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Contact angle hysteresis in a microchannel: Statics
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We study contact angle hysteresis in a chemically heterogeneous microchannel by
tracking static meniscus configurations in the microchannel upon varying the volume of
liquid. We first construct a graphical force balance similar to a previous approach by
Joanny and de Gennes for this system, though here with a straight contact line. It is shown
that hysteresis is induced by wettability gradients above a finite threshold value. This is
also visualized in a phase-plane plot enabling to easily predict stick-slip events of the
contact line and the occurrence of hysteresis. Above the threshold and for nonoverlapping
Gaussian defects, we find good agreement with the expressions by Joanny and de Gennes
for the hysteresis amplitude induced by a dilute system of defects. In particular, the
hysteresis amplitude is found to be proportional to the square of the defect force and
to the defect concentration. For a model sinusoidal heterogeneity, decreasing the ratio
between the heterogeneity wavelength and the microchannel gap size brings the system
from a subthreshold regime, to a stick-slip dominated regime, and finally to a regime with
a quasiconstant advancing and receding angle. In the latter case, the hysteresis amplitude
is found to be proportional to the defect force. We also consider an unusual heterogeneity
for which the gradients of increasing and decreasing wettability are different. In such
a situation breaking the left/right symmetry, whether or not hysteresis is observed will
depend on the side the liquid enters the microchannel.

DOI: 10.1103/PhysRevFluids.4.044008

I. INTRODUCTION

Key features of numerous technological innovations across a wide spectrum of applications
and their associated industrial processes (coating of substrates is a well-known example) are
the dynamics involved with liquid spreading on a solid surface, that is coverage of the surface
by displacement, through wetting, of a gas (usually air) by a liquid—see, for example, the
comprehensive reviews in Refs. [1–3]. Contact angle hysteresis (CAH) is common place in wetting
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processes and it is characterized by a discontinuity between the receding and advancing contact
angles [4,5]. It is widely recognized that substrate heterogeneities are the principal source of
CAH [5–7]. Such heterogeneities are either chemical or topographical or a combination of the
two. Theoretical hydrodynamic analysis of contact line dynamics in the presence of chemical-
topographical heterogeneities reveals complex dynamics, such as stick-slip motion and liquid
motion due to strong heterogeneity gradients (e.g., uphill motion of a droplet) [8–15]), often in
qualitative agreement with experiments. But despite the several developments and considerable
attention that CAH has received for several decades, a large number of issues and problems have not
been resolved. In particular, including rationally and systematically CAH in theoretical contact line
models and/or numerical codes still eludes us [2,16]. This is crucial for the control and optimization
of technological processes exploiting CAH. Lack of fundamental understanding of CAH is due in
large part to its inherently multiscale nature, a feature that plays a central role in the rapidly growing
field of microfluidics [12,17], as the largest typical lengthscales involved are below the capillary
length, thus enabling capillary forces to dominate over body forces. For example, the motion of
a gas-liquid interface in microsystems, and how it is affected by CAH and related issues such as
pinning-depinning, still lack fundamental understanding and rigorous characterization.

A number of theoretical efforts have shown that CAH is rooted in the statics of the system [6,18].
In particular, it has been shown that CAH is related to the rugged free-energy landscape that is
induced by the chemical imperfections of the solid, as the associated energy barriers are able to trap
the system in metastable configurations that depend on its history [18,19]. This causes the moving
contact line (CL) to display hysteresis, even in systems that are either translationally invariant in
one direction and can be treated as two-dimensional (2D), in which case the CL is straight [20,21],
or in systems for which the CL has a constant curvature by axisymmetry [19].

An intrinsically three-dimensional (3D) approach was adopted in the theory of Joanny and de
Gennes [6] which has formed the basis of many theoretical extensions as well as experimental
investigations [2]. In their work, the profile of a CL, deformed by a single chemical defect on a
substrate, is calculated such as to satisfy the balance of two forces acting on the CL: (i) the excess
capillary force exerted by the chemical defect, and (ii) the “elastic restoring force” opposing the
deformation of the CL. For a CL close to a “strong” defect (i.e., exerting an excess capillary force
above a certain threshold), this force balance is satisfied for two (meta)stable configurations, causing
the system to display hysteresis.

In the present study we analyze the advancing and receding motion of the CL in a 2D microchan-
nel with chemically heterogeneous walls. We compare our results with the main fundamental
predictions of Joanny and de Gennes [6], including the existence of a threshold value of the
heterogeneity strength, below which hysteresis is absent, and the case of a Gaussian defect,
where the threshold value shows a logarithmic dependence on the system size and heterogeneity
wavelength, and vanishes in the limit of sharp edged (mesa) defects. It is important to remark,
however, that here we are considering a completely different geometry to the 3D system studied in
Ref. [6]. In particular, one of the goals of our work is to verify whether their theoretical predictions
are still valid in our case. To this end, we only consider static hysteresis, neglecting the following
effects: (i) thermal noise which can assist the system to overcome energy barriers [22–25] or external
vibrations [19] which if strong enough may mitigate hysteresis [18], and (ii) dynamic effects which
can also lead to the occurrence of hysteresis [26].

Another important but still unresolved issue regarding CAH is the question of linking the
properties of the substrate disorder to the hysteresis amplitude, which we denote as H . A decisive
first step on this question was taken in Ref. [6], where the case of a single strong defect was extended
to a regime of sparsely spaced strong defects, and the following scaling law was proposed [2,6,27]:

H = γ (cos θR − cos θA) ∝ nF 2
max

γ
, (1)
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FIG. 1. Sketch of the profile geometry for a liquid confined inside a chemically heterogeneous microchan-
nel. γ ∗

sl , γ ∗
sg, and γ ∗ are the wall-liquid, wall-gas, and liquid-gas surface tensions, respectively. The contact

angle θ is defined as the angle between the line tangent to the liquid-gas interface at the contact point and
wetted area of the walls.

where Fmax is the maximum excess of capillary force exerted by a single defect, θA and θR are the
equilibrium advancing and receding contact angles, respectively, γ is the liquid-gas surface tension,
and n is the surface density of the defects. The quadratic dependence on Fmax and the proportionality
with n were verified experimentally and numerically [22,28–30]. However, the extension of this
expression to dense defects and to other types of heterogeneities is a challenging question that still
remains open [29,31].

Our aim here is precisely to address these issues and provide a quantitative description of CAH.
For this purpose we adopt a 2D meniscus in a (2D) microchannel as a model system. To the best
of our knowledge, this is the first attempt to address the existence of threshold and scaling laws of
hysteresis in 2D systems.

In Sec. II A we introduce the model system, a liquid-gas meniscus in a microchannel with
chemically disordered walls and we give the condition for a meniscus in mechanical equilibrium.
Adopting the liquid volume as the control parameter, we offer an example in Sec. II B of how CAH
can arise in the system. An alternative interpretation to this phenomenon is given in Sec. II C, which
involves a graphical force balance, similar to [6]. This similarity is also present in some of the main
results. In Sec. III A we show that weak heterogeneities do not produce hysteresis and evaluate the
hysteresis threshold for certain wettability distributions. In Sec. III B we explain the qualitatively
different regimes of hysteresis upon varying the ratio between the heterogeneity wavelength and
the microchannel gap size. We comment on the strong dependence of the threshold on the fluid
configuration being considered, and argue that it does not exist for a drop fed by a sufficiently slow
(quasistatic) liquid injection, for which all regimes of hysteresis are encountered while the drop
grows. For heterogeneities with a strength sufficiently above the threshold, we explore in Sec. III C
scaling laws between the parameters of the wettability distribution and H . Finally, conclusions and
perspectives are offered in Sec. IV.

II. MODEL FORMULATION AND THEORETICAL FRAMEWORK

A. Definition of the system

We consider a 2D setup consisting of a liquid-gas meniscus moving inside a microchannel
(Fig. 1). A gap of width b∗ separates two planar, rigid, topographically flat, but chemically
heterogeneous walls. This chemical heterogeneity is characterized by a positional dependence of
the interfacial tensions γ ∗

sl and γ ∗
sg between the walls and the liquid and the gas, respectively. The

liquid-gas surface tension γ ∗ is assumed constant. We thus impose an intrinsic contact angle θi

distribution, identical on both walls, as

cos(θi(x
∗)) = γ ∗

sg(x∗) − γ ∗
sl (x

∗)

γ ∗ , (2)
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where dimensional quantities are denoted with an asterisk.
We assume gravity to be negligible so that the static interface takes a constant curvature (circular

arc). Any given pair of the contact line position and contact angle, which we denote as (x∗, θ ), fixes
the volume of the liquid (per unit length of the contact line):

V ∗ = x∗b∗ + b∗2 f (θ ), f (θ ) = 2θ − π + sin(2θ )

8 cos2(θ )
. (3)

The free energy F ∗ of the system, per unit length of the contact line and up to a constant, consists
of the three interfacial tensions, integrated along the length on which they act:

F ∗ = γ ∗l∗ +
∫ x∗

0
[γ ∗

sl,u(x∗) − γ ∗
sg,u(x∗)]dx∗

+
∫ x∗

0
[γ ∗

sl,b(x∗) − γ ∗
sg,b(x∗)]dx∗, (4)

where l∗ = (π − 2θ )/2 cos θ is the dimensional liquid-gas meniscus length, and the subscripts u
and b represent the upper and bottom walls, respectively. As we limit our study to identical walls,
the two integrals are equal, and

F ∗ = γ ∗b∗ π − 2θ

2 cos θ
− 2γ ∗

∫ x∗

0
cos[θi(x

∗)]dx∗. (5)

To find the extrema of F ∗ at a fixed volume V ∗
0 , we minimize the function

G∗ = F ∗ + �[x∗b∗ + b∗2 f (θ ) − V ∗
0 ], (6)

with respect to x∗ and θ , where � is a Lagrange multiplier. This calculation actually yields the
natural condition

cos(θ ) = cos[θi(x
∗)], (7)

which states that at equilibrium, the meniscus angle must be equal to the local value of the Young’s
angle, as expected. In the following, we refer to menisci satisfying Eq. (7) as being at equilibrium
configurations. The volume of such equilibrium configurations is given, in dimensionless form, by

V = V ∗

b∗2
= x + f [θi(x)], (8)

where we have used b∗ as characteristic length scale. Similarly, it is convenient to scale the free
energy as

F = F ∗

b∗γ ∗ = π − 2θ

2 cos θ
− 2

∫ x

0
cos[θi(x)]dx. (9)

B. Occurrence of contact angle hysteresis

For homogeneous walls (θi(x) = θ0), V increases linearly with x [Eq. (8)]. For nonconstant θi(x),
a nonlinear variation of V with x occurs, but V might still be monotonously increasing with x if vari-
ations of θi are weak. For sufficiently disordered walls (the condition will be derived in Sec. III A),
V (x) increases nonmonotonously, enabling the occurrence of multiple equilibrium configurations
for a given volume. In Fig. 2 we consider a model microchannel with periodically varying wetting
properties, illustrating the latter case. Specifically, we take cos[θi(x)] = 0.2 sin( 2π

0.02 x).
For V = 0.2, the contact line will adopt one out of seven equilibrium configurations, depending

on the history of the system. This odd number of configurations corresponds alternatingly to minima
(metastable configurations) and maxima (unstable configurations) of the free-energy curve, with
the outermost configurations being metastable [see Fig. 2(c)]. These four metastable menisci are
drawn in Fig. 2(d). The difference between maxima and neighboring minima can be interpreted as
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FIG. 2. Example of how contact angle hysteresis occurs in a 2D microchannel with a chemical pattern given
by cos[θi(x)] = 0.2 sin ( 2π

0.02 x). (a) Black and gray: metastable and unstable equilibrium configurations given
by Eq. (8); green: presumed advancing trajectory, red: presumed receding trajectory. (b) The corresponding
contact angles. (c) Free energy as a function of the actual contact angle for V = 0.2 [indicated with a dashed
line in (a) and (b)]; four minima are indicated with numbers. (d) Sketch of the four metastable configurations
with V = 0.2, rescaled in the direction orthogonal to the substrate to distinguish clearly the four menisci.

energy barriers which trap the CL in a given metastable configuration [18,32]. The magnitudes of
these energy barriers are smallest for the metastable configurations with minimal and maximal θ , in
agreement with previous results on an axisymmetric drop [18,32].

Therefore, by imposing that the volume is increasing or decreasing, we obtain the advancing
and receding trajectories of the meniscus, respectively, shown as green and red lines in Fig. 2(a).
These trajectories are found with the assumption that the system has no ability to overcome energy
barriers. For certain values of V , the curve corresponding to equilibrium configurations [black and
gray curve in Fig. 2(a)] has a limit (critical) point. At these values of the volume, say Vc, a saddle-
node bifurcation takes place, where the local minimum of the free energy F (black) collides with
a neighboring maximum (gray), annihilating each other. At these points, the CL suddenly jumps to
the closest available metastable state giving rise to slip motion.

The corresponding trajectory followed by θ [Fig. 2(b)] displays the typical experimentally
observed sawtooth shapes [33,34] associated with the stick-slip mechanism [11,15,20]. As expected,
the advancing contact angle (θA) is larger than the receding contact angle (θR).

To quantify the global differences between θR and θA we define the following quantities:

〈cos θR〉 = 1

�V

∫
cos θR dV, (10)

〈cos θA〉 = 1

�V

∫
cos θA dV, (11)

H = H∗

γ ∗ = 〈cos θR〉 − 〈cos θA〉, (12)

where cos θR and cos θA correspond to the solutions tracked upon, respectively, decreasing and
increasing V , and where the choice of �V depends on the situation considered. For example, in the
case of a periodic heterogeneity, it corresponds to an integer amount of wavelengths. In addition, we
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will use the Cassie-Baxter contact angle θCB, which is given by the average value of cos θi(x) over
the whole microchannel with length Lx (or over a period of the heterogeneity θi(x) in the periodic
case):

cos θCB = 1

Lx

∫
cos θi dx. (13)

C. Graphical force balance

Insight into the phenomenon of CAH can also be obtained by looking at the interplay between
the two forces acting on the horizontal direction of the contact line, namely, the spring-type elastic
response of the contact line and the force due to the chemical heterogeneities [6]. However, it is
important to note that the contact line in our 2D system is straight in the spanwise direction and
so the springlike behavior is due to deformations of the meniscus in the cross-stream direction, as
shown below, and not to corrugations of the contact line in the spanwise direction as in Ref. [6].
We will see here that the occurrence of hysteresis is generically connected to the multiplicity of
solutions (x, θ ) for the balance between these forces at a fixed value of V .

The presence of the solid implies a force f ∗
s (per unit length of the contact line), in the positive x

direction:

f ∗
s = 2(γ ∗

sg − γ ∗
sl ) = 2γ ∗ cos θi = γ ∗ fs. (14)

At equilibrium, this force is balanced by the restoring force f ∗
r due to the deformation of the

meniscus

f ∗
r = −2γ ∗ cos θ = γ ∗ fr . (15)

Clearly, equilibrium implies f ∗
s + f ∗

r = 0, i.e., cos θ = cos θi(x) as obtained in Eq. (7). Let us now
define the deformation of the meniscus by

�x = xV − x, (16)

where xV is the mean position of the meniscus, defined as the position of a straight liquid/gas
interface with the same liquid volume. Hence, �x is geometrically related to θ by:

�x = f (θ ), (17)

where f (θ ) is given by Eq. (3). The restoring force fr = −2 cos θ is an increasing function of the
deformation �x, and can be written as

fr = k(θ )�x. (18)

Therefore, we can interpret the meniscus as a spring with stiffness k that depends only on θ (see
Fig. 3), and is given by

k(θ ) = −2 cos θ

f (θ )
= 16 cos3 θ

π − 2θ − sin (2θ )
. (19)

Combining Eqs. (14) and (18), the force balance then reads

k(θ )(x − xV ) = 2 cos θi(x). (20)

Figure 4 illustrates this force balance for the case of a single Gaussian-shaped defect:

cos θi(x) = cos θ0 + A0 exp

[
− (x − xd )2

2σ 2

]
. (21)

The complete qualitative agreement of Fig. 4 with the graphical construction proposed by Joanny
and de Gennes [6], despite the different nature of the spring constant, not only shows the robustness
of the idea that a meniscus can be viewed as a spring whose stiffness depends only on θ , but
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Δ x
-π/8 0 π/8

f r =
 -

2c
os

(θ
)

-2

-1

0

1

2

θ [deg]
0 45 90 135 180

k

6

8

10

12

(a) (b)

FIG. 3. Spring approximation of the meniscus. (a) The restoring force in dimensionless form as a response
to a dimensionless deformation of the contact line, where θ is a plotting parameter varied from 0 to π ; (b)
meniscus stiffness as a function of the actual angle.

also that the occurrence of hysteresis is generically associated with the existence of multiple static
configurations upon varying an experimentally controllable parameter such as the liquid volume.
We note, however, that in general, the curves representing fr are not straight lines as the stiffness
depends on the actual contact angle [θ = θi(x) in Eq. (20)]. By assuming a weak heterogeneity
(i.e., cos θi(x) = cos θ0 + � cos θi(x) with |� cos θi(x)| � 1), the force balance may be linearized
by noting that x − xV = − f [θi(x)] � − f (θ0) + f ′(θ0)� cos θi(x)/ sin(θ0), which is recast as

sin (θ0)

f ′(θ0)
(x − x̃V ) = � cos θi(x), (22)

with

x̃V = xV − f (θ0). (23)

Depending on the particular situation being considered, such a linearized force balance may be
sufficient to describe the hysteresis behavior.

FIG. 4. Example of graphical force balance with θ0 = π

2 , A0 = 0.9, and σ = 0.01. For a range values of xV

in the vicinity of the defect, up to three solutions are obtained for x (indicated with black dots). In this range,
a different path of solutions is followed by the advancing CL (green) and receding CL (red). Both directions
require a jump which is indicated with a striped line.
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III. RESULTS

A. Hysteresis threshold and phase-plane plots

As is evident from Fig. 2, for multiplicity of equilibrium configurations for a given volume to
occur, there must be at least one critical contact line position xc, where a saddle-node bifurcation
takes place. At one of these points, the meniscus jumps either forward in an advancing path or
backwards in a receding path, as the volume varies. Alternatively, we can see these critical points as
maxima and minima, respectively, of V (x). Making use of Eq. (3) we can hence write

V ′(xc) = 1 + ∂ f (θi )

∂θi

∂θi

∂x

∣∣∣∣
x=xc

= 0, (24)

where V ′(xc) = dV
dx |

x=xc
. Denoting θ̂ic ≡ θ ′

i (x = xc) and rearranging the above equation, we get

θ̂ic = − 1
∂ f (θi )

∂θi

= 2 cos2 θi(
π
2 − θi

)
tan θi − 1

. (25)

Therefore, at critical points, the wettability gradient θ̂ic exhibits a generic behaviour that does not
depend on the particular form of θi(x) but only on the given value of θi. The points where the curve
of θ ′

i (x) versus θi(x) crosses the generic curve θ̂ic(θi ) correspond to the critical values of x at which
jumps occur (either forward or backward). Thus, for a given distribution θi(x), visualizing both
curves in a phase-plane plot will enable predicting whether and where the CL will jump. As θi is
physically limited between 0 and π , we have that θ̂ic(θi ) is limited between −2 (for θ = 0 and π ) and
−6 (for θ = π

2 ). Importantly, the negative sign of θ̂ic implies that an advancing (receding) meniscus
can only start jumping from a position at which the wettability is increasing with increasing x
(decreasing with decreasing x).

Another point to remark is that hysteresis occurs only if the strength of a (smooth) heterogeneity
is above a finite threshold (a similar observation was reported in [6], albeit in a different physical
system). If the condition θ ′

i (θi ) = θ̂ic(θi ) is not satisfied for any x, then stick-slip does not occur and
the same path of static solutions is followed during advancing and receding. These behaviours are
illustrated in the following.

1. Smooth heterogeneities

We consider two examples for θi(x), namely, a single Gaussian-shaped defect with amplitude A0,
width σ , and located at xd :

θi(x) = θ0 + A0 exp

[
− (x − xd )2

2σ 2

]
, (26)

and a periodic heterogeneity with amplitude A0 and wavelength λ:

θi(x) = θ0 + A0 sin

(
2πx

λ

)
. (27)

As just remarked, if condition Eq. (25) cannot be satisfied, a multiplicity of static solutions and
hysteresis cannot occur. This is the case when θ ′

i (x) is not negative enough, which is certainly true if
min[θ ′

i (x)] > −2. For the Gaussian defect Eq. (26) this condition leads to the relation |A0|
σ

< 2
√

e,
and for the sinusoidal heterogeneity to |A0|

λ
< 1/π .

However, condition Eq. (25) is certainly satisfied if min(θ ′
i (x)) < −6, which leads to the

conditions |A0|
σ

> 6
√

e for the Gaussian defect, and |A0|
λ

> 3/π for the sinusoidal heterogeneity
Eq. (27). For values of |A0|

σ
∈ (2

√
e, 6

√
e) [or |A0|

λ
∈ (1/π, 3/π )] hysteresis may or may not occur,

depending on the background contact angle θ0. In that respect, note that condition Eq. (25) is more
difficult to satisfy for a CA of π

2 , because this is the angle around which θ̂ic is most negative.
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V
0.28 0.3 0.32 0.34

x

0.28

0.3

0.32

0.34

(a) (b)

(c) (d)

FIG. 5. Comparison of behavior above (A0 = 0.15, full lines) and below (A0 = 0.03, dashed lines)
threshold for a single defect [Eq. (26)] with σ = 0.01 and θ0 = π

2 ). (a) Intrinsic contact angle distributions;
(b) phase plots of both distributions, the thick line represents θ̂ic (it is a curve which appears straight in the
present case). The green (red) arrow and dot represent, respectively, the sense of circulation and the start of
the jump for an advancing (receding) CL; (c) CL position followed in advancing (green) and receding (red)
trajectory above the threshold, and below the threshold (dashed); (d) contact angle corresponding to these
trajectories.

We thus conclude that the quantity |A0|
σ

(or |A0|
λ

) determines whether hysteresis occurs or not, i.e.,
it is the gradient of wettability that matters. In particular, for a given defect amplitude A0, hysteresis
will always be observed at sufficiently small defect size (compared to the microchannel gap).

Figure 5 depicts a comparison between two cases that are below and above the threshold
for a single Gaussian defect [see Fig. 5(a)]. As is evident from the phase plot [Fig. 5(b)], the
system starts at the origin and moves clockwise along a closed trajectory for an advancing CL
(increasing x), or anticlockwise for a receding CL (decreasing x). If the defect is weak (dashed
line), the phase plot does not intersect the generic line θ̂ic(θi ). However, for the stronger defect (full
line), there are two intersections on the phase plot, which correspond to the minimum (left) and
maximum (right) of V (x) [cf. Fig. 5(c)]. These are the points at which the receding and advancing
jump start, respectively. The ending points of the jumps are found with the assumption of the
constant volume, corresponding to a case where the rate of externally imposed volume variation
is negligible compared to the velocity of the jumps. For values of the volume in between the
values corresponding to the jumps, multiple equilibrium states exist and the system will choose one
depending on whether the volume has been increasing or decreasing [Fig. 5(c)]. More specifically,
the advancing CL follows the branch corresponding to lower x, while the receding CL follows the
branch corresponding to higher x. The middle branch is unstable as it corresponds to maxima of
the free energy (as in Fig. 2). The contact angles corresponding to the two branches are shown in
Fig. 5(d), revealing that when increasing V (green), the CL first sticks on the hydrophobic defect,
causing θ to increase progressively, and then slips, corresponding to a sudden decrease of θ . When
decreasing V (red), the CL almost directly slips over the hydrophobic defect, corresponding to a
sudden increase of θ , and then sticks, causing θ to decrease progressively. Both for the hydrophobic
case considered here, and for a hydrophilic defect, jumps correspond to a decrease of θ when
increasing V , and to an increase of θ when decreasing V .
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(a) (b)

FIG. 6. Examples of sharp edged heterogeneities. (a) Symmetric, involving the same steps of increas-
ing and decreasing wettability; (b) nonsymmetric, having a different slope for increasing and decreasing
wettability.

For the periodic heterogeneity given by Eq. (27), we observe a similar behavior in terms of the
threshold-dependence of hysteresis. We will consider this case in more detail in Sec. III B.

2. Sharp heterogeneities

We now consider sharp-edged defects, or mesa defects adopting the term coined by Joanny
and de Gennes [6]. In the limit case of symmetric mesa defects—i.e., defects involving both a
steplike increase and decrease in wettability, as shown in Fig. 6(b)—θ ′

i (x) will reach both plus
and minus infinity, crossing the generic curve θ̂ic in between. Hence, such defects, featuring
infinitely large wettability gradients, always generate hysteresis, as was predicted by Joanny and de
Gennes [6]. Asymmetric heterogeneities, however, of which the intrinsic CA decreases too slowly
with increasing x (min[θ ′

i (x)] > −2), do not generate hysteresis, even if the increases of CA are
steplike. We illustrate this with the example of a triangular heterogeneity with amplitude A0 and
wavelength λ given by

θi(x) = θ0 + 2A0

π
arctan

[
cot

(πx

λ

)]
(28)

and shown in Fig. 7(a). Any negative value of A0 implies step-like decreases of the intrinsic CA
with increasing x, which give rise to hysteresis. For a positive value of A0, however, no hysteresis
will occur if {min[θ ′

i (x)] > −2} ≡ − 2A0
λ

> −2, or 0 < A0 < λ. Figure 7 is an example of such a
case. On the contrary, the same heterogeneity with an inversed sign of A0 does generate hysteresis
(Fig. 8). For this heterogeneity, inverting the sign of A0 is equivalent to inverting the sign of the
coordinate x. Therefore, the situation in Fig. 8 can be obtained in exactly the same microchannel as
in Fig. 7, by simply placing the liquid inlet at the right-hand side. Hence, for a microchannel with
this particular type of heterogeneity, whether or not the system will suffer hysteresis and stick-slip,
will depend on the side from which the liquid enters.

This analysis shows that the existence and nature of the threshold does not only depend on
the wetting properties of the substrate θi(x), but also on the particular liquid configuration (in
the Appendix we will contrast our predictions with the case of a droplet). However, recall that
all lengths, and hence the typical length scale of the heterogeneity, are normalized with the gap
width separating the two plates of the microchannel. As a result, the weak Gaussian-shaped defect
corresponding to the dashed lines in Fig. 5 would be a strong defect in a microchannel with a
gap size that is five times larger. This points to the importance of the overall length scales of the
system, something that deserves more attention and was not considered in the work by Joanny and
de Gennes [6], nor was it discussed in the more recent review by Bonn et al. [2].

B. From large to small heterogeneity length scale: The macroscopic limit

Here we discuss qualitatively the effects on hysteresis of the ratio λ between the characteristic
lengthscale of the heterogeneity and the gap size of the microchannel (which is constraining the
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FIG. 7. Subthreshold triangular heterogeneity [Eq. (28) with A0 = 0.09, θ0 = π/2 and λ = 0.1]. (a)
Intrinsic contact angle distribution; (b) phase-plane plot, the thick line represents θ̂ic; (c) CL position as a
function of volume (same for advancing and receding); (d) contact angle corresponding to this trajectory.

liquid-vapor interface in this configuration), by looking at a periodic distribution of the spreading
coefficient of the walls as a model prototype

cos[θi(x)] = A0 sin

(
2π

λ
x

)
. (29)

This heterogeneity is different to that given by Eq. (27), because there we had imposed for simplicity
a distribution for θi(x), as opposed to the spreading coefficient which is proportional to cos[θi(x)]
and which gave a simple analytical result for the value of the threshold, whereas here we want
to obtain a scaling law for the hysteresis force. The results for this case are presented in Fig. 9.
For a given value of A0 and when λ is sufficiently high (see first column of Fig. 9) the system is
in a subthreshold regime (i.e., the gradient |A0|/λ is too small). Although the contact angle varies
with volume, hysteresis is absent. In particular, we observe that for each volume we find a unique
static configuration (x, θ ), the phase-plane plot of the heterogeneity does not intersect the generic
curve θ̂ic, and the advancing and receding CL follow the same path, in clockwise and anticlockwise
directions, respectively. The CA takes all possible values imposed in the distribution in Eq. (29)
in both the advancing and receding directions. Hence in this regime, advancing CAs lower than
the Cassie-Baxter angle (here equal to 90°) are possible, and receding CAs higher than the Cassie-
Baxter one, are possible.

If we decrease λ by a factor of three (second column of Fig. 9) by, e.g., increasing the gap width
by the same factor, the system is then in a regime in which hysteresis occurs. We find that for most
volumes there exists a unique static configuration (x, θ ), but in certain ranges three static solutions
are found. At these points, the solution branch followed by the system will depend on whether
the CL advances or recedes. The contact angle of an advancing CL is on average higher. At the
intersections between the phase plot of the heterogeneity and the generic curve θ̂ic, the contact
line jumps (slips) to a point which has the same volume if we assume that such jumps occur
instantaneously compared to the rate of volume variation. In the phase-plane plot, an advancing
CL follows a different path than a receding CL.
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FIG. 8. Triangular heterogeneity which generates hysteresis [Eq. (28) with A0 = −0.09 and λ = 0.1]. (a)
Intrinsic contact angle distribution; (b) phase-plane plot, the thick line represents θ̂ic; (c) CL position as a
function of volume for (black: all static solutions, green: followed during advancing, red: followed during
receding); (d) contact angle corresponding to these paths.

A further decrease in λ (third column of Fig. 9) increases the number of static solutions (x, θ )
for a given volume. The path followed by an advancing CL is now totally different than the one
followed by a receding CL. When λ decreases, jumps get smaller and occur more frequently. The
contact angles follow sawtooth shapes which get further separated. The advancing CAs are at all
times higher than the Cassie-Baxter angle, while the receding CAs are lower. The bows followed in
the phase diagram are separated further.

In the limit λ → 0, which we refer to hereafter as the macroscopic limit, the number of static
solutions (x, θ ) at any given volume starts becoming arbitrarily high. This situation is represented
for λ = 0.001 in the fourth column of Fig. 9. The CL advances with a nearly constant contact angle,
corresponding in this case to the maximum of the imposed distribution, and recedes with a nearly
constant contact angle (which is the minimum of the imposed distribution). The sawtooth amplitude
of the contact angle is below 0.3° and hysteresis is maximum.

In the above analysis, we have assumed that the system has no ability to overcome energy
barriers, which are also affected by varying λ. A lower value of this parameter increases the
amount of extrema in the energy landscape for a fixed volume [Figs. 10(a) and 10(b)]. We define
the maximum energy barrier EBM which needs to be overcome in order to attain the most stable
contact angle θMS, as indicated on Fig. 10(b). EBM is found to decrease with λ−1 and reaches a value
of the order 10−4 for λ = 0.001 [Fig. 10(c)]. The most stable angle [Fig. 10(d)], approaches the
Cassie-Baxter angle (90°). This result was previously reported in Refs. [35,36] for a configuration
of a drop much larger than the heterogeneity wavelength.

C. Scaling laws of the hysteresis force

1. Near threshold behavior

Let A0c be the threshold value for the amplitude of the chemical defect. For A0 = A0c, at a certain
contact line position, say x0, we have that the volume satisfies

V ′(x0) = V ′′(x0) = 0. (30)
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FIG. 9. Qualitatively different regimes of hysteresis for the microchannel (assuming the system has no
ability to overcome any energy barriers) caused by a model periodic heterogeneity given in Eq. (29) with
A0 = 0.2. The columns represent different values of λ, from left to right: 0.3, 0.1, 0.01, and 0.001. On the
upper row: black, equilibrium configurations; green, presumed advancing path; red, presumed receding path.
On the middle row: the contact angle of the equilibrium configurations encountered in the advancing (green)
and receding (red) path. Lower row: phase plots of the distribution in black, the thick line represents θ̂ic, for
an advancing contact line (green), the system moves in a clockwise fashion, while for a receding contact line
(red), the motion is counterclockwise, as indicated with the large arrows. The small arrows (with the same
color code) indicate jumps.

Consider the deviations from this point for the quantities

A0 = A0c + μ, x = x0 + x̃. (31)

By using Eq. (30), we expand the volume for μ � 1 and x̃ � 1 as

V = x + f (θi(x, A0)) ≈ V0 + c1μ + c2μx̃ + c3x̃3. (32)

The extrema of V are then given by

dV

dx
= 0 = c2μ + 3c3x̃2, (33)

the solutions of which, assuming c2c3 < 0, are

x̃± = ±
(

−c2μ

3c3

)1/2

∝ μ1/2. (34)

Inserting the above values into Eq. (32), we obtain

Vmax − Vmin ∝ μ3/2, (35)

where Vmax = V (x+, A0) is the relative maximum of the volume at which the CL jumps in an
advancing path, and Vmin = V (x−, A0) is the relative minimum of the volume, at which the CL
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FIG. 10. Change of rugged energy landscape upon varying λ in Eq. (29) with A0 = 0.2 with a fixed volume
V = 0.2. (a) and (b): Energy landscape F = F∗

γ ∗b∗ as a function of actual contact angle for resp. λ = 0.02 and
λ = 0.001. The most stable contact angle θMS and the maximal energy barrier EBM to reach it are indicated
with arrows on (a). As the energy landscape is symmetric about 90°, these quantities are measured from the
right side; (c) The maximum energy barrier to reach the most stable contact angle versus λ−1. (d) Most stable
contact angle versus λ−1. The dotted line represents the Cassie-Baxter angle.

jumps in a receding path. The magnitude of the jumps of the force scales as

δ f ∝ cos[θi(x−, A0)] − cos[θi(x+, A0)] ∝ θi(x+, A0) − θi(x−, A0)

∝ x+ − x− ∝ μ1/2. (36)

According to definitions Eqs. (10)–(12), the hysteresis H is directly related to the area between
the curves of cos θR and cos θA versus V . Combining Eqs. (35) and (36) we thus find that close
enough to the threshold, the hysteresis amplitude scales as

H ∝ μ2 ∝ (δ f )4. (37)

In the following, we explore numerically the emergence of scaling laws. We first focus on the case
of hysteresis caused by an array of wetting defects, with emphasis on the dilute limit at which we
have a minimum number of equilibrium configurations for a given volume.

2. Dilute system of wetting defects

Consider a single Gaussian-shaped defect:

cos θi(x) = cos θ0 + A0 exp

[
−

(
x − Lx

2

)2

2σ 2

]
, (38)

where we fix θ0 = π
2 . We assume A0 > 0, i.e., a defect which is more wettable than the rest of the

surface, and vary the amplitude A0 over 400 values, logarithmically spaced in the interval between
0.001 and 0.99, for four values of the defect width σ . The computational domain Lx is fixed to
a dimensionless length of unity and discretized in sections of �x = 10−5. With this length the
whole pinning-depinning process is captured for all considered defect widths. For each value of σ ,
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(a) (b)

FIG. 11. Logarithmic plots of the dimensionless hysteresis force H = 〈cosθR − cosθA〉, for a single,
wetting defect, for θ0 = π/2 for four values of σ : 0.01 (∗), 0.005 (+), 0.002 (o), and 0.001 (.), as a function of
(a) the defect amplitude, and (b) the fluctuation δ frec of cos θR during the jump. The dashed lines with slopes
two and four are drawn to guide the eye.

a threshold amplitude A0c is calculated numerically as the minimum A0 for which the phase plot of
the heterogeneity intersects the generic line (Sec. III A).

Figure 11(a) shows that hysteresis depends only slightly on the width of the defect. The effect of
defect amplitude A0 on the hysteresis is twofold. A larger A0 does not only imply a larger difference
between the CA on the defect and the background angle, but also larger jumps (see the graphical
force balance in Fig. 4), hence a larger range of V during which the CA differs from the background
angle. Near the threshold [see Eq. (37)] but also far from it, the hysteresis is found to scale as

H ∝ (A0 − A0c)2, (39)

where A0c is the threshold amplitude depending on σ , which is 0.04945 and 0.00495 for the broadest
and sharpest defect, respectively. As the maximum excess force F ∗

s,max exerted on the contact line by
the defect is proportional to γ ∗A0, we may write for the dimensional hysteresis force H∗

H∗ = γ ∗H ∝ F ∗2
s,max

γ ∗ , (40)

where A0c has been assumed negligibly small against A0, e.g., in the macroscopic limit σ → 0.
This scaling law is in agreement with previous theoretical and numerical predictions [6,30] and
experiments [28], though in different configurations to the one studied here.

It is important to emphasise that in fact, the hysteresis caused by the wetting defect is mainly
due to the increase of 〈cos θR〉 when A0 increases, while 〈cos θA〉 stays nearly constant (see also
the graphical force balance in Fig. 4). This is consistent with experimental findings [22,34,37] on
surfaces with controlled chemical defects and can be understood by the fact that a wetting defect
primarily affects [4] or more specifically pins [34] the CL in the receding direction. Figure 11(b)
shows that close enough to the threshold, the hysteresis amplitude scales with the fluctuation of
the force caused by a jump to the power four, also in agreement with Sec. III C 1. Further from
threshold, no clear scaling behaviour can be observed.

We note that the absolute value of H depends on the domain size. An increasing system size
indeed enhances the dilution of the effects of the defect by the homogeneous background. This can
be avoided by considering an array of such defects. We thus impose an array of N equally spaced
and identical wetting defects,

cos θi(x) = cos θ0 + A0

N∑
i=1

exp

[
− (x − xdi )2

2σ 2

]
, (41)

where xdi = i Lx
N+1 . Figure 12 shows that for low enough N , the hysteresis force is directly

proportional to N , which is in agreement with experiments [29] and the proposed scaling law for

044008-15



METIN HATIPOGULLARI et al.

FIG. 12. Logarithmic plot of the dimensionless hysteresis force H = 〈cosθR〉 − 〈cosθA〉 for an array of
equally spaced, identical wetting defects with width σ = 0.01 as a function of the amount of defects for six
values of A0: 0.075 (�), 0.1 (�), 0.125 (.), 0.15 (o), 0.175 (+), and 0.2 (∗).

the hysteresis caused by a dilute system of defects [2,6,27]:

H∗ = γ ∗(cos θR − cos θA) ∝ n(F ∗
max)2

γ ∗ . (42)

The effects of the individual defects are simply additive as long as they are independent (nonover-
lapping). As the density of defects N is increased, however, this proportionality no longer holds as
the stick-slip of the CL on a defect is affected by neighboring defects. More specifically, the jumps
of the CL do not end anymore on homogeneous parts between defects, but on other defects. This
shadowing effect increases with N , decreasing the slope on the plot. For N above 150, the defects
start overlapping and hysteresis even starts decreasing as the substrate becomes less heterogeneous,
though with a shifted background value.

3. Periodic heterogeneity

In our last example, we consider a periodic heterogeneity of the form:

cos[θi(x)] = A0 sin

(
2π

λ
x

)
. (43)

The computational domain has a length of 20λ. We vary A0 over 100 logarithmically spaced values
between the threshold value and 0.89, and λ over 8 logarithmically spaced values, between 10−4,
which is indistinguishably close to the macroscopic limit, and 0.578. The ranges of V over which
the contact angles are integrated [in Eqs. (10) and (11)] start and end with the value at the CL jumps.

The threshold amplitude A0c is 0.302 for the highest λ and 9.56 × 10−5 for the lowest, satisfying
A0c/λ constant. We find that the scaling exponent depends on the wavelength λ as follows.
For the lowest values of λ the hysteresis force is proportional to the defect force. For broader
heterogeneities, the scaling exponent increases with λ and reaches a value of around two when
λ is of the order of one (see Fig. 13). We then write

H∗ ∝ F ∗
s,max, (44)
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FIG. 13. Logarithmic plot of the dimensionless hysteresis force H = 〈cosθR〉 − 〈cosθA〉 as a function of
the heterogeneity amplitude for a periodic heterogeneity with θ0 = π/2 and 8 values of λ. Black symbols
correspond to small wavelengths: λ = 1. 10−4 (∗), 8. 10−4 (+), 5.80. 10−3 (o), 4.44. 10−2, and (.). Gray
symbols correspond to large wavelengths: λ = 0.1 (∗), 0.178 (+), 0.316 (o), and 0.562 (.). The black dashed
line (collapsing with data) corresponds to the macroscopic limit. The gray dashed line with slope two is drawn
as visual aid.

for λ → 0. The linear behavior corresponds exactly to the macroscopic limit (λ = λ∗
b∗ → 0), in

which the advancing and receding angle are nearly constant and equal to the minimum and
maximum of the imposed distribution (H → 2A0), respectively. Also, for this infinitely sharp
heterogeneity, the threshold amplitude vanishes (A0c → 0). This limit is plotted in black dashed
lines and collapses with the data for sufficiently low λ, and at sufficiently high A0 − A0c (although
A0 has an upper bound A0 = 1, see Eq. (43). This suggests that the value of λ below which this limit
is reached depends on A0.

Away from this limit, i.e., for higher λ, the system is in a regime of observable stick-slip (see
Sec. III B) where the difference between the advancing and receding angle depends on V . The
exponent is larger than the one found for this regime and is due to the same effect as in the case of a
single defect (Sec. III C 2): An increase of the amplitude of the heterogeneity A0 increases both the
difference between the advancing and receding angle at the value of V at which the jumps occur,
and the range of V during which these angles differ.

IV. CONCLUSIONS AND PERSPECTIVES

We have analyzed in detail stick-slip motion and CAH of a liquid-gas meniscus in a chemically
heterogeneous microchannel of fixed gap width by tracking stable and metastable states upon
varying the liquid volume and for a wide range of heterogeneity distributions. To the best of our
knowledge, this is the first time that such a study has been undertaken. Our goal has also been to
examine to what extent previous results of wetting hysteresis hold in the present configuration.

We showed that the stick-slip mechanism can be studied using phase-plane plots of the
heterogeneity. Weak heterogeneities do not produce hysteresis, a threshold for the heterogeneity
strength is required. For values of the heterogeneity strength sufficiently above the threshold, we find
good agreement with the previously reported expressions for the hysteresis amplitude for a diluted
system of defects, even though the geometry and approach used here are notably different. For a
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model sinusoidal heterogeneity, we have found that the ratio between the heterogeneity wavelength
and the liquid-gas interface length is a key parameter determining the qualitative aspects of the
hysteresis. More specifically, decreasing gradually this ratio brings the system from a subthreshold
regime (i.e., no hysteresis), to a stick-slip dominated regime, and ultimately to a regime with a
nearly constant advancing and receding angles. In the latter regime, which we referred to as the
macroscopic limit, the hysteresis amplitude is shown to be proportional to the defect force.

Finally, there are a number of interesting questions closely related to the analysis presented
here. For example, extension of the static approach to investigate a microchannel configuration with
nonidentical upper and lower walls. But also account for the influence of thermal noise, especially
in the macroscopic limit, where the energy barriers which keep the system in metastable states
are relatively low, something that is also revelant in the context of nanodefects [24,25]. Moreover,
noise can induce dynamic/state transitions in rugged energy landscapes and further hysteresis
effects (noise-induced hysteresis) [38,39]. Of particular interest will also be the corresponding
dynamic study, addressing the question of how the hysteresis is amplified by the absolute velocity
of the CL in each of the qualitatively differently different regimes of hysteresis. Extension of the
present analysis to 3D configurations, though possible in principle, would require considering an
infinite-dimensional generalization, which most likely will have to be treated numerically.
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APPENDIX: OTHER CONFIGURATIONS

Here we briefly contrast the problem of a liquid-gas meniscus in a microchannel with that of a
cylindrical droplet. Previous works on the statics of this configuration [7,20,40,41] have predicted
hysteresis and stick-slip motion upon varying the volume of the droplet, similarly to the present
work. Recently, this behavior has also been observed when the droplet is fed trough a pore [15].

In the cylindrical droplet configuration, the volume V of the droplet is, as for our microchannel,
an explicit function of the contact line position x: V = x2g(θ ), with g(θ ) a geometric factor. A
similar analysis as in Sec. III A would give as a criterion for a jump to occur the expression,

∂θi

∂x
= θ̂ic = −2g(θi )

xg′(θi )
, (A1)

where g(θi )
g′(θi )

is positive for the physical range of θi. Thus, for this configuration θ̂ic is an explicit
function of x, which was not the case for our microchannel prototype. Whether a defect is strong or
weak will therefore depend on how far it is from the center of the droplet. Any defect which is far
enough from the origin (θ̂ic close enough to zero) will induce hysteresis and therefore no threshold
exists for sufficiently large droplets, just like in the macroscopic limit λ → 0 for the microchannel.

Furthermore, Fig. 14 shows that, for a given periodic intrinsic contact angle distribution, upon
increasing the volume of the droplet, the system passes through the same qualitatively different
regimes of hysteresis (introduced in Sec. III B) as for the microchannel. We neglect any external
noise, which would enable the system to cross energy barriers, and we assume that the droplet center
does not shift during the process (see Ref. [15] for details). Upon increasing V (from left to right),
the system goes from a subthreshold regime, through a regime with pronounced stick-slip, and
finally to the macroscopic limit, for droplets much larger than the length scale of the heterogeneity.
In both this configuration and that of the microchannel, the ratio of the gas-liquid interface length
to the typical length scale of the heterogeneity seems to be an important physical parameter
which determines the hysteresis behavior. In particular, a general conclusion seems to be that the
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FIG. 14. Qualitatively different regimes of hysteresis for a droplet caused by a periodic heterogeneity
described by Eq. (29) with A0 = 0.2 and λ = 0.1 (assuming the system has no ability to overcome any energy
barriers). The columns represent zooms on different ranges of V with qualitatively different behavior. The
plotted quantities are the same as described in the caption of Fig. 9.

advancing and receding contact angles become independent of the particular liquid configuration
(drop, meniscus, bubble,. . . ) when this ratio becomes sufficiently large. In such macroscopic limit,
the hysteresis range is fixed by the maximum and the minimum of the contact angle distribution,
with the Cassie-Baxter angle falling in between, and stick-slip behavior is unobservable. This
general conclusion supports the use of the common basic way of introducing CAH into static or
time-dependent macroscopic models [3] by prescribing given constant values for the advancing and
receding angles.
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