
PHYSICAL REVIEW FLUIDS 4, 044302 (2019)

Hydrodynamically bound states of a pair of microrollers:
A dynamical system insight

Blaise Delmotte*

LadHyX, UMR CNRS 7646, École Polytechnique, 91128 Palaiseau CEDEX, France

(Received 26 November 2018; published 5 April 2019)

Recent work has identified persistent cluster states which were shown to be assembled
and held together by hydrodynamic interactions alone [Driscoll et al. Nat. Phys. 13, 375
(2017)]. These states were seen in systems of colloidal microrollers; microrollers are
colloidal particles which rotate about an axis parallel to the floor and generate strong,
slowly decaying, advective flows. To understand these bound states, we study a simple, yet
rich, model system of two microrollers. Here we show that pairs of microrollers can exhibit
hydrodynamic bound states whose nature depends on a dimensionless number, denoted
B, that compares the relative strength of gravitational forces and external torques. Using
a dynamical system framework, we characterize these various states in phase space and
analyze the bifurcations of the system as B varies. In particular, we show that there is
a critical value, B∗, above which active flows can beat gravity and lead to stable motile
orbiting, or “leapfrog,” trajectories, reminiscent of the self-assembled motile structures,
called “critters,” observed by Driscoll et al. We identify the conditions for the emergence
of these trajectories and study their basin of attraction. This work shows that a wide
variety of stable bound states can be obtained with only two particles. Our results aid
in understanding the mechanisms that lead to spontaneous self-assembly in hydrodynamic
systems, such as microroller suspensions, as well as how to optimize these systems for
particle transport.

DOI: 10.1103/PhysRevFluids.4.044302

I. INTRODUCTION

Synchronization [1,2] and collective motion [3–5] are well documented in the literature on
active and driven suspensions at low Reynolds number. The strong, slowly decaying, flow fields
induced by the motion of small objects immersed in a viscous fluid play a predominant role in the
emergence of coherent structures. Turbulent-like flows in bacteria and sperm suspensions [6–9] and
phase synchronization between flagella [10] are illustrative examples in natural systems. Colloidal
particles have been designed to mimic the behavior of natural systems at both the individual
and collective levels [11,12] and also to explore alternative ways to mix the surrounding fluid
or to transport particles at low Reynolds number [13–15]. In particular, recent experiments and
simulations have shown that suspensions of torque-driven particles above a floor could self-assemble
into stable motile structures, called “critters,” that have no analog in natural systems [16]; see
Fig. 1. While it is clear that long-ranged hydrodynamics play a leading role in this phenomenon, the
conditions for this spontaneous self-assembly must be identified.

The physics of torque-driven colloidal particles (called microrotors) have recently attracted
significant attention [13,15,17]. Microrotors can be driven with an external rotating magnetic field
[16,18], or by using a Quincke-like instability under the action of an electric [19] or magnetic field
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FIG. 1. Left: Detachment of self-sustained motile clusters made of hundreds of microrollers, called critters.
Particles are colored according to their translational speed. Right: Cross section of the flow field in the frame
of a moving critter in the xz plane. Black circles correspond the particles in the critter. Cyan crosses are
stagnation points of the flow. The green line with arrows delimits the recirculation zone where the particles
perform a treadmilling motion. The black line with arrows indicates the counter-rotating recirculating flow
above the critter. Colorbar is magnitude of the flow field.

[20]. Despite their apparent simplicity, microrotors can lead to complex and interesting dynamics
at the collective level. Microrotors can be divided into two categories: (1) microspinners, which
rotate in the absence of boundary or with an axis of rotation perpendicular to the interface, and (2)
microrollers, which rotate about an axis parallel to the boundary (without necessarily touching it)
and thus translate due to the asymmetric stress distribution on their surface. Previous studies have
shown that microspinners can phase separate [21], mix the surrounding medium [22], and arrange
into large-scale rotating structures [13,20]. In proximity to the floor, suspensions of microrollers
form traveling waves [19,23] and shocks [16,23] that can destabilize into finger-like structures
whose dense tips detach and self-assemble into stable motile clusters, called critters [16] (cf. Fig. 1).
While the hydrodynamic mechanisms for the shock formation and fingering instability are well
understood [23,24], the conditions for the detachment of fingertips and their self-assembly into
stable motile structures are not well identified. From a dynamical systems point of view, these
critters could be viewed as an attractor whose existence and basin of attraction depend on the
parameters of the system. Our goal here is to find the relevant parameters of the system to identify
the conditions for the existence and stability of such hydrodynamic bound states.

Hydrodynamic bound states of active particles have been observed in various forms [1,17,25].
At the individual level, sperm cells and bacteria swim in circles near boundaries [26–28], while
biflagellate microorganisms and other model swimmers can be trapped [29–31] or perform periodic
vertical motion [32–35]. At the collective level, Martinez-Pedrero et al. [36] showed that the
lateral flows generated by heavy microrollers can form horizontal one-dimensional arrays of aligned
particles.

Here we propose a dynamical systems approach to study the motion of pairs of microrollers in
a viscous fluid, i.e., at low Reynolds number. The dynamics of coplanar neutrally buoyant point
microspinners (rotlets) in an unbounded fluid has been studied theoretically [37–39]. A rotlet in an
unbounded fluid generates an axisymmetric flow field decaying as ∼1/r2 [see Fig. 2(a)]. Due to the
rotational symmetry of the system, two corotating particles with the same torque, τ , always exhibit
neutrally stable periodic trajectories regardless of their separation distance, r. The rotation period
of these trajectories, TR, can be computed analytically and is given by

TR = 16πηr3

τ
, (1)

where η is the dynamic viscosity of the suspending fluid, and τ is the magnitude of the torque
applied to the corotating particles. When a no-slip boundary is added to the system, the rotational
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(a) (b)

FIG. 2. Flow field u around a point torque (rotlet), (a) in an unbounded fluid and (b) in a half-space bounded
by a no-slip wall. The decay of the flow fields is provided in the insets. The inset in panel (b) shows the flow
magnitude along the x direction at z = h (solid line) and along the z direction at x = 0 (dashed line). Cross,
location of the rotlet; cyan lines, streamlines; colorbar, log |u|. The thick line in panel (b) delimits the region
of closed streamlines, while the dotted line indicates the contour uz = 0. x∗

12 is the separation distance where
uz = 0 at z/h = 1.

symmetry is broken. The decay of the flow field is asymmetric and scales as r−3 in the far field [see
inset of Fig. 2(b)]. In addition, the presence of the wall divides the flow around a rotlet into two
regions: a recirculating region with closed streamlines around the particle, and another with open
streamlines [see Fig. 2(b)]. The size of this recirculating region, in the vertical plane that contains
the rotlet center, scales linearly with the height above the floor h (perimeter ≈ 7.1h, area ≈ 3.7h2).

Given the qualitatively different flow field induced by the wall, can we then expect to observe
periodic states as in the unbounded case? And, if so, under which conditions? In a more realistic
case, how do gravity and finite particle size affect the dynamics of the system?

A description and the governing equations of the dynamical system is given in Sec. II. We
consider both a simple far-field model using rotlets, as well as a more realistic model that includes
gravity, the finite size of the particles and steric repulsion. We study the equilibrium configurations
of these systems and their stability in Sec. III. In particular we identify the conditions for the
emergence of periodic “leapfrog” trajectories, reminiscent of the particle motion observed in the
critters. Finally, we conclude and discuss how these results may be extended to study the dynamics
of a large collection of microrollers at the continuum level in Sec. IV.

II. DESCRIPTION OF THE DYNAMICAL SYSTEM

A. System and equations of motion

We consider two spherical particles, with radius a, mass m, and coordinates (xi, yi, zi ), i = 1, 2,
where y1 = y2, above a no-slip boundary located at z = 0. Each particle is subject to an external
torque τ = τ1 = τ2 along the y axis. External forces in the xz plane are written as 2 × 1 vectors:

Fi =
[

F x
p,i

F z
p,i + Fg,i + Fw,i

]
, i = 1, 2, (2)

where Fp is the interparticle contact force, Fw is the particle-wall contact force, and Fg is the
gravitational force. Vector components are indicated with superscript Latin letters (x or z). Since
the particles are coplanar, their transverse velocity (in the y direction) is zero. See Fig. 3(a) for a
sketch of the system.
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(a) (b)

FIG. 3. (a) Schematic of the system: two particles with radius a rotate under the action of an external torque
τ in a viscous fluid with viscosity η. They are subject to gravity and interparticle (Fp) and particle-wall (Fw)
contact forces. (b) Flow field around a torque driven a particle of radius a normalized by the self-induced
velocity v0, obtained with a high-accuracy numerical method [16,40]. Blue particles represent two different
situations where torque-driven flows can counterbalance or beat gravity to lead to a hydrodynamic bound state.
Ug is the self-induced velocity due to gravity, and Uτ is the velocity induced by the torque acting on the black
particle.

Using the translational invariance of the system along the x axis, one can write the reduced
equations of motion for the state vector x = (x12, z12, zC ):

ẋ =
⎡
⎣ẋ12

ż12

żC

⎤
⎦ = τ

η
μUτ + 1

η
MUF ·

[
F1

F2

]
= G(x), (3)

where x12 = x1 − x2, z12 = z1 − z2 are the relative positions, and zC = (z1 + z2)/2 is the height of
the center of mass. μUτ is a 3 × 1 vector of scalar mobility functions that relate the torque applied on
the particles along the y axis, τ , to the translational speed of the system ẋ. MUF is the 3 × 4 mobility
matrix that relates the forces applied on the particles Fi to the translational speed of the system ẋ.
μUτ and MUF contain the self-induced effects as well as hydrodynamic interactions between the
particles. These functions depend exclusively on the geometric parameters of the system: x and a.
The RHS of Eq. (3), G(x), can be seen as a vector field that depends on the state vector x.

B. Far-field approximation: Rotlets

In the far field limit, i.e., when the particles are far apart from each other and far form the floor,
the particles can be modeled as point torques (a = 0), called rotlets. Using the rotlet image system
above a no-slip boundary from Blake and Chwang [41], we derive simple analytic formulas of the
mobility functions in terms of the state vector x. In the absence of external forces (F1 = F2 = 0),
Eq. (3) reduces to a simple expression:

ẋ =
⎡
⎣ẋ12

ż12

żC

⎤
⎦ =

⎡
⎢⎢⎢⎣

2z12
(

1
r3

12
− 1

R3
12

+ 3 x2
12

R5
12

)
2x12

(
1

R3
12

− 1
r3

12
+ 12 z2

C

R5
12

)
6 x12z12zC

R5
12

.

⎤
⎥⎥⎥⎦ = Grotlet(x), (4)

where r2
12 = x2

12 + z2
12 and R2

12 = x2
12 + 4z2

C . Here length and time have been nondimensionalized by
the initial height of the system lc = z0

C = zC (t = 0) and tc = ηl3
c /τ respectively. Since the rotlets

cannot cross the floor, the admissible phase space is bounded by the planes z12 = ±2zC . As follows
from Eq. (4), this constraint is automatically satisfied since ż12 = ±2żC when z12 = ±2zC .
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C. Particles with finite radius

When the interparticle or particle-wall distance is of the order of the particle radius, a, the finite-
size effects must be included. We account for these effects by using the Rotne-Prager-Yamakawa
mobility [42,43] with wall corrections derived by Swan and Brady (see Appendices B and C
in Ref. [44]). To obtain an equation in the form of Eq. (3), we rearrange the formulas from
Refs. [42–44] in terms of x = (x12, z12, zC ) and a. As shown in Fig. 3(b), spheres of radius a rotating
above a floor translate with a self-induced horizontal velocity v0, which, to leading order, scales as
(a/h)4 (see Ref. [44]), while rotlets do not have a self-induced velocity.

After nondimensionalizing Eq. (3) with lc = a and tc = ηl3
c /τ , we obtain [45]

ẋ =
⎡
⎣ẋ12

ż12

żC

⎤
⎦ = μUτ + B−1MUF ·

[
F1

F2

]
, (5)

where B = τ/(mga) is a dimensionless number that compares the strength of gravity with external
torques. In the limit B → 0, the dynamics is mainly dictated by gravity, while when B → ∞ the
system is dominated by the torque-driven flows. B can be seen as the ratio of the self-induced
velocity due to gravity and the velocity induced by the torque acting on another particle [see
Fig. 3(b)]: B = Uτ /Ug where Uτ ∼ τ/ηa2 and Ug ∼ mg/ηa. When B � 1, the upward torque-
induced flows can counterbalance or overcome gravity and lead to hydrodynamic bound states.
If one assumes a critter-like structure with typical size L, B can also be defined as the ratio of two
characteristic times: B = tg/tτ where tg = L/Ug ∼ Lηa/mg is the characteristic time for a particle
to fall across and exit the critter, and tτ ∼ L/Uτ = Lηa2/τ is the “overturn” time, i.e., the time
for a particle to travel the perimeter of the critter. So a particle is more likely to stay in the critter
when tτ � tg, that is, when B � 1. Note that the nondimensionalization in Eq. (5) works only for
the gravity forces and not for the contact forces introduced in Eq. (2). As explained below, contact
forces are just used to prevent particle overlaps near contact, they do not physically matter as long
as they remain short-ranged. If one accounts only for gravity, then the force vector on the right-hand
side of Eq. (5) simply becomes [F1, F2]T = [0,−1, 0,−1]T .

In this work, we want to focus only on the effect of B on the system. Here the goal of repulsive
contact forces is to prevent overlaps while having as little influence as possible on the dynamics of
the system. We therefore chose to use extremely short-range repulsive forces; in practice, we model
contact forces with an exponentially decaying repulsive potential of the form [46]

U (r) =
{

U0
(
1 + d−r

b

)
if r < d,

U0 exp
(

d−r
b

)
if r � d.

(6)

For particle-particle interactions, r is the center-to-center distance and d = 2a. For particle-wall
interactions, r is the height of the particle center and d = a. The energy scale U0 and interaction
range b control the strength and decay of the potential, respectively. We found that taking U0 =
max(3mga/2, τ/20) and b = 0.025a prevents particle-particle and particle-wall overlaps while
keeping close contact.

Since spheres cannot overlap each other or the wall, the admissible phase space is bounded by
the planes zC = a, z12 = ±2(zC − a) and the cylinder x2

12 + z2
12 = 4a2. This region is discretized

using a polar cylindrical mesh. The vector field G(x) [Eq. (3)] is evaluated at the mesh nodes and
streamlines, i.e., trajectories, are analyzed.

III. DYNAMICS IN PHASE SPACE

In this section we analyze, numerically and analytically, the trajectories and their stability in
phase space. First, we consider the limit B → ∞, where the system is driven only by active flows.
Then we study the evolution of the attractors and limit cycles of the system as B varies. We show that
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the system undergoes various bifurcations and that periodic orbits can be obtained above a threshold
value B > B∗.

A. Neutrally stable states: B → ∞
When B → ∞ the particles can be considered as neutrally buoyant, thus the dynamics of the

system is driven only by the active flows induced by the external torque. Below we analyze the
resulting neutrally stable states and compare the rotlet solutions with the finite sphere solutions.

1. Rotlets

The trajectories of the autonomous dynamical system (4) are highly sensitive to initial conditions.
The upper and lower panels in Fig. 4 show an example for two rotlets initially placed at the same
height: z0

12/z0
C = 0. When their initial separation distance is x0

12/z0
C = 2.356, the rollers exhibit a

periodic leapfrog motion, while a small increment, x0
12/z0

C = 2.356 + 0.001 = 2.357, leads to a
diverging trajectory. The critical separation value x∗

12 for two particles at the same height is given by

ż12 = 0 ⇒ 2x12( 1
R3

12
− 1

r3
12

+ 12 z2
C

R5
12

) = 0 ⇒ x∗
12/z0

C = ±2.356927998 [see Fig. 2(b)] [47]. As shown

in the lower and upper panels of Fig. 4, when x12 > x∗
12, the rear particle heads downward and the

front particle is lifted upward. Such a situation is unstable and leads to a diverging trajectory. When
x12 < x∗

12, the rear particle goes up and the front particle goes down, which then leads to a periodic
leapfrog motion.

Figure 4 shows the trajectories in phase space (x12, z12, zC), rescaled by the initial height z0
C ,

for various initial separations (x0
12/z0

C and z0
12/z0

C), colored by period of rotation. Contrary to the
unbounded case [Eq. (1)], the period of rotation no longer scales with r3 because of the loss of
symmetry in the system, but, as shown in the inset, seems to follow a cubic scaling with the
maximum horizontal separation. The phase space exhibits a discontinuous transition between the
region of neutrally stable states and unstable trajectories. This discontinuity is purely hydrodynamic
in origin and is related to the geometry of the flow field [Fig. 2(b)]: any trajectory that passes
through a point with coordinates (|x12|/z0

C < x∗
12, 0, zC/z0

C = 1) is neutrally stable and periodic; in
other words, every time the particles reach the same height their separation distance must be less
than x∗

12 to remain in a periodic hydrodynamic bound state. If the particles never reach the same
height, then the trajectory diverges. Note that this system exhibits a phase space similar to the
well-known pendulum without friction [48,49], except that the neutrally stable trajectories do not
replicate periodically in phase space.

2. Torque-driven spheres

Similarly to a rotlet, a torque-driven sphere, with radius a, above a floor generates a recirculating
region whose size depends on h/a [cf. Fig. 1(c) in Ref. [16]]. Figure 5 shows the trajectories of
spheres colored by type and rescaled by a. As shown in the inset, at large distances, the behavior of
the system is similar to the pair of rotlets: when rescaling lengths by z0

C instead of a, the trajectories
collapse as in Fig. 4. However, finite-size corrections are perceptible closer to the wall. In addition
to the leapfrogging trajectory (orange), a qualitatively different periodic trajectory appears (red) for
zC < 2a. The new periodic trajectory corresponds to a vertical oscillation of the translating pair of
microrollers. Without the self-induced velocity due to the finite size of the spheres, this trajectory
would diverge.

B. A rich phase space for a simple system: 0 < B < ∞
As seen in the previous section, when B → ∞, all the periodic trajectories are neutrally stable;

there is no attractor in the system. In the opposite regime, B = 0, the system is exclusively driven
by gravity, and there are infinitely many sinks with coordinate zC = zeq

C , where zeq
C is the equilibrium
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(b)

(a)

(c) time

FIG. 4. (a) Trajectories of two rotlets in phase space for B = ∞ colored by their period TR. Gray trajectories
diverge. The black circles represent the points (x∗

12/z0
C = ±2.356927998, z12/z0

C = 0, zC/z0
C = 1) that lie on

the separatrix between neutrally stable and unstable states. Inset: Period of trajectories as a function of the
maximum horizontal separation; the dashed blue line is a fit: TR ∼ max(x12/z0

C )3. (b), (c) Trajectories in
physical space chosen in the vicinity of x∗

12 (x0
12/z0

C = 2.356 and x0
12/z0

C = 2.357, respectively).

value of zC obtained by balancing gravity and contact forces with the floor. zeq
C = a for a hard-sphere

potential and zeq
C ≈ 1.1a for our repulsive potential (6).

Between these two limits, the landscape of the phase space evolves between six regimes:
(1) B < 11.1: two sinks [Fig. 6(a)]
(2) 11.1 < B < 12.8: one limit cycle + two sinks [Fig. 6(b)]
(3) 12.8 < B < 59.5: one limit cycle + two spiral sinks [Fig. 6(c)]
(4) 59.5 < B < 77: one limit cycle + four spiral sinks [Fig. 6(d)]
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0 2 4-2-4-2

0

2

FIG. 5. Trajectories of two spheres of radius a in phase space rescaled by a for B = ∞. Trajectories colored
by type of periodic motion. Orange trajectories, leapfrog motion; red trajectories, vertical periodic oscillations.
Gray trajectories diverge. Inset: Trajectories rescaled by the initial height of the system z0

C .

(5) 77 < B � 95.5: three limit cycles + two spiral sinks [Fig. 6(e)]
(6) 95.5 < B < ∞: one limit cycle + two spiral sinks [Fig. 6(f)]
Figure 6 shows the phase space for the six regimes. Trajectories are colored according to the

basin of attraction to which they belong.
Below we identify the fixed points and limit cycles of these regimes and analyze their evolution

as B varies.

1. Leapfrog (LF) orbits

Unlike neutrally buoyant particles, the existence of leapfrog (LF) trajectories depends not only
on the initial particle positions but also on the competition between gravity and torque-driven flows.
This competition defines a critical value, B∗, above which active flows overcome the effect of gravity
and a leapfrog trajectory appears [see Fig. 3(b)]. This discontinuous transition is shown in Fig. 6(b)
as the appearance of the orange trajectories that converge to the leapfrog limit cycle (thick black
line). The leapfrog trajectory is a unique limit cycle that appears at B∗ = 11.7 and whose basin of
attraction increases with B. Figure 7 shows the evolution of the leapfrog trajectories as B increases.
When B = B∗ = 11.7, active flows are just strong enough to overcome the delaying effect of gravity
[cf. Fig. 3(b)], as shown by the shape of the trajectories. As B increases, the period of the orbit
decreases and the motion becomes circular.

The leapfrog orbit is reminiscent of the periodic treadmilling motion followed by the microrollers
that self-assemble into critter (Fig. 1). Therefore, for a given particle size and mass, these results
indicate that critters can appear only above a threshold value of the external torque, which is also
suggested by our previous experimental observations and numerical simulations [16,46].

Various parameters can be changed in the experiments to vary B, for example, particle size,
magnitude of the external torque, and particle mass. We will explore these directions in the near
future to better understand how the critter state emerges and how it can be controlled.
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B = 3.6

B = 11.7

B = 58.6

B = 59.5

B = 91.3

B = 180.3

: Sink : Spiral sink : Limit cycle

(a)

(b)

(c)

(d)

(e)

(f)

+

+

+ +

+

+ +
LF

LF

LF

LF

LF

FIG. 6. Trajectories of two particles in phase space for finite values of B. Black circle, fixed points
(sinks); black trajectories, limit cycles. Each color corresponds to different basin of attraction: blue and green
trajectories are attracted to the fixed points x±

1 ; orange trajectories converge to the leapfrog (LF) limit cycle;
red and magenta trajectories are attracted to the fixed points x±

2 , which undergo a Hopf bifurcation at B = 77.

2. Surviving sinks x±
1

Two symmetric sinks survive for all values of B ∈ [0; ∞[, these are indicated in Fig. 6 by the
black circles close to the cylinder delimiting the excluded volume region. As shown in Fig. 8(c),
these fixed points, with coordinates x±

1 = (±2.95a, 0, zeq
C ), correspond to a stable state where the

particles are sedimented near the floor and translate at the same height with a constant separation
distance (x12 = ±2.95a). To study the stability of these fixed points, we linearize Eq. (3) about x±

1 :

δẋ1 = ∇G(x±
1 ) · δx1, (7)
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FIG. 7. Leapfrog trajectories for B = 11.7 − 500, where B∗ = 11.7 is the critical value.

where δx1 = x − x±
1 . Note that ∇G(x±

1 ) is expressed analytically as a function of B and the contact
force parameters. As mentioned in Sec. II C, the contact force parameters are chosen to minimize
their influence on the trajectories of the system. The three eigenvalues and eigenvectors of ∇G(x±

1 )
are then computed.
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0
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FIG. 8. Characterization of the surviving sinks x±
1 . (a) Eigenvalues λ1,2,3 of ∇G(x±

1 ) vs B (cf. Eq. 7). Each
color represents a different eigenvalue, (b) Linearized trajectories in the vicinity of x±

1 colored by the value of
B. Black circle: position of x±

1 , and (c) Examples of trajectories converging to x±
1 in physical space.
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Figure 8(a) shows the real and imaginary part of each eigenvalues for B = 1 − 500. First, we
note that all eigenvalues have negative real parts, confirming that this is a stable fixed point. We
also observe a bifurcation from zero to nonzero (conjugate) imaginary parts at B = 12.8, where x±

1
becomes a spiral sink. Figure 8(b) shows the corresponding linearized trajectories in phase space
in the vicinity of x±

1 for B = 1 − 500. Below the threshold value B = 12.8, the system relaxes
exponentially to the fixed point. As B increases, the active flows get stronger and the trajectories
oscillate towards x±

1 [see third and fourth panels in Fig. 8(c)]. Note that x12 is the slowest degree of
freedom, which is intuitive since gravity tends to stabilize z12 and zC first. Once z12 and zC are close
to their equilibrium value, the only nonzero component of the vector field is the first component, Gx,
along the x12 axis. Gx(x12, 0, zeq

C ) is very small and has only one zero at x12 = ±C. Therefore, when
a pair of particle settles to the floor, i.e., when z12 → 0 and zC → zeq

C , it moves slowly in phase space
along the x12 axis towards x±

1 [see Figs. 8(b) and 8(c)]. Thus, compared to the other fixed points, x±
1

has the largest basin of attraction.

3. Hopf bifurcation at x±
2

When B = 59.5, two additional symmetric spiral sinks, x±
2 , appear in the system. In this situation,

the active flows are strong enough to counterbalance gravity and maintain a stable configuration
where one particle, at the front, is lifted by the other one that is closer to the floor [see Fig. 3(b) and

60 65 70 75 80 85 90 95
B

-1.5

-1

-0.5

0

0.5

1

1.5

2

λ

|Im(λ1,2)|
Re(λ1,2)
λ3

B = 77

Hopf bifurcation

Spiral sinks Limit cycles
53

4

x12/a

3.5

z C
/a

5

z12/a

4

34

3
60

65

70

75

80

85

90

95
B

B ≈ 77B = 95

B = 59.5

B = 59.5

B = 77

B = 92

0 20 40 60 80 100
0
5 B = 100

(c)

(a) (b)

FIG. 9. Characterization of the Hopf bifurcation at the fixed points x±
2 . (a) Eigenvalues λ1,2,3 of ∇G(x±

2 )
vs B. Black lines: conjugate complex eigenvalues λ1,2. Blue line: real eigenvalue λ3, (b) Linearized trajectories
in the vicinity of x±

2 colored by the value of B. Circles: position of x±
2 , and (c) Examples of trajectories in the

vicinity of x±
2 in physical space.

044302-11



BLAISE DELMOTTE

first panel in Fig. 9(c)]. But as B increases, gravity is weaker and loses its role of stabilizer, which
leads to the appearance of a limit cycle at B = 77. As B increases further, the limit cycle grows
and disappears for B > 95.5 [see Fig. 9(c)]. We carry out a linear stability analysis of the system
in the vicinity of x±

2 . The eigenvalues of ∇G(x±
2 ), plotted in Fig. 9(a), show that the linearized

system undergoes a Hopf bifurcation at B = 77: the real part of the complex conjugate eigenvalues
becomes positive, which corresponds to the birth of a limit cycle in the nonlinear case. Linearized
trajectories in the vicinity of x±

2 are shown in Fig. 9(b). Contrary to x±
1 , the coordinates of x±

2
change with B. In particular the height of the center of mass zC increases from 2.68a to 3.92a, and
the vertical separation z12 increases from 2.75a to 5.17a. As illustrated by the first and second panel
of Fig. 9(c), when B increases, active flows become stronger compared to gravity and therefore
increase the equilibrium height of the front particle, while the rear particle remains approximately
at a constant height of 1.3a.

It is important to mention that these trajectories are purely hydrodynamic in origin. The particles
never touch each other or the wall; thus our results do not depend on the details of the contact
forces.

IV. CONCLUSIONS AND DISCUSSION

We have analyzed the phase space of a simple dynamical system: two coplanar microrollers
above a no-slip boundary. We use this elementary model as the starting point to identify the
conditions for the spontaneous self-assembly of microrollers into stable motile structures. Despite
its apparent simplicity, we find that this system exhibits a wide variety of complex behaviors that
are controlled by a dimensionless parameter B, which compares the external torque to gravity. In the
limit B → ∞, active particles are neutrally buoyant and the phase space is divided into two regions:
a region with neutrally stable periodic leapfrog trajectories, and a region of diverging trajectories.
Leapfrog trajectories can be obtained only when particle reach the same height with a separation
distance below a threshold value x∗

12.
For finite values of B, the system exhibits various attractors whose existence and stability

depend on B. In particular, the leapfrog motion exists only above a critical value B∗, for which
active flows can overcome gravity. This leapfrog motion is a unique limit cycle whose basin of
attraction increases with B. Even though our hydrodynamic interactions are not fully resolved and
overestimate particle mobilities, we conjecture that more resolved solutions would not affect the
existence of this threshold value, but only shift B∗ to a higher value. Leapfrogging motion of pairs
of particles has been observed in previous experiments with dilute suspensions of microrollers [23]
and is thought to be at the origin of the self-assembly into critters.

We have also discovered the existence of an another stable state at B = 59.5, where a particle at
the rear lifts another particle up at the front. This fixed point undergoes a Hopf bifurcation at B = 77
and then disappears at B = 95.5. The existence of this fixed point is also of importance since, before
self-assembling into critters, microrollers at the front are lifted up the floor by the others at the rear.

Given its simplicity and rich behavior, this system could be used as an introduction to dynamical
systems and fluid dynamics in a textbook at the (under-)graduate level. The visual nature of the
results and their strong connection to experiments, simulations, and current state-of-the-art research
provide a potentially useful tool for science outreach. A model experiment can be implemented with
two magnetic particles driven by a coil in a small chamber. However, one needs to make sure that
interparticle magnetic interactions remain weak compared to hydrodynamic forces (small Mason
number). This can be achieved with the particles used in our prior work [16] or with polystyrene
Janus particles half-coated with a very thin layer of nickel (∼10 nm) [50].

So far we have focused only on the limit of large Péclet number (Pe → ∞), where thermal
diffusion can be neglected compared to convection. At finite Pe, two dimensionless numbers can be
defined in the system: the Péclet number, Pe = Ua/D = Uηa2/kBT = τ/kBT , where U = τ/ηa2

is a typical advective velocity induced by the external torque, kB is the Boltzmann constant, and T
the solvent temperature, and the gravitational height hg that balances gravity with thermal diffusion:

044302-12



HYDRODYNAMICALLY BOUND STATES OF A PAIR OF …

hg/a = kT/mga (note that Pe × hg/a = τ/mga = B). At finite Pe, the motion of the microrollers
is given by the overdamped Langevin equations, which require specific time-integration scheme
[51–54]. Using our computational tools [46], we will study the effect of Pe and hg on the trajectories
in phase space in the near future. In particular, it will be interesting to evaluate the robustness of the
fixed points and limit cycles versus noise.

In this work we have chosen to focus only on two coplanar particles for two reasons. First,
translational invariance permits a description of the system with only three degrees of freedom.
The three-dimensional phase space can therefore be visualized and analyzed easily. Second, we are
mostly interested in the height dynamics of the system and not in the transverse motion, which we
have already analyzed in previous work [16,24]. Considering transverse motion along the y direction
adds one more equation in Eq. (3) and adds one more dimension to the phase space.

In our large-scale simulations and experiments [16], the critters are made of hundreds or
thousands of microrollers. The number of degrees of freedom, i.e., the dimension of the phase
space, for N particles in the xz plane is N (N − 1) + 1. Detecting and identifying all the fixed
points and limit cycles in such high dimensions is not tractable nor is it useful. Instead of adding
more and more particles to our dynamical system (3), we plan to study microroller suspensions
and self-assembly in the continuum limit. We will rely on the formalism developed in Ref. [23]
to derive a conservation equation for the number density of microrollers, where the advective
fluxes are evaluated using convolution integrals with a hydrodynamic interaction kernel and the
number density everywhere in the domain. These hydrodynamic interaction kernels are directly
obtained from the mobility functions [41–44] and therefore account for the finite particle size.
Solving the conservation equation numerically (e.g., using a high order finite-volume scheme),
we will determine the influence of B on the dynamics and on the steady-state structures of the
system in two and three dimensions. Once a steady-state structure is found, its stability will be
analyzed numerically and analytically. As shown by our previous work [16], critters can be used for
guided particle transport, flow generation, and mixing in microfluidic systems. We will use these
theoretical results together with large-scale numerical simulations to optimize the critters generated
in experiments.
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