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Roll-to-roll printing processes require formation and stretching of a liquid bridge to
transfer liquid from one surface to another. Since inadequate liquid transfer can produce
defects that are detrimental to printed products, electric fields are sometimes applied to
enhance transfer, a method known as electrostatic assist (ESA). Because the physical
mechanisms underlying ESA are not well-understood, we examine here the influence of
electric fields on liquid transfer in two model geometries, both of which involve liquid
bridges with moving contact lines. The bridges are axisymmetric and confined between
two electrodes, one of which is flat and moves vertically upward, and the other which either
is flat or has a cavity and is stationary. An electric field is applied in the axial direction,
both perfect and leaky dielectric liquids are considered, and the governing equations are
solved with the Galerkin finite-element method. For liquid transfer between two flat plates,
application of an electric field stabilizes the liquid bridge. This allows more time for the
contact line to retract on the less wettable surface and leads to an increase in liquid transfer
to the more wettable surface. Tangential stresses due to surface charge can significantly
enhance liquid transfer, even to the less wettable surface if the tangential stresses point
toward that surface. For liquid transfer between a flat plate and a cavity, the electric
field increases the pressure gradient near the contact line on the cavity wall, causing the
contact line to slip and more liquid to be transferred from the cavity. Notably, the effect
is more pronounced for a deep cavity, resulting in a larger percentage of liquid transferred
compared to a shallow cavity. In contrast to the case of liquid transfer between two flat
plates, surface charge does not have as significant an influence on liquid transfer due
to the way the cavity and electric field modify the interface shape near the contact line.
The results of this work illustrate the physical mechanisms through which electric fields
can improve liquid transfer, and they provide guidance for optimizing ESA in industrial
printing processes.

DOI: 10.1103/PhysRevFluids.4.044005

I. INTRODUCTION

A. Motivation

Printing processes have been widely used to make newspapers and books, and they are
increasingly being applied to fabricate electronic devices such as transistors [1–3], solar cells
[4], and radiofrequency identification tags [5,6]. In these printing processes, functional inks are
deposited onto flexible substrates made of materials such as plastic [7,8] or paper [9]. The flexible
substrates are first unwrapped from a cylindrical roll and then wound up onto another cylindrical
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FIG. 1. (a) Schematic of a gravure printing process with electrostatic assist (ESA). Ink is transferred from
a cavity to a substrate, sometimes with the help of an electrostatic potential difference. (b) Schematic of a
stretching liquid bridge.

roll after printing and drying. Such roll-to-roll printing techniques have the potential to significantly
reduce production costs and material waste [10] while still having high throughput (∼1 m/s) [3,11].

A printing process of particular interest for electronics-related applications is gravure printing
(Fig. 1) [12]. The gravure roll contains a pattern of pixelated micron-scale cavities on its surface.
After the cavities are filled with printing ink (often from a pan into which the gravure roll enters and
then leaves), ink is transferred from the cavities to a substrate (supported by a backing roll). Gravure
has the potential to create patterns having length scales of 10 μm or less [12].

For printed electronics, insufficient ink transfer from the cavities could lead to broken circuits
and failure of electronic devices. It has long been known that application of an electric field between
the gravure roll and the substrate can help improve ink transfer, a technique known as electrostatic
assist (ESA) (Fig. 1) [13–16]. However, the physical mechanisms underlying ESA remain poorly
understood. A better understanding of these mechanisms would allow for more systematic design
of ESA systems, which in turn would greatly help in reducing printing defects. The objective of this
paper is to address this issue by examining the influence of electric fields on liquid transfer in two
model geometries.

Gravure printing processes involve the formation of a liquid bridge when ink transfers from a
cavity to the substrate (Fig. 1). During liquid transfer, the liquid bridge is, in general, subject to
extensional, shear, and rotational motions [17,18]. Here, we consider the important limiting case
of extensional motion where the liquid bridge is stretched between a vertically moving flat plate
and a stationary (i) flat plate or (ii) cavity. Schematics of the two model geometries are shown in
Fig. 2. A constant electrostatic potential is applied to the top surface, while the bottom surface
remains grounded. The contact lines (where the air, liquid, and solid intersect) may slip along
each solid surface. We seek to determine how the electric field influences the dependence of liquid
transfer on surface wettability and the geometry of the bottom surface.

FIG. 2. Schematic of model geometries considered in this work. A liquid bridge between (a) two flat
surfaces and (b) a flat surface and a cavity. The cavity bottom is located at z = 0.
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B. Summary key findings from recent previous work

There have been a number of recent experimental [19–21] and theoretical [11,17,22–25] studies
on liquid transfer between two flat plates in the absence of an electric field. We provide here a
summary of the key findings.

For liquid transfer in printing processes, inertial and gravitational forces are often negligible
relative to surface-tension and viscous forces due to the small length scales involved. Thus, the key
parameter characterizing liquid transfer is the capillary number Ca = μU/γ , the ratio of viscous to
surface-tension forces. Here, μ is the liquid viscosity, U is the stretching speed, and γ is the liquid
surface tension. When Ca is less than ∼0.01, liquid transfer is dominated by the wettability of the
surfaces [19,24]. In this regime, the deformation of the liquid bridge is strongly coupled to contact-
line motion. When Ca is ∼1, the stronger viscous forces tend to hinder contact-line movement and
make wettability less important. As a result, only about 50% of the liquid is transferred from one
surface to the other for a large range of wettability differences [20,24].

There have also been a number of recent experimental [26] and theoretical [22,23,25,27–29]
studies on liquid transfer between a flat plate and a cavity in the absence of an electric field. In
general, it is found that the amount of liquid transferred from the cavity is considerably less than
50%, even in the absence of a wettability difference between the cavity and the flat plate. This
occurs because of an apparent pinning of the contact line on the inclined walls of the cavity (i.e., the
contact line moves so slowly that it appears to be pinned) [22,26]. Increasing Ca tends to increase the
amount of liquid transferred because the stronger viscous forces reduce the slippage of the contact
line on the flat plate [22]. However, it does not get above 50%.

The above results suggest that liquid transfer at high printing speeds is not influenced by
wettability differences, and that transferring liquid from cavities is considerably more difficult
than transferring liquid from a flat surface. As mentioned in Sec. I A, one way to overcome these
limitations is to apply an electric field. Although there is previous work examining the influence of
electric fields on liquid bridges that have pinned contact lines and are not being stretched [30–33],
very little work has been done to examine the fundamentals of stretching liquid bridges with moving
contact lines in the presence of an electric field.

To address this knowledge gap, Huang and Kumar [34] developed a one-dimensional (1D)
slender-jet model of stretching liquid bridges with moving contact lines in the presence of an
electric field. The considered both perfect dielectric and leaky dielectric liquids. They found that
the electric field modifies the pressure differences inside the liquid bridge, and as a consequence,
it drives liquid toward the more wettable surface. For leaky dielectrics, charge can accumulate the
liquid-air interface and further enhance liquid transfer, even to the less wettable surface. Thus, at
high printing speeds (Ca ∼ 1), application of an electric field can allow one to overcome the 50%
limit on liquid transfer.

To complement their modeling work, Huang and Kumar [34] also performed a limited number
of flow visualization experiments. These showed that application of an electric field modifies the
shape of the liquid bridge and can cause depinning of the contact line (whereas it would remain
pinned in the absence of the electric field). For the pair of surfaces considered by Huang and Kumar
[34], measured values of the amount of liquid transferred are in good agreement with predictions
of the 1D slender-jet model for perfect dielectrics. Because both Ca and the ratio of electrostatic
to surface-tension forces in those experiments are relatively small, predictions from the 1D model
might be expected to agree well with experiments [24].

C. Overview of the present paper

Although the 1D slender-jet model is computationally efficient, it tends to overestimate contact-
line motion, as shown in our previous work on stretching liquid bridges in the absence of electric
fields [24]. While it sometimes yields predictions that agree well with experiments [24,34], an
important open issue is how well predictions of the 1D model compare to those from a 2D
axisymmetric model over a wide range of wettability differences in the presence of an electric
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TABLE I. Order-of-magnitude values of key dimensional parameters.

Parameter Typical values

Bridge radius R and bridge length L (mm) 10−3–1
Liquid viscosity μ (cP) 1–102

Surface tension γ (mN/m) 101–102

Stretching speed U (mm/s) 1–102

Voltage V (V) 102–104

Conductivity K (S/m) 10−12–10−6

Contact-angle difference �θr = θbottom − θtop (deg) −20◦–20◦

field. Moreover, liquid transfer from a cavity cannot be described by a 1D model since the cavity
geometry varies in the radial direction, making this an inherently 2D problem. Thus, in the present
work we perform 2D calculations to advance a fundamental understanding of how electric fields
influence liquid transfer in the two model geometries shown in Fig. 2.

The mathematical model and computational scheme used in this work are presented in Sec. II.
In Sec. III, results are presented and discussed for liquid transfer between two flat plates. Both
perfect dielectric and leaky dielectric liquids are considered, and predictions from the 2D model are
compared to those from the 1D model of our previous work [34]. In Sec. IV, liquid transfer from
a cavity is considered, including an examination of the influence of cavity depth. Conclusions are
summarized in Sec. V.

II. PROBLEM FORMULATION

Figure 2 shows the model geometries used in this work. We consider axisymmetric bridges of
Newtonian liquids with constant density ρ, surface tension γ , viscosity μ, relative permittivity ε,
and conductivity K confined between two electrodes. The top electrode is a flat horizontal plate
moved vertically with a constant velocity U in the z-direction, and it has a fixed electrostatic
potential φ∗. The bottom electrode is stationary and grounded. It can either be flat and horizontal
[Fig. 2(a)] or have the shape of a trapezoidal cavity [Fig. 2(b)].

The contact angle on the top electrode is θtop, and that on the bottom electrode is θbottom. These
contact angles may be a function of contact-line speed [35,36], but we consider here the important
limiting case in which they are constant. We neglect any flow in the air outside the bridge. Table I
lists order-of-magnitude values of key dimensional parameters.

Both perfect and leaky dielectric liquids are considered [37–39]. Perfect dielectrics are non-
conductive but polarizable. Leaky dielectrics are also polarizable, but a finite conductivity allows
charge to accumulate at the liquid-air interface when an electric field is present (charge is assumed
to be negligible in the bulk). Thus, the electric field can act on both the polarized charge and the
interfacial charge in leaky dielectrics. The air phase is assumed to be a perfect dielectric with a
relative permittivity of unity.

A. Governing equations

In the equations below, length is scaled by a characteristic initial bridge radius R (e.g., the radius
corresponding to the narrowest point of the initial bridge shape), velocity by the constant stretching
speed U , time by R/U , pressure by μU/R, electrostatic potential by φ∗, electric field by E∗ =
φ∗/L(0), where L(0) is a characteristic initial bridge length, and charge density by εoE∗, where εo

is the free-space permittivity.
The electric field in each phase is given by Ei = −∇φi, where the electrostatic potentials φi are

governed by Laplace’s equation,

∇2φi = 0, (1)
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TABLE II. Dimensionless problem parameters. The ranges of values encompass both laboratory experi-
ments and industrial practice.

Parameter Definition Physical meaning Value

Bo ρgR2/γ Gravitational forces
Surface-tension forces 10−7–1

Re ρUR/μ Inertial forces
Viscous forces 10−5–102

Ca μU/γ Viscous forces
Surface-tension forces 10−5–1

χ RE 2
o εo/μU Electrostatic forces

Viscous forces 10−5–1011

CaE RE 2
o εo/γ

Electrostatic forces
Surface-tension forces 10−10–1011

ε Relative permittivity 1–101

K∗ (R/U )/(εo/K ) Time scale for stretching
Characteristic time for electric phenomena 10−6–105

	 L(0)/2R Initial bridge length
Initial bridge diameter 1

with i = 1 for liquid and i = 2 for air. The boundary conditions at the top and bottom electrode are

φi =
{

0 for z = 0,
1 for z = L(t ). (2)

For the cavity, the condition φi = 0 is applied on the cavity bottom (z = 0) as well as the cavity
walls.

At the liquid-air interface, the surface charge density q is equal to the jump in the normal
component of the electric field [39],

q =‖εiEi ‖ · n, (3)

where εi is the relative permittivity of each phase, n is the outward unit normal vector pointing into
the air, and ‖ · · · ‖ is the jump operator, which denotes the quantities in the air phase minus those
in the liquid phase. Note that we set ε1 = ε and ε2 = 1. The tangential components of the electric
field are continuous at the liquid-air interface,

‖Ei ‖ · t = 0, (4)

where t is the unit tangent vector to the liquid-air interface.
The charge at the liquid-air interface is governed by the conservation equation

∂q

∂t
+ v · ∇sq = qn · (n · ∇)v+ ‖−K∗Ei ‖ · n + 1

Pe
∇2

s q, (5)

where v is the velocity vector, ∇s = (I − nn) · ∇ is the surface gradient operator, K∗ = RK/Uεo is
the dimensionless conductivity, and Pe = RU/Ds is the Peclet number, with Ds being the surface-
charge diffusion coefficient. The last term corresponds to charge diffusion along the interface and is
usually neglected [39]. However, we keep this term to resolve large charge gradients that form near
the contact lines [40]. No-flux conditions are applied to the charge at each solid surface.

With the scales mentioned above, we can define a Reynolds number Re = ρUR/μ, Bond number
Bo = ρgR2/γ , and electroviscous number χ = RE2 εo/μU , where g is the acceleration due to
gravity. The physical meaning and typical values of these and other dimensionless parameters are
listed in Table II. We choose to focus on the regime where Bo and Re are small so that gravitational
and inertial forces can be neglected, and thus we set Bo = Re = 0.

The velocity and pressure in each phase are denoted as vi and Pi. Because we neglect the
dynamics of the air phase, we set v2 = 0 and P2 = 0, and let v1 = v and P1 = P. The mass and
momentum conservation equations for the liquid are

∇ · v = 0, (6)

−∇P + ∇2v = 0. (7)
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The dimensionless Maxwell stress tensor is σσσ M
i = εiEiEi − 1

2εiEi · EiI, with I being the identity
tensor. [We have scaled σσσ M

i by εo(E∗)2.] Because the divergence of the Maxwell stress tensor is
zero for perfect and leaky dielectrics [39], it does not appear in Eq. (7). As a result, electrostatic and
hydrodynamic phenomena are connected only through the normal and tangential stress balances
[Eqs. (9) and (10)] at the liquid-air interface [41].

At the liquid-air interface, we impose the kinematic condition,

n · (v − ẋ) = 0, (8)

where ẋ is the interface velocity. The normal stress balance is given by

‖n · Ti · n‖= − κ

Ca
, (9)

where Ti = −PiI + [∇vi + (∇vi )T ] + χσσσ M
i is the total stress tensor, Ca is the capillary number,

and κ = ∇s · n is the interface curvature. The tangential stress balance is

‖n · Ti · t‖= 0. (10)

The normal and tangential components of the Maxwell stress can be written as

∣∣∣∣n · σσσ M
i · n

∣∣∣∣ = χ

2
‖εi(Ei · n)2 − εi(Ei · t)2 ‖, (11)

∣∣∣∣n · σσσ M
i · t

∣∣∣∣ = qχ (Ei · t). (12)

Note that the tangential component of the electric field is continuous at the liquid-air interface
[Eq. (4)].

We apply the no-penetration and no-slip conditions at each solid surface,

nwall · v =
{

0 for z = 0,
1 for z = L(t ), (13)

twall · v = 0 at z = 0, L(t ), (14)

where nwall is the unit normal vector pointing in the positive z-direction, twall is the unit tangent
vector pointing in the radial direction, and L(t ) is the location of the top plate. For the cavity, these
conditions are applied on the cavity bottom (z = 0) as well as the cavity walls.

We apply symmetry boundary conditions at the bridge axis,

tsymm · (nsymm · T) = 0, (15)

nsymm · v = 0, (16)

where nsymm and tsymm are the unit vectors normal and tangent to the symmetry line.
To deal with the dynamic contact line, we replace Eq. (14) with a Navier slip condition at each

contact line, and we fix the contact angle instead of the contact-line position,

twall · (nwall · T) = 1

β
twall · (v − vwall ), (17)

nwall · n = cos θ, (18)

where nwall (which points toward the liquid side) and twall are unit normal and tangent vectors
to each solid surface, β is a dimensionless slip coefficient, and vwall is the wall velocity. For all
computations, the value of β is set to 1010 to produce a contact line with negligible shear stress
[22–24], but the results are essentially independent of β down to a value of 0.1. Here, θ = θbottom

at the bottom surface and θ = θtop at the top surface. Note that we only impose Eqs. (17) and (18)
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at the node located on the contact line, and the no-slip condition is applied on the rest of the solid
surface, i.e., the slip length is less than the size of an element [22–24].

As shown in Fig. 2, we consider two model geometries. The cavity wall [Fig. 2(b)] is defined by
a hyperbolic tangent function [22–24],

z = 1

2
δ

[
1 + tanh

(
r − rs

rd

)]
, (19)

where z and r are the axial and radial positions of the cavity wall, respectively, δ is the depth of the
cavity, rs represents the distance from the midpoint of the cavity wall to the symmetry axis, and rd

controls the slope of the cavity and the curvature of the corner. (Increasing the value of rd increases
the radius of curvature of the corner.)

In this work, we study the transfer ratio (mass fraction of liquid transferred to the top plate)
as a function of the capillary number Ca and the electroviscous number χ (Table II). For leaky
dielectrics, the dimensionless conductivity K∗ and initial surface charge density also come into
play.

B. Solution method

Equations (1)–(18) are solved using the Galerkin finite-element method [22–24,27] with elliptic
mesh generation to track the moving interface. Biquadratic basis functions are used for the velocity,
electrostatic potential, and mesh position, whereas linear discontinuous basis functions are used for
the pressure. For the surface charge along the liquid-air interface, we use quadratic basis functions. A
first-order backward Euler method is applied in the first two time steps to prevent abrupt oscillations.
A second-order trapezoid rule with variable time-step size is then used to perform time integration
[42].

For the simulations between two flat plates, the computational mesh typically involves 64
elements in the axial direction and 25 elements in the radial direction (15 and 10 elements in
the liquid and air phases, respectively). For the simulations between a flat plate and a cavity, the
computational mesh typically involves 48 elements in the axial direction and 40 elements in the
radial direction (22 and 18 elements in the liquid and air phases, respectively). The mesh is refined
near the liquid-air interface and contact lines.

When the liquid bridge nears breakup, a thin thread connecting a droplet on each solid surface is
formed. Eventually, the elements in the thread become extremely deformed and elongated, causing
the simulation to fail. At the end of the simulation, the narrowest bridge radius is roughly 0.1% of
its initial radius. The overall bridge shape has primarily been determined at this point, so the transfer
ratio will likely not vary significantly even if the bridge stretches further. After a simulation ends,
we check whether the variation from the initial bridge volume is less than 0.1% to ensure mass
conservation. If the change of volume is greater than 0.1%, we rerun the simulation with a refined
mesh or time step.

III. RESULTS—FLAT PLATES

When a liquid bridge is stretched between two flat plates without an electric field, both theoretical
and experimental results show that the transfer ratio (mass fraction of liquid transferred to the top
plate) is mainly determined by the wettability difference between the two plates at low Ca (<0.01)
[19,24]. When Ca is large enough (∼1), the transfer ratio is about 50% and independent of the
wettability difference [20,24]. In this section, we explore how electric fields influence liquid transfer
when both plates are flat. The results presented here complement those obtained in our earlier work
using a 1D slender-jet model [34].

The initial bridge shape is a cylinder with length L(0) and radius R. In our prior work
[22,24,25,34], we used a cylinder as the initial shape to focus on the influence of wettability
differences at a given value of Ca. Although the initial bridge shape can significantly influence liquid
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FIG. 3. Relationship between the transfer ratio and the wettability difference for different values of χ at
(a) Ca = 0.1 and (b) Ca = 0.5. Here, θtop = 60◦, and θbottom varies from 40◦ to 80◦. The wettability difference
�θr = θbottom − θtop.

transfer [24,34], we use a cylinder here since initial-shape effects have been studied previously
[24,34], and we would now like to isolate the influence of electric fields. (In general, changing
the initial shape of the bridge produces quantitative changes in the results but does not change the
qualitative behavior [24,34].) For simplicity, we set L(0) = 2R so that the aspect ratio is unity. The
contact angles reach their prescribed values after the first time step, and the overall run time is much
longer than this, so this “equilibration” step does not play an important role in the overall bridge
dynamics.

The top contact angle θtop is set to 60◦, while the bottom contact angle θbottom ranges from 40◦
to 80◦. The wettability difference �θr = θbottom − θtop, so positive �θr means that the bottom plate
is less wettable than the top plate. We fix the value of ε to the representative value of 2.74 (silicone
oil); increasing this will tend to enhance the effect of electric fields. Two values of the capillary
number Ca (0.1 and 0.5) are considered, and the electroviscous number χ is set to 0 (no electric
field) or 40.

A. Perfect dielectrics

1. Liquid transfer

We begin by examining transfer of a perfect dielectric liquid between two flat plates by setting
q = 0 and K∗ = 0. Figure 3(a) shows the relationship between the transfer ratio and the wettability
difference �θr at Ca = 0.1. When χ = 0, the transfer ratio increases as �θr increases. Because the
bottom plate becomes less wettable as �θr increases, more liquid is transferred to the top plate.
When χ increases from 0 to 40, the transfer ratio increases when �θr is positive. However, when
�θr is negative, the transfer ratio decreases when an electric field is present. These results indicate
that electric fields enhance liquid transfer to the more wettable surface.

Figure 3(b) presents the transfer ratio as a function of �θr at Ca = 0.5. When χ = 0, the transfer
ratio also increases as �θr increases. However, the transfer ratios are 50% ± 3% for all values of �θr

since the viscous forces are stronger at higher Ca and reduce the influence of wettability differences.
This represents a limit on how much liquid can be transferred at high printing speeds.

As can be seen in Fig. 3(b), the presence of the electric field enhances the influence of wettability
differences when Ca = 0.5. This suggests that electric fields may be a useful tool for increasing
liquid transfer at high printing speeds. Note that the electrocapillary number CaE = χCa provides
a measure of the strength of electrostatic forces to surface-tension forces, and it is smaller for fixed
χ at smaller Ca. Thus, the electric field does not influence the transfer ratio as much at lower Ca
[Fig. 3(a)] compared to higher Ca [Fig. 3(b)].
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FIG. 4. (a) Time evolution of the contact line on the top and bottom plates for χ = 0 (solid line) and 40
(dashed line). (b) Final bridge shapes for χ = 0 (solid line) and 40 (dashed line). The bridge breakup times
for χ = 0 and 40 are 5.4 and 8.3, respectively. The values of the other parameters are Ca = 0.5, θtop = 60◦,
θbottom = 80◦, and �θr = 20◦.

Results from the 1D slender-jet model used in our previous work [34] show qualitatively similar
behavior. However, the 1D model predicts much more liquid transfer compared to the 2D model. A
more detailed comparison can be found in the Supplemental Material [43].

We now consider the case in which �θr = 20◦ and Ca = 0.5 to characterize contact-line motion
and bridge shapes. Figure 4(a) shows the time evolution of contact-line positions. When χ = 0, the
top contact line simply expands in the radial direction, while the bottom contact line first retracts
and then expands. However, when χ = 40, both contact lines retract and then expand. Note that the
bottom contact radius decreases faster than the top contact radius when χ = 40 because the bottom
surface is less wettable.

Figure 4(b) compares the final bridge shapes for χ = 0 and 40. In Fig. 4(b), the difference
between the top and bottom contact radii of the electrified bridge (0.26) is larger than that of the
nonelectrified bridge (0.20) when the simulation ends. In addition, the electrified bridge breaks up at
a longer length. These results suggest that the electric field stabilizes the liquid bridge and amplifies
the influence of wettability differences, a feature we will discuss further in Sec. III A 2.

2. Physical mechanisms

For perfect dielectrics, the only way the electric field influences the liquid bridge is through
the normal stress balance [Eq. (11)]. It is instructive to examine this boundary condition in the
slender-jet limit, as it yields an expression for the liquid pressure [34],

P = κ

Ca
− vz − χ

ε − 1

2
E2, (20)

where E is the leading-order axial component of the electric field. The three terms on the right-hand
side of Eq. (20) represent contributions from surface tension, viscous forces, and electrostatic forces,
respectively. Note that the pressure in Eq. (20) only depends on the axial coordinate due to the
slender-jet approximation. Because χ is always positive and ε is greater than 1, the electrostatic
term in Eq. (20) is always negative. As a result, the electrostatic term lowers the pressure in the
bridge.

We now plot pressure contours and bridge shapes predicted by the 2D model for the case in
which Ca = 0.5 and �θr = 20◦ to gain insight into the observations of Sec. III A 1. The physical
mechanisms we will discuss also hold at lower values of Ca. For convenience, we rotate the bridge
90◦ clockwise so the top (bottom) surface is on the right (left) in Fig. 5.

Figure 5(a) shows pressure contours when χ = 0 at t = 0.6. The highest pressure is near the
left (bottom) contact line, while the lowest pressure is near the right (top) contact line. Since liquid
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FIG. 5. Pressure contours and bridge shapes for the cases in which (a), (c) χ = 0 and (b), (d) χ = 40 at
(a), (b) t = 0.6 and (c), (d) t = 5. The bridge breakup times for χ = 0 and 40 are 5.4 and 8.3, respectively. The
values of the other parameters are Ca = 0.5, θtop = 60◦, θbottom = 80◦, and �θr = 20◦.

flows from regions of higher pressure to lower pressure, the bottom contact radius decreases while
the top contact radius increases [Fig. 4(a)].

Figure 5(b) shows pressure contours when χ = 40 at t = 0.6. The pressure near both contact
lines is larger than the pressure near the bridge center. This can be understood by noting that the
axial component of the electric field is stronger near the bridge center than near the contact lines,
as can be seen by examining the electrostatic potential contours in Fig. 6(a). According to Eq. (5),
the electric field will lower the pressure the most near the bridge center. The resulting pressure

FIG. 6. Electrostatic potential contours and bridge shapes for the case in which χ = 40 at (a) t = 0.6 and
(b) t = 5. The values of the other parameters are Ca = 0.5, θtop = 60◦, θbottom = 80◦, and �θr = 20◦.
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gradients cause both contact lines to retract. Because the left (bottom) surface is less wettable than
the right (top) surface, the left contact line retracts faster than the right contact line [Fig. 4(a)]. The
lower pressure in the bridge center when the electric field is present also implies that the bridge is
stabilized by the electric field and should stretch longer before breaking up.

Figure 5(c) shows pressure contours when χ = 0 at t = 5. Because this is close to the breakup
time of t = 5.4, the highest pressure is near the bridge center. The resulting pressure gradients push
liquid away from the bridge center toward each plate. As a consequence, the contact radii increase
near the end of stretching [Fig. 4(a)].

Figure 5(d) shows pressure contours when χ = 40 at t = 5. The pressure near the left (bottom)
plate is larger compared to that near the right (top) plate, and the maximum pressure occurs near
the bridge center. In addition, the radial component of the electric field becomes more pronounced
(relative to the axial component) near the contact lines, as can be seen by examining the electrostatic
potential contours in Fig. 6(b). Since the electrostatic potential at the top plate is a constant, the
influence of electrostatic forces becomes weaker during stretching, and eventually the region of
highest pressure occurs near the bridge center. As a consequence, both contact lines expand in the
radial direction [Fig. 4(a)]. Because the electric field delays bridge breakup, the contact line on the
less wettable surface has more time to retract on that surface. As a result, more liquid is transferred
to the more wettable surface when the electric field is present.

B. Leaky dielectrics

We now consider leaky dielectrics where the surface charge density q and liquid conductivity K∗
may be nonzero. Note that since conductivity involves charge transport, it brings in an additional
timescale.

1. Electrostatic contribution to the tangential stress

For leaky dielectrics, the electric field still makes a contribution to the normal stress balance.
However, a nonzero surface charge density and an electric field can also influence the tangential
stress balance, as can be seen in Eq. (12). As discussed in Ref. [34] in the context of the 1D model,
the transfer ratio can be increased by manipulating the direction of the electrostatic contribution
to the tangential stress. The magnitude of this stress is determined by the surface charge density q
and the tangential component of the electric field along the interface. The direction of this stress
depends on the sign of q and the direction of the electric field since χ > 0.

To enhance liquid transfer to the top plate, the electrostatic contribution to the tangential stress
has to be positive so that it points in the positive z-direction. Since the sign of the surface charge may
depend on material properties, the direction of the electric field can be adjusted to manipulate the
direction of the tangential stress. If the surface charge is negative, then the direction of the electric
field should point in the negative z-direction by applying a positive potential on the top plate while
grounding the bottom plate (and vice versa; note that Ei = −∇φi). The mechanism is illustrated in
the schematic shown in Fig. 7.

2. Liquid transfer

We set the initial surface charge density qo to 0 or 0.5. The latter value of charge density
corresponds to 4.4 × 10−6 C/m2 for a 1 kV potential difference over a 1 mm gap. This initial
surface charge density is about two orders of magnitude smaller than the values used in studies of
electrospinning [44], but it is large enough to significantly influence bridge behavior. In this section,
a constant electrostatic potential is applied at the bottom plate while the top plate is grounded.
Therefore, the direction of the electrostatic contribution to the tangential stress is in the positive
z-direction.

The second term on the right-hand side of Eq. (5) represents a change in surface charge density
due to charge accumulation at the liquid-air interface [39]. We set the dimensionless conductivity K∗
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FIG. 7. Schematic illustrating how surface charge and the associated tangential stresses can increase liquid
transfer to the top plate. The electric field points in the negative z-direction and the tangential stresses point in
the positive z-direction.

to 0 or 1. The latter value corresponds to 8.8 × 10−12 (� m)−1 for a 1 mm characteristic length and
1 mm/s stretching speed. This conductivity is of the same order of magnitude of what is observed for
silicone oil. If K∗ is even smaller, not enough surface charge accumulates to significantly influence
the bridge shape before the simulation ends.

The diffusion term in Eq. (5) is usually neglected [39], but we keep this term to prevent steep
charge gradients that form near each contact line [40]. To determine the value of Pe, we perform
some additional calculations using equilibrium bridge shapes (see the Supplemental Material [43]
for more details). These calculations indicate that the equilibrium bridge shapes for Pe ∼ 1–104 are
very similar, so we choose a value of Pe = 1000 since it provides a reasonable balance between
computational accuracy and cost.

To understand how the initial surface charge density and conductivity influence liquid transfer,
we consider four different cases: (i) qo = 0, K∗ = 0 (perfect dielectric); (ii) qo = 0.5, K∗ = 0;
(iii) qo = 0, K∗ = 1; and (iv) qo = 0.5, K∗ = 1. Figure 8 shows the transfer ratio for these cases
at Ca = 0.5, as well as the transfer ratio for the nonelectrified bridge.

In Fig. 8, the values of the transfer ratio for the case in which qo = 0 and K∗ = 1 are in between
the values for the perfect dielectric bridge and the nonelectrified bridge. However, for the case in
which qo = 0.5 and K∗ = 0, the transfer ratio increases about 20% compared to the transfer ratio

FIG. 8. Transfer ratio vs wettability difference for cases in which χ = 0 (�); χ = 40, qo = 0, K∗ = 0
(©); χ = 40, qo = 0.5, K∗ = 0 (

�
); χ = 40, qo = 0.5, K∗ = 1 (

�
); and χ = 40, qo = 0, K∗ = 1 (�). Here,

θtop = 60◦, and θbottom varies from 40◦ to 80◦. The values of the other parameters are Ca = 0.5 and Pe = 1000.
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FIG. 9. Bridge shapes at times (a) t = 4, (b) t = 6, and (c) t = 8. The breakup times for the cases with
qo = 0, K∗ = 0 (solid line); qo = 0.5, K∗ = 0 (dashed line); and qo = 0, K∗ = 1 (dotted line) are 8.3, 6.9,
and 8.0, respectively. The values of the other parameters are Ca = 0.5, χ = 40, θtop = 60◦, θbottom = 80◦, and
�θr = 20◦.

for the perfect dielectric bridge for all values of �θr . Additionally, the transfer ratio for the case in
which qo = 0.5 and K∗ = 1 is only about 1–5 % higher than that for the case in which qo = 0.5 and
K∗ = 0.

These results indicate that tangential stresses arising from surface charge can significantly
enhance liquid transfer even when the top plate is less wettable than the bottom plate. In addition,
they show that the initial surface charge plays a more important role than liquid conductivity in
controlling liquid transfer. The predictions of the 2D model are in qualitative agreement with
those from the 1D model [34], although the 1D model predicts a higher transfer ratio due to the
approximations it makes (see the Supplemental Material [43]).

We now examine bridge shapes at different times to explain why the initial surface charge plays
a more important role than conductivity in controlling liquid transfer. Figure 9 shows bridge shapes
at several different times. In Fig. 9(a), liquid is pushed to the right (top) plate for the case in which
qo = 0.5 and K∗ = 0, whereas the bridge shapes for the other two cases nearly overlap. As shown in
Eq. (12), the electrostatic contribution to the tangential stress is the product of the surface charge and
the tangential component of the electric field. Therefore, when the initial surface charge is nonzero,
the tangential stress pushes liquid at the beginning of bridge stretching. However, for the case in
which qo = 0 and K∗ = 1, it takes time for charge to accumulate at the liquid-air interface. As a
consequence, the tangential stress is not strong enough to significantly influence bridge shape.

At a later time t = 6 [Fig. 9(b)], the bridge for the case in which qo = 0.5 and K∗ = 0 is close
to breakup. In addition, the bridge for the case in which qo = 0 and K∗ = 1 becomes narrower than
the bridge for the case in which qo = 0 and K∗ = 0 due to the presence of tangential stresses. We
find that negative surface charge accumulates on the left (bottom) half of the bridge because the left
plate is the positive electrode, and vice versa. As a consequence, the tangential stress near the left
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plate points in the negative z-direction while the tangential stress near the right plate points in the
positive z-direction. This drives liquid to each plate and results in a narrower bridge and a slightly
lower transfer ratio (Fig. 8).

Final bridge shapes are shown in Fig. 9(c). The bridge with qo = 0.5 breaks earlier (t = 6.9)
than the bridges with qo = 0 (t = 8.0 for K∗ = 1 and t = 8.3 for K∗ = 0). These results show
that the initial surface charge not only enhances liquid transfer but also reduces the breakup time.
However, the breakup time for the bridge with qo = 0.5 is still longer than that for a corresponding
nonelectrified bridge [Fig. 4(b)] because of the stabilizing effect of the electric field. If the initial
surface charge is zero, the surface charge does not accumulate fast enough for tangential stresses to
significantly modify liquid transfer. If the initial surface charge and conductivity are nonzero, the
accumulated surface charge can increase the strength of the tangential stress, and the transfer ratio
can be further increased (Fig. 8).

IV. RESULTS—CAVITY

In Sec. III, we observed that application of an electric field stabilizes a stretching liquid bridge,
which allows more time for the contact line to recede on the less wettable surface and leads to an
increase in liquid transfer to the more wettable surface. Tangential stresses due to surface charge
can significantly enhance liquid transfer, even to the less wettable surface. Predictions from the 2D
model are in qualitative agreement with those of the 1D model presented in our prior work [34].
In this section, we replace the bottom plate with a cavity [Fig. 2(b)] to study how electric fields
influence liquid transfer. Because the cavity has a geometry that varies in the radial direction, the
1D model cannot be applied and 2D calculations are necessary.

In our study, the parameters in Eq. (19) are the depth of cavity δ = 1, distance from the symmetry
axis to the midpoint of the cavity wall rs = 0.8, and curvature of the corner rd = 0.3; the values
chosen are consistent with those used in our previous studies [22,23]. The initial distance between
the flat plate and the cavity bottom is 1.2, and consistent with our previous studies [22,23], we begin
with a liquid bridge that has a vertical liquid-air interface located 1.05 units away from the symmetry
axis. Before stretching the bridge, we run simulations without an electric field with U = 0 until the
bridge reaches an equilibrium shape. This equilibrium shape is then used as an initial condition when
stretching the bridge, both in the absence and presence of an electric field. Since there is already
a geometric asymmetry due to the cavity, we use an equilibrium bridge rather than a cylindrical
bridge as an initial condition, consistent with our previous work [22,23,25].

A. Perfect dielectrics

1. Effects of electrostatic forces

We begin by examining liquid transfer for perfect dielectrics. The top contact angle θtop is fixed
at 70◦, while the bottom contact angle θbottom varies from 50◦ to 90◦. The relative permittivity of the
liquid phase is again set to ε = 2.74.

Figure 10 shows how the transfer ratio varies as a function of the wettability difference in the
absence and presence of an electric field at Ca = 0.1 and 0.5. In Fig. 10(a), where Ca = 0.1, the
transfer ratio increases as �θr increases when χ = 0. However, the values of the transfer ratio
are much less than those for liquid transfer between two flat plates (Fig. 3). Because the contact line
tends to pin on the cavity wall and retract on the flat plate, the resulting droplet that forms on the
flat plate is much smaller than that in the cavity [22]. When χ = 20, the transfer ratio increases as
�θr increases but does not change much when �θr < 0◦. However, when χ is further increased to
40, the values of the transfer ratio are larger for all �θr compared to the values when the electric
field is absent. The transfer ratio also becomes larger as �θr increases. These results show that if
electrostatic forces are strong enough, they can increase liquid transfer from a cavity even when
�θr < 0.
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FIG. 10. Relationship between transfer ratio and wettability difference for different values of χ at (a) Ca =
0.1 and (b) Ca = 0.5. Here, θtop = 70◦, and θbottom varies from 50◦ to 90◦. The wettability difference �θr =
θbottom − θtop.

Comparison of Figs. 10(a) and 10(b) shows that when no electric field is present, the transfer
ratio increases as Ca increases from 0.1 to 0.5. Because the viscous forces are stronger at higher
Ca, they are more effective at reducing the tendency of the contact line to retract on the flat plate,
and as a result, more liquid is transferred there [22]. As can be seen in Fig. 10(b), the transfer ratio
increases as χ increases for all �θr ; the physical mechanisms responsible for this will be discussed
below. As noted in Sec. III A 1, the influence of the electric field is more prominent at larger Ca
since χCa is larger.

We now characterize how the electric field changes contact-line movement and thus the transfer
ratio. Figure 11(a) shows the time evolution of contact-line positions for χ = 0 and 40 at Ca = 0.5
and �θr = 20◦. In Fig. 11(a), both contact lines slip down each surface at the beginning of stretching
for χ = 0. However, the top contact line keeps retracting until bridge breakup, while the bottom
contact line effectively pins on the cavity wall [22]. Even though the top plate is more wettable than
the cavity, the top contact radius becomes smaller than the bottom contact radius. Therefore, the
transfer ratio is only 28% [Fig. 10(b)]. For χ = 40 [Fig. 11(a)], the bottom contact line slips faster
than the top contact line. The faster retraction of the bottom contact line down the cavity wall when
the electric field is present allows more liquid near the cavity to transfer to the flat plate.

Figure 11(b) shows the final bridge shapes for χ = 0 and 40. In Fig. 11(b), the size of the droplet
in the cavity for χ = 40 is smaller than that for χ = 0. Even though the value of the top contact

FIG. 11. (a) Time evolution of the contact line on the top (flat plate) and bottom (cavity) surfaces for χ = 0
(solid line) and 40 (dashed line). (b) Final bridge shapes for χ = 0 (solid line) and 40 (dashed line). The bridge
breakup times for χ = 0 and 40 are 2.8 and 3.9, respectively. The values of the other parameters are Ca = 0.5,
θtop = 70◦, θbottom = 90◦, and �θr = 20◦.

044005-15



HUANG, CARVALHO, AND KUMAR

FIG. 12. Pressure contours and interface shapes for (a), (b) χ = 0 and (c), (d) χ = 40 at t = 0.4. Panels
(a) and (c) show the region near the contact line on the cavity wall, and panels (b) and (d) show the region near
the flat plate. The values of the other parameters are Ca = 0.5, θtop = 70◦, θbottom = 90◦, and �θr = 20◦. The
insets show the locations of the interface shapes.

radius for χ = 40 is slightly smaller than that for χ = 0 [Fig. 11(a)], the size of the top droplet
for the electrified bridge is larger than that for the nonelectrified bridge [Fig. 11(b)]. These results
show that the electric field enhances liquid transfer by increasing contact-line slippage on the cavity
wall, thus pushing more liquid to the top plate. Note that the electrified bridge breaks up at a longer
length than the nonelectrified bridge because the electric field stabilizes the bridge as discussed in
Sec. III A 2.

To understand how the electric field promotes contact-line movement on the cavity wall, it is
useful to analyze pressure contours near the contact lines as shown in Fig. 12. Figures 12(a) and
12(b) show pressure contours for χ = 0 at t = 0.4. At the right (top) surface [Fig. 12(b)], the highest
pressure is near the contact line, and the pressure decreases away from the contact line. Such a
pressure gradient drives liquid away from the contact line, causing it to retract. At the left (bottom)
contact line [Fig. 12(a)], the pressure gradient is smaller than that near the right (top) contact line.
As discussed in Ref. [22], the interface near the cavity wall does not have to deform as much to
maintain a constant contact angle due to the inclination of the cavity wall. As a consequence, the
capillary pressure gradients there are smaller compared to those near the contact line on the flat
plate, and the contact line effectively pins on the cavity wall (Fig. 11).

Figures 12(c) and 12(d) show pressure contours for χ = 40 at t = 0.4. As discussed in
Sec. III A 2, the presence of the electric field decreases the pressure near the bridge center.
Figures 12(c) and 12(d) show that the lowest pressure for the electrified bridge is much smaller
than that for the nonelectrified bridge [Figs. 12(a) and 12(b)]. As a result, there is a higher pressure
gradient near the contact line on the right (top) surface [Fig. 12(d)] compared to the case in which
χ = 0 [Fig. 12(b)]. The higher pressure gradient drives more liquid away from the contact line,
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FIG. 13. (a) Cavity shapes for δ = 1 (right) and 0.5 (left). (b) Relationship between transfer ratio and
wettability difference for different values of χ and cavity depths at Ca = 0.5. Here, θtop = 70◦, and θbottom

varies from 50◦ to 90◦.

leading to a large change in interface shape. In particular, a thin film of liquid forms on the top
plate.

At the left (bottom) surface, the maximum pressure near the contact line is increased when the
electric field is present [Figs. 12(c) and 12(a)]. This, along with a lower pressure near the bridge
center, leads to a higher pressure gradient near the contact line on the cavity wall, causing it to
slip more. This overcomes the apparent pinning that was observed in the absence of the electric
field (Fig. 11), and it allows more liquid to be transferred to the top plate. We also observe that the
interface is more highly curved near the cavity wall and begins to form a thin film when the electric
field is present. Although the contact line on the top plate retracts more when the electric field is
present, the increased slippage of the contact line on the cavity wall outweighs this effect and leads
to an increase in the transfer ratio.

2. Effect of cavity depth

In this section, we report results from a brief parametric study examining the influence of cavity
depth on liquid transfer. Here, the depth of cavity δ = 0.5, which is one-half the value used in
the previous section; the rest of the parameters in Eq. (19) remain the same. Figure 13(a) shows
the two cavity shapes. Because we use a hyperbolic tangent function to define cavity shape, the
angle between the cavity bottom and the cavity wall increases about 7◦ when δ decreases from 1
to 0.5. The depth is decreased by 50% while the angle is changed only about 6%, so any change
in the transfer ratio is likely mainly due to the change in cavity depth. The initial distance between
the flat plate and the cavity for the shallower cavity is taken to be 0.6; this is half the value used in
the previous section, and it was chosen since the cavity depth has been halved.

Figure 13(b) shows the transfer ratio for the two cavity depths at Ca = 0.5. When χ = 0, the
transfer ratio for the shallow cavity is higher than that for the deep cavity because the contact line
on the shallow cavity slips more (results not shown). This result can be rationalized by noting that
the cavity becomes a flat plate when δ approaches 0. Note that the transfer ratio for the geometry
having two flat plates with �θr = 20◦ and Ca = 0.5 is approximately 50%. Therefore, the transfer
ratio increases as the cavity becomes shallower.

When χ = 40, the transfer ratio increases relative to the χ = 0 case for both the deep and shallow
cavities for all wettability differences. Notably, the transfer ratio for the deep cavity increases about
30% while the transfer ratio for the shallow cavity only increases about 8%. Thus, the deep cavity
eventually transfers more liquid to the top plate than the shallow cavity when the electric field is
applied, which is the opposite to what is observed when the electric field is absent.

We now discuss the reason why the deep cavity transfers more liquid than the shallow cavity
when the electric field is present. Figure 14 shows pressure contours for the shallow and deep cavity
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FIG. 14. Pressure contours and interface shapes for (a) the shallow cavity and (b) the deep cavity at t = 0.4.
Values of other parameters are Ca = 0.5, χ = 40, θtop = 70◦, θbottom = 90◦, and �θr = 20◦.

at t = 0.4. In both cases, the pressure is uniform over much of the domain, but large pressure
gradients arise near the contact lines.

For the shallow cavity [Fig. 14(a)], the dimensionless pressure difference between the vicinity
of cavity wall and bulk is about 75. For the deep cavity [Fig. 14(b)], the dimensionless pressure
difference is about 150. This higher pressure difference arises from the change in curvature near the
contact line at the cavity wall. For the shallow cavity, the curvature near the contact line does not
need to vary as much to maintain a contact angle. Therefore, the pressure difference in the shallow
cavity is smaller than that of the deep cavity. At the later times (results not shown), the curvature
of the interface in the shallow cavity becomes nearly constant, which causes the contact line to
effectively pin. However, the interface of the deep cavity remains highly curved until the end of
the stretching. Consequently, for the deep cavity, the capillary pressure gradient pumps liquid away
from the cavity wall, causing the transfer ratio to increase.

In summary, by modifying the pressure distribution in the liquid bridge, the electric field also
modifies the interface shapes and pressure gradients near the contact lines. This modification is
more pronounced for the deep cavity, and it results in a larger transfer ratio compared to the shallow
cavity.

B. Leaky dielectrics

In Sec. III B, we found that tangential stresses due to surface charge have a significant influence
on liquid transfer when both plates are flat. We now study the impact of the initial surface charge and
conductivity on liquid transfer when the bottom plate is replaced by a cavity. We consider the cases
in which (i) qo = 0, K∗ = 0 (perfect dielectric); (ii) qo = 0.5, K∗ = 0; (iii) qo = 0, K∗ = 1; and (iv)
qo = 0.5, K∗ = 1. The initial shapes and contact angles are the same as those used in Sec. IV A 1.
The electroviscous number χ = 40, and the capillary number Ca = 0.5. As in Sec. III B, a constant
electrostatic potential is applied at the bottom plate while the top plate is grounded so that the
electrostatic contribution to the tangential stress tends to point in the positive z-direction.

Figure 15(a) shows the transfer ratio for perfect dielectrics (qo = 0, K∗ = 0) and leaky dielectrics
at Ca = 0.5 and χ = 40. The values of the transfer ratio for the leaky dielectric cases are about 2%
higher or lower than those for the perfect dielectric.

Figure 15(b) shows the final bridge shapes for these four cases when θtop = θbottom = 70◦. The
final shapes almost overlap except for the region near the right (top) plate, and the bridge breakup
times are all within 5% of the prefect-dielectric value. In contrast to the case in which both surfaces
are flat (Fig. 9), the electrostatic contribution to the tangential stress does not appear to significantly
influence the movement of the contact line on the left (bottom) surface. In addition, the behavior of
the transfer ratio and breakup times with respect to q0 and K∗ is less systematic than what is observed
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FIG. 15. (a) Relationship between transfer ratio and wettability difference when (i) qo = 0, K∗ = 0 (�);
(ii) qo = 0.5, K∗ = 0 (

�
); (iii) qo = 0, K∗ = 1 (

�
); and (iv) qo = 0.5, K∗ = 1 (©). Here, θtop = 70◦, and

θbottom varies from 50◦ to 90◦. (b) Final bridge shapes for different cases when θtop = θbottom = 70◦. The bridge
breakup times for cases (i)–(iv) are 3.56, 3.64, 3.73, and 3.55, respectively. Values of other parameters are
Ca = 0.5 and χ = 40.

for liquid transfer between two flat plates (Fig. 8). These results indicate that the electrostatic
contribution to the tangential stress has a much smaller effect on liquid transfer when the bottom
plate is replaced by a cavity. We have performed some additional calculations with qo = 1 and 5
(results not shown), but the increase in the transfer ratio is still less than 5%.

From Eq. (12), the magnitude of the tangential stress is determined by the tangential component
of the electric field and the surface charge density. To gain some insight into the results shown in
Fig. 15, we compare the electrostatic potential for liquid transfer between two flat plates and liquid
transfer between a flat plate and a cavity. We choose the case in which qo = 0.5 and K∗ = 1, and to
exclude the influence of wettability differences, we set θtop = θbottom = 70◦.

Figure 16(a) shows the electrostatic potential contours for the case with two flat plates at t = 0.6.
Figure 16(c) shows the corresponding tangential component of the electric field, surface charge, and
electrostatic contribution to the tangential stress as a function of the arc-length coordinate along the
interface. Since E = −∇ψ , the direction of the electric field is from left to right. In Fig. 16(a), the
bridge interface is nearly parallel to the electric field. In addition, because the slope of the interface
near each contact line is higher than that near the center of the bridge, the tangential component of
the electric field near the center is greater than that near each contact line [Fig. 16(c)]. As can be
seen in Fig. 16(c), the surface charge is still uniformly distributed except near each contact line. The
surface charge is approximately zero near the left surface, and it is positive near the right surface
because the flow of liquid at the interface is from left to right. As a result, the tangential stress
pushes liquid to the right surface and enhances liquid transfer.

Figure 16(b) shows the electrostatic potential contours for the case with the cavity at t = 0.6.
Figure 16(d) shows the corresponding tangential component of the electric field, surface charge,
and electrostatic contribution of the tangential stress along the interface. In Fig. 16(b), the interface
near each contact line is highly curved and nearly perpendicular to the direction of the electric
field (positive z-direction). Therefore, as can be seen in Fig. 16(d), the tangential component of the
electric field varies considerably near each contact line and is close to zero in some places. Near the
center of the bridge, the tangential component of the electric field is relatively uniform. The surface
charge is negative near the left contact line, and it increases to positive values as the right contact
line is approached. The resulting tangential stresses over much of the bridge length are positive, but
near each contact line they are close to zero and even negative. The positive tangential stresses tend
to drive liquid to the right. However, the near-zero and negative tangential stresses near the contact
lines lead to little additional contact line movement. Moreover, the thin films of liquid that form
near each contact line provide additional viscous resistance to the tangential stresses. These factors
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FIG. 16. (a), (b) Electrostatic potential contours and (c), (d) electrostatic contribution to the tangential
stress for liquid transfer between (a), (c) flat plates and (b), (d) a flat plate and a cavity at t = 0.6. The values
of the other parameters are Ca = 0.5, χ = 40, θtop = θbottom = 70◦, qo = 0.5, and K∗ = 1.

may account for the less systematic behavior of the behavior of the transfer ratio and breakup times
with respect to q0 and K∗ (Fig. 15).

V. CONCLUSIONS

Motivated by the use of electrostatic assist to improve liquid transfer in printing processes, we
have examined the influence of electric fields on liquid transfer in two model geometries, both of
which involve liquid bridges with moving contact lines. For liquid transfer between two flat plates,
application of an electric field stabilizes the liquid bridge. This allows more time for the contact
line to retract on the less wettable surface, and it leads to an increase in liquid transfer to the more
wettable surface. Tangential stresses due to surface charge can significantly enhance liquid transfer,
even to the less wettable surface if the tangential stresses point toward that surface. The initial
surface charge plays a more important role than liquid conductivity in enhancing liquid transfer.
Predictions from the 2D model used in this work are in qualitative agreement with those of the 1D
model presented in our prior work.

For liquid transfer between a flat plate and a cavity, the electric field modifies the pressure
distribution in the bridge, and as a consequence, also the interface shapes and pressure gradients
near the contact lines. In particular, the pressure gradient near the contact line on the cavity wall is
increased, causing the contact line to slip more. This overcomes the apparent pinning that occurs
in the absence of the electric field, and it allows more liquid to be transferred to the top plate, even
when the top plate is less wettable than the cavity. Notably, the modification is more pronounced for
a deep cavity, resulting in a larger transfer ratio compared to a shallow cavity. In contrast to the case
of liquid transfer between two flat plates, surface charge does not have as significant an influence
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on liquid transfer due to the way the cavity and electric field modify the interface shape near the
contact line.

The results of this work provide a foundation for understanding the physical mechanisms
underlying electrostatic assist. At high printing speeds (Ca ∼ 1), the transfer ratio is only 50% in
the absence of an electric field for liquid transfer between two flat plates. For liquid transfer from
a cavity, the transfer ratio can be even lower due to an apparent pinning of the contact line on the
cavity wall. To overcome these limits, and thus reduce printing defects, additional forces such as
electric fields must be used.

The present work illustrates the physical mechanisms through which electric fields can improve
liquid transfer. The results provide a foundation for additional studies that incorporate shear and
rotational motion, multiple cavities, and non-Newtonian rheology. They also highlight the need for
complementary experiments, especially those that can test the predictions reported here. The results
of such investigations are relevant not only to printing, but potentially also to other applications
[11] such as adhesion, tribology, and microfluidics, where liquid bridges with moving contact lines
appear.
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