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In numerical simulations with highly turbulent flows, the smallest scales are filtered;
thereby, the effects of intermittency on those scales are neglected. When the flow is loaded
by heavy small particles, the decimation of rapid changes in the velocity may lead to
wrong results. This paper provides an approach to take account of subfiltered events of
strong velocity jumps on the motion of heavy small particles. The idea is to force the
filtered Navier-Stokes equations by a stochastic acceleration term with statistical properties
identified by experiments and DNS. To this end, the stochastic model for supplemented
acceleration contains the lognormal stochastic process for its norm (with long-range
correlations) and the new stochastic model for the acceleration direction (with short-
range correlations). The latter represents the Ornstein-Uhlenbeck process in Cartesian
coordinates with relaxation to the local direction of the resolved vorticity; thereby, the
geometry of highly stretched vortical structures is introduced in the designed model. Both
stochastic processes depend on the local Reynolds number. The proposed flow model is
applied for simulation of the background turbulence in which heavy particles are released
and tracked. The assessment of single and two-time statistics of the particle acceleration
and velocity clearly illustrates the advantage of the proposed flow model.
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I. INTRODUCTION

Often in nature and industrial applications, the solid particles, or droplets, are transported
and dispersed by the carrier fluid. In numerical simulations of such two-phase flows, we need
to characterize interactions between particles and flow. In most cases, the carrier fluid is highly
turbulent. A particular interest in turbulence is the phenomenon of intermittency. The presence of
very strong jumps in the velocity records is a manifestation of this phenomenon. According to the
analysis [1–6] of experimental and numerical datasets, these jumps, of the order of rms velocity,
are associated with the appearance in the flow of thin and very intense vortical structures, called
“worms.” Such worms persist in time, and contribute to the non-Gaussian statistics of Lagrangian
dynamics at small time lags. For large Stokes numbers, the particle response time is large, and the
intense but very short-lived fluid solicitations are not of crucial influence on the particle motion
[7]. However, at moderate Stokes numbers (examples include direct injection motors, dust/sand
storms, pollutants and particulates in turbulent atmosphere), the particle responds to velocity jumps
in the carrier flow, and this may play an important role on the particle dynamics. For example,
in spray combustion, the vaporizing droplets, subjected to intense accelerations, may provoke
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instants when the flame is extinguished. The problem is that in numerical simulations, the scales
on which the mentioned above velocity jumps may occur, are usually filtered. Consequently, the
computed fluid acceleration becomes under-resolved. This is seen from the following estimation.
The acceleration on filtered scales is of the order of (akak )1/2 ≈ u2

�/�, where the filtered increment
of velocity, u2

� ≈ (〈ε〉�)2/3, is defined by filtered viscous dissipation 〈ε〉 and the filter width � in
the inertial interval L � � � η. The acceleration on residual scales can be expressed in turn as
(a′

ia
′
i )

1/2 ≈ v2
η/η, where the Kolmogorov velocity is v2

η ≈ (〈ε〉η)2/3. Then it is seen that for the high
Reynolds number Ret = σuL/ν, the discarded acceleration on residual scales may be significantly
greater than the filtered one: (a′

ia
′
i )/(akak ) ≈ (�/η)2/3. Here L is the integral scale, σu denotes the

root-mean-square velocity, ν is the viscosity, and η is the Kolmogorov scale. From the other side,
alternatively to LES approaches, there are also statistical mean-field models of flow, developed along
with RANS approaches, such as the method of transported probability density function (PDF) [8].
The latter was further extended for simulation of polydispersed two-phase flows (useful reviews are
provided in Refs. [9,10]). Nonetheless, accounting in this approach for intermittency effects, and in
the framework of interaction with an inertial particle, is a difficult task.

Our objective in this paper is to assess a simple flow model in which the occurrence of intense
acceleration events on residual scales is accounted for in the dynamics of heavy, but small particles
(of few μm size), released and tracked in the background turbulence. The approach represents the
further development of our previous work [11,12], in which the filtered Navier-Stokes equations
were supplemented by the stochastic acceleration on residual scales. The stochastic model for
this acceleration was deemed to represent the statistical properties from experimental observations
[13–15]. This approach was referred to as LES-stochastic subgrid acceleration model (SSAM).
Namely, along with the lognormal stochastic process for the norm of the residual acceleration,
the direction of the latter was simulated as a random walk: The new acceleration direction was
sampled randomly after each passage of the Kolmogorov time τη. In Ref. [16], LES-SSAM was
extended for the channel flows, with and without heavy particles. Here again the random walk
model was employed for direction of the residual acceleration: the direction was defined by random
positions, spreading progressively on the unit sphere by the Wiener process, with τ−1

η as the
diffusion coefficient. The incompleteness of random walk models for the acceleration direction
is as follows. As time advances, the change of the acceleration vector has a typical correlation
timescale determined by the autocorrelation function. The DNS and experiments show that this
typical timescale is of the order of the Kolmogorov time. However, in the random walk models, the
autocorrelation timescale is not a physical parameter, it goes to zero with reducing the time interval.
This motivates to construct the Ornstein-Uhlenbeck process for the acceleration direction. Recently,
the Ornstein-Uhlenbeck process was designed in Ref. [17] for the direction of a heavy particle
acceleration. Following generalization of the Ornstein-Uhlenbeck process to the spherical case
[18,19], the angular velocity on the unit sphere was simulated in Ref. [17] by the Langevin equation,
evolving the displacement of the unit vector by its cross product with the angular velocity vector; the
latter was stochastically simulated on each time step. We found that for the unit vector components,
this model may often lead to negative or increasing with time autocorrelation functions. Therefore,
our approach here is different. We derived and integrated the stochastic equation directly for the unit
vector components in Cartesian coordinates. Physically, our motivation was to highlight the
geometry of vortical flow patterns, apparently responsible for universality in small-scale turbulence
[20]. To this end, the stochastic equation for the unit vector components was completed by the relax-
ation term towards the direction of the vorticity vector, locally computed in the flow on filtered
scales. This model and the method of the stochastic integration are introduced in Sec. II, and the
details are presented in the Appendix. In Sec. III, we assess the efficiency of the proposed flow
model in prediction of the dynamics of inertial particles suspended in the box turbulence. Namely,
we compared the statistics of the particle acceleration and velocity in the carrier flow obtained
by DNS on N3 = 5123 grid nodes with those statistics when the flow was simulated on a coarse
grid (N3 = 323) by revised LES-SSAM, by LES-SSAM with the random walk model [16] for the
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residual acceleration direction, and by standard LES, alternatively. The particles with the moderate
Stokes number were considered. Section IV represents concluding remarks.

II. REVISED LES-SSAM APPROACH

The LES-SSAM approach is based on the stochastic Navier-Stokes equation, in which along with
the eddy-viscosity term, the stochastic term is included to represent the stochastic acceleration on
residual scales:

∂ ûi

∂t
+ ûk

∂ ûi

∂xk
= − 1

ρ

∂P̂

∂xi
+ ∂

∂xk

[
(ν + νt )

(
∂ ûi

∂xk
+ ∂ ûk

∂xi

)]
+ a∗

i , (1)

∂ ûk

∂xk
= 0. (2)

Here, the pressure P̂ maintains the solenoidality of the instantaneous velocity field ûi, and νt is the
Smagorinsky eddy-viscosity. From experimental studies [13–15] and DNS [21–23], it is known that
the norm and the direction of the Lagrangian acceleration are separated by significantly different
autocorrelation times. The correlation of the acceleration norm is characterized by integral times,
while the acceleration itself is correlated on short times. With increasing the Reynolds number,
the acceleration distribution exhibits heavier tails. The idea in LES-SSAM [12] is to prescribe the
aforementioned statistical properties directly to the forcing term a∗

i . In this way, the stochastic source
term a∗

i was introduced in Ref. [12] as a product of two independent stochastic variables, the norm
of acceleration a∗(t ) and its components of direction ei(t ):

a∗
i = a∗(t )ei(t ), eiei = 1, (3)

i.e., the joint probability density function was represented by the product of marginal probability
density functions: P(a, ei ) = P(a)P(ei ). In the framework of the Kolmogorov-Oboukhov 62 theory
[24], and applying the Ito transformation to the Pope-Chen stochastic equation for viscous
dissipation ε [25], the following lognormal process, correlated on integral times T , was proposed in
Ref. [12] for the acceleration norm:

da∗ = −a∗
(

ln
a∗

aη

− 3

16
σ 2

)
dt

T
+ 3

4
a∗

√
2σ 2

T
dW (t ). (4)

Here, dW (t ) is the increment of standard Brownian process, i.e., 〈dW 〉 = 0, 〈(dW )2〉 = dt , the
dispersion σ 2 depends on the local Reynolds number Re� = νt/ν as σ 2 = μ ln Re3/4

� , and aη =
〈ε〉3/4/ν1/4 is the Kolmogorov acceleration. Additionally, da∗ = 0 and d (a∗)2 = 0. In this paper,
we replace the random walk model for ei(t ), used in previous LES-SSAM [11,12] and [16] by the
new stochastic model. This model is consistent with two physical assumptions.

First, in the framework of the Ornstein-Uhlenbeck process, the new model retains the typical
autocorrelation timescale. In Sec. III, this timescale is supposed to be equal to the Kolmogorov
time τη, in accord with Refs. [13–15]. In Cartesian coordinates, the following form of the Langevin
equation for each component can be written in terms of Ito calculus:

dei = −2T −1
Diffeidt + (δi j − eie j )

√
2T −1

DiffdWj, 〈dWidWj〉 = δi jdt, (5)

where δi j is the Kronecker δ, Wj ( j = 1, 2, 3) represents independent components of the Brownian
vector process, and TDiff is the autocorrelation timescale. Since, to our knowledge, the stochastic
equation for the unit direction vector in Cartesian coordinates and the corresponding simulation
of the Ornstein-Ulhenbeck process are not well explored in the literature, we derived different
equivalent forms of this equation (given in the Appendix) and suggest the method of its integration.
It is seen that Eq. (5) is a nonlinear stochastic ordinary differential equation with multiplicative
noise. It can be shown that this equation preserves the norm ei(t )ei(t ) = 1 at any instant, if initially
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FIG. 1. (a) Results from integration of Eq. (6): PDF evolution in time of the unit vector component (shown
at each 10 time steps) and the autocorrelation function; TDiff = 0.01; number of released stochastic particles
is 10 000; number of time steps 500; the final time is equal to one. (b) Results from integration of Eq. (8):
the PDF evolution in time (shown at each 10 time steps) and the autocorrelation function for the unit vector
component e1; h1 = −0.5; TDiff = 0.1; Trel = 0.01; number of released stochastic particles is 10 000; number
of time steps 500; the final time is equal to one.

that norm is equal to unity, ei(0)ei(0) = 1 (see the Appendix). Since the Stratonovich calculus
enjoins the classical rules of differential analysis, it is easier to integrate Eq. (5) into the framework
of Stratonovich calculus. In Stratonovich sense, the differential dei in Eq. (5) admits the following
equivalent form:

dei =
√

2T −1
Diffεi jkdWj ◦ ek, (6)

where εi jk is the Levi-Civita symbol, and the symbol ◦ denotes Stratonovich calculus. Here
also, multiplying both sides by ei, the right-hand side becomes zero, and hence, d (eiei ) = 0. For
integration of Eq. (5), the midpoint method (see the Appendix) appears to be simple, fast, and
effective. An illustration of this integration—the evolution of PDF of the unit vector component ei

and its autocorrelation function—is show in Fig. 1(a). It is seen that the PDF relaxes progressively
towards the uniform distribution. The second assumption for the stochastic model of direction
concerns its relaxation towards the direction of the locally resolved vorticity vector; thereby, we
try to take into account the geometry of aforementioned vortical flow structures, emphasized in
Refs. [1,2,4], and especially in Ref. [20]. Our DNS confirms this assumption in the following way.
The DNS of turbulence with simulation of fluid particle motion is performed in the periodic cubic
box of size L = 2π m, discretized by 5123 grid points. The numerical approach [26,27] includes
the pseudospectral methods in space; the nonlinear terms are directly solved with the classical
2/3 rule to avoid aliasing errors, and the linear terms are implicitly calculated. The integration
in time is performed by the second order Runge-Kutta scheme. The code was developed and tested
in Ref. [28]. Once the statically stationary state of the turbulence is attained, we subdivide the
computational box into identical cubic cells, of a size greater than the mesh size. For each cubic
cell we form the block direction of the acceleration of fluid particles, located in the considered cell,
and the block direction of the vorticity seen by those particles. Then we compute the correlation
coefficient between these two directions, and we repeat the same procedure for cubic cells of
greater size. For Reλ = 140 in Fig. 2, the correlation coefficient is presented for different sizes
5 � l/η � 120 of cubic cells. The mesh used in LES hereafter corresponds to �/η = 23. It is seen
that starting from the cell size of the order of resolved LES scales, both block directions become
significantly correlated. This implies that the direction of the acceleration averaged over the cubic
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FIG. 2. DNS of box turbulence, Reλ = 140; the correlation coefficient between block directions of
acceleration of fluid particles and vorticities seen by those particles in the block; l/η indicates different sizes of
blocks. θa is the direction angle of the particle acceleration vector and θω is the direction angle of the vorticity
vector seen by the particle.

cell of size of the filter width � tends to be aligned with the block direction of the vorticity seen
by the fluid particles. In this context, we modify Eq. (5) by adding a relaxation term toward the
presumed direction:

dei = −h⊥,iT
−1

rel dt − 2T −1
Diffeidt + (δi j − eie j )

√
2T −1

DiffdWj ; 〈dWidWj〉 = δi jdt (7)

where hi are the components of the presumed direction, thought of in Section III as components
of the resolved vorticity direction; Trel is the typical time of relaxation, and h⊥,i = hi − (h je j )ei

denotes the projection form. In terms of Stratonovich calculus, Eq.(7) has the following form:

dei = −h⊥,iT
−1

rel dt +
√

2T −1
Diffεi jkdWj ◦ ek . (8)

The norm ei(t )ei(t ) = 1 in Eqs. (7) and (8) is also preserved. Using again the midpoint method,
the first term in Eq. (8) can be updated by implicit approximation (see the Appendix). An example
of the PDF evolution in time issued from integration of Eq. (8), where h1 = −0.5 is used, and the
autocorrelation functions are given on Fig. 1(b). As expected, the PDFs evolve in time to the long-
time stationary Gaussian-shape distribution. Equations (1)–(4) and (8) constitute the flow model
referred to as revised LES-SSAM.

According to measurements in Refs. [13–15], the Lagrangian velocity increment is normally
distributed at large time lags, while at small time lags it exhibits the non-Gaussian distribution with
stretched tails. This is the way in which the intermittency in Lagrangian variables is manifested:
The large time lags are associated with the particle velocity, usually conformed to the central limit
theorem, whereas statistics at small time lags represent the acceleration of the particle, a highly
intermittent parameter when the Reynolds number is large. The ability to reproduce these properties
by LES-SSAM for fluid particles is illustrated in Fig. 3. In this figure, we compared numerical
results from DNS, standard LES, LES-SSAM [16] with random walk model for direction of the
residual acceleration (referred hereafter to as LES-SSAMRW), and LES-SSAM revised. In the
latter, T −1

rel in Eq. (8) is thought of as the characteristic rate of strain, resolved on filtered scales,
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FIG. 3. Fluid tracer velocity increments at different time lags in the box turbulence: DNS (—), standard
LES (�); LES-SSAMRW [16] (∗); LES-SSAM revised with Eq. (8) (•); (�) Gaussian fit. PDFs are shifted
toward the lower part with increasing of time lag.

S ≡ (2Ŝik Ŝik )1/2, Ŝik = ( ∂ ûk
∂xi

+ ∂ ûi
∂xk

)/2, and hi in Eq. (8) represents the components of the direction
of the resolved vorticity vector. The PDFs are shifted toward the lower part with increasing of
time lag. The Reynolds number in the background turbulence is Reλ = 140. It is seen that at large
time lags (of the order of 20 Kolmogorov’s times, given here by DNS, as τη = √

ν/〈ε〉 = 0.06 s),
all four approaches display the velocity increment being normally distributed. At smaller time
lags, the velocity increment PDF in DNS develops a growing central peak with progressively

FIG. 4. The autocorrelation function of the fluid particle acceleration in the box turbulence given by
DNS (—), LES-SSAMRW [16] (∗), LES-SSAM revised (•); Reλ = 140. For comparison, the autocorrelation
function of the Lagrangian time derivative of the filtered velocity from LES (- - -) is also presented.
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FIG. 5. Standardized PDF’s of the particle acceleration, St = 0.05, 0.3, 1.0, from DNS (—), standard
LES (- - -), LES-SSAMRW (∗), and LES-SSAM revised (•). (a) Reλ = 140. (b) Reλ = 70.

stretched tails: The small amplitude events alternate with events when the particle is subjected
to intense accelerations. In contrast to the case of standard LES, distributions from LES-SSAM
revised and LES-SSAMRW [16] reproduce those tails. However, using LES-SSAMRW, those tails
become lightly stretched in comparison with distributions from DNS and LES-SSAM revised.
This may result in overestimation of large fluctuations of the inertial particle acceleration. In
Fig. 4, we compare the autocorrelation function of the fluid particle acceleration, ρap (τ ) =
〈ap,k (t + τ )ap,k (t )〉/〈ap,k (t )ap,k (t )〉, in the flow from DNS with the autocorrelation function of
the Lagrangian time derivative of the velocity from LES-SSAMRW, LES-SSAM revised, and
standard LES. It should be noted that this derivative is not the acceleration of fluid particle, and
this comparison takes the formal character. Nevertheless, it is seen that at small time lags (of the
order of Kolmogorov’s time), the computed autocorrelations from both LES-SSAM follow closely
the autocorrelation function of the fluid particle acceleration from DNS. For larger time lags, the
autocorrelations from LES-SSAM move slightly away from DNS, being nevertheless closer to
DNS than the autocorrelation function from standard LES. The stronger resemblance with DNS
of the autocorrelation function from LES-SSAM revised is also seen in comparison with the case of
LES-SSAMRW. The impact of small-scale extreme events (stretched tails in Fig. 3) on the inertial
particle motion is demonstrated in the next section.

FIG. 6. Acceleration variance as a function of the Stokes number in the dimensionless form A0 =
〈a2

p〉〈ε−3/2〉ν1/2; Reλ = 70, 140. Results from DNS, standard LES, LES-SSAMRW, and LES-SSAM revised.
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FIG. 7. (a–c) Distributions of the heavy particle velocity increment at different time lags and different
Stokes numbers: St = 0.05, 0.3, 1.0, from DNS (—), standard LES (�), LES-SSAMRW (∗), and revised LES-
SSAM (•). The background turbulence: Reλ = 140; PDFs are shifted toward the lower part with increasing the
time lag.
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FIG. 8. (a, b) The autocorrelation function of the heavy particle acceleration at the moderate Stokes
number, St = 0.3, 1.0, in the box turbulence given by DNS (—), standard LES (- - -), LES-SSAMRW (∗),
and LES-SSAM revised (•); Reλ = 140. (c) St = 3.0; Reλ = 70.

III. STATISTICS OF HEAVY PARTICLES: ASSESSMENT OF REVISED LES-SSAM

For the test case, we performed DNS of the box turbulence with inertial particles (parameters of
DNS are mentioned in the previous section). The particles were injected when the flow reached its
statistically stationary state. The motion of inertial particle is governed by the Stokes drag force:

dup

dt
= u − up

τp
, τp = ρpd2

p

18ρν
s, (9)

where up, ρp, dp are the particle velocity, density, and diameter, respectively, and u refers to the
velocity of the carrier phase interpolated at the particle position. We compared DNS data with
those numerical simulations when the fluid velocity at the particle position in Eq. (9) is given by
standard LES, by LES-SSAMRW, or by the revised LES-SSAM, alternatively. The moderate Stokes
number is taken: St = τp/τη = 0.05, 0.3, 1, 3.0. Hereafter, TL and τη are the correlation time of
the fluid tracer velocity and the Kolmogorov time, respectively, both computed by DNS. Figure 5
shows the normalized distribution of inertial particles acceleration in the background turbulence
at two Reynolds numbers, Reλ = 70 and Reλ = 140. For both Reynolds numbers, the DNS data
display the broad tails in distributions. These tails are more stretched as the Reynolds number
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FIG. 9. Standardized PDFs of the acceleration norm of the particle at St = 0.05, 0.3, 1.0 from DNS (—),
standard LES (- - -), and LES-SSAM revised (•). Reλ = 140.

is increased. Also, for the decreased Stokes number, the tails are broader, indicating the events
of intense acceleration of the particle in response to strong velocity jumps in the carrier fluid.
This is correctly represented by LES-SSAM revised, whereas distributions, when standard LES
is used, are characterized by significantly reduced tails. It is also seen that using standard LES,
the effect of the turbulent Reynolds number on the particle acceleration is not remarkable. These
distributions are also compared with those from LES-SSAMRW. It is seen that at small Stokes
number, the LES-SSAM with random walk leads to excessively stretched tails in the normalized
distribution of acceleration. We also compared the variance of the inertial particle acceleration
obtained in considered approaches. This is shown in Fig. 6, where for Reλ = 70 and Reλ = 140,
the acceleration variance, as a function of the Stokes number, is given in the dimensionless form
A0 = 〈a2

p〉〈ε−3/2〉ν1/2. It is seen that the particle acceleration variance is better predicted when the
flow is simulated by LES-SSAM revised, in comparison to standard LES, and LES-SSAMRW.
Another demonstration of the efficiency of revised LES-SSAM to take into account the velocity
jumps on the particle motion is given in Fig. 7. Here, using the flow data from DNS, standard
LES, LES-SSAMRW, and revised LES-SSAM, the PDF of the increment of the heavy particle
velocity is compared at different time lags, for Reλ = 140 and for three values of the Stokes number
St = 0.05, 0.3, 1.0. At these moderate Stokes numbers, it is seen from DNS that the particle
responds vigorously to strongest and short-lived fluctuations of the velocity in the carrier fluid. The
strong non-Gaussianity on time lags, of the order of few Kolmogorov’s times, is a manifestation
of such behavior of the particle, to some extent similar to fluid tracer in Fig. 3. As expected, the
tails in the velocity increment PDF are less extended for larger Stokes numbers. These effects are
predicted correctly when revised LES-SSAM is used, whereas in the case of standard LES, the
distribution of the particle velocity increment at time lags of one and five Kolmogorov’s times
remains almost invariant. It is seen also in this figure that at smallest time lags and smallest
Stokes numbers, the contribution of large fluctuations in LES-SSAMRW may be more significant
than in DNS and LES-SSAM revised. When the interval is large enough (20 Kolmogorov’s times
here), the velocity increment distribution is Gaussian in all considered approaches, including the
case of the standard LES. The comparison of the autocorrelation function of the heavy particle
acceleration ρap (τ ) = 〈ap,k (t )ap,k (t + τ )〉/〈ap,k (t )ap,k (t )〉, with ρa(0) = 1 in the carrier turbulent
field from DNS, standard LES, LES-SSAMRW, and LES-SSAM revised is presented in Fig. 8
for St = 0.3, 1, 3.0. Similar to Fig. 4, it is seen that at small time lags, the autocorrelation
function from both LES-SSAM approaches are close to DNS data. For larger time lags, there
is a slight difference with DNS, but the particle acceleration autocorrelation function and the
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FIG. 10. (a, b) The autocorrelation function of the acceleration norm of the heavy particle at the moderate
Stokes number, St = 0.3, 1.0, from DNS (—), standard LES (- - -), LES-SSAMRW (∗), and LES-SSAM
revised (•); Reλ = 140. (c) St = 3.0; Reλ = 70.

autocorrelation time are predicted by revised LES-SSAM better than in the case of LES-SSAMRW.
Although the autocorrelation time is mainly determined here by the Kolmogorov time, it is seen
that with increasing the Stokes number, the particle acceleration is longer correlated: The direction
of the heavier particle, being changed by helical structures, persists for a longer time. On the
other side, the particle with a larger response time is less sensitive to extreme fluctuations of its
acceleration amplitude. This is seen in Fig. 9 for the acceleration norm distributions of the particle
at different Stokes numbers. Here also, contrary to standard LES, the case with LES-SSAM revised
follows mostly the prediction from DNS of strong accelerations events. In Fig. 10, the autocor-
relation function of the particle acceleration norm ρ|ap|(τ ) = 〈|ap(t )||ap(t + τ )|〉/〈|ap(t )|2〉; |a| =√

a2
p,1 + a2

p,2 + a2
p,3 ; ρ|ap|(0) = 1, is compared when the turbulent flow is simulated by DNS,

standard LES, LES-SSAMRW, and LES-SSAM revised. Similar to the observations for fluid
particles, the autocorrelation time of the inertial particle acceleration magnitude is much longer than
the autocorrelation time of the acceleration itself. However, the particle response to the short-lived
strong fluid solicitations has lesser magnitude for a heavier particle, and thereby the magnitude is
probably less correlated for that particle. The DNS data, standard LES, and LES-SSAMRW show
the autocorrelation time of the acceleration norm being decreased, as the Stokes number is increased
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FIG. 11. The particle velocity probability distribution function at St = 0.3, 1.0; Reλ = 140. Comparison
from DNS (—), standard LES (- - -), LES-SSAMRW (∗), and LES-SSAM revised (•).

from St = 0.3 to St = 1.0, but not in the case of revised LES-SSAM. Indeed, for St = 0.3, we
have TDNS = 0.42 s; TSSAM = 0.44 s; TSSAMRW = 0.36 s; TLES = 0.47 s; and for St = 1.0, we have
TDNS = 0.4 s; TSSAM = 0.46 s; TSSAMRW = 0.29 s; TLES = 0.43 s. This deficiency of the revised
LES-SSAM is probably due to enforced alignment of the particle acceleration with the vorticity
vector: such a particle with the increased Stokes number responds to solicitations of more correlated
turbulent scales in the carrier flow. However, it is also seen, that the revised LES-SSAM matches
relatively well the shape of the autocorrelation function from DNS, and that the main contribution
to the mentioned discrepancy between the autocorrelation time from DNS and from LES-SSAM
revised comes from large times. It is also seen in Fig. 10 that in the case of the higher Stokes
number, St = 3.0, the autocorrelation time in LES-SSAM revised follows again the tendency from
DNS data, and thereby with the increased Stokes number, from 1 to 3, the autocorrelation time of
the acceleration norm is decreased along with DNS. The single and two-time statistics, presented
in Figs. 3–10 for the acceleration of particles at St � 1.0, clearly show that the extreme variations
of the fluid velocity on residual scales can be correctly accounted in the framework of LES-SSAM
revised. We may also ask: What about the prediction of single and two-time statistics of the velocity
itself of those particles? This information is relevant to characteristics of the particle diffusion in

FIG. 12. The Lagrangian velocity autocorrelation function of particle at the moderate Stokes number St =
0.3, 1.0; Reλ = 140. Comparison from DNS (—), standard LES (- - -), LES-SSAMRW (∗), and LES-SSAM
revised (•).
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FIG. 13. The mean-square dispersions of particles at St = 0.3, 1.0; Reλ = 140. Comparison from DNS
(—), standard LES (− · · −), LES-SSAMRW (∗), and LES-SSAM revised (•). The dashed lines show the
ballistic (∼τ 2) and diffusive (∼τ ) regimes.

stationary turbulence, such as the Lagrangian correlation time, which provides a measure of the
Lagrangian velocity memory, and the mean square displacement 〈X 2

p 〉. According to classical works
of Taylor [29] and Oboukhov [30], the two main results concerning the fluid particle diffusion in
stationary turbulence are: (i) the mean-square displacement is characterized by the ballistic regime
for very short times, t  TL: 〈X 2

p 〉 ∼ t2, and the effective diffusive regime for t � TL: 〈X 2
p 〉 ∼ TLt ;

(ii) the particle velocity is a Gaussian process governed by the Fokker-Planck equation. Not much
different behavior was demonstrated in DNS of isotropic turbulence (Reλ = 47) in Ref. [31] with
heavy particles at St < 1. Applying the considered here approaches for St = 0.3, 1.0, Figs. 11
and 12 show, respectively, the particle velocity probability distribution function and its Lagrangian
velocity autocorrelation function. It is seen that LES-SSAM revised matches well the distribution
from DNS. The latter represents the Gaussian distribution. This is not the case when standard
LES is used. The probability from LES-SSAMRW is slightly distinguishable from the Gaussian
distribution. It is also seen that predictions of the Lagrangian correlation time and the velocity
autocorrelation function can be improved by LES-SSAM revised. Concerning the mean-square
dispersion of particles, it is seen in Fig. 13 that simulations from LES-SSAM revised follow
fairly well the results from DNS; log-log presentation indicates ballistic and diffusive regimes,

FIG. 14. PDF of the vorticity seen in the flow by the particle at St = 1.0; flow is simulated by DNS (—),
standard LES (− · · −), LES-SSAMRW (∗), and LES-SSAM revised (•). ωp is the vorticity seen by the particle
and ω f is the fluid vorticity.
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FIG. 15. Spatial distributions of the number fraction of particles located in zones of low vorticity relatively
to a considered particle being located in the same vorticity interval; St = 1.0. (a) DNS. (b) Standard LES.
(c) LES-SSAM. (d) LES-SSAMRW.

similar to the Taylor law of the fluid particle dispersion. Another question is this: Accounting
for turbulent microstructure, may we improve the prediction of large-scale effects on the particle
dynamics, such as the trend of inertial particles to stay preferentially in zones of lower vorticity in
the carrier flow? To answer this question, the PDF of the vorticity seen by a heavy particle along its
trajectory is compared in Fig. 14 at St = 1.0 for flows from DNS, standard LES, LES-SSAMRW,
and LES-SSAM revised. It is seen that in comparison to standard LES, the probability of a particle
to move preferentially in zones of lower vorticity is well predicted by LES-SSAM. In Fig. 15,
this effect is also quantified for ensemble of particles in the given plane. Relatively to the position
of a considered particle, which is located in a zone of a low vorticity, we calculated the spatial
distribution of the number fraction of all other particles being also located in zones of same vorticity
interval. The peak of this proportion, which identifies the tendency of heavy particles to stay in
zones of low vorticity, is clearly seen when the flow is given by DNS, and this peak is emerged in
LES-SSAM revised similarly to DNS. In contrast, on the same coarse mesh but using standard LES,
the distribution of considered proportion is more homogeneous; particles are dispersed in broader
regions; the picture in the case of LES-SSAMRW differs also from DNS.

IV. CONCLUSION

In this work, we present a simple flow model in which the presence of occasional very strong
velocity jumps is explicitly introduced into background filtered turbulence. The model, referred to
here as LES-SSAM revised, is designed specifically for simulation of dispersed two-phase high
Reynolds number flows on a coarse grid. To induce the intense short-lived velocity fluctuations
on residual scales, the filtered Navier-Stokes equations are supplemented by residual stochastic
acceleration, which is governed by stochastic model. The latter is designed in accord with the
stochastic properties observed in experiments and DNS. Namely, following our previous LES-
SSAM approach, the stochastic model provides for long-range correlation of the acceleration
magnitude in the framework of the lognormal process, and gives heavy tails in the PDF of
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acceleration, sensitively to the local Reynolds number. The new element in LES-SSAM revised
is the model for the acceleration direction, which in the previous versions of LES-SSAM was
simulated by a random walk model. The new model is based on the derived stochastic equation
for the unit vector components in Cartesian coordinates and represents the Ornstein-Uhlenbeck
stochastic process. The new properties of this model are: (i) the autocorrelation time is introduced
as a physical parameter, and according to experimental observation, it is associated in the model
with the Kolmogorov time; (ii) the relaxation of the acceleration direction to the vorticity vector
is introduced in the stochastic equation, and thereby the central role of vortical structures ge-
ometry is emphasized in stochastic simulation of small-scale turbulence. Since this model may
have numerous applications, the Appendix provides the derivation of equivalent forms of the
stochastic equation in terms of Ito and Stratonovich, with the proposal of a numerical scheme of
integration.

The single and two-time statistics of the acceleration and the velocity of heavy particles
at the moderate Stokes number were assessed in this paper. To this end, particles at St =
0.05, 0.3, 1.0, 3.0 were immersed and tracked in the background turbulence, computed by three
approaches: by LES-SSAM revised and standard LES on a coarse grid (N3 = 323), and by DNS
performed on N3 = 5123 grid nodes. In comparison to standard LES and to the previous version
of LES-SSAM, the results illustrate largely the efficiency of LES-SSAM revised in prediction of
non-Gaussianity in the particle behavior, as response to strong velocity jumps in the carrier flow
on residual scales. The stretched tails in the PDF of the particle velocity increment, of the particle
acceleration and its magnitude, as well as the autocorrelation function of these flow parameters,
were predicted accurately. Essential also is that the residual acceleration model from LES-SSAM
(for both, the norm and the direction) are shown being controlled by the Reynolds number, while
most of the subfilter models in LES are invariant to the local Reynolds number. On the question
“predicting better the particle acceleration statistics, could the velocity statistics be improved?”
The answer in this paper is also positive. The heavy particle velocity statistics, such as its velocity
autocorrelation function, its velocity PDF, and the mean square displacement favored LES-SSAM
revised among considered approaches. The ability of LES-SSAM revised to predict better the trend
of inertial particles to stay preferentially in zones of lower vorticity in the carrier flow was also
demonstrated.

However, the process of particle-turbulence interaction includes so many features that to
encompass the sensitivity of LES-SSAM revised to the whole spectrum of those features is a very
difficult task. In this work, we just showed that accounting for fine scale dynamics in turbulent flow,
one may improve the small-scale properties of the particle motion. To some extent, statistics of
the velocity of heavy particles, the trend of these particles to preferential concentration in the low
vorticity regions suggest that the large-scale effects may be also improved by LES-SSAM revised.
However, the efficiency of LES-SSAM revised is still uncertain in prediction of such complex
effects as the coherence in the cluster structures of particles [32], or collisional aggregation due
to turbulence [33]; this motivates the further numerical simulations in the future work. It would
be also interesting to test LES-SSAM revised in complex conditions: channel flows, vaporizing
droplets, rotating particles, particles bigger than the Kolmogorov’s scale. The model proposed is
simple. The CPU time requirements by this model are not much larger than in the case of standard
LES (by a factor 1.33; in the case of LES-SSAM with random walk model, this factor is 1.16).
Therefore, the numerical simulations with this model may be also applied to realistic situations,
such as simulation of Diesel-like sprays.
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APPENDIX: STOCHASTIC EQUATION FOR THE UNIT VECTOR COMPONENTS—ITO’S
AND STRATONOVICH’S CALCULUS

1. Ito calculus: Cartesian coordinates

The following nonlinear stochastic equation with multiplicative noise represents the diffusion
process for components of the unit vector e = (e1, e2, e3) on a sphere:

dei = −2Deidt + (δi j − eie j )
√

2DdWj, (A1)

t = 0, e2 = e · e = 1. (A2)

In Eq. (5), the diffusion coefficient D = T −1
Diff. Equation (A1) conserves the property Eq. (A2) for any

time t > 0. Indeed, we have the following sequence of strict transformations for the instantaneous
values of ei:

de2 = 2eidei + deidei,

de2 = −4Deieidt + 2ei(δi j − eie j )
√

2DdWj + (δi j − eie j )(δik − eiek )2DdWjdWk,

de2 = −4Ddt + (δi j − eie j )(δik − eiek )2DdWjdWk,

de2 = −4Ddt + (δk j − 2e jek + e je jekek )2Dδ jkdt,

de2 = −4Ddt + (3 − 2 + 1)2Ddt = 0,

i.e., if initially e2(t = 0) = 1, then for any instant values of e2 we have

e2(t > 0) = 1. (A3)

2. Stratonovich calculus: Cartesian coordinates

As in Eq. (6), introducing open dot as the Stratonovich product, the stochastic equation for the
direction components is this:

dei = (δi j − eie j )
√

2D ◦ dWj . (A4)

Equation (A4) conserves the property Eq. (A3) as well. Indeed,

de2 = 2eidei,

de2 = 2ei ◦
√

2DdWi − 2eieie j ◦
√

2DdWj,

de2 = 2
√

2D(ei ◦ dWi − e j ◦ √
2DdWj ) = 0.

Let us remind that the Stratonovich product enjoins the classic rules of the differential analysis and
show that Eq. (A4) can be reduced to Eq. (A1). First, note that

eie j ◦ dWj = (
eie j + 1

2 d (eie j )
)
dWj,

and the following expressions are truth:

d (eie j )dWj =
√

2Dej (δil − eiel )dWldWj +
√

2Dei(δ jk − e jek )dWkdWj,

d (eie j )dWj =
√

2Dej (δil − eiel )δl jdt +
√

2Dei(δ jk − e jek )δk jdt,

d (eie j )dWj =
√

2Deidt .
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Hence,

eie j ◦ dWj = eie jdWj +
√

2Deidt .

Substituting this expression into Eq. (A4), the latter takes the form of Eq. (A1)

3. Presentations by the cross-vector product: Stratonovich calculus, Cartesian coordinates

Equation (A1) can be rewritten in the equivalent form by the cross-vector product:

dei =
√

2Dεi jkdWj ◦ ek . (A5)

It is worthwhile to note that this stochastic equation is linear; it provides an advantage for the
numerical integration. For each component, the expressions from Eq. (A5) are

de1 =
√

D(dW2 ◦ e2 − dW3 ◦ e2),

de2 =
√

D(dW3 ◦ e3 − dW1 ◦ e3),

de3 =
√

D(dW1 ◦ e1 − dW2 ◦ e1), (A6)

or in matrix form

d

⎛
⎝e1

e2

e3

⎞
⎠ =

⎛
⎝ 0 −dW3 dW2

dW3 0 −dW1

−dW2 dW1 0

⎞
⎠ ◦

⎛
⎝e1

e2

e3

⎞
⎠. (A7)

It is easy to see from Eq. (A6) that the norm is conserved with the progress of time:
1
2 de2 = eidei = 0.

4. Presentations by the cross-vector product: Ito calculus, Cartesian coordinates

Using Ito’s and Stratonovich’s definitions, Eq. (A5) can be reduced to its equivalent Ito’s form.
To show this, note for example that

dW2 ◦ e3 = dW2e3 + 1
2 dW2de3 = dW2e3 − 1

2 e1dt,

dW2 ◦ e3 = dW3e2 + 1
2 dW3de2 = dW3e2 − 1

2 e1dt,

and similarly for dW3 ◦ e1, dW1 ◦ e3, dW1 ◦ e2, dW2 ◦ e1. Substituting such expressions into
Eq. (A6) yields

dei = −2Deidt +
√

2Dεi jkdWjek . (A8)

The equivalence between two Ito’s formulations, Eqs. (A1) and (A8), can also be demonstrated. To
this end, let us rewrite Eq. (A1) for the first component, for example,

de1 = −2De1dt + (1 − e1e1)
√

2DdW1 − e1e2

√
2DdW2 − e1e3

√
2DdW3,

de1 = −2De1dt + (e2e2 + e3e3)
√

2DdW1 − e1e2

√
2DdW2 − e1e3

√
2DdW3,

de1 = −2De1dt + e2

√
2D(e2dW1 − e1dW2) + e3

√
2D(e3dW1 − e1dW3).

The following identity can be proven:

(e2e2dW1 − e1e2dW2) + (e3e3dW1 − e1e3dW3) = e3dW ′
2 − e2dW ′

3 .

Here dW ′
2 and dW ′

3 are new standard Wiener processes. Consequently, it is seen that Eq. (A1) for
the first component is equivalent to the expression for the first component from Eq. (A8),

de1 = −2De1dt + e3dW ′
2 − e2dW ′

3,

and so forth for two other components.
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5. The relaxation to the presumed direction

Let us consider the Ornstein-Uhlenbeck stochastic process for the unit direction vector e, with
relaxation to a presumed direction, denoted here by the unit vector h. In this case, the stochastic
equation for de admits an additional term: (h × e) × e dt/Trel, where Trel is the typical time of
relaxation. The cross-vector product (h × e) × e can be expressed as

(h × e) × e = −(h − (e · h)e) = −h⊥,

where h⊥ is the projection of h. Then updated Ito’s and Stranovich’s forms, Eqs. (A1), (A4), (A5),
and (A8), have the following forms:

dei = −(hi − (h je j )ei )
dt

Trel
− 2Deidt + (δi j − eie j )

√
2DdWj, (A9)

dei = −(hi − (h je j )ei )
dt

Trel
+ (δi j − eie j )

√
2D ◦ dWj, (A10)

dei = −(hi − (h je j )ei )
dt

Trel
+

√
2Dεi jkdWj ◦ ek, (A11)

dei = −(hi − (h je j )ei )
dt

Trel
− 2Deidt +

√
2Dεi jkdWjek . (A12)

6. Midpoint scheme: Stratonovich’s form [Eq. (A7)]

In time, with set tn, tn+1,... the midpoint method, giving a global error of order O(�t2), advances
in two steps. The first one evaluates explicitly the intermediate unit vector emid:

emid = (
I + 1

2 A
)
en,

where I is the unit matrix, the matrix A is given by

A =
√

2D

⎛
⎝ 0 −dW3 dW2

dW3 0 −dW1

−dW2 dW1 0

⎞
⎠.

The second (implicit) step provides values ẽn+1, solving by Kramer’s rule the following system:

ẽn+1 = (
I − 1

2 A
)−1(

I + 1
2 A

)
en.

This solution is further updated by the relaxation term—the first term on the right-hand side of
Eq. (A11):

en+1
i = ẽn+1

i Trel + hidt

Trel + (
h jen

j

)
dt

.
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