has compact support contained in the support of F.
Assume small Reynolds number, in this section defined to be Re := R0F/ν, where F is a
characteristic magnitude of F and R0 is the radius of the smallest ball containing the support of F.
Then the nonlinear term in Navier–Stokes can be neglected, so the vorticity obeys a heat equation

∂ω

∂t
≈ ν∇2ω, t > �t, ω(r,�t ) = ∇ × F(r). (44)

In the limit �t → 0, this has solution

ω(r, t ) = 1

(4πνt )3/2

∫
|r′|�R0

[∇ × F(r′)] e−|r′−r|2/4νt dVr′ . (45)

For νt 
 R0 max(R0, |r|), we can expand the exponential to obtain

ω(r, t ) = 1

(4πνt )3/2

∫
|r′|�R0

[∇ × F(r′)] e−|r|2/4νt

(
1 − |r′|2 − 2r · r′

4νt
+ · · ·

)
dVr′ . (46)

The integral of the first term in the series vanishes; the next order term gives the asymptotic behavior
of the vorticity:

ω(r, t ) ∼ π

(4πνt )5/2
e−|r|2/4νt

∫
|r′|�R0

[∇ × F(r′)](2r · r′ − |r′|2) dVr′ , νt 
 R0 max(R0, |r|).
(47)
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An integration by parts simplifies the expression:

ω(r, t ) = 2π

(4πνt )5/2
e−|r|2/4νt

∫
|r′|�R0

F(r′) × (r − r′) dVr′

= 2π

(4πνt )5/2
e−|r|2/4νt (I × r − J), (48)

where

J :=
∫

|r′|�R0

F(r′) × r′ dVr′ . (49)

The corresponding velocity field can be found via the Biot–Savart law:

vvv(r, t ) = 1

2(4πνt )5/2

∫
R3

(I × r0 − J) × (r − r0)

|r − r0|3 e−|r0|2/4νt dVr0 . (50)

As t → ∞, a vanishingly small error is introduced replacing r0 by r − r0 in the exponential. Then

vvv(r, t ) ∼ 1

2(4πνt )5/2

∫
R3

[I × (r0 − r) + (I × r − J)] × (r − r0)

|r − r0|3 e−|r−r0|2/4νt dVr0

= I
12(πνt )3/2

. (51)

This matches the ξ � 1 limit of Eq. (7) perfectly for the hydrodynamic impulse for the model vortex
ring.

So we see that in the limit as r → ∞, the velocity decays as O(r−3), and for any fixed location,
the velocity decays as O(t−3/2) as t → ∞. The transition between these two regimes occurs along
the same viscous front as we have already analyzed for the vortex ring (ξ = 1). Indeed, Eq. (7) is a
good approximation for the velocity away from the impulse for any flow due to a localized impulsive
force. Therefore, all our analysis from the previous section carries through and so �5/3(ux; a) is an
excellent approximation of the velocity distribution for a volume of fluid containing any swimmers
that exert force in short bursts, such as for instance copepods [56,57].

VI. DISCUSSION

We analyzed the flow field of a model viscous vortex ring and found that for a flow which
is initially a vortex filament, the absolute moments of velocity Mn are finite only for 5

3 < n < 4.
Consistent with this observation, the density function of the magnitude of velocity is asymptotic
to u−8/3 for small velocities, and to u−5 for large velocities. The former power law is due to the
long-time diffusion of vorticity as the vortex ring expands, while the latter is due to the initial
diffusion of vorticity away from the vortex filament immediately after its formation. While the large
u distribution will depend heavily on the exact model used (e.g., Min et al. [44] found exponential
tails in their study of two-dimensional patches of vorticity because each isolated patch had a
maximum velocity), the u−8/3 power law for small velocities is robust in the sense that any flow
brought about by an initial impulse will produce a distribution with the same power law.

We have constructed a model suspension of viscous vortex rings with convenient analytic
properties by superimposing the flow fields for individual vortex rings positioned and oriented
randomly throughout space and time. The velocity fluctuations were shown both analytically and
numerically to fit a truncated stable distribution with tails decaying as u−8/3. This distribution has
core width proportional to φ3/5 but energy proportional to φ, the vortex volume fraction, so that
most of the energy comes from the tail of the distribution (associated with large velocities). Points
in space corresponding to the distribution’s tail are only influenced by the nearest vortex ring, so
interactions between vortices play a negligible role. However, with increasing volume fraction φ,
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the dominant contribution begins to come from the core region encompassing the far-field velocity
of many not-so-distant vortices.

Our work extends efforts to understand the velocity fluctuations produced by swimmers at low
Reynolds numbers to intermediate values. We expect the model to provide a good approximation
for the flow fields associated with a variety of jellyfish species in a physically realistic regime of the
Reynolds number (60 � Re � 2160) [49], particularly in light of the robustness of the flow structure
to perturbations of the initial impulse. Even among jellyfish, however, different types of flow fields
are generated by different species: elongated jellyfish such as Nemopsis bachei generate a streak of
vortex rings for efficient swimming [41,58], while more bulbous species like Aurelia aurita generate
dual starting and stopping vortex rings (during power and recovery strokes) in the wake of the bell in
a slower, axisymmetric-paddling locomotion [58–60]. The extent to which the distribution derived
here remains appropriate for describing such systems, and related nonmotile systems, like pulsing
corals [25], remains an open question for future exploration.

Finally, it is an open question whether the velocity distributions predicted here can be measured
experimentally in some context. A realistic environment is probably too noisy to hope for the simple
model presented here to have quantitative value, but possibly the tails of the distribution are robust
enough to be measurable. Laboratory experiments are not out of the question, though a mechanism
would need to be devised for adequate generation of the random vortices, in a tank large enough for
edge effects to be negligible.
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APPENDIX A: MOMENTS OF THE VELOCITY OF A SINGLE VORTEX RING

In this section, we study the moments of the velocity field associated with a single vortex ring
integrated over both time and space:

Mn :=
∫ ∞

0

∫
V

|vvv|n dV dt, (A1)

where V is our domain, in this section taken to be R3. At the outset, it is not clear which moments
exist, if any, and we shall see that many do not. To this end, we use Eq. (7) to approximate the
far-field velocity and see that |vvv| decays like r−3 (where r =

√
z2 + ρ2) as r → ∞ given any fixed

time. Upon integrating over space, we therefore have that∫
V

|vvv|n dV =
∫

V
|vvv|nr2 dr d� (A2)

is infinite for 2 − 3n � −1, where d� denotes integration over the unit sphere. Therefore, Mn = ∞
for all n � 1, and for n > 1, the approximation Eq. (7) enables us to compute the integral explicitly.
Asymptotically, we find that ∫

V
|vvv|n dV = O(�n

0 (νt )3(1−n)/2), (A3)

valid as t → ∞.
Another possible source of moment divergence lies at time t = 0, when the velocity field is

singular at the vortex filament. For small times, the evolution of vorticity near a point on the vortex
ring may be studied using a line vortex approximation. Consider therefore a line vortex located
at the origin; the vorticity ζ is the Green’s function for the heat equation multiplied by the initial
circulation:

ζ = �0

4πνt
exp

(
−x2 + y2

4νt

)
. (A4)
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Then the swirl velocity is

v = �0

2π
√

x2 + y2

[
1 − exp

(
−x2 + y2

4νt

)]
, (A5)

counterclockwise around the origin. The velocity decays exponentially quickly far away, so we only
need consider the near field (out to a distance proportional to

√
4νt) when determining the spatial

moments. Near the vortex, v ≈ �0

√
x2 + y2/8πνt . Integrating, we find that∫
|vvv|n dA = O

(
�n

0 (νt )1−n/2), (A6)

valid as t ↓ 0, is finite for all nonnegative n and strictly positive t , so the vortex filament does not
contribute to any possible divergence of the spatial moment for any n � 0 (except for possibly at
the single time t = 0).

Looking across the entirety of the spatial domain, the arguments above suggest the existence of
the spatial moments

∫
V |vvv|n dV at all positive t for all n > 1, but we are particularly interested in the

moments Mn, which are integrals over both space and time. Examining the rate of decay of Eq. (A3)
for large times results in infinite moment Mn precisely when 3(1 − n)/2 � −1, or n � 5

3 . Similarly,
the behavior of Eq. (A6) at small times results in infinite moment Mn when 1 − n/2 � −1, or n � 4.
Thus, the moments of vvv exist only for 5

3 < n < 4.

APPENDIX B: THE PROBABILITY DENSITY FUNCTION FOR SINGLE VORTEX RING

For ξ � 1, the velocity is only a function of time (t = (�0R2
0/12u

√
πν3/2)2/3), so∫

v(r,t )=u, ξ�1

dSr,t

|∇(r,t )v(r, t )| = 4

3
π (4νt )3/2

(
�0R2

0

8
√

πν3/2t5/2

)−1∣∣∣∣
t=(�0R2

0/12u
√

πν3/2 )2/3

= 28/3π1/6

311/3

�
5/3
0 R10/3

0

ν
u−8/3. (B1)

The integral for ξ � 1 is somewhat more complicated. From Eq. (7), we see that

v = �0R2
0

r3

√
1 + 3 cos2 ϕ

4
=:

�0R2
0

r3
f (ϕ), (B2)

where ϕ is the angle from the positive z-axis. When the velocity is u, r = (�0R2
0 f (ϕ)/u)1/3. Then∫

v(r,t )=u,ξ�1

dSr,t

|∇(r,t )v(r, t )|

=
∫ π

0

∫ ru(ϕ)2/4ν

0

⎛⎝ u

ru(ϕ)

√
9 + f ′(ϕ)2

f (ϕ)2

⎞⎠−1

2πru(ϕ)
√

ru(ϕ)2 + r′
u(ϕ)2 sin ϕ dt dϕ, (B3)

where we have parameterized our surface in θ, ϕ, t and performed the integral over θ . The integral
in Eq. (B3) can be computed analytically:

2π

4νu

∫ π

0

ru(ϕ)4
√

ru(ϕ)2 + r′
u(ϕ)2√

9 f (ϕ)2 + f ′(ϕ)2
f (ϕ) sin ϕ dϕ = π

6

�
5/3
0 R10/3

0

ν
u−8/3

∫ π

0
f (ϕ)13/3 sin ϕ dϕ

= 0.01453
�

5/3
0 R10/3

0

ν
u−8/3. (B4)
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APPENDIX C: ENERGY CONTRIBUTIONS FROM SECTIONS OF THE PDF

The expected energy of the suspension of vortices is

〈E〉 = 3

2

∫ ∞

−∞
u2

x pUx(ux ) dux. (C1)

Equations (37) and (38) cannot be used by themselves to approximate the energy, since this results
in divergence in the expression above, so the |ux|−5 tails for the largest velocities must be included
to obtain a convergent integral.

Using Eqs. (37) and (38) to determine the behavior of the inner and middle regions, we find that

pUx (ux ) ≈

⎧⎪⎨⎪⎩
0.2844a−3/5 exp

(−u2
x/3.198a6/5

) |ux| � 3.260a3/5,

0.2395a|ux|−8/3 3.260a3/5 � |ux| � c,

0.2395ac7/3|ux|−5 |ux| � c,

(C2)

where c ≈ 0.4�0/R0, as in Fig. 8, and a = 0.1096 (�0/R0)5/3φ [from Eq. (36)]. A comparison to
Eq. (1) suggests that Eq. (C2) somewhat underestimates pUx(ux ) around the transition at |ux| =
3.260a3/5.

Let 〈EC〉, 〈E−8/3〉, and 〈E−5〉 be the portions of the energy using the approximations of pUx (ux )
in the core (C), middle (−8/3), and outer (−5) regions in Eq. (C2) with the appropriate bounds, so
that 〈E〉 = 〈EC〉 + 〈E−8/3〉 + 〈E−5〉. We find the contributions

〈EC〉 = 1.980a6/5, (C3a)

〈E−8/3〉 = −3.196a6/5 + 2.156ac1/3, (C3b)

〈E−5〉 = 0.3593ac1/3. (C3c)

Without the underestimate of pUx(ux ) in the transition between the core and middle regions,
the a6/5 terms above should cancel exactly (since the energy is known to scale with φ and a is
linear in φ), which we verified using Eq. (1) directly and integrating numerically. The lack of exact
cancellation is a symptom of our approximations in the transition region. Thus, a rough estimate of
the energy is 〈E〉 ≈ 2.515ac1/3 = 0.2031(�0/R0)2φ, a slight overestimate of the exact expression
in Eq. (22). Hence, we see that the greatest contribution to the energy comes from the middle region
of the distribution for small φ. As φ increases, the largest contribution begins to come from the
core region, which encompasses the far-field velocity of the vortices. The transition from the tails
contributing most of the energy to the core doing so happens at about the same value of φ where
the distribution changes shape from a 5

3 -stable distribution to a Gaussian, due to the core width
approaching the value of the cutoff between the middle and outer regions of Eq. (C2), which is
independent of φ.
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