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horizontal and vertical external vibrations
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We consider Newtonian liquid films on a horizontal substrate with a free and deformable
surface. The substrate is subjected to oscillatory accelerations in the normal or in the
horizontal direction. An algorithm based on a nonlinear coordinate transformation is
presented that allows for direct numerical solutions of the fully nonlinear Navier-Stokes
equations and appropriate boundary conditions. No surface tracking is necessary. Normal
oscillations generate the traditional subharmonic and harmonic Faraday patterns. Lateral
oscillations cause a pattern formation scenario qualitatively similar to spinodal dewetting,
namely the disintegration of the film into isolated drops followed by coarsening or fusion,
the stabilization of a “precursor” film, and no rupture. Ratchet-like lateral excitations break
the horizontal mirror symmetry x → −x and give the patterns a preferred direction. We
show that drops formed due to instability of the flat film start to travel in a distinguished
direction. For thin films, the results are in good agreement to those of a recently studied
lubrication-based dimension-reduced model [Bestehorn et al., Phys. Rev. E 88, 023025
(2013); Bestehorn, Phys. Fluids 25, 114106 (2013)].
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I. INTRODUCTION

The first pattern-forming instability in fluids was discovered experimentally by Michael Faraday
in 1831 [1]. A vertically vibrating liquid with an originally flat free surface may show regular
surface deformations that normally have the form of regular squares. The squares oscillate with
half of the driver’s frequency and are in resonance with gravity waves of the unforced liquid. More
than 120 years after Faraday’s experiments, a first simplified theoretical treatment of the linearized
hydrodynamic basic equations assuming an inviscid fluid was given by Benjamin and Ursell [2].
The stability problem of the fluid in rest can be reduced to a Mathieu equation. Later, the analysis
was extended to viscous fluids [3,4] for layers with arbitrary depth. This work was experimentally
confirmed in Ref. [5]. Instabilities and pattern formation were studied in experiments, for example
[6], showing beneath the original subharmonic structures also harmonic branches where the patterns
oscillate with the same frequency as the driver. Vertical oscillations can also be used to suppress the
Rayleigh-Taylor instability where a heavier fluid is positioned over a lighter ones, as was shown in
early experiments by Wolf [7] for small aspect ratios and later numerically in Ref. [8] for a two-layer
thin film setup.

In large aspect ratios the patterns are normally rather regular and may emerge as the classical
squares, but also stripes, hexagons [9], or even quasicrystals with eightfold [10] or twelvefold
symmetries [11,12] can be encountered.
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Although Faraday already considered oscillations of the layer tangential to the free flat surface,
most of the work up to now deals with normal (classical) excitation. The first theoretical paper
that studied in-plane oscillations (further referred to as “horizontal”) was by Yih in 1968 [13]. Yih
showed that the flat surface becomes unstable with respect to a long wave instability, in contrast to
the normal excitation, where a disturbance with a finite critical wave number branches off the base
state at onset.

Experiments on horizontal excitations are still rare. A series of experiments for thicker layers
with depth of the size of the wavelength have been performed by Porter et al. [14–17]. The problem
here is the lateral walls which prevent the existence of a horizontally homogeneous base flow and
which when oscillating laterally act as wave makers. In experiments, a laterally (one-dimensional)
periodic container could be approximated by taking an annular ring cell with large radius, as
developed earlier for convection experiments (see, e.g., [18,19]). In other experiments, Yoshikawa
and Wesfreid [20] considered a horizontally excited two-layer system and interpreted the observed
patterns as Kelvin-Helmholtz instability [21]. The spatio-temporal dynamics of a diffusive interface
between miscible liquids also under microgravity conditions was extensively studied by Gaponenko
et al. [22,23]. Theoretical work by Lyubimov and Cherepanov [24] predicted the formation
of spatially stationary interfacial instabilities (“frozen waves”) between two immiscible fluids
subjected to horizontal vibration, a result which was later proved in experimental investigations
by Ivanova et al. [25]. Lyubimova theoretically studied the influence of horizontal vibrations on
Marangoni instability [26]. Experiments and a stability analysis by Talib et al. [27,28] revealed the
role of viscosity contrast.

Based on lubrication theory, dimension-reduced models can be derived systematically by
integrating out the vertical dimension; see, e.g., [29]. In this way inertia terms of the original
Navier-Stokes equations can be kept approximately, as further developed by Ruyer-Quil and
Manneville [30] and later by Rojas et al. [31].

In Refs. [32,33] a dimension-reduced model was systematically derived that allows for the
examination of nonlinear pattern formation for the normal, the horizontal, and the combined cases
of oscillations. The model fully includes inertia, an important ingredient for parametric instabilities.
The free deformable surface is considered in the way of the thin film (Reynolds lubrication)
equation—see, e.g., [34]—and no interface tracking is necessary. This model was applied further
to two-layer systems [8,35] and to three-dimensional (3D) one-layer systems to demonstrate the
existence of quasiperiodic spatial structures [36]. The linearized reduced model can be directly
compared to the linearized Navier-Stokes equations, as was done in Refs. [32,33].

To show the validity of the model in the nonlinear regime, numerical solutions of the fully
nonlinear basic equations are desirable. Up to now, only very few papers have dealt with numerical
solutions of the full Navier-Stokes equations for the standard Faraday instability, most of them in
2D [37–39]. To our knowledge there is no numerical work on horizontal or combined excitations.

The present paper has two main purposes: (i) to devise a numerical scheme for the fully nonlinear
system without further approximations, and (ii) to justify the nonlinear computations performed
with the reduced model in Refs. [32,33]. For the case of horizontal excitations, we confirm the
occurrence of traveling localized surface elevations if the time dependence of the lateral excitation
fx(t ) has the form of a ratchet, so that fx(t ) �= − fx(t + t0) for arbitrary t0. These traveling drops
were predicted earlier by our model and are now computed using the full Navier-Stokes equations.

The paper is organized as follows: In the next two sections the algorithm is described starting
from the 2D hydrodynamic basic equations and boundary conditions. The key idea is the mapping of
the deformed area to a rectangle [L × 1], applying the nonlinear transformation x = x̃, z = h(x, t ) z̃,
where h(x, t ) describes the position of the free surface, x, x̃ run from zero to L and z̃ from zero to
one. This transformation was first used in Ref. [40] to examine the formation and the dynamics of
bores in an inviscid fluid.

Section III shows the numerical discretization and implementation on a staggered grid. The
pressure is computed exactly from the incompressibility condition at each time step by solving a
sparse linear system obtained from the transformed Poisson equation.
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FIG. 1. Incompressible Newtonian fluid on a plane substrate with mean depth d and with a free surface
at z = h(x, t ). The liquid is subjected to a time-dependent force field or the substrate is vibrating in vertical
[ fz(t )] and horizontal [ fx (t )] directions. Due to periodic excitation with a sufficiently large amplitude value,
instability of the flat film occurs and surface structures with wavelength λ appear.

Section IV presents numerical results for normal and horizontal excitations. Both cases are
compared with the outcome of the reduced model [32,33] and a good agreement is found. Finally,
asymmetric ratchet-like horizontal forcing that breaks the x → −x symmetry is applied, showing
traveling localized surface elevations to the left or to the right, depending on the form of the
excitation.

II. BASIC EQUATIONS

A. Navier-Stokes equations

We consider an incompressible fluid layer described by the two-dimensional Navier-Stokes
equations. The layer is bounded in vertical direction by a planar horizontal substrate at z = 0 and
by its free surface at z = h(x, t ) (Fig. 1). Periodic boundary conditions are assumed in the lateral
direction. The sum of external forces acting on the system is given by

�f (t ) =
(

fx(t )

fz(t )

)
= g

(
ax(t )

az(t ) − 1

)
, (1)

where g is the constant gravitational acceleration and gai denotes a time-periodic acceleration

ai(t ) = ai(t + T ). (2)

Using the viscosity ν, density ρ, and the mean depth d we can apply the scalings

�x = d �̃x, t = (d2/ν) t̃ , h = d h̃, (3a)

�v = (ν/d ) �̃v, P = (ν2ρ/d2) P̃, γ = (ν2ρ/d ) �, �f = (ν2/d3) �̃f (3b)

of length �x = (x, z), time t , layer depth h, velocity field �v = (v,w), pressure P, and surface tension
γ in order to receive the following dimensionless notation (henceforth, we drop the tildes):

∂�v
∂t

+ (�v · ∇ )�v + ∇P − ��v − �f (t ) = 0, (4a)

∇ · �v = 0. (4b)

With (4b), Poisson’s equation

�P = 2(∂xu∂zw − ∂xw∂zu) (5)

determining the pressure field inside the fluid is obtained, forming the divergence of Eq. (4a).
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FIG. 2. Nonlinear coordinate transformation (13) of a fluid layer (A) with arbitrarily shaped surface to a
rectangle (B).

B. Boundary conditions

The toroidal domain geometry (periodic lateral boundary conditions) implies

�v(x, z, t ) = �v(x + L, z, t ), h(x, t ) = h(x + L, t ) (6)

with L being the scaled horizontal length of the layer. At the bottom (z = 0), the velocity field
vanishes according to the no-slip condition:

�v(x, z = 0, t ) = 0. (7)

The force equilibrium at the free surface can be formulated as the relation (tangential shearing forces
disappear)

�̂t · σ |z=h · �̂n = 0 (8)

between unit tangent vector �̂t , unit normal vector �̂n, and scaled deviatoric stress tensor σ :

�̂t = 1√
1 + h′2

(
1
h′

)
, �̂n = 1√

1 + h′2

(−h′
1

)
. (9)

Furthermore, vanishing normal stress components deliver the condition

(σ · �̂n)z=h = (P0 − Pz=h − �K) �̂n. (10)

Here, P0 is the constant atmospheric pressure, � denotes the inverse capillary number (scaled surface
tension), and the curvature of the free surface is described by

K = h′′

(1 + h′2)3/2
, (11)

where the first and the second derivatives with respect to x are abbreviated as h′ and h′′, respectively.
The kinematic boundary condition

∂h

∂t
=

(
w − u

∂h

∂x

)
z=h

(12)

completes the set of equations.

C. Mapping

In Ref. [40], we introduced the local nonlinear coordinate transformation

x = x̃, z = h(x, t ) · z̃ (13)

which will pare the required interpolation of the later numerical scheme down to a minimum. The
mapping transforms an arbitrarily shaped, time-dependent fluid layer to a rectangular region (Fig. 2).

044004-4



DIRECT NUMERICAL SIMULATIONS OF LIQUID FILMS …

Thus, the identities and conditions (4), (8), (10), and (12) must be converted according to (13). The
transformed first-order derivatives read

∂

∂x
= ∂

∂ x̃
− z̃

h′

h

∂

∂ z̃
,

∂

∂z
= 1

h

∂

∂ z̃
,

∂

∂t
= ∂

∂ t̃
− z̃

ḣ

h

∂

∂ z̃
. (14)

For the second-order derivatives we find

∂2

∂x2
= ∂2

∂ x̃2
+ z̃

(
2

(
h′

h

)2

− h′′

h

)
∂

∂ z̃
− 2z̃

h′

h

∂2

∂ x̃ ∂ z̃
+ z̃2

(
h′

h

)2
∂2

∂ z̃2
, (15a)

∂2

∂z2
= 1

h2

∂2

∂ z̃2
. (15b)

Inserting (14) and (15) into the Navier-Stokes equation and the mass conservation equation yields
(we drop all tildes again)

∂u

∂t
= zξ̇

∂u

∂z
− u

(
∂u

∂x
− zξ ′ ∂u

∂z

)
− w

h

∂u

∂z
− ∂P

∂x
+ zξ ′ ∂P

∂z
+ �u + fx(t ), (16a)

∂w

∂t
= zξ̇

∂w

∂z
− u

(
∂w

∂x
− zξ ′ ∂w

∂z

)
− w

h

∂w

∂z
− 1

h

∂P

∂z
+ �w + fz(t ), (16b)

and

∂u

∂x
− zξ ′ ∂u

∂z
+ 1

h

∂w

∂z
= 0, (17)

respectively, where the auxiliary variable

ξ (x, t ) = ln h(x, t ) (18)

is introduced for the sake of convenience. Laplace’s operator in Eqs. (16) changes into

� = ∂2

∂x2
+ (zh′)2 + 1

h2

∂2

∂z2
+ z

h

(
2

h
h′2 − h′′

)
∂

∂z
− 2zh′

h

∂2

∂x ∂z
.

The transformation maps the horizontal and, in case of z = 0, the vertical coordinate to themselves.
Hence, this does not affect the lateral boundary condition (6) or the no-slip condition (7).
Equation (8) has to be rewritten though, considering (13), and solved for u|z=h to calculate the
lateral components of the velocity at the surface. The continuity equation (17) is used to eliminate
∂zw in Eq. (8). After transforming the stress tensor we may rearrange Eq. (8) to

∂zu|z=1 = h

(1 + h′2)2

(
h′(h′2 + 3)

∂u

∂x
− (1 − h′2)

∂w

∂x

)
. (19)

From the projection of Eq. (10) on the normal vector, we receive the condition

P|z=1 = −�K − 2

1 + h′2

(
∂u

∂x
+ h′ ∂w

∂x

)
z=1

(20)

for the pressure at z = 1, where the pressure is normalized to P0 = 0. The boundary condition for P
at the liquid-substrate interface (z = 0) can be derived by evaluating the z component of (16b) with
�v = 0: (

∂P

∂z

)
z=0

= 1

h

(
∂2w

∂z2

)
z=0

+ h fz(t ). (21)
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FIG. 3. Staggered grid consisting of two uniform grids shifted with respect to each other by �x/2 and
�z/2 in the x and z directions, respectively.

III. THE ALGORITHM

A. Implementation

The rectangular domain is discretized by an equidistant, two-dimensional Cartesian grid D =
[x1, x2, . . . , xM ] × [z1, z2, . . . , zN ] with M and N mesh points in x (horizontal) and z (vertical)
directions, respectively. Thus, the step sizes read

�x = L

M
, �z = 1

N − 1
, (22)

where L is given in units of d and the spacial discretizations are

xi = (i − 1)�x, z j = ( j − 1)�z. (23)

The time is uniformly quantized:

tn = n�t . (24)

We are using the notations

Ai j = A(n)
i j = A(xi, z j, tn), Ai = A(n)

i = A(xi, tn) (25)

for physical quantities at the point (xi, z j ) or at the surface location (xi ).

B. Staggered grid

The velocities (u, w) are stored at the edges of each cell (v-grid), whereas the scalar quantities
(P, h, and ξ ) as well as their spatial and time derivatives are defined at the center positions (p-grid)
(Fig. 3). Variables discretized on the p-grid can be converted to the v-grid, and vice versa, applying
linear interpolation. We use the half-index notation

Ai, j±1/2 = 1
2 (Ai j + Ai, j±1), Ai±1/2, j = 1

2 (Ai j + Ai±1, j ), Ai±1/2 = 1
2 (Ai + Ai±1) (26)

to calculate variables at intermediate positions.
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C. Time update

The temporal evolution of the system is obtained by calculating the transitions

h(x, t ) → h(x, t + �t ),

�v(x, z, t ) → �v(x, z, t + �t ), (27)

for each grid point (x, z). The new height at the time step n + 1 ensues from the kinematic boundary
condition (12). It is beneficial to use the conservative form

ḣ = −∂q(x, t )

∂x
, (28)

where

q(x, t ) = h(x, t )
∫ 1

0
dz u(x, z, t ) (29)

is the mass flux, since (28) conserves the mass globally. The discretized form of (28) reads

h(n+1)
i = hi − �t�z

∑N
j=1 ui+1, jhi+1/2 − ∑N

j=1 ui jhi−1/2

�x
. (30)

The new velocities are found from the discretized form of the Navier-Stokes equations (16)
according to

u(n+1)
i j

�t
= F x

i j − Pi, j−1/2 − Pi−1, j−1/2

�x
+ ( j − 1)ξi−1/2(Pi−1/2, j − Pi−1/2, j−1) + fx(t ), (31a)

w
(n+1)
i j

�t
= F z

i j − 1

hi−1/2

Pi−1/2, j − Pi−1/2, j−1

�z
+ fz(t ), (31b)

where F x, F z stand for the discretized form of all terms of the Navier-Stokes equations except the
derivatives of P, the external forces, and the velocity at the new time step. The detailed form of �F is
given in the Appendix.

D. Pressure

Before computing �v with (31), the pressure has to be determined in such a way that the new
velocities fulfill the continuity equation. If we insert (31) into the discretized continuity equation
(17) on the p-grid,

0 = u(n+1)
i+1, j+1/2 − u(n+1)

i, j+1/2

�x
− ( j − 1/2)

ξi+1− ξi−1

2�x

(
u(n+1)

i+1/2, j+2 − u(n+1)
i+1/2, j

) + 1

hi

w
(n+1)
i+1/2, j+1− w

(n+1)
i+1/2, j

�z
,

(32)

we find an implicit relation for the pressure in the form of a sparse system of inhomogeneous
equations:

a1
i jPi−1, j−1 + a2

i jPi−1, j + a3
i jPi−1, j+1 + a4

i jPi, j−1 + a5
i jPi, j + a6

i jPi, j+1 + a7
i jPi+1, j−1

+a8
i jPi+1, j + a9

i jPi+1, j+1 = −F x
i+1, j+1 + F x

i+1, j − F x
i, j+1 − F x

i, j

2�x

+
(

j − 1

2

)
ξi+1 − ξi−1

4�x

(
F x

i+1, j+1 + F x
i, j+1 − F x

i+1, j − F x
i, j

)

− 1

hi

F z
i+1, j+1 + F z

i, j+1 − F z
i+1, j − F z

i, j

2�z
, (33)
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where the nine coefficients ak
i j are listed in the Appendix. The right-hand side of the system is the

divergence of the vector �F = (F x, F z ). Since j runs from 1 to N − 1, one has to take the boundary
conditions for P into account. Equations (21) and (20) yield

Pi,0 = Pi,1 + �z

(
fzhi − wi+1,2 + wi,2

hi�z2

)
(34)

and

Pi,N = − �(hi+1 + hi−1 − 2hi )

�x2
(
1 + ( hi+1−hi−1

2�x

)2)3/2 − ui+1,N+1 + ui+1,N − ui,N+1 − ui,N

�x
(
1 + ( hi+1−hi−1

2�x

)2)
− (hi+1 − hi−1)(wi+1,N+1 + wi+1,N − wi,N+1 − wi,N )

2�x
(
1 + ( hi+1−hi−1

2�x

)2) (35)

respectively. We consult condition (19) to find the discretization of the lateral velocity field at the
surface, which is needed in Eq. (35) (along with the vertical component):

ui,N+1 = ui,N−1 + 2�zhi−1/2

1 + h′2
i

(
h′

i

(
h′2

i + 3
)∂ui,N

∂x
− (

1 − h′2
i

)∂wi,N

∂x

)
. (36)

wi,N+1 is received from (17):

wi,N+1 = wi,N−1 + 2�z

(
h′

i

∂ui,N

∂z
− hi−1/2

∂ui,N

∂x

)
. (37)

The system (33) is sparse and can be solved for the pressure effectively by applying standard sparse
schemes; see, e.g., [41].

E. Algorithm

We briefly summarize the main steps of the numerical procedure:
(1) Choose an initial state �vi j = �v(t = 0), hi = h(t = 0) > 0,

∑
i hi = 1 considering the con-

tinuity equation (17). Due to the nature of the nonlinear transformation presented in Sec. II C,
relatively smooth fluid surfaces are strongly preferable. Noncompliance of this implicit condition
may lead to nonvanishing chessboard patterns.

(2) Calculate h(n+1)
i from Eq. (30).

(3) Compute the pressure at each grid point by solving the sparse linear system (33)–(35).
(4) Calculate the velocities u(n+1)

i j , v
(n+1)
i j from (31).

(5) Set t := t + �t , hi = h(n+1)
i , ui j = u(n+1)

i j , and wi j = w
(n+1)
i j .

(6) Continue with item 2.

IV. RESULTS

A. Dimension-reduced lubrication model

In this section we wish to compare the results of our numerical simulations with a lubrication-
approximation-based model first derived in Ref. [30] for a falling thin film and referred to there as
a first-order model. It was extended in Ref. [32] to the case of external vibrations. Its linear stability
as well as its nonlinear behavior were investigated in detail in Ref. [33]. Rojas et al. [31] showed
the validity and truncation error of the model to be of the order of the Reynolds number.

Projecting the z dependence of the horizontal velocity onto a polynomial expansion, a separation
of variables is achieved, permitting one to integrate out the vertical coordinate and thus reducing the
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two spatial dimensions (x, z) to one (x). It reads

6

5

[
∂t q + 9

7
∂x

(
q2

h

)
− 1

7

q ∂xq

h

]
= − 3

h2
q + h∂x[�∂xxh − G(1 − az(t ))h] + Gax (t ) h, (38a)

∂t h + ∂xq = 0, (38b)

where q(x, t ) is again the local mass flux as defined in Eq. (29) and G = gd3/ν2 is the Galilei
number (for further details, see [33]).

B. Fluid parameters and initial conditions

To ensure the comparability to the Navier-Stokes equations we use the following general setup:
(1) For all simulations we take a silicone oil with the following material properties:
Density ρ = 920 kg/m3, surface tension γ = 0.02 N/m, kinematic viscosity ν = 5 ×

10−6 m2/s.
(2) The evolution of the fluid is investigated after the system has reached an energetic saturation

which applies if the period-averaged total kinetic energy

Ēkin(t ) = (1/T )
∫ t

t−T
Ekin(t ′) dt ′

[with Ekin(t ) ∝ ∫
q2 dx and T given from (2)] remains approximately constant:

∀t > te : Ēkin(te) ≈ Ēkin(t ).

For times greater than te the energy gain due to the external excitation is equal to the friction-induced
energy transformation into heat.

(3) To demonstrate the independence on initial conditions we use the following cases:
(a) Point-symmetric initial conditions. The surface takes the form of a Gaussian function located

at x0 = (i0 − 1)�x, where the height of the peak δh is assumed to be small (δh � 1) and δx controls
the width of the curve:

∀(xi, z j ) ∈ D : u(xi, z j, t0) = w(xi, z j, t0) = 0, (39a)

hi = N
[

1 + δh exp

(
−

(
�x

δx
(i − i0)

)2
)]

, i = 1, . . . , M, (39b)

and N from the normalization
∑

i hi = 1.
(b) Random initial conditions. A randomly shaped fluid surface (small variations to the mean

depth at every point) is considered:

∀(xi, z j ) ∈ D : u(xi, z j, t0) = w(xi, z j, t0) = 0, (40a)

∀(xi, z j ) ∈ D : h(xi, z j, t0) = 1 + δh Z, (40b)

where Z is an equally distributed random variable in [−1/2, 1/2] with zero mean.
We measure the deviation of the emerging surface structures between both approaches quantita-

tively by introducing the distance function

α2(t ) = 1

L

∫ L

0
dx (h(1)(x, t ) − h(2)(x, t ))2, (41)

which takes the discretized form

α2(t ) = 1

M

M∑
i=1

(
h(1)

i (t ) − h(2)
i (t )

)2
. (42)
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FIG. 4. Marginal growth rate λ = 0 and positive growth rate λ = 4.8/s for a silicone oil (see text)
with depth d = 0.7 mm and ωz/2π = 10 Hz. The leftmost tongue becomes unstable first and the instability
oscillates with half of the driver’s frequency (subharmonic). The different lines correspond to the three cases:
(i) solid (black), full Navier-Stokes; (ii) dashed dotted (green), lubrication approximation (iii) dashed (red),
lubrication approximation with one Galerkin mode, model (38). Reproduced from [33], with the permission
from AIP Publishing.

Here, h(1) is the layer depth calculated from the model (38) and h(2) is the depth gained from
the present algorithm, Sec. III E (henceforth, the superscripts (1) and (2) are used with the same
meaning).

FIG. 5. Excited fluid layer with a domain length of 8.57 cm and mean depth 0.7 mm (numerical grid size is
300 × 20) after t = 12 s. Solid corresponds to the reduced model [see Eq. (38)] and the dashed line represents
the system (33)–(37) (Navier-Stokes equations). The excitation frequency is ωz/2π = 5 Hz.
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FIG. 6. Excited fluid layer with length 7.5 cm and mean depth 0.7 mm (numerical grid size is 300 × 20)
after t = 20 s. The excitation frequency is ωz/2π = 10 Hz and the amplitudes are A(1)

z = 2.39 and A(2)
z = 2.6.

Dashed: Navier-Stokes, solid: reduced model.

C. Harmonic excitation in the vertical direction

We start with a simple harmonic excitation �a(t ) = (0, Az cos(ωzt )) in the z direction. The initial
conditions do not affect the long-term evolution of the film. Up to an arbitrary lateral shift, both
conditions (39) and (40) result in identical patterns for all cases investigated in this section.

A linear stability analysis performed in Refs. [32,33] showed that due to the lubrication
approximation the Faraday tongues in the amplitude-wave number plane are shifted downwards,
resulting in lower critical vibration amplitudes compared to those for the full linearized Navier-
Stokes equations; see Fig. 4. As expected from the long-wave approximation, this discrepancy
becomes more pronounced with decreasing wave length of the horizontal disturbances. For our
parameters and a fluid depth of 0.7 mm, the difference of the first tongues is in the size of about 9%.
To account for this fact, we use lower amplitudes of excitation for the lubrication model in order to
adjust the maximum equilibrium heights after saturation:

max
i

h(1)
i

!= max
i

h(2)
i . (43)

We examine harmonically and subharmonically oscillating liquids, making recourse to findings
given in Ref. [33]. Instabilities that oscillate with the driver’s frequency can be observed in low
frequency ranges. At ωz/2π = 5 Hz, the critical amplitudes amount to A(1)

z ≈ 2.7 and A(2)
z ≈ 2.9

(ascertained by the linear stability analysis) and the critical wave numbers are approximately iden-
tical (k(1)

c ≈ k(2)
c ≈ 0.44/mm). The amplitudes are chosen above the stability threshold, allowing us

to study the waves in the nonlinear regime. We take A(1)
z = 2.81 and A(2)

z = 3.15, values that fulfill
the condition (43). The length of the layer is adjusted to integral multiples of the critical wavelength,
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FIG. 7. Difference plot α(t ) for one oscillation period T . Panels (a) and (b) correspond to the setups shown
in Figs. 5 and 6.

here 6. Figure 5 shows the pattern formation for several times t within one period T = 2π/ωz. If
we consider α(t ) over time [Fig. 7(a)], we find good agreement between the models where the
maximum difference is less then 3%.

Higher values of ωz improve the agreement further. The fluid at the double frequency ωz/2π =
10 Hz oscillates subharmonically (Fig. 6) with half of the excitation frequency, and the difference
reaches a value of only 2.2%; see Fig. 7(b). For the surface one finds the relation h(x, t ) = h(x +
λ/2, t + T ), showing the match between the generated patterns in the time intervals [t, t + T ] and
[t + T, t + 2T ]. Both intervals produce the same surface structures, so we can omit the second half
of the period in Fig. 7.

D. Harmonic excitation in horizontal direction

Next we consider the case �a(t ) = (Ax cos(ωxt ), 0) of a harmonic lateral force. The linear stability
analysis is again taken from [33]; see Fig. 8.

Starting with random initial conditions (40), we track the evolution of the surface over time.
Figure 9 shows the evolution of a rather thin layer with d = 0.2 mm until the minimal fluid depths
approach the final values, which are about 0.02 mm. The linearly fastest growing wave number is
kc ≈ 0.5/mm; see Fig. 8. After a first phase of exponential growth, the pattern becomes strongly

FIG. 8. Growth rate of long wave instability of a horizontally excited thin layer with d = 0.2 mm; for
the meaning of the different lines see Fig. 4. The agreement between Navier-Stokes equations, lubrication
approximation, and model is now much better. Dashed vertical line denotes kc, the linearly fastest growing
mode. Reproduced from [33], with the permission from AIP Publishing.
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FIG. 9. Slow fusion process (arrows) with (45) and β = 0 computed from the Navier-Stokes equations with
ωx/2π = 40 Hz and Ax = 6.44, for horizontal excitation. The average thickness is d = 0.2 mm, layer length
L = 0.1 m, numerical grid size 500 × 10. No preferred direction of drop propagation can be seen.

nonlinear, the amplitudes saturate, and the liquid forms a number of separated droplets that start to
merge very slowly. The domains between the drops stay completely covered with liquid, comparable
to a rather thick “precursor-like” film, and rupture is not observed. After saturation, the number of
remaining drops is approximately equal to the number of critical wavelengths that fit into the layer,
and the merging process starts whereby the minimum thickness of the film remains almost constant.
This findings are in good agreement with those of the model (38) from which the series depicted in
Fig. 10 are computed for the same parameters and for the same geometry.

We find that the temporally asymptotic behavior is widely independent of the initial state and, as
a consequence, point-symmetric conditions lead to qualitatively identical results for large times t .

E. Ratchet excitation in horizontal direction

Pattern dynamics is invariant under horizontal mirror symmetry x → −x, z → z if the external
force transforms as

ax(t ) → −ax(t + t0), az(t ) → az(t + t0) (44)
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FIG. 10. Slow fusion process with (45) and β = 0 computed from the reduced model (38). Same
parameters as in Fig. 9.

with a certain time offset t0. Relations (44) of course hold for the forces examined in the preceding
paragraphs, with t0 = 0 for Sec. IV C and t = π/ωx for Sec. IV D, and the observed patterns, stripes,
or single isolated drops have no preferred direction of propagation. This changes in the moment
when (44) cannot be fulfilled for any t0, e.g., for an inclined oscillation of the substrate, according
to �a(t ) = �a0 cos ωt with �a0 not normal and not parallel to the substrate. Another possibility, and this
is the method we use in this paragraph, is a purely horizontal but time-reversal asymmetric external
force �a(t ) = (ax(t ), 0), with

ax = Ax[sin(ωxt ) + β sin(2ωxt )]. (45)

For β < 0, the substrate moves faster (and over shorter time) to the left side, followed by a slower
(and longer) turn to the right, for β > 0 vice versa. The force (45) can be termed “ratchet excitation,”
and in fact the expression (45) reflects the first two terms of the Fourier expansion of a sawtooth.
Drops similar to those obtained in Sec. IV D travel now due to the symmetry break x → −x in
one preferred direction, namely to the left-hand side (β < 0), as was shown in Ref. [42] using the
reduced model (38). An additional effect of the symmetry-breaking force is that the propagation
speed of the drops depends on their size. This may accelerate the fusion process by orders of
magnitude in time, since different-size drops may catch up each other and merge rapidly.
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FIG. 11. Solution of the full Navier-Stokes equations. Fast fusion process (red dashed arrows) with (45)
and β = −1; other parameters as in Fig. 9. Drops travel to the left-hand side (black solid arrows) and fusion is
much faster in the nonlinear regime than in Fig. 9.
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FIG. 12. Same as Fig. 11, but now as a result of the reduced model (38).
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FIG. 13. Averaged mean flow Q(t ) according to (46). Dashed: Navier-Stokes with β = −1, dot-dashed:
model with β = −1. Both series show constant plateaus interrupted by peaks when two drops merge; compare
Figs. 11 and 12. Dotted (Navier-Stokes) and solid (model) lines are for β = 0 (Figs. 9 and 10), where Q is
much smaller and significantly nonzero only when two drops merge into one.

The time series depicted in Figs. 11 and 12 again compare the outcome of the model (38) with the
results of the full Navier-Stokes equations. The same features, namely main motion of the droplets
to the left side and strong acceleration of fusion, can be obtained from both computations. For both
initial conditions (39) and (40) we observe similar patterns, and the minimal thicknesses are about
the same as those found in Sec. IV D.

As recently demonstrated in Ref. [42], the averaged mean flow

Q(t ) = 1

L T

∫ t

t−T
dt ′

∫ L

0
dx q(x, t ′) (46)

does not vanish for a symmetry-breaking lateral excitation given as (45). From Fig. 13 the temporal
behavior of Q can be seen for the time series shown in Figs. 11 and 12. Q is nonzero from the time
when drops are formed due to instability. It remains fairly constant until the moment when the first
fusion takes place. Then it suffers a short decrease in its absolute value and reaches a smaller value
after fusion, due to the fact that the structure resulting from two fused drops moves slower than the
two separated drops before fusion. This behavior repeats until all drops are merged into one, which
is still traveling, but slowly.

V. CONCLUSIONS

In this work we have studied pattern formation of laterally and vertically excited thin fluid
films considering a finite-difference method for the solution of the Navier-Stokes equations.
The asymptotic patterns developed by normally oscillating systems largely coincide with those
calculated earlier from a simplified lubrication-approximation-based model. Classic harmonic and
subharmonic Faraday waves can be observed in low and high frequency ranges, respectively.

We find that the results for laterally excited liquids are also in qualitative agreement with the
reduced model. Identical stages of evolution exist (exponential growth, droplet formation, and
fusion); the geometry of the formed drops and intermediate fluid layers differs only slightly between
the methods, and rupture does not occur in all runs performed. Here we computed traveling drops
for a ratchet lateral excitation and showed that such an excitation leads to a nonvanishing averaged
lateral mean flow of the fluid.

Since primitive variables are used, the algorithm presented in this paper can be extended
straightforwardly to three dimensions. However, due to the high computational effort, a parallel
computation of the sparse linear system (33) and semi-implicit time marching would be in order.
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Three-dimensional phenomena could then be investigated, especially three-wave interactions and
the associated quasiperiodic patterns as well as lateral drop manipulation with possible applications
to microfluidics. This work is currently in progress.
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APPENDIX

The right-hand sides of (31) on the v-grid read for j = 2 . . . N

F x
i j = ui j

�t
+ wi j

hi−1/2

∂ui, j

∂z
+ ( j − 1)�z(ξ̇i−1/2 + ξ ′

i−1/2ui j )
∂ui, j

∂z

+ ∂2ui, j

∂x2
+ 1

2

[
(( j − 1)�zξ ′

i−1/2)2 + 1

h2
i−1/2

]
∂2ui, j

∂z2

− 2( j − 1)�zξ ′
i−1/2

∂2ui, j

∂x∂z
+ 2( j − 1)�z

(
2ξ ′2

i−1/2 − h′′
i

hi−1/2

)
∂ui, j

∂z
, (A1a)

F z
i j = wi j

�t
+ wi j

hi−1/2

∂wi, j

∂z
+ ( j − 1)�z(ξ̇i−1/2 + ξ ′

i−1/2ui j )
∂wi, j

∂z

+ ∂2wi, j

∂x2
+ 1

2

[
(( j − 1)�zξ ′

i−1/2)2 + 1

h2
i−1/2

]
∂2wi, j

∂z2

− 2( j − 1)�zξ ′
i−1/2

∂2wi, j

∂x∂z
+ 2( j − 1)�z

(
2ξ ′2

i−1/2 − h′′
i

hi−1/2

)
∂wi, j

∂z
. (A1b)

For j = 1 we take

F x
i,1 = 1

h2
i−1/2

ui,3 − 2ui,2

�z2
, (A2a)

F z
i,1 = 1

h2
i−1/2

2wi,2

�z2
. (A2b)

The derivatives h′ and h′′ are expressed on the v-grid according to

h′
i = hi − hi−1

�x
, (A3a)

h′′
i = hi+1 − hi − hi−1 + hi−2

2�x2
. (A3b)

Central differences of order �x, �z are taken to calculate the first, second, and mixed derivatives
of �v with respect to x and z. At j = N we apply the boundary condition (19):

∂ui,N

∂z
= hi−1/2(

1 + h′2
i

)2

(
h′(h′2

i + 3
)∂ui,N

∂x
− (

1 − h′2
i

)∂wi,N

∂x

)
, (A4)
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and by the help of the continuity equation

∂wi,N

∂z
= h′

i

∂ui,N

∂z
− hi−1/2

∂ui,N

∂x
. (A5)

At j = 1 we take

∂2ui,1

∂z2
= ui,3 − 2ui,2

�z2
, (A6a)

∂2wi,1

∂z2
= 2wi,2

�z2
. (A6b)

The nine coefficients occurring in the sparse system (33) read (p-grid)

a1
i j = 1

4

[
( j − 1)(ξi − ξi−1) − 1

�x2
+

(
j − 1

2

)
(ξi+1 − ξi−1)[( j − 1)(ξi−1 − ξi) + 1]

2�x2
− 1

hihi−1/2�z2

]
,

a2
i j = 1

4

[
ξi − ξi−1 − 2

�x2
+

(
j − 1

2

)
(2 j − 1)(ξi+1 + ξi−1)(ξi − ξi−1)

2�x2
+ 2

hihi−1/2�z2

]
,

a3
i j = −1

4

[
j(ξi − ξi−1) + 1

�x2
+

(
j − 1

2

)
(ξi+1 − ξi−1)[ j(ξi − ξi−1) + 1]

2�x2
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hihi−1/2�z2

]
,

a4
i j = −1

4

[
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2
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1
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,
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(
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2
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