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Two-dimensional fluid dynamics is often approximated via laboratory experiments that
drive a thin layer of fluid electromagnetically. That approximation would be most accurate
if both the direction and magnitude of the flow were uniform over the depth of the layer. In
practice, boundary conditions require the flow magnitude to drop to zero at the no-slip floor,
but put no strong constraint on flow direction. We measure the velocity magnitude and
direction simultaneously at the free surface and lower interface of a thin, two-layer vortex
flow. We find that the flow direction is almost entirely independent of depth, though its
slight misalignment grows as the Reynolds number (Re) increases. Similarly, we find that
the ratio of speeds at the free surface and interface nearly matches an analytically derived
profile based on idealized assumptions, even for complex flows, but deviates systematically
as Re increases. We find that flows with thinner fluid layers are better aligned and more
nearly match the predicted speed ratio than flows with thicker layers. Finally, we observe
that in time-dependent flows, flow structures at the interface tend to follow flow structures
at the free surface via complicated dynamics, moving along similar paths with a short time
delay. Our results suggest that the depth-averaged equation of motion recently developed
for thin-layer flows [Suri et al., Phys. Fluids 26, 053601 (2014)], which relies on flow
alignment and idealized profiles and was previously tested for Kolmogorov flows with Re
up to 30, is reasonably accurate for vortex flows with Re up to 470.

DOI: 10.1103/PhysRevFluids.4.043904

I. INTRODUCTION

There are many good reasons to study two-dimensional (2D) fluid dynamics in a three-
dimensional (3D) world. Many geophysical flows, occurring in contexts like oceans and atmo-
spheres, are dominated by 2D motions because the horizontal extent of the fluid layer is far greater
than its vertical depth, and because rotation and gravitational stratification further constrain vertical
flow [1]. A rich theory of 2D turbulence predicts that at high Reynolds numbers (Re), 2D flows
exhibit strikingly different physics than 3D flows. In the inviscid case, 2D flow conserves not
only energy but also enstrophy (squared vorticity), giving rise to simultaneous turbulent cascades
of energy to large length scales and enstrophy to small length scales [2–4]. Furthermore, 2D
or quasi-2D flows provide useful models for exploring new physical insights from ideas like
Lagrangian coherent structures (LCSs) [5–7], exact coherent structures (ECSs) [8,9], transfer of
energy and enstrophy among length scales [10–13], and advection-reaction-diffusion mechanisms
[14–19], because 2D simulations demand far less computational power than 3D simulations and
making high-resolution measurements throughout an experimental domain is far easier in 2D than
in 3D. Analysis is also less computationally demanding in 2D than in 3D, whether the data of
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interest came from simulation or laboratory experiment. The review by Clercx and van Heijst [20]
provides more detail.

Often, quasi-2D flow is produced in the laboratory by driving a thin layer of fluid electromag-
netically. As was first shown many years ago [21], passing electrical current through a conductive
fluid near an array of permanent magnets produces quasi-2D flow in an apparatus that is easy to
build because it has no moving parts. The characteristic flow speed can be controlled by adjusting
the current, and the spatial structure of the flow can be controlled by changing the magnet array.
Common configurations include Kolmogorov flow, in which magnets are arranged with polarity
alternating in stripes [22]; square lattices, in which polarity alternates like a checkerboard [23]; and
quasirandom arrangements [24]. In all configurations, weak electrical currents drive low-Re flow
that is steady and takes its shape from the magnet arrangement, but strong currents drive aperiodic
flow that is more complicated both temporally and spatially.

However, studying 2D flow using 3D experimental devices is always an approximation whose
fidelity must be considered and quantified. Devices are usually designed to minimize out-of-plane
flow: fluid layers are chosen to have horizontal extent far greater than their depth, magnets and
currents are arranged to minimize vertical electromagnetic forces, and tracer particles are often
constrained by buoyancy to either the free surface of the fluid or an interface between two different
fluid layers, stratified by gravity. But mechanisms like Ekman pumping [25] and shear instabilities
[26] drive out-of-plane flow nonetheless. The magnitude of out-of-plane flow has been measured
directly [27,28] and has been measured indirectly via decay times [29], via the normalized in-plane
divergence [30], and by projecting measurements onto stream function modes [26]. One study found
vertical flow variation that nearly matched Poiseuille flow, suggesting that out-of-plane motion is
weak [31], but others found a poor match to Poiseuille flow, suggesting strong out-of-plane motion
[27,28,30]. One study pointed out that centrifugal pressure variation causes layer thickness to vary
across vortices, though the variation is typically negligible [32]. Another study showed that an
apparent shear instability strengthens out-of-plane motion rapidly when Re exceeds a critical value
near 200 [26]. We recently compared out-of-plane motion in three common configurations: a single
thin layer, a miscible two-layer configuration in which the conductive fluid lies below a freshwater
layer, and an immiscible two-layer configuration in which the conductive fluid lies above an oil
layer. An apparent shear instability, similar to that reported in Ref. [26], was again found for
the miscible two-layer configuration. No shear instabilities were apparent in the single-layer or
immiscible configurations over a wide range of Re [33]. In another recent study, Suri et al. [34]
derived an expression for the vertical profile of a quasi-2D Kolmogorov flow, based on idealized
assumptions, and showed that it closely matched experimental measurements in steady flows with
Re � 30.

Here, we quantify 3D effects in quasi-2D flows by measuring horizontal velocity fields simulta-
neously at two different depths in the thin layer of fluid. In a truly 2D flow, no quantity would vary
with depth, so the two velocity fields would match exactly. In typical laboratory experiments, they
do not match exactly, because the floor underneath the fluid imposes a no-slip boundary condition,
causing the speed to be zero there. Speed varies with depth. However, the horizontal flow direction
is not constrained by the boundary condition at the floor, and one might imagine the horizontal
flow direction being independent of depth (though secondary flows like Ekman pumping do affect
direction and are indirect consequences of boundaries). In this paper, we compare horizontal speed
and direction at the free surface of a thin layer to speed and direction at the interface between that
layer and a lubrication layer below. We experiment with both steady and time-dependent flows,
driven using a square lattice of magnets. We find that the directions of the two velocity fields
are closely aligned nearly everywhere, but alignment decreases as Re increases. We find that the
ratio of the speed at the interface to that at the free surface varies over space and time, with its
most likely value falling within about 16% of the value for an analytically-derived velocity profile
based on idealized assumptions [34], matching closest where the flow directions are aligned. As Re
increases, the speed at the free surface increases faster than the speed at the interface, i.e., the speed
ratio decreases. Thinner layers provide better alignment and speed ratios that match the idealized
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FIG. 1. The experimental apparatus and its imaging capability. (a) A view from above shows the magnet
grid, glass sheet, and experimental vessel, with one electrode visible at left. Magnet polarity is indicated by +
or −. The direction of the current density J is indicated with a black arrow. (b) A cross-section shows green
and red tracer particles at the free surface and oil-acid interface, respectively. (c) The view through a filter
blocking red shows only green particles, which are in the dish at bottom in the image. (d) The view through a
filter blocking green shows only red particles, which are in the dish at top in the image.

profile more closely. Finally, we observe that flow features at the interface often follow flow features
at the free surface, via complicated temporal dynamics.

Below, the paper continues with a description of our experimental methods in Sec. II. Our results
are presented in Sec. III. A summary, a discussion of the implications of our results, and a few ideas
for future work are given in Sec. IV.

II. EXPERIMENTAL METHODS

Our methods are similar to those described previously [33], and our experimental device is
sketched in Figs. 1(a) and 1(b). We drive flow in a thin, conductive layer of 1 M sulfuric acid
(density ρ = 1.06 g/cm3 and viscosity μ = 1.19 × 10−3 Pa s) floating atop a layer of FC-3283 oil
(density ρ = 1.75 g/cm3 and viscosity μ = 1.42 × 10−3 Pa s), which acts as a lubrication layer.
The two layers are immiscible, and we use acid instead of salt water because its higher conductivity
reduces thermal effects due to Joule heating. Both layers are contained by a square tray with lateral
dimensions 254 × 254 mm. To induce motion, we pass an electrical current, with density ranging
from 33 to 1200 A/m2, in the x̂ direction through the acid layer between two identical copper
electrodes spanning opposite sides of the tray. That current produces local forces by interacting
with the magnetic fields of a square array of cylindrical NdFeB magnets below the floor of the tray,
arranged in a checkerboard pattern. Each magnet has diameter 12.7 mm, has thickness 3 mm, lies
with its center L = 25.4 mm from those of its four nearest neighbors, and has magnetic field 0.3 T
near its face. The acid and oil layers have identical thickness h/2 = 6 mm in some experiments and
h/2 = 3 mm in others, as specified below.

Our methods differ from previous studies in that we simultaneously measure flow at the free
surface and interface. To do so, we seed the top surface with green tracer particles (Cospheric
UVPMS-BG-1.025, diameter 90 to 106 μm, density 1.022 g/cm3) and seed the bottom surface with
red tracer particles (Cospheric UVPMS-BR-1.20, diameter 75 to 90 μm, density 1.211 g/cm3).
Gravity keeps the particles at their respective surfaces because the green particles are less dense
than the acid, whereas the red particles have density intermediate between that of the acid and
the oil. The particles are small enough to track fluid motion faithfully. Surface tension at both the
free surface and the interface tends to cause particles to aggregate, with the primary effect that
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20 mm

(a), Re = 62

interface free surface

(b), Re = 370

FIG. 2. Instantaneous velocity measurements at the free surface and interface. Each arrow indicates the
position and velocity of one tracked particle; color indicates whether the particle followed fluid motion at the
free surface or at the interface. Circles indicate vortex centroids at the top and bottom of the acid layer, located
using an algorithm described below. Both snapshots show the same region, which covers 17% of the area visible
to both cameras. The snapshots come from experiments using 6-mm layers at (a) Re = 62 and (b) Re = 370.
By simultaneously tracking particles at the free surface and interface, we can quantify the variation of velocity
with depth, even in time-dependent flows.

our measurement count is reduced, and the secondary effect that tracers track the flow slightly
less faithfully because they are effectively larger. We reduce aggregation by adding a few drops of
surfactant. We record the motion of each set of particles using a dedicated camera. One camera
images only green particles because it is equipped with a color filter that blocks red [Fig. 1(c)]; the
other camera images only red particles because its filter blocks green [Fig. 1(d)]. The cameras
(Emergent HS-4000M) produce images with size 2048 × 2048 pixels and are synchronized in
hardware. We vary the frame rate from 60 to 90 Hz as necessary to avoid blurring. The two cameras
hang side-by-side, so their fields of view differ. We image a calibration target with both cameras,
then use a least-squares algorithm to determine the translation and (small) rotation that best align
the two images. We use that translation and rotation, along with the known size of the calibration
target, to express all experimental measurements in a common coordinate system using metric units,
discarding measurements outside the region visible to both cameras. Our alignment procedure is the
same as the one used previously to align one set of particle tracking measurements with images of
solution color in advection-reaction-diffusion experiments [15].

We track particles in the resulting movies using an established algorithm [35], producing
velocity measurements like those shown in Fig. 2. In Sec. III, we will compare these simultaneous
measurements at the free surface and interface to predictions obtained by numerically computing
the idealized vertical profiles of the in-plane velocity following the procedure of Suri et al. [34].
These profiles, shown in Fig. 3, closely resemble profiles of Poiseuille flow and are derived with
the assumption that the in-plane velocity: (i) has direction that is perfectly uniform along the
layer depth and (ii) varies sinusoidally along one direction (i.e., the flow corresponds to steady
Kolmogorov flow). Despite these restrictive assumptions and the fact that we focus on aperiodic
checkerboard flow, the results below will demonstrate reasonable agreement with these velocity
profiles.

The Reynolds number of each experiment is defined as Re = UL/ν̄, where U is the measured
root-mean-square velocity of tracked particles at the free surface and ν̄ is the depth-averaged
viscosity introduced by Suri et al. [34]. By computing ν̄, we define the Reynolds number in such
a way that accounts for the different kinematic viscosities of the two fluid layers. Particle tracking
produces velocity measurements at particle locations, which are typically irregular, as Fig. 2 shows.
To compare the flow at the free surface to the flow at the interface, we interpolate both sets of
measurements onto the same regular grid, with grid spacing 3 mm, using a linear interpolation
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FIG. 3. Idealized velocity profiles computed using the method of Suri et al. [34] with depths matching our
experiments. Profiles for different layer thicknesses differ slightly, primarily because the magnetic field decays
along z. The ratio of interface speed to free-surface speed is s−1 = 0.675 for 6-mm layers and 0.648 for 3-mm
layers.

scheme. We also test for outliers using a standard algorithm [36] and replace them via linear
interpolation.

III. RESULTS

As Fig. 2 and Supplemental Material movies S1 and S2 show [37], the flows at the top and
bottom of the conductive fluid are similar, but not identical, and differ more as Re increases. Since
boundary conditions do not explicitly affect the direction of horizontal flow, one might expect it to
be independent of depth, and we begin by testing that hypothesis. The angle θ between the flow
directions at the free surface and interface of the fluids quantifies alignment:

cos θ = V (x, y, h/2, t ) · V (x, y, h, t )

|V (x, y, h/2, t )| |V (x, y, h, t )| . (1)

Here V (x, y, z, t ) is the horizontal velocity, varying with Cartesian spatial coordinates (x, y, z)
and time t . The vertical coordinate z is zero at the floor of the fluid container and increases
upward. Two typical snapshots of the alignment cos θ are shown in Fig. 4; they are taken from the
same experiments, same times, and same regions as the velocity measurements shown in Fig. 2.
The flows at the free surface and interface are nearly aligned (cos θ ≈ 1) almost everywhere.
Antialignment (cos θ ≈ −1) occurs almost exclusively near stagnation points, where the velocity
is zero. Mathematically, at those isolated points, cos θ is undefined because the velocity direction
is undefined. In practice, in regions near those isolated points, cos θ is noisy because the velocity
magnitude is small, reducing the accuracy of any measurements. Thus, apparent antialignment near
stagnation points tells little about flow dynamics and deserves little attention. That said, the free
surface and interfacial flows clearly align better at lower Re.

Our observations from snapshots of alignment are consistent with the statistics of cos θ , shown
in Fig. 5. We calculated the alignment cos θ in a 120 × 138 mm region in 19 different experiments,
all with 6-mm layers, lasting between 45 s and 63 s, at Reynolds numbers varying from Re = 62 to
Re = 470. For every experiment, the statistical distribution peaks at cos θ = 1, showing that close
alignment is most likely. Misalignment is less likely at low Reynolds numbers than at high Reynolds
numbers. That fact is consistent with intuition: as Re increases, flows fluctuate more rapidly in time
and space, and therefore deviate further from the steady flows for which the alignment assumption
seems most reasonable. Moreover, fast fluctuations leave too little time for viscous coupling to bring
the motion of the oil layer into alignment with the motion of the driven layer. A minor peak in the
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20 mm

(a), Re = 62

interface free surface

(b), Re = 370

-1 -0.5 0 0.5 1
cos 

FIG. 4. Instantaneous alignment cos θ at (a) Re = 62 and (b) Re = 370, in the same region and at the same
times shown in Fig. 2, from the same experiments with 6-mm layers. Arrows indicate velocity fields at the
interface and free surface. Anti-alignment (cos θ ≈ −1) occurs only near singularities where the surface speed
is almost zero.

distributions, still more than an order of magnitude lower than the main peak, occurs at cos θ = −1;
we attribute it to the fact, discussed above, that accurate measurement is impossible near stagnation
points. Hence, we have plotted median values rather than mean values of the alignment, which are
less skewed by these outliers. The median alignment is 0.92 or greater for all experiments and is
highest at low Reynolds numbers.

Having shown that the flow direction is not strictly independent of depth, but the two flows are
closely aligned at most places over a range of Reynolds numbers, we now consider the flow speed,
and particularly the ratio of the speed at the interface to the speed at the free surface,

s−1 = |V (x, y, h/2, t )|
|V (x, y, h, t )| . (2)

The variation of speed with depth depends on the forcing (magnet arrangement) and fluid properties,
but for a typical two-layer immiscible configuration we expect it to vary monotonically from zero at
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FIG. 5. Statistics of alignment cos θ , in experiments with 6-mm layers. (a) Distributions of cos θ from 19
experiments at different Reynolds numbers, plotted on a logarithmic scale, show that near-alignment (cos θ ≈1)
is most common. (b) The median value of cos θ is near 1 in all 19 experiments. (c) An enlargement of the
same data shown in (b) demonstrates systematic variation with Re. Colors in (a) correspond to symbol colors
in (b), (c) and indicate Re.
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FIG. 6. Instantaneous speed ratio s−1 at (a) Re = 62 and (b) Re = 370, in the same region and at the same
times shown in Fig. 2, from the same experiments with 6-mm layers. Blue regions have speed ratio lower than
the theoretical prediction; red regions, higher. Arrows indicate velocity fields at the interface and free surface.
The speed ratio is large near singularities where the surface speed is almost zero, but nearly matches the value
for an idealized profile in most places.

the no-slip bottom of the fluid layers to some maximum speed at the free surface. Thus s−1 can be
interpreted as the interface speed (at z = h/2), normalized by the free-surface speed (at z = h), and
typically s−1 � 1. In the case of an idealized velocity profile (Fig. 3), s−1 has a value that can be
calculated exactly. For our configuration with 6-mm layers, an idealized profile would have speed
ratio s−1 = 0.675; for 3-mm layers, s−1 = 0.648. Normalizing by the speed at the free surface is
also convenient because we define the Reynolds number based on motion there. We name the ratio
s−1 such that our notation is consistent with that of Suri et al., who dealt with its inverse, s.

Two typical snapshots are shown in Fig. 6; they are taken again from the same experiments,
same times, and same regions as the velocity measurements in Fig. 2. Over much of the flow, theory
accurately predicts the measured speed ratio. It is significantly larger than the theoretical prediction
in small regions that usually correlate with poor alignment (compare to Fig. 4). The speed ratio
is lower than predicted only in small regions of the Re = 62 snapshot, but in much larger regions
of the Re = 370 snapshot. That is, the higher-Re flow is measurably less two-dimensional, since a
perfectly 2D flow would have s−1 = 1.

The statistics of s−1, shown in Fig. 7, support our observations from snapshots. We calculated
s−1 in the same region in the same 19 experiments with 6-mm layers, over the same durations. In
Fig. 7(a), we have plotted distributions of s−1 for a range of Re, which shows that s−1 varies from
values much smaller than the value predicted by an idealized velocity profile, to much larger values.
However, the distributions of s−1 calculated from low-Re experiments peak almost exactly at the
value for an idealized velocity profile. As Re increases, the most likely values (peak locations),
plotted in Fig. 7(b), move to lower values of s−1 systematically, confirming that higher-Reynolds-
number flows are less 2D. The median values of s−1 follow the same trend as the most likely values.
We have plotted the median and most likely values here, but not the mean value, which can be
substantially skewed by the few very large s−1 outliers arising where the free surface speed is nearly
zero.

We have shown that the velocity fields at the free surface and interface are often nearly aligned
but do deviate from cos θ = 1, and that the speed ratio s−1 often falls close to the value predicted
[34] for a steady, idealized flow, but does deviate from that value. It is natural to ask whether the
two observations are related. In particular, since cos θ = 1 is an assumption necessary for deriving
the idealized vertical flow profile, we might wonder if the speed ratio deviates most from its
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FIG. 7. Statistics of speed ratio s−1 in experiments with 6-mm layers. (a) Distributions of s−1 from the
same 19 experiments characterized in Fig. 5. (b) Median and most likely values of s−1, varying with Re. Colors
in (a) correspond to symbol colors in (b) and indicate Re. In all cases, the most likely value of s−1 falls within
11% of the value s−1 = 0.675 expected for an idealized profile with 6-mm layers. However, typical values of
s−1 drop systematically as Re increases, showing that the steady case becomes a poorer approximation as flows
become more turbulent.

predicted value when alignment is poor. Figure 8 shows that it does. The figure displays the mean
and median values of s−1, conditioned on cos θ . That is, in each of the same 19 experiments, we
located all the times and places where cos θ fell near a particular value, and calculated the mean
and median values of s−1 for those times and places. We repeated the calculations over the whole
range of values −1 � cos θ � 1. Remarkably, for experiments at any Reynolds number, the mean
and median values of the speed ratio s−1 nearly match the theoretical prediction when the alignment
cos θ ≈ 1. As cos θ decreases, median values of s−1 stay within a few percent of the prediction,
but mean values of s−1 grow significantly, roughly doubling the prediction where cos θ = −1. A
distribution whose median changes little but whose mean changes significantly is becoming more
skewed; as the alignment becomes poorer, the speed ratio remains close to the prediction in most
places, but becomes increasingly large in a few places. Figure 8 also shows that increasing Re
reduces s−1, consistent with the snapshots of Fig. 6 and the distributions of Fig. 7. Interestingly,
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FIG. 8. Statistics of speed ratio s−1, conditioned on cos θ , in experiments with 6-mm layers. Median values
appear as thin lines, mean values appear as dotted lines, and the value for an idealized profile appears as a
dashed line. Colors indicate varying Reynolds numbers, as in Fig. 5. Panel (a) shows the entire range −1 �
cos θ � 1; panel (b) shows the range 0.8 � cos θ � 1. The speed ratio s−1 decreases as Re increases. When
cos θ ≈ 1, mean and median values of s−1 nearly match the value for an idealized profile.
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FIG. 9. Statistics of alignment cos θ , in experiments with 3-mm layers. (a) Distributions of cos θ from six
experiments at different Reynolds numbers, plotted on a logarithmic scale, show that near-alignment (cos θ ≈
1) is most common. (b) The median value of cos θ is near 1 in all experiments. (c) An enlargement of the same
data shown in (b) demonstrates systematic variation with Re. Colors in (a) correspond to symbol colors in (b,
c) and indicate Re.

since increasing Re and decreasing cos θ have opposite effects on the mean value of s−1, the speed
ratio of misaligned regions falls closer to the theoretical prediction at high Reynolds number than at
low Reynolds number.

One of the mechanisms that reduces out-of-plane motion in quasi-2D experiments is the aspect
ratio of the fluid layer; flows in thinner layers tend to involve weaker out-of-plane motion [20].
We therefore wondered if, in thinner layers, the flows at the interface and free surface would be
better aligned, and their speed ratio s−1 would more closely match the value for an idealized profile.
To address that question, we performed experiments similar to the ones described above, but with
h/2 = 3 mm, instead of 6 mm. We again calculated the alignment cos θ in a 120 × 138 mm region,
now with 3-mm layers, in six experiments lasting 30 s each, at Reynolds numbers varying from
Re = 137 to 383. The resulting statistics are shown in Fig. 9. Distributions of cos θ are similar to
the 6-mm case, but the minor peaks at cos θ = −1 are weaker, and the minima near cos θ = −0.6
are lower. Accordingly, the median values of cos θ are closer to unity (compare to Fig. 5).

We also calculated statistics of the speed ratio s−1 in the experiments with 3-mm layers, as shown
in Fig. 10. For these thinner layers, distributions of s−1 peak near the theoretical prediction for the
entire range of Re explored. Median values of s−1 stay closer to the theoretical prediction than in
experiments with 6-mm layers (compare to Fig. 7). Thus, these experiments are more nearly 2D, in
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FIG. 10. Statistics of speed ratio s−1 in experiments with 3-mm layers. (a) Distributions of s−1 from the
same six experiments characterized in Fig. 9. (b) Median and most likely values of s−1, varying with Re. Colors
in (a) correspond to symbol colors in (b) and indicate Re. In all cases, the mostly likely value of s−1 falls within
2% of the value s = 0.648 expected for an idealized profile with 3-mm layers.
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−1 � cos θ � 1; panel (b) shows the range 0.8 � cos θ � 1. The speed ratio s−1 decreases as Re increases.

the sense that the flows at the interface and free surface are better aligned and the speed ratio more
nearly matches an idealized profile, when the fluid layer is thinner.

Figure 11 shows statistics of s−1 conditioned on cos θ in experiments with 3-mm layers. The
trends are similar to those observed in experiments with 6-mm layers (compare to Fig. 8): s−1

matches the idealized value most closely when cos θ ≈ 1; as cos θ decreases, the median value
of s−1 changes little, but the mean value increases significantly; and s−1 drops as Re increases.
However, the effect of Re is weaker in experiments with 3-mm layers, as shown by the fact that the
curves are clustered more tightly in Fig. 11 than in Fig. 8.

Though our measurements show that the speed ratio s−1 does deviate from the value for an
idealized velocity profile, that profile is often a good approximation, consistent with prior results
[34]. This result is somewhat surprising: the idealized profile (Fig. 3) is strictly applicable only for
a velocity field in which the flow direction is perfectly aligned along the depth of the fluid and
the in-plane velocity profile corresponds to laminar Kolmogorov flow. This is in contrast with the
time-dependent, square lattice of vortices we study here. Nonetheless, to examine the accuracy of
the predictions made by this idealized profile, we quantify the relative error ε:

ε = s−1
measured − s−1

idealized

s−1
idealized

. (3)

Figure 12 plots ε as it varies with Re, for experiments with both 6- and 3-mm layers, allowing
quantitative comparison. Median values are higher than most-likely values, consistent with the skew
in s−1 discussed above. As expected, the speed ratio more nearly matches the theoretical prediction
in experiments with 3-mm layers than in experiments with 6-mm layers. The ratio also varies less
in 3-mm layers, consistent with the consensus that thinner layers are better approximations to 2D
flow [20]. Based on the most likely value of s−1, we find ε � 16% for the 6-mm layers, while the
3-mm layers provide a substantial improvement with ε � 2%.

We have used the alignment cos θ and the speed ratio s−1 to quantify the instantaneous
relationship between motion at the top and bottom of the conductive layer in our experiments. The
time dynamics linking motions at the top and bottom are also interesting. Electromagnetic forces
drive the acid layer, which is coupled to the oil layer via viscosity. For steady, fully-developed flows,
we would expect the velocity of the oil layer to have a spatial structure closely matching the acid
layer [though with a lower speed, consistent with Fig. 3 and Eq. (2)]. For flows varying slowly in
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FIG. 12. Comparison of the speed ratio relative error ε for different layer thicknesses. (a) Speed ratio
relative error for median s−1 varying with Re for both 6-mm and 3-mm layers. (b) Speed ratio relative error for
most likely s−1 varying with Re for both 6-mm and 3-mm layers. For thinner layers, the error in the most likely
value of s−1 is lower, although the error in the median value is higher.

time, the match between oil and acid would be nearly as good. As flows vary more rapidly, however,
we would expect a poorer match, because viscous forces are allowed shorter times in which to affect
the oil layer before the flow changes. That expectation is confirmed by many of the results described
above, which show that increasing Re tends to reduce cos θ and s−1. However, considering viscous
coupling as the mechanism, we can go further: for time-dependent flows, we would expect motion
at the acid-oil interface to lag behind motion at the free surface of the acid layer.

Careful examination of the evolution of velocity fields at the free surface and interface of the
configuration with 6-mm layers in the same experiment with Re = 370 (Supplemental Material
movie S2 [37]) shows that motion at the interface does often lag behind motion at the free surface.
The two velocity fields have similar structures, with regions of rotation and strain often taking
similar shapes and occurring at similar places. Those regions sometimes move in complicated ways
that often appear to involve the interface lagging behind the free surface. In the experiment with
Re = 62, which is almost steady, flow structures are again similar, but the interface seems to lag
behind the free surface much less (Supplemental Material movie S1 [37]).

To quantify the time dynamics linking motions at the free surface and interface, we identified
flow structures using the Okubo-Weiss criterion [38,39]:

Q(x, y) = det

[
∂xux ∂yux

∂xuy ∂yuy

]
. (4)

When Q > 0, the vorticity exceeds the strain rate; when Q < 0, the strain rate exceeds the vorticity.
Thus, regions where Q � Q0 > 0, with Q0 being a chosen threshold, reasonably approximate
vortex cores. The Okubo-Weiss criterion is not an objective quantity, nor even Galilean-invariant
[40]. Great progress in recent years has produced methods that can identify flow structures more
rigorously and in frameworks that are properly Lagrangian [5,6]. Such methods could locate vortex
cores with greater accuracy, at the expense of methodological complexity and computational effort.
However, our interest is not in the detailed mixing dynamics of these flows, but only in labeling flow
structures to compare their time dynamics, so we use Q for its simplicity and expediency.

Figure 13 shows snapshots of Q, taken from the same experiments, same times, and same regions
as the velocity measurements in Fig. 2. Comparing the two figures shows that Q > 0 regions
correlate with rotation. Choosing Q0 as the 75th percentile of Q in each experiment, we defined
each region � where Q � Q0 as a vortex, unless its area was less than 25 mm2. We calculated the
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FIG. 13. Snapshots of the Okubo-Weiss criterion Q and vortex centroids. (a), (b) Snapshots at the free
surface and interface, respectively, in the same experiment, at the same time, and in the same region as Fig. 2(a).
(c), (d) Snapshot at the free surface and interface, respectively, in the same experiment, at the same time, and in
the same region as Fig. 2(b). Corresponding velocity fields are indicated with arrows. Q > 0 in regions where
rotation dominates shear, and the weighted centroids of regions identified as vortices are plotted as circles.

weighted centroid of each vortex, with location (xc, yc) given by

xc =
∫
�

x Q(x, y) dA∫
�

Q(x, y) dA
, yc =

∫
�

y Q(x, y) dA∫
�

Q(x, y) dA
, (5)

where
∫
�

dA signifies an area integral over the region �. Those centroids are also plotted in Fig. 13.
By repeating those calculations for all velocity fields measured in the Re = 370 experiment with

6-mm layers, we located vortex centroids as they moved over time. We tracked them with the same
particle tracking algorithm used for our velocity measurements, and a few of the resulting tracks are
shown in Fig. 14. At this relatively high Reynolds number, vortices take complicated paths through
the flow. Still, vortex centroids at the interface often trace similar paths to their nearest neighbors
at the free surface. Moreover, vortex paths at the interface lag vortex paths at the free surface,
suggesting that our expectations about viscous coupling are correct.

We also found the Okubo-Weiss parameter for all velocity fields measured in the other 18
experiments with 6-mm layers, at the free surface and at the interface, then compared the results
to the local alignment. Specifically, we calculated the median value of cos θ , conditioned on Q/σQ

(where σQ is the standard deviation of Q). As Fig. 15 shows, alignment is best at times and places
where Q ≈ 0—that is, where vorticity and strain are nearly balanced. Conversely, alignment is worst
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FIG. 14. Paths of coupled vortices at the free surface and interface, all from the Re = 370 experiment
with 6-mm layers. Each curve shows the path of the weighted centroid of a region identified as a vortex, with
thinner curves indicating vortices on the free surface and thicker curves indicating vortices at the interface.
Time is indicated in color. In these and many other examples, vortices appear to be coupled, with a vortex at
the interface moving along a similar path to a nearby vortex at the free surface, with some lag.

near stagnation points, where either vorticity dominates strain, or vice-versa. As Re increases, cos θ

drops, consistent with Fig. 5. At high Reynolds numbers, the curves become asymmetric: alignment
is better where vorticity exceeds the strain rate at the free surface and better where strain rate exceeds
vorticity at the interface.

-1 -0.5 0 0.5 1

Q / 
Q

0.9

0.92

0.94

0.96

0.98

1

m
ed

ia
n 

co
s 

(a)

-1 -0.5 0 0.5 1

Q / 
Q

0.9

0.92

0.94

0.96

0.98

1

m
ed

ia
n 

co
s 

(b)

100 200 300 400

Re

FIG. 15. Statistics of alignment cos θ , conditioned on Okubo-Weiss parameter Q normalized by its standard
deviation σQ, at (a) the top of the acid layer, and (b) the bottom of the acid layer, in experiments with 6-mm
layers. Colors indicate varying Reynolds numbers, as in Fig. 5. Alignment is best near Q = 0, where vorticity
and strain are nearly balanced.
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IV. SUMMARY AND CONCLUSIONS

We have compared motion at the free surface and the acid-oil interface in electromagnetically
driven thin-layer flows to determine how well those flows can be modeled as 2D, focusing on the
alignment and speed ratio. To measure the motions, we placed tracer particles of different colors
at the two surfaces and tracked both simultaneously. Our experiments spanned a range of Reynolds
numbers 62 � Re � 470 and used both thick (h/2 = 6 mm) and thin (h/2 = 3 mm) layers. In a
strictly 2D system, the horizontal velocities at the two surfaces would have the same direction
everywhere. We found that approximating the two flows to be aligned (cos θ = 1) is accurate within
6% for 6-mm layers and within 1% for 3-mm layers. Alignment is better at low Reynolds numbers;
for example, a Re = 62 experiment with 6-mm layers shows just 2% error. In a fluid experiment
with a no-slip floor, the horizontal speeds at the two surfaces typically differ. We found that an
idealized in-plane velocity profile along the vertical direction provides a good approximation for
these unsteady, chaotic flows (s−1 = 0.675 for 6-mm layers and s−1 = 0.648 for 3-mm layers),
which is accurate to within 16% for 6-mm layers and within 2% for 3-mm layers. Again, the match
is better for 6-mm layers if the Reynolds number is lower. We also found that s−1 closely matches the
idealized value in regions where cos θ ≈ 1, regardless of the Reynolds number or layer thickness.
Movies of our experiments suggest that flow features at the interface resemble and follow features
at the free surface. We used the Okubo-Weiss parameter Q to locate flow features, and by tracking
vortex centroids, showed that interface vortices do follow free-surface vortices along complicated
paths and for long durations. Finally, we showed that alignment is best where strain rate and vorticity
are nearly balanced (Q ≈ 0), at both the free surface and the interface.

To our knowledge, these are the first simultaneous measurements of flow at both the free surface
and the interface of thin-layer flows. We used these measurements to compare free-surface and
interface velocities in terms of their alignment and speed ratio. Suri et al. [34] made idealized
assumptions that the in-plane velocity was perfectly aligned throughout the depth of the fluid
and that the in-plane velocity profile matched Kolmogorov flow (i.e., was sinusoidal along one
direction), which allowed the authors to express the 3D velocity as the product of an in-plane 2D
velocity times a vertical profile. Those authors went on to measure the speed ratio s in steady,
Kolmogorov flows with Re � 30, finding good agreement with the value for the idealized profiles
[34]. We found near matches in steady and unsteady checkerboard flows (square lattices of vortices)
over a wider range of Re. We emphasize that the near match persisted despite significant differences
in the form of the in-plane forcing, time dependence, and Reynolds numbers of the flows. Good
alignment between the free-surface and interface velocity fields also persisted throughout our
experiments. Idealized profiles and alignment were assumed by Suri et al. to develop depth-averaged
equations of motion. Recent studies [9,41] showed that simulations of the depth-averaged equations
match experiments strikingly closely for Re � 22.5. Our results strongly suggest that close matches
are achievable at much higher Reynolds numbers, opening the way for exploring new physics with
the benefit of tight coupling between simulation and experiment.

In future work, simultaneous velocity field measurements at the free surface and interface may
prove useful for quantifying the accuracy of simulations based on the depth-averaged equations.
Such measurements may also prove useful in making further improvements to 2D modeling, as
they could be used to parametrize or validate theoretical estimates of effective depth-averaged
parameters, which could be systematically varied with Re to achieve better agreement between
experiment and 2D simulation. It may also prove useful to compute effective depth-averaged
parameters that vary in space and time based on the local structure of the velocity field. In particular,
Q might serve as a guide for such variation. We find that the alignment of the velocity at the free
surface and interface is best (cos θ ≈ 1) where Q ≈ 0, which suggests that the current modeling is
most accurate where rotation and strain are approximately balanced. Our measurements imply that
the depth-averaged parameters would require the most adjustment near stagnation points.

Our observation that motions at the interface follow motions at the free surface raises questions
and opens opportunity for further study. Is there a characteristic timescale by which the interface
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lags the free surface? If so, does it vary with Reynolds number and/or layer thickness? How does
it compare to the characteristic time for viscous coupling between the acid and oil? Since the free
surface and interface are coupled primarily by viscosity, the viscous diffusion time L2/ν̄ likely plays
a key role. Future studies could address these and similar questions.

Finally, and more broadly, studying the interactions of coherent structures at the free surface and
interface might reveal interesting physics. The methods described above are not limited to tracking
vortex centroids found via the Okubo-Weiss parameter; many methods for locating LCS and/or ECS
could be applied at both the free surface and the interface. Measuring coherent structures at both
surfaces simultaneously might lead to a physics of interaction, and might be a useful, inexpensive
step toward broader application of LCS and ECS in 3D flows.
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