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Faraday instability in double-interface fluid layers
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We investigate, both by way of theory and by experiments, the mechanically forced
Faraday instability in immiscible three-fluid systems that is two-interface fluid layers.
The theoretical model suggests that two-interface fluid layers offer underlying physics
quite distinct from the typical single-interface system due to the coupling of the fluid
interfaces, resulting in alternating double-tongued stability curves. This allows for the
possibility of unique codimension points unattainable in traditional two-fluid systems. In
addition, the presence of a third fluid in the problem can lead to either enhanced or delayed
destabilization of the system at target frequencies. Experimental results qualitatively
support the theory, though precise agreement between the theory and the experiment is
hindered due to the sidewall damping.
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I. INTRODUCTION

Since its initial discovery [1], Faraday instability has been studied extensively both by way of
theory and by way of experiments. The driving mechanism for the instability is the resonance be-
tween an imposed oscillation frequency and a system’s natural frequency, leading to the generation
of interfacial patterns when a critical forcing acceleration is reached. These patterns typically appear
subharmonic to the forcing frequency [2] and can occur with a large range of wavelengths depending
on the system parameters [3–6].

Theoretical prediction of the stability thresholds began with Benjamin and Ursell [7], who
studied the linear stability of an inviscid system. Later research by Kumar and Tuckerman [8] served
to incorporate viscosity into the model to combat discrepancies between theory and experiment
observed by other researchers [9–11]. This model was derived from a rigorous linear stability
analysis conducted on a two-fluid laterally unbounded mechanically oscillated system. Bechhoefer
et al. [12] performed experiments and utilized the model to accurately predict minimum stability
thresholds, while Batson et al. [13] verified it further utilizing a small cylindrical geometry with
fluids that respected the assumptions of the model.
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To date, most research in the field has been conducted on two-fluid systems. However, ultimate
applications of the instability, including mixing enhancement [14], atomization [15], or intentional
suppression of the instability, could benefit from additional control over the instability thresholds
and modal structures. Previous research has highlighted additional physics through many extensions
of the traditional problem, including the use of flexible boundaries [16], multiple forcing frequencies
and unique forcing functions [17–19], or pre-patterned surfaces [20]. Bestehorn and Pototsky [21]
utilized a reduced-order nonlinear model to study the instability, with a third passive fluid present
above two thin liquid films, and observed the occurrence of a double-minimum tongue. Introducing
an additional fluid, and consequently an additional interface, to the problem could allow end users
to tailor the instability characteristics within a given system in a beneficial manner. This possibility
forms the motivation for the present work, in which the effects of adding a third fluid to the physics
of the instability are examined both experimentally and theoretically.

The examined system mechanically oscillates with a single forcing frequency and all three fluids
are immiscible, viscous, and contained within cylindrical geometries for experiments. Through the
addition of a third fluid, the instability thresholds for a given system can be modified in both
stabilizing and destabilizing manners. Of additional interest is the modal response within these
three-fluid systems, where coupling between the interfaces can allow for unique codimension points
unobtainable with two-fluid systems under the same forcing conditions. These responses could be
of particular interest to applications where a unique interfacial shape is sought, such as the creation
of a metamaterial [22,23].

In the present work, we first present the theoretical model, which extends Kumar and Tucker-
man’s [8] theory to introduce the possibility of coupling effects between multiple interfaces. After
derivation of the model, a theoretical comparison of the results to those found for similar two-fluid
Faraday instability systems is given. The distinct physics arising due to the third fluid is explained
and test cases showing both stabilizing and destabilizing effects are presented. Next, experimentally
measured stability thresholds are compared to the theoretical predictions for two separate cylindrical
geometries. The fluids chosen for the experiments are those used by Batson et al. [13] in addition
to water, as these were found to best satisfy all the necessary experimental requirements, including
safety, immiscibility, and suitable density differences. The favorable qualitative agreement lends
credibility to the present theoretical model.

II. THEORETICAL MODEL

The theoretical model follows closely that first derived by Kumar and Tuckerman [8]. As in
their model, we opt to use unscaled variables and equations in order to make a comparison with
experiments and also because there is no particular advantage in introducing a large number of
dimensionless groups, such as property ratios, for a multilayer system. A linear stability analysis is
performed on an initially quiescent, horizontally infinite three-fluid system as shown in Fig. 1.

The hydrodynamics in all three fluids are governed by the Navier-Stokes equations adapted to a
moving reference frame coupled with the continuity equations, given in unscaled form by

ρ j

(
∂V j

∂t
+ V j · ∇V j

)
= −∇Pj + μ j∇2V j − ρ j[g + Aω2 cos(ωt )]iz (1)

and

∇ · V j = 0, (2)

where V is the fluid velocity, P is the pressure, μ is the viscosity, ρ is the density, g is gravitational
acceleration, A is the forcing amplitude, ω is the forcing frequency, and j = 1, 2, 3 denotes
the bottom, middle, and top fluids, respectively. This description is completed by the boundary
conditions.
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FIG. 1. Schematic of the three-fluid mechanically oscillated system. The normal vectors point into the
lighter fluid at each interface. The lower interface is taken to be located at z = 0 and both interfaces are initially
flat.

At the upper and lower walls we have no slip and no penetration and at the top interface z =
h + ζa(x, t ) we have

[[V j · na]]a = 0, (3)

[[V j · ta]]a = 0, (4)

[[na · Tj · na]]a = γa2Ha, (5)

[[na · Tj · ta]]a = 0. (6)

At the bottom interface z = ζb(x, t ) we have

[[V j · nb]]b = 0, (7)

[[V j · tb]]b = 0, (8)

[[nb · Tj · nb]]b = γb2Hb, (9)

[[nb · Tj · tb]]b = 0. (10)

The immiscibility of the fluids requires that at each interface we have

[[ρ j (V j − Ua) · na]]a = 0 (11)

and

[[ρ j (V j − Ub) · nb]]b = 0, (12)

where [[θ j]]a denotes θ3 − θ2, [[θ j]]b denotes θ2 − θ1, n is the unit normal vector pointing into the
lighter fluid, t is the unit tangent vector, U · n is the interfacial speed, γa and 2Ha are the interfacial
tension and twice the mean surface curvature of the top interface, respectively, and γb and 2Hb are
the interfacial tension and twice the mean surface curvature at the bottom interface, respectively.

The equations are linearized about a quiescent nondeflecting base state by expanding the
dependent variables as V = V ′ and P = P0 + P′. Similar expansions are used for the interface
variables ζ , n, t , and 2H . In the above, the subscript 0 denotes the base state and the prime denotes

043903-3



WARD, ZOUESHTIAGH, AND NARAYANAN

the perturbed state. Applying these expansions yields the base state domain equations

∂P0 j

∂z
= −ρ j (g + Aω2 cos ωt ) (13)

and the perturbed domain equations

ρ j

∂V ′
j

∂t
= −∇P′

j + μ j∇2V ′
j . (14)

The pressure is eliminated by first applying the double curl to (14) and then using the continuity
equation, resulting in

ρ j∂t∇2V ′
j = μ j∇4V ′

j . (15)

As in Ref. [8], a Floquet expansion is used in order to separate variables, viz.,

ψ (x, z, t ) = eikx
∞∑

n=−∞
e[σ+i(α+nω)]t ψ̂n(z), (16)

where α can take the value of 0 or ω
2 to allow for harmonic and subharmonic responses and σ is the

growth rate. This results in the final perturbed domain equation[
σ + i(α + nω) − ν j

(
d2

dz2
− k2

)](
d2

dz2
− k2

)
Wn j = 0 (17)

and its accompanying boundary conditions (dropping the circumflexes)

Wn1 = 0, (18)

dWn1

dz
= 0 (19)

at z = −hb;

Wn3 = 0, (20)

dWn3

dz
= 0 (21)

at z = ha;

Wn1 = Wn2, (22)

dWn1

dz
= dWn2

dz
, (23)

μ1

(
d2

dz2
+ k2

)
Wn1 = μ2

(
d2

dz2
+ k2

)
Wn2, (24)

[σ + i(α + nω)]ζ ′
b = Wn2 = Wn1 (25)

at z = 0; and

Wn3 = Wn2, (26)

dWn3

dz
= dWn2

dz
, (27)
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μ3

(
d2

dz2
+ k2

)
Wn3 = μ2

(
d2

dz2
+ k2

)
Wn2, (28)

[σ + i(α + nω)]ζ ′
a = Wn2 = Wn3 (29)

at z = h, where Wn is the z component of the perturbed velocity. Equation (17) is an ordinary
differential equation, whose solutions take the form

Wn j = An je
kz + Bn je

−kz + Cn je
qnz + Dn je

−qnz, (30)

where qn =
√

σ+i(α+nω)
ν j

+ k2. It should be noted that when qn = k, the solution instead takes the

form

Wn j = An je
kz + Bn je

−kz + Cn jzekz + Dn jze−kz. (31)

At this point, the unknown coefficients are calculated by casting the system of equations into a
12 × 12 matrix and solving via inversion. This results in expressions for the velocity profiles in all
three fluids in terms of ζ ′

a and ζ ′
b. The coupling between the two interfaces results from the presence

of the middle fluid in Eqs. (25) and (29). The next step is to simplify the normal components of the
stress balances at both interfaces, which ultimately govern the stability of the entire system:[[[[

−
(

P′
j + ζ ′

a

dP0

dz

)
+ 2μ j

dWj

dz

]]]]
a

= γa∇2
Hζ ′

a at z = h (32)

and [[[[
−

(
P′

j + ζ ′
b

dP0

dz

)
+ 2μ j

dWj

dz

]]]]
b

= γb∇2
Hζ ′

b at z = 0. (33)

Taking ∇2
H of these equations and substituting the base state pressure term given by Eq. (13) yields[[[[

−∇2
H P′

j + ∇2
H [ρ j (g + Aω2 cos ωt )]ζ ′

a + 2μ j∇2
H

dWj

dz

]]]]
a

= γa∇4
Hζ ′

a at z = h (34)

and [[[[
−∇2

H P′
j + ∇2

H [ρ j (g + Aω2 cos ωt )]ζ ′
b + 2μ j∇2

H

dWj

dz

]]]]
b

= γb∇4
Hζ ′

b at z = 0. (35)

Taking ∇H of Eq. (14) and then utilizing the continuity equation yields an expression for ∇2
H P′

j ,

∇2
H P′

j =
(

ρ j
∂

∂t
− μ j∇2

)
∂Wj

∂z
, (36)

which upon substitution into Eqs. (34) and (35) and expanding variables using (16) yields[[[[
ρ j[σ + i(α + nω)]

∂Wn j

∂z
− μ j

d3Wn j

dz3

+ k2

{
ρ j

(
gζ ′

a,n + Aω2

2
(ζ ′

a,n−1 + ζ ′
a,n+1)

)}
+ 3μ jk

2 dWn j

dz

]]]]
a

= γak4ζ ′
a,n (37)

and [[[[
ρ j[σ + i(α + nω)]

∂Wn j

∂z
− μ j

d3Wn j

dz3

+ k2

{
ρ j

(
gζ ′

b,n + Aω2

2
(ζ ′

b,n−1 + ζ ′
b,n+1)

)}
+ 3μ jk

2 dWn j

dz

]]]]
b

= γbk4ζ ′
b,n (38)
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at z = h and z = 0, respectively. Upon rearranging we obtain[[[[
ρ j[σ + i(α + nω) + 3μ jk

2]
dWn j

dz
− μ j

d3Wn j

dz3

]]]]
a

+ [(ρ3 − ρ2)g − γ k2]k2ζ ′
a,n

= −Aω2(ρ3 − ρ2)k2

2
(ζ ′

a,n−1 + ζ ′
a,n+1) (39)

and [[[[
ρ j[σ + i(α + nω) + 3μ jk

2]
dWn j

dz
− μ j

d3Wn j

dz3

]]]]
b

+ [(ρ2 − ρ1)g − γ k2]k2ζ ′
b,n

= −Aω2(ρ2 − ρ1)k2

2
(ζ ′

b,n−1 + ζ ′
b,n+1), (40)

where the expressions for Wn j are given by the evaluation of the solutions to Eq. (30) after
application of the boundary conditions at the appropriate z location. Upon inspection, it can be
seen that these expressions contain both ζ ′

a,n and ζ ′
b,n terms for all values of j due to the coupling of

the velocity profiles through the middle fluid. Therefore, the next step in the calculation is to expand
the Wn j terms and to organize the resultant equations by collecting the ζ ′

a,n and ζ ′
b,n terms together.

This results in two equations of the form

ηa,nζ
′
a,n + χa,nζ

′
b,n = Aβa(ζ ′

a,n−1 + ζ ′
a,n+1) (41)

and

ηb,nζ
′
b,n + χb,nζ

′
a,n = Aβb(ζ ′

b,n−1 + ζ ′
b,n+1). (42)

These equations can be cast as a single eigenvalue problem with ζ ′
a,n and ζ ′

b,n as the eigenvectors
and A as the eigenvalue, taking the form[

ηa,n χa,n

χb,n ηb,n

][
ζ ′

a,n

ζ ′
b,n

]
= A

[
βa 0
0 βb

][
ζ ′

a,n−1 + ζ ′
a,n+1

ζ ′
b,n−1 + ζ ′

b,n+1

]
. (43)

The reality conditions for the ζ ′
−1 elements are given by ζ ′

−1 = ζ̄ ′
0 and ζ ′

−1 = ζ̄ ′
1 for subharmonic

(α = ω
2 ) and harmonic (α = 0) solutions, respectively, for both interfaces. This leads to implemen-

tation of a C matrix in order to couple the appropriate ζ ′ elements, which contains mostly ones
and zeros. Since the reality conditions include the complex conjugates of ζn, Eq. (43) can again be
decomposed into real and complex parts before solving, viz.,[

η̂a χ̂a

χ̂b η̂b

][
ζ̂a

ζ̂b

]
= A

[
βaC 0

0 βbC

][
ζ̂a

ζ̂b

]
, (44)

where ζ̂a and ζ̂b are column vectors of the form

ζ̂a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ ′r
a,0

ζ ′i
a,0

ζ ′r
a,1

ζ ′i
a,1

...

...
ζ ′r

a,n−1

ζ ′i
a,n−1

ζ ′r
a,n

ζ ′i
a,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)
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η̂a, η̂b, χ̂a, and η̂a are all diagonal matrices which follow the form

η̂a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η̂r
a,0 −η̂i

a,0 0 0 0 0 0 0 0 0

η̂i
a,0 η̂r

a,0 0 0 0 0 0 0 0 0

0 0 η̂r
a,1 −η̂i

a,1 0 0 0 0 0 0

0 0 η̂i
a,1 η̂r

a,1 0 0 0 0 0 0

0 0 0 0
. . .

. . . 0 0 0 0

0 0 0 0
. . .

. . . 0 0 0 0
0 0 0 0 0 0 η̂r

a,n−1 −η̂i
a,n−1 0 0

0 0 0 0 0 0 η̂i
a,n−1 η̂r

a,n−1 0 0

0 0 0 0 0 0 0 0 η̂r
a,n −η̂i

a,n

0 0 0 0 0 0 0 0 η̂i
a,n η̂r

a,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

and the C matrix takes the form (for α = ω
2 )

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0

0 0
. . . 0 0 0

. . . 0 0 0

0 0 0
. . . 0 0 0

. . . 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

or (for α = 0)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0

0 0
. . . 0 0 0

. . . 0 0 0

0 0 0
. . . 0 0 0

. . . 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

where n is the Fourier series cutoff. After constructing the matrices, the growth rate σ is set to 0 and
the eigenvalue problem is solved computationally, yielding a set of eigenvalues and eigenvectors.
The lowest real eigenvalue of this set is that which governs the stability of the system, and its
corresponding eigenvector gives the relative deflection between the top and bottom interfaces. This
threshold eigenvalue corresponds to the amplitude where the instability first manifests when slowly
raising the amplitude of oscillation at a given forcing frequency.

Thus far, the system has been taken to be laterally unbounded. In order to constrain the system to
a particular geometry, the tested wave numbers are constrained to only those that form 90◦ angles
with the sidewalls, as outlined by Benjamin and Ursell [7]. For the cylindrical geometries of interest
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FIG. 2. Predicted stability curve and relative interfacial deflections for a three-fluid mechanically forced
system. (a) Theoretical predictions for critical amplitudes utilizing the fluid combination summarized in Table I.
Double-tongued stability curves are observed for three-fluid Faraday instability systems, where each section of
a tongue is dominated by one of the interfaces. The testing frequency is 9 Hz. (b) Relative interfacial deflection
φ vs wave number. Here φ = 1 indicates a comparable deflection of the interfaces, φ < 1 indicates higher
deflection on the top interface, and φ > 1 indicates higher deflection on the bottom interface. For example, for
k = 250 m−1, the subharmonic and harmonic tongues in (a) indicate that the bottom interface has the higher
deflection and at k = 500 m−1, the upper interface has the higher deflection for the subharmonic tongue while
the reverse is true for the harmonic tongue. Note that the harmonic tongues at k = 250 and 500 m−1 appear at
very large vibrational amplitudes not depicted within the scale of (a).

to the present work, these wave numbers are given by those that satisfy(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂

∂θ
+ k2

m

)
ζm = 0 (49)

subject to ∂ζm

∂r = 0 at r = R, the solution of which shows that kl,mR is given by the mth root of J ′
l (r),

where l and m are the numbers of azimuthal nodes and radial nodes, respectively.
The final stability curve for a constrained geometry with stress-free sidewalls is calculated by

solving Eq. (44) for all the allowable wave numbers, typically truncated at l = m = 5, and a given
frequency. The resultant lowest eigenvalues for each wave number are compared and the lowest of
all is selected as the threshold amplitude for the tested frequency. The harmonicity and waveform
at the onset are given by the wave number and α which produced this threshold amplitude. The
calculation is then repeated over a large frequency range to generate the final stability curve of A
versus ω for comparison to experiments. As mentioned earlier, all calculations in this study are
reported unscaled in order to give a physical sense of dimensions and the thresholds.

III. RESULTS FROM THEORY

A. Stability thresholds and relative interfacial deflections

To relate the three-fluid mechanically forced Faraday instability to the well-known two-fluid
case, the stability curves for an unbounded geometry are first examined. Figure 2(a) shows a plot of
amplitude versus wave number for a fluid set with properties summarized in Table I.

As can be seen in Fig. 2(a), double-tongued stability curves are observed for three-fluid systems.
This is in direct contrast to the single tongues observed in two-fluid systems [7]. The reader should
note that the second lowest eigenvalue is also plotted inside each tongue in Fig. 2(a) to show the
separate eigenvalue branches responsible for the double minimum. Though the tongues exhibit
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TABLE I. Fluid properties for the generation of Fig. 2. These fluids and heights were chosen to highlight
the double tongues that can be obtained when parametrically forcing a three-fluid system.

Density Kinematic Layer Interfacial
Fluid (kg m−3) viscosity (cSt) height (mm) tension (N m−1)

A 856 1.5 5 0.007 = γa

B 1200 1.0 5 0.007 = γb

C 1880 14 5

a double minimum for this fluid system, they retain the typical behavior of alternating between
subharmonic and harmonic seen in the two-fluid case. On any particular tongue, multiple regions
can be found: those at which one interface dominates the stability of the overall system, those
where the opposite interface dominates, and those where both interfaces contribute relatively the
same amount. This may be seen by examining the relative interfacial deflections of the interfaces
as a function of wave number [Fig. 2(b)]. For the purposes of this illustration, the amplitude of the
interfacial deflection of each interface and the relative deflection are calculated using the formulas
[from Eq. (16)]

ζ̄a =
N∑

n=0

ζ ′
a,nei(α+nω),

ζ̄b =
N∑

n=0

ζ ′
b,nei(α+nω), (50)

and

φ = ζ̄a

ζ̄b
. (51)

The highest and lowest regions of relative interfacial deflection typically occur just before
two eigenvalue branches intersect, while the point where they intersect corresponds to a relative
deflection of precisely unity, denoting that the deflection ought to be comparable at both interfaces.
Though the two interfaces have differing relative deflections, it is important to note that linear
stability analysis results in only one critical amplitude for a given wave number and implies that
both interfaces become unstable simultaneously. Practically, however, if the relative deflection is
very large or very small, one interface may appear to be nearly flat while the other obviously deflects
substantially.

Figure 3(a) shows the effect of middle fluid viscosity on the system stability. As expected, the
trend follows that of the two-fluid case, i.e., increased viscosity causes a shifting of the tongues to
higher wave number and higher critical amplitude. This behavior can cause interesting consequences
when the viscosity of the top or bottom fluid is adjusted, however, as shown in Fig. 3(b). Perhaps
not surprisingly, when either the top or bottom fluid has a much higher viscosity than the other
two fluids, one eigenvalue branch is shifted much more than the other. In extreme cases this can
result in a single-tongued stability curve again, with the tongues stemming only from the eigenvalue
branches where the relative deflection favors the interface not in immediate contact with the viscous
fluid. This occurs when the eigenvalue branch related to the interface in contact with the more
viscous fluid has a threshold much higher than the other eigenvalue branch, causing the lowest
critical amplitude to always be that which is found on the branch related to the interface comprised
of the less viscous fluid pair. Both complete eigenvalue branches are shown for clarity, though the
lowest one at a given wave number is the one that governs the system stability.

Figure 4 shows the effect of increasing frequency on the system stability. Again, this behavior
follows closely that observed for a two-fluid case. An increase in frequency causes the tongues to
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FIG. 3. Effect of viscosity on three-fluid instability thresholds. (a) The black lines are obtained using the
fluid properties summarized in Table I, while the red lines are obtained by increasing the viscosity of the
middle fluid by a factor of 20. As predicted, increasing the middle fluid viscosity causes a shift of the threshold
to higher amplitude and higher wave number. The testing frequency is 10 Hz. (b) Effect obtained when the top
or bottom fluid is much more viscous than the other two. The testing frequency is 9 Hz. The fluid properties
are the same as those shown in Table I with the exception of ν1, which is set at 120 cSt.

shift down in amplitude and to higher wave number. In a constrained geometry, this would cause
the system to access higher-wave-number modes with increasing frequency, with the threshold
becoming lower with increasing frequency.

B. Comparison to the single-interface problem

As can be inferred from the tanh(kh) term found in Ref. [7], once the height of the middle
fluid becomes high enough, the interfaces no longer interact with one another. This can be seen by
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FIG. 4. Effect of increasing frequency on the stability of the system. In general, an increase in frequency
causes the tongues to shift to higher wave number and lower amplitude. The fluid properties are those shown
in Table I.
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FIG. 5. Comparison between the three-fluid stability thresholds and the corresponding two-fluid cases
for tall middle fluid heights. (a) Three-fluid calculation versus corresponding two-fluid calculations for high
middle fluid heights. The properties are those shown in Table I and layer heights are 0.5 cm for the bottom,
1 cm for the middle, and 0.5 cm for the top. Solid lines show the three-fluid stability curve prediction
and symbols show the corresponding top-middle fluid and middle-bottom fluid two-fluid calculations. The
agreement between the tongues generated by the separate two-fluid calculations and the three-fluid calculation
is excellent, with the only discrepancies occurring at low wave number. (b) Relative deflection versus wave
number for the tall middle fluid system. The relative deflection can be accurately predicted by determining
which eigenvalue branch occurs at lower amplitude in (a).

conducting three separate calculations, the first of which is the three-fluid case with a tall middle
layer. The other two calculations are done for corresponding two-fluid systems, one supposing that
the initial bottom fluid is replaced with more middle fluid and the other supposing that the initial
top fluid is replaced with more middle fluid. The results of these calculations is shown in Fig. 5(a).
As expected, the three-fluid stability curve is composed almost exactly of the two separate two-fluid
cases. The only exception occurs at low wave number, where tanh(kh) has not yet saturated and
the interfaces still influence one another. This calculation shows that the system behaves almost
identically to two separate two-fluid systems when the middle height is large enough. In addition,
Fig. 5(b) shows the relative interfacial deflections with this fluid height. It can be seen that now, the
lowest eigenvalue branch directly correlates to the relative interfacial deflections. Therefore, it can
be inferred that each eigenvalue branch is produced almost solely due to contributions from the fluid
pair comprising a single interface.

Interestingly, the opposite does not hold true when the height of the middle layer is very
small. In this case, the system does exhibit stability tongues with a single minimum, but the
stability thresholds do not match that of the two-fluid system between the top and bottom fluids. A
comparison between the two cases is shown in Fig. 6(a). As can be seen clearly from the comparison,
the effect of the minuscule third fluid layer can have both stabilizing and destabilizing effects on
the system. On this single minimum stability curve, the relative deflection approaches unity for
all wave numbers as the middle fluid height decreases for the subharmonic tongues. However, the
harmonic tongues do not exhibit the same behavior. In their case, the interface with the larger �ρ

always deflects more than the other and thus the relative deflection is always greater than or less
than unity across all wave numbers. This is shown in Fig. 6(b), and a companion calculation with
(�ρ)a = (�ρ)b is shown in Fig. 6(d) to show that this behavior is related to bias caused by the �ρ

imbalances.
Adding a third fluid at the top or bottom of a two-fluid system can also cause dramatic changes

to the stability of the system, allowing for selective destabilization or stabilization to particular
waveforms at a given frequency. Figure 7 shows an example of this behavior by comparing a
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FIG. 6. Comparison between the three-fluid stability thresholds and the corresponding two-fluid cases for
short middle fluid heights. (a) The properties are those shown in Table I and the layer heights are 0.5 cm for
the bottom, 0.000 01 cm for the middle, and 0.5 cm for the top. Solid lines show the three-fluid stability curve
prediction and symbols show the corresponding top-bottom two-fluid calculation with an assumed interfacial
tension of γ = γa = γb. The two different predictions agree only at low wave number and differ dramatically
with increasing wave number. (b) Relative deflection versus wave number for the short middle fluid system.
The relative deflection approaches unity for the subharmonic tongues, but always favors the interface with the
higher �ρ for the harmonic tongues. (c) Three-fluid small middle height calculation versus the corresponding
two-fluid calculation with no density difference bias. The fluid properties are the same as in (a), but with
ρ3 = 520 kg m−3. (d) Relative deflection for nonbiased three-fluid system. Here φ approaches unity for both
harmonic and subharmonic responses in the absence of a �ρ bias.

two-fluid system with a set total height to a corresponding three-fluid system in which the third
fluid replaces half of the height of the former top fluid. In this system, regions of both destabilization
(e.g., k = 85–310 m−1) and stabilization (e.g., k = 60–85 m−1) can be obtained through the addition
of the third fluid. By changing the properties of the additional fluid, the zones of stabilization and
destabilization could potentially be tailored for a given application in order to more efficiently utilize
or suppress the Faraday instability for process enhancement.

Another interesting phenomenon that arises within three-fluid systems stems from the fact that
two-fluid systems can only become Faraday unstable if there is a finite density difference between
the two fluids. This can be seen by looking at the final stress balance equation. If the fluid pair has
a small density difference, �ρ appearing in the A�ρ term seen in Eq. (40), say, will become very
small and thus the critical amplitude A will become very large. As a result, the stability threshold in
such a two-fluid system is almost unattainable experimentally. The destabilization arising from the
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FIG. 7. Comparison between the stability thresholds for a two-fluid case and a three-fluid case with the
same total height where the third fluid is added at the top. The forcing frequency ω is 2 Hz. The fluid parameters
for the two-fluid case are ρ1 = 1000 kg m−3, ν1 = 12 cSt, h1 = 1.27 cm, ρ2 = 846 kg m−3, ν2 = 1.5 cSt,
h2 = 1.27 cm, and γ = 0.007 kg m−2. The fluid parameters for the three-fluid case are ρ1 = 1000 kg m−3,
ν1 = 12 cSt, h1 = 1.27 cm, ρ2 = 846 kg m−3, ν2 = 1.5 cSt, h2 = 0.635 cm, ρ3 = 600 kg m−3, ν3 = 1 cSt, h3 =
0.635 cm, and γa = γb = 0.007 kg m−2. Multiple regions of stabilization and destabilization can be observed.
Harmonic solutions are omitted for clarity.

addition of a third fluid, however, can alleviate this problem if one seeks to destabilize an interface
with a small �ρ or even one with a �ρ of exactly zero. A demonstration of this is shown in Fig. 8.
In this case, the fluid parameters are taken to be that described in Table I, with the exception that the
middle fluid’s density is adjusted to ρ2 = ρ1 = 1880 kg m−3.
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FIG. 8. Three-fluid stability curve with one interface containing �ρ = 0. (a) Stability curve for the fluids
described in Table I with ρ2 set to 1880 kg m−3, therefore making �ρb equal to 0. The testing frequency is
9 Hz. (b) Relative deflections of the instability at onset versus wave number. A wave-number range at which
the bottom interface deflects more than the top interface can be seen, even though its �ρ is zero.
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FIG. 9. Four possible codimension points obtainable in the three-fluid mechanically forced Faraday
instability. (a) Codimension point where relative deflection between the interfaces is equal to 1. At this point,
both interfaces will become unstable simultaneously with comparable interfacial deflections. (b) Codimension
point between tongues with opposing relative interfacial deflections, resulting in mode expressions that are
biased on each interface based upon the relative deflections. (c) Codimension point for a single mode at multiple
harmonicities. This type of point is unachievable in two-fluid systems because the harmonic and subharmonic
tongues never meet. (d) Example of the type of codimension point achievable in two-fluid systems. One
eigenvalue branch exhibits the same critical amplitudes for multiple wave numbers, resulting in a codimension
point. This can also be achieved for multiple wave numbers at different harmonicities.

As can be observed, the system is able to produce stability curves even with the �ρb set to zero.
Since the stability curves in this case present with a single minimum, it is intuitive that these curves
occur almost solely due to the interface with a nonzero �ρ and thus it will always have a much
higher deflection than the other. However, by examining the relative deflection versus wave-number
plot shown in Fig. 8(b), it can clearly be seen that a wave-number range does exist in which ζb � ζa.
Thus, if a geometry was selected such that the wave number with the lowest critical amplitude fell
within this range, the interface with a �ρ of zero would exhibit instability with a non-negligible
deflection, directly contrary to the case with only two fluids.

C. Codimension points obtainable in the three-fluid system

Since the instability tongues actually stem from two distinct eigenvalue branches, codimension
points that are unattainable in two-fluid cases can be observed upon the addition of a third fluid.
Figure 9 shows three examples of this type of codimension point.
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FIG. 10. Theoretical waveform representation for competing (0,1) and (2,1) modes. The top interface
exhibits a mode which is primarily (0,1), while the bottom interface exhibits a mode which is primarily (2,1).

The first type of codimension point, shown in Fig. 9(a), is that where the relative deflection is
equal to unity. This type of codimension point corresponds to a wave number which has interesting
properties. At this point, the two interfaces would tend to become unstable with comparable relative
deflections. However, the portion of the tongue at slightly lower wave number exhibits a positive
slope, while the portion of the tongue at slightly higher wave number exhibits a negative slope.
Though linear stability analysis does not offer any insight into the temporal evolution of the
interface after the onset of the instability, previous studies in two-fluid systems [13,24,25] have
shown that performing experiments within the zones of negative slope on an A vs ω plot (i.e., a
positive slope on an A vs k plot) experimentally yields subcritical bifurcations, while conducting
experiments in zones of positive slope on an A vs ω plot (i.e., a negative slope on an A vs k plot)
experimentally yields supercritical bifurcations. This phenomenon was observed by experimentally
monitoring the temporal evolution of the interface over the course of an experiment after exciting
the instability near the threshold. Therefore, assuming that the typically observed trend holds
true, the eigenvalue branch for one interface yields an instability which will tend to exhibit a
subcritical bifurcation, while the other interface will tend to exhibit a supercritical bifurcation. This
point can be seen as one where the two interfaces would both tend to be unstable with the same
mode and harmonicity, but one interface would likely bifurcate subcritically while the other would
likely bifurcate supercritically. The dominant bifurcation, however, is undetermined via the present
analysis. Experimentally, as can be inferred through Fig. 4, this would cause a single mode to appear
first subcritically, then supercritically, then subcritically again, and finally supercritically before
transitioning to another mode when increasing frequency. This type of behavior is unobtainable in
a two-fluid system, as the single stability tongues only possess one minimum.

The second type of codimension point, as shown in Fig. 9(b), is obtained when two wave
numbers have the same critical amplitude but lie on parts of their respective tongues with opposing
relative deflections. In other words, one interface would tend to become unstable with one mode,
while the other interface would tend to become unstable with a completely different mode. The
resultant waveform, from a linear instability perspective, would be a combination of the two modes.
However, it is possible that one interface would exhibit a combination which preferentially favors
one mode, while the other interface exhibits the opposite combination. A pictorial representation of
this possibility is shown in Fig. 10, where both interfaces exhibit a combination of (2,1) and (0,1)
modes. The top interface adopts a dominant (0,1) waveform, while the bottom interface adopts a
dominant (2,1) waveform.

Codimension points for a single wave number at different harmonicities can also be obtained,
as shown in Fig. 9(c). This type of codimension point is unattainable in two-fluid systems because
in these systems the subharmonic and harmonic tongues never intersect. This type of behavior is
also seen in the three-fluid case between eigenvalue branches of equivalent relative deflection. For
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FIG. 11. Theoretical waveform representation for two out-of-phase (3,1) modes. Both interfaces exhibit
comparable relative deflection, yet their waveforms appear out of phase with one another.

example, a harmonic top-interface-dominated branch will never intersect with a subharmonic top-
interface-dominated branch. However, a top-dominated subharmonic branch can intersect with a
bottom-dominated harmonic branch, allowing for the presence of these types of codimension point.
This type of point would presumably manifest with both interfaces exhibiting the same waveform
but different harmonicities at the onset of the instability.

In addition to these types of codimension points, the three-fluid system can also exhibit the
codimension points present in the two-fluid case. Namely, these occur when two wave numbers on
the same type of eigenvalue branch exhibit the same critical amplitude, resulting in a competition
between two distinct modal structures of the same or different harmonicities. The relative deflections
at both wave numbers are comparable and far away from unity, meaning that the mode will primarily
show on one of the two interfaces. This type of codimension point is shown in Fig. 9(d).

Another interesting phenomenon that can occur when utilizing two-fluid systems is the expres-
sion of the instability on both interfaces simultaneously but out of phase. A theoretical example
of this type of behavior is shown in Fig. 11. In this case, the top and bottom interfaces are both
exhibiting (3,1) modes with comparable relative deflections, but precisely out of phase with one
another. This is indicated by the calculation when the relative deflection value, before taking the
absolute value, yields a negative number, as shown in Fig. 12. This typically occurs only at extreme
values of the relative deflection, i.e., |φ| � 1 or |φ| � 1. To depict some of the observations made
through calculations, we turn to an experiment, describing the method and the reasons for the fluids
of choice, and then conclude with a comparison to the theoretical model.

IV. EXPERIMENTAL METHOD

Finding fluid choices for experimental validation of the model posed great difficulty. In particular,
all three fluids needed to be immiscible to avoid unintentional mixing during filling of the cell or
during excitation of a subcritical instability. In addition, an ideal fluid combination would exhibit
low stress at the sidewall in order to uphold the sidewall assumption present in the model. Previous
experiments by Batson et al. [13] utilized 1.5-cSt silicone oil and FC-70 to effectively achieve this
goal and obtain superb agreement with theory. These two fluids were thus selected as two of the
fluids in the present work. After much experimentation, it was decided to use ultrapure water as the
third fluid, in this case the middle fluid. It might be noted that the value of the interfacial tension
plays a negligible role in the determination of the critical amplitude, an observation made by earlier
workers [8], thus any minor impurities that might migrate to the aqueous interface would have no
consequence on the instability threshold.

The cell which contained water was found to produce a meniscus on both interfaces which
pointed down into the FC-70 and up into the silicone oil due to the tendency of the water to wet
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FIG. 12. Relative deflection before taking the absolute value for the three-fluid system described in Fig. 7
versus wave number. The relative deflection is negative at various wave numbers. However, the negative values
typically occur when |φ| � 1 or |φ| � 1.

the glass sidewalls. These menisci caused imperfections in the experiment in the form of meniscus
waves that were harmonic in nature and axisymmetric. However, these types of waves were found
previously to only affect the (0,1) harmonic mode onset [13]. Though the sidewall behavior of this
system was not ideal, it was chosen as the system to be used for the validation experiments due to
the lack of a superior fluid combination. Table II summarizes the fluid properties of the system.

The tested geometries were a 5.08-cm-diam cylinder with an overall height of 6.4 cm and a
12.7-cm-diam cylinder with an overall height of 5.08 cm. The smaller geometry was tested due
to the excellent agreement obtained by Batson et al. [13] when utilizing the same geometry in
two-fluid experiments and the larger was tested in order to minimize sidewall effects. Both cylinders
were cut from commercially available glass piping and were contained between acrylic top and
bottom plates. The choice of glass for the sidewalls was made due to discrepancies observed in
previous experiments when utilizing acrylic sidewalls. In fact, the stress-free sidewall condition
was experimentally simulated by utilizing fluids in which the less viscous fluid predominately wets
the sidewalls, allowing the interface to slide easily as if the system were stress free. In the case of
glass sidewalls, the wetting behavior of the silicone oil and FC-70 system utilized by Batson et al.
[13] met these conditions. When the same experiments were conducted using acrylic sidewalls, the
FC-70 began to wet the walls and thus the stress-free sidewall assumption was not upheld. The top
and bottom walls, however, were presumed to have negligible effect on the instability thresholds
due to their distance from the interfaces and thus acrylic was chosen due to ease of fabrication.
For practical experiments, the height of the middle layer needed to be large enough to be visible

TABLE II. Fluid properties for silicone oil, water, and FC-70. Densities and interfacial tensions were
measured and viscosities were assumed to be that labeled on the bottle.

Fluid Density (kg m−3) Kinematic viscosity (cSt) Interfacial tension (N m−1)

silicone oil 825 1.5 0.045 = γa

water 1000 1.0 0.051 = γb

FC-70 1940 14
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FIG. 13. Assembled testing cell and experimental setup. The base plate attaches to the mechanical shaker
and is secured with four screws. Backlighting allows for the clear visualization of the interface and any
deflection using a high-speed camera.

yet small enough to retain the coupling between the interfaces. In addition, a minimum amount of
water was necessary to create an actual fluid layer, any less of which would cause beading of the
water preferentially on the sidewalls and a bridge between the silicone oil and FC-70 in the center
of the testing cell. This led to an ideal fluid height of 1.68 cm of water, with the balance split evenly
between silicone oil and FC-70 (2.36 cm each) for the smaller cylinder. Heights of 2.01, 1.5, and
1.63 cm for the FC-70, water, and silicone oil, respectively, were utilized in the larger geometry.

The filling procedure for the testing cell first involved a thorough cleaning of the cell with water
and isopropanol before drying with compressed air to minimize contaminants on the surfaces in
contact with the fluid. The cell was then assembled and sealed via compression using wing nuts and
Buna-N rubber gaskets, which did not interact or swell when exposed to any of the testing fluids.
Fluids were then filled by density from highest to lowest through a small hole in the top of the cell
connected to an overflow port. This port served to contain extra silicone oil as well as free space
to accommodate for the expansion and contraction of the fluids due to temperature changes in the
room, allowing for long-term use of the same testing fluids without generation of air bubbles within
the cell. A rectangular outer bath was also filled with water around the testing cell to combat the
image distortion caused by the curvature of the glass. Finally, a grid was affixed to the back of the
cell to aid in imaging and a small white sheet of paper with a thin black line was attached to the cell
to aid in the determination of the exact frequency and amplitude with which the cell was shaking
through image analysis. Figure 13 shows a schematic of the assembled testing cell and mechanical
shaker apparatus.

After filling, the assembled testing cell was mounted to the mechanical shaker, leveled, and
secured using four screws through a metal base plate. The cell was backlit using a light mounted
to the shaker for visualization which moved with the testing cell and recordings were taken using
a stationary high-speed camera. The mechanical shaker was controlled externally using a computer
program, allowing the user to input a frequency and amplitude of oscillation. This input was found
to be accurate for the frequency of oscillation, but the actual amplitude of oscillation of the cell
varied from that which was imposed. This warranted the conduction of image analysis on each
experimental run to determine the actual oscillation amplitude accurate to within one pixel (2%
error in the amplitude or better).

During the course of the experiments, a frequency of oscillation was first chosen for a given
test. An amplitude higher than the theoretical threshold was then input and the shaker was made to
oscillate in order to observe the instability. Subsequent runs decreased the amplitude of oscillation
while keeping the frequency constant, until the system remained stable for a period of 3 min after
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FIG. 14. Theoretical amplitude versus frequency plot for the three-fluid system described by Table II. The
black circled point is an example of a three-fluid exclusive codimension point shown in Fig. 9(c). Distinct
modes are enclosed between pairs of dashed lines and labeled, with an s denoting a subharmonic response and
an h denoting a harmonic response.

starting the forcing. For the purposes of the present work, stability was defined by the absence of
any observable Faraday waves on either interface. The experimental threshold was determined by
narrowing down the imposed amplitudes which resulted in a stable and unstable system until a
suitable precision was reached, typically 0.1 or 0.2 mm. At this point, the experimental threshold
was determined to be the midpoint between the nearest stable and unstable tested amplitudes. The
threshold was recorded, along with the resultant waveform, qualitative relative deflections at the
onset, and harmonicity of the response before moving to a new oscillation frequency and repeating
the process.

V. RESULTS FROM EXPERIMENTS

Figure 14 shows the theoretically produced stability curves for the system described by Table II
when utilizing the 5.08-cm-diam cylinder. The predicted modes and harmonicities are enclosed
between pairs of dashed lines and labeled accordingly. Before showing experimental data, it is
important to note several differences between this A vs ω plot and the typical two-fluid plot of this
kind. Since there are two interfaces, modes are able to repeat themselves at the same harmonicity in
different frequency bands. This can be observed in Fig. 14 by the repeated (2, 1)s, (3, 1)s, and (0, 1)s

regions. The black circled point shows an example of the type of codimension point mentioned
in Fig. 9(c), which is also unattainable in two-fluid systems. Finally, interesting behavior can be
observed in the (4.5–5.5)-Hz region, where a (3, 1)s tongue appears seemingly within a (1, 1)s

tongue. This behavior happens due to the double-minimum stability behavior, as the (3, 1)s tongue
is occurring on a distinct eigenvalue branch from the (1, 1)s tongue, allowing it to interfere with the
natural smooth occurrence of the (1, 1)s.

Figure 15 compares the theoretical results with experiments conducted using the system
described in Table II and the 5.08-cm-diam geometry. Since the experimental system did not
precisely honor the stress-free sidewall assumption present in the model, a shift in the tongues to
higher frequency occurs, causing discrepancy between the theory and the experiment. Qualitatively,
however, it can be seen that the mode order of appearance with increasing frequency is correctly
predicted by the theory for all modes except the (0, 1)h mode observed experimentally in the
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FIG. 15. Experimental results for the stability threshold obtained for the three-fluid system described in
Table II in a 5.08-cm-diam cylindrical geometry. Modes are boxed by wave number, which can be compared
to the theoretical predictions shown in Fig. 14. The theoretical (0, 1)h mode is also shown to account for its
experimental appearance. Modal transitions and qualitative behavior are accurately predicted by the model,
though quantitative agreement suffers due to the nonideal sidewall conditions.

(3.5–3.8)-Hz frequency range. Previous experiments have shown axisymmetric meniscus waves
to play a destabilizing role on the (0, 1)h experimental threshold due to their shape and response
harmonicity [13]. This occurs to an even greater extent in the present experiment, as both menisci
are much larger than that observed in Ref. [13]. The theoretical (0, 1)h tongue is also shown on the
graph for reference, and its proximity to the experimentally observed data leads to the conclusion
that the destabilization is leading to its experimental presence.

In addition to the modal transitions, the experimental thresholds tend to decrease with increasing
frequency, much like the theoretical predictions. Subcritical bifurcations were observed for all
sections of the experimental curve with negative slopes and supercritical bifurcations were observed
in positive slope sections. This observation is in agreement with previous two-fluid experiments.
Codimension points were difficult to precisely excite due to the discrepancy between the theory and
the experiment. In addition, out-of-phase interfacial responses were never observed experimentally.
This can be attributed to the fact that the theoretically predicted out-of-phase responses typically
occur at extreme values of the relative deflection, i.e., |φ| � 1 or |φ| � 1. In these cases, the
experimentally observed modes seem to only occur on one interface, as the small deflection of the
opposing interface is lost within the meniscus waves. Figure 16 shows three examples of Faraday
modes obtained with the present system, each highlighting a different relative deflection type (see
the Supplemental Material in Ref. [26]).

In order to minimize the adverse sidewall effects, testing was further conducted utilizing the
12.7-cm-diam cylinder. Figure 17 shows the results of this testing. As can be seen in the figure, there
are multiple frequency bands where the experimental data agree with the theoretical predictions. In
other zones, however, a large departure between theory and experiment is still present. The zones
of agreement are those where the top interface has the dominant deflection, while the zones of
disagreement are those where the bottom interface has the dominant deflection. This is indicative
that the silicone oil–water interface obeys the stress-free sidewall assumption, while the water–FC-
70 interface does not. In order to test this, experiments were conducted using both two-fluid pairs
and compared to two-fluid theory. The results of these tests are shown in Fig. 18. These results also
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FIG. 16. Mode examples with large, moderate, and small relative interfacial deflection ratios. (a) The (2,1)
mode with φ � 1. The deflection of the bottom interface is much smaller than that of the top interface. The
testing frequency and amplitude are 4.07 Hz and 8.6 mm, respectively. (b) The (1,1) mode with φ ≈ 1. Both
interfaces have comparable in-phase deflections. The testing frequency and amplitude are 5.18 Hz and 4 mm,
respectively. (c) The (2,1) mode with φ � 1. The deflection of the bottom interface is much higher than that
of the top interface. The testing frequency and amplitude are 6.93 Hz and 3 mm, respectively.

show excellent agreement between theory and experiment for the top two-fluid pair [Fig. 18(a)] and
departure between theory and experiment for the bottom two-fluid pair [Fig. 18(b)]. For all of the
12.7-cm-diam cylinder experiments, the modal structures could not be identified due to the size of
the container and competition between modes with similar wave numbers. Thus, the mode labels
shown in Figs. 17 and 18 are the theoretical predictions.

Overall, the theoretical model was able to qualitatively predict the behavior of a three-fluid
system with nonideal sidewall behavior. Modal transitions, with the exception of the (0, 1)h mode,
were correctly predicted along with the frequency dependence of the threshold amplitude. The
frequency bands where a given mode occurred were shifted to higher frequency due to the sidewall
behavior, a behavior that is also seen in two-fluid systems [see Fig. 18(b)]. When utilizing the same
system in a larger geometry, the agreement improved, especially for portions of the stability curve
where the top interface primarily governed the stability. Full quantitative agreement between the

FIG. 17. Experimental results for the stability threshold obtained for the three-fluid system described in
Table II in a 12.7-cm-diam cylindrical geometry. Agreement between theory and experiment is obtained in
some frequency bands whose stability thresholds are primarily governed by the top interface.
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FIG. 18. Corresponding two-fluid comparisons for the system shown in Fig. 17. (a) Two-fluid comparison
for silicone oil (1.905 cm) and water (1.27 cm). (b) Two-fluid comparison for water (1.27 cm) and FC-70
(1.905 cm). All of the labeled theoretical modes are subharmonic with the exception of the (4,1)h mode in (b).
Agreement between theory and experiment is obtained for both systems, but to a greater extent in (a), where
the stress-free sidewall assumption is better upheld.

current model and experimental data will require an ideal fluid system which upholds the stress-free
sidewall condition on both interfaces or modifications to the model to account for this additional
stress.

VI. CONCLUSION

In this work, the Faraday instability was studied theoretically and experimentally for mechan-
ically oscillating three-fluid systems. The main motivation behind the work was to determine the

043903-22



FARADAY INSTABILITY IN DOUBLE-INTERFACE FLUID LAYERS

influence of one interface on the other, with particular interest in the enhancement or delaying of the
instability solely through the addition of a third fluid. It was found theoretically that the three-fluid
system produces stability tongues with multiple minima due to the multiple eigenvalue branches
influenced by each interface. In extreme cases, the stability tongues can present with a single
minimum similar to that seen in two-fluid problems. The behavior of the tongues with frequency
and viscosity agrees with that seen in two-fluid cases. However, a disproportionate effect on one
eigenvalue branch versus the other can be observed, leading to interesting behavior for some fluid
combinations. Multiple codimension points unaccessible in two-fluid systems can be observed upon
the addition of a third fluid. A two-fluid system can easily be destabilized through the addition of
a third fluid and local stabilization can be achieved to a lesser extent by adjusting the fluid choices
and layer heights. This realization could prove to be useful in processes where induced vibrations
are common and the Faraday instability is undesirable, or in situations where the instability could
be used to enhance a process.

Experiments were conducted in constrained geometries in an attempt to validate the model.
The geometry and testing frequencies were chosen to be in the range where mode discretization
was observable. Qualitative agreement was achieved, as the modal transitions, harmonicities, and
threshold behavior with increasing frequency were accurately predicted. Quantitative agreement
like that observed by Batson et al. [13] was not achievable due to the nonideal sidewall behavior
caused through the addition of a third fluid. Future experiments might seek a different fluid
combination to obtain better agreement between the theoretical predictions and experimentally
determined thresholds. In particular, the stress-free sidewall assumption must be well realized by
both interfaces in order to obtain precise agreement. Utilizing a larger geometry, where sidewall
behavior became less important, improved the agreement between theory and experiment, though
quantitative agreement throughout the entire stability curve was not achieved. Nevertheless, the
results presented in this work should qualitatively carry over to other systems. The work presented
would therefore be of practical interest for multiple applications, such as enhancing mixing in
multilayer systems or the intentional suppression of the instability under conditions where its
presence would be detrimental to a process through the addition of a third fluid.

This work has shown that the theory first presented by Kumar and Tuckerman [8] can effectively
be extended to three-fluid cases. This results in a coupling between the fluid interfaces which must
be addressed during calculation, but presents little difficulty. A good estimate for the three-fluid
stability curve, however, can be obtained by superimposing two separate two-fluid calculations for
the top and middle fluid and middle and bottom fluid pairs and taking the lowest of the resultant
thresholds. This calculation is particularly useful for systems where the middle layer is tall, resulting
in a decoupling of the interfaces.
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