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Global linear instability of rotating-cone boundary layers
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The global linear stability of the family of infinite rotating-cone boundary layers in an
otherwise still fluid is investigated using a velocity-vorticity form of the linearized Navier-
Stokes equations. The formulation is separable with respect to the azimuthal direction.
Thus, disturbance development is simulated for a single azimuthal mode number. Numeri-
cal simulations are conducted for an extensive range of cone half-angles (ψ ∈ [20◦ : 80◦])
and stability parameters (Reynolds number, azimuthal mode number), where conditions
are taken to be near those specifications necessary for the onset of absolute instability.
A localized impulsive wall forcing is implemented that excites disturbances that form
wave packets. This allows the disturbance evolution to be traced in the spatial-temporal
plane. When a homogeneous flow approximation is utilised that neglects the spatial
variation of the basic state, linear perturbations display characteristics consistent with local
stability theory. For disturbances to the genuine spatially dependent inhomogeneous flow,
global linear instability characterized by a faster than exponential temporal growth arises
for azimuthal mode numbers greater than the conditions for critical absolute instability.
Furthermore, a reasonable prediction for the azimuthal mode number needed to bring
about a change in global behavior is achieved by coupling solutions of the Ginzburg-
Landau equation with local stability properties. Thus, the local-global stability behavior
is qualitatively similar to that found in the infinite rotating-disk boundary layer and many
other globally unstable flows.
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I. INTRODUCTION

Current interest in laminar-turbulent transition in rotating boundary layers was motivated by the
discovery by Lingwood [1] that the von Kármán [2] flow that develops on an infinite rotating-
disk is locally absolutely unstable. Lingwood undertook a local linear stability analysis, whereby
a homogeneous flow approximation was implemented that removed the radial dependence of the
basic state. Absolute instability was then identified via the Briggs [3] pinch-point method and is
formed following the coalescence of two modes: crossflow [4] and a spatially damped mode [5].
Following Lingwood’s [1] revelations on the infinite rotating-disk, several further case studies were
undertaken that examined the local stability properties of the larger family of rotating boundary
layers. Garrett and Peake [6–8] applied local linear stability theory to both rotating-sphere and
rotating-cone boundary layers, within a still and a uniform axial flow. Regions of absolute instability
were discovered within the respective stability parameter spaces. Furthermore, a uniform axial flow
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was found to delay the onset of absolute instability to larger Reynolds numbers than those obtained
for the unmodified flow.

The global linear stability of the radially dependent von Kármán flow was first examined by
Davies and Carpenter [9] using a velocity-vorticity [10] form of the linearized Navier-Stokes
equations. Disturbance development to an impulsive wall forcing was numerically simulated for
a range of radial values and azimuthal mode numbers near the critical conditions for absolute
instability. However, for those parameter settings studied, the absolutely unstable mechanism was
not sufficient to excite any sustained temporally growing oscillations that might be associated with
a global linear instability. Instead the long-term disturbance response was governed by convective
characteristics.

Recent studies on the rotating-disk boundary layer by Appelquist et al. have examined nonlinear-
ity [11] and finite disk effects [12–14]. The latter strategy was implemented to provide an improved
representation of experimental models. It was found that globally unstable disturbances could be
created by imposing conditions at the outer boundary of the disk that account for downstream
turbulence. However, for a disk of infinite radius, Appelquist et al. [13,14] confirmed the earlier
results of Davies and Carpenter [9] and were only able to find disturbance development matching to
global stability.

Despite earlier suggestions that the infinite rotating-disk boundary layer was globally stable, a
recent numerical investigation by Thomas and Davies [15] has shown that, for azimuthal mode
numbers greater than that corresponding to critical absolute instability (that had been the subject
of the earlier investigations [9,11,13,14]), linear disturbances in the infinite rotating-disk exhibit
globally unstable behavior. Although for the time period that disturbance evolution could be
accurately simulated, temporal frequencies again varied in both space and time, and no fixed global
mode was realized. Furthermore, the Reynolds number associated with these high azimuthal mode
numbers coincides with the mid to upper range of values reported experimentally for transition
[16–18]. Thus, the absolutely unstable mechanism discovered by Lingwood [1] is, for large enough
azimuthal mode numbers, sufficient to engineer a form of global linear instability in the von Kármán
flow on an infinite rotating-disk. Hence, the local-global stability characteristics of the infinite
rotating-disk boundary layer are similar to the description given by Huerre and Monkewitz [19]
that states a region of local absolute instability is a necessary but not sufficient condition for global
instability to ensue.

Davies and co-workers [15,20–23] coupled solutions of the linearized Ginzburg-Landau equation
[24] with numerical simulation results and showed that the global linear stability of the infinite
rotating-disk is governed by a detuning effect [25–27]. Depending on the precise balance between
the radial variations in the temporal frequency and matching shifts in growth, it was possible for a
flow to remain globally stable even though it might be locally absolutely unstable [19]. Furthermore,
Thomas and Davies [15] utilised the Ginzburg-Landau model [24] to predict the azimuthal mode
number required for global linear instability, based only on those disturbances to the approximate
radially homogeneous flow.

Applications of rotating-cones include those flows that develop around nose cones in aircraft
engines and spinning projectiles. Early experimental investigations on rotating-cone boundary
layers were limited to measurements of transition to turbulence [28–31]. Corotating spiral vortices
were found to form along the surface of the rotating-cone [32–34], which were similar in appearance
to those discovered by Gregory et al. [4] on the rotating-disk. Theoretical studies on the convective
instabilities associated with the spiral vortices were undertaken by Kobayashi and co-workers
[32,35]. Using a new base flow model, Garrett et al. [36] improved upon the earlier linear stability
calculations presented by Garrett and Peake [8] for rotating-cones in a uniform axial flow. However,
results were unchanged for those boundary layers with a zero axial flow. Further investigations
on the family of rotating-cone boundary layers were undertaken by the Garrett group [37–40],
who studied the type of convective instabilities that develop for variable cone half-angles. For
broad rotating-cones, the crossflow instability that forms the corotating vortices on the rotating-disk
was found to dominate the boundary layer stability process (at least until the conditions required
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FIG. 1. Illustration of the rotating-cone geometry.

to establish absolute instability were met). However, for slender rotating-cones, asymptotic and
numerical methods located a new Görtler-type instability that appears as counter-rotating spiral
vortices and is governed by a centrifugal mechanism.

For the current study, the velocity-vorticity formulation developed by Davies and Carpenter [10]
and the Ginzburg-Landau model [24] utilized by Davies and co-workers [15,20–22] are applied
to the family of infinite rotating-cone boundary layers that develop in a quiescent medium. Our
analysis will focus on the global linear stability of disturbances to an impulse excitation and the
variation in behavior as the azimuthal mode number is increased to larger values. The primary aim
of this paper is then to demonstrate that the findings of Thomas and Davies [15] on global linear
instability, and indeed that found in many other globally unstable flows [19], are universal to rotating
boundary layers.

In the subsequent sections the evolution of linear disturbances to the family of rotating-cone
boundary layers in an otherwise still fluid is investigated for an extensive range of cone half-angles
and azimuthal mode numbers. Furthermore, the rotating-cone is assumed to be infinite along the
streamwise direction. In Sec. II the governing equations for generating the basic state (based on the
method presented by Garrett and Peake [8]) on a rotating-cone and the velocity-vorticity formulation
for simulating the evolution of perturbations are described. The Ginzburg-Landau model developed
by Hunt and Crighton [24] and utilized by the Davies group [15,20–23] is applied to the family of
infinite rotating-cone boundary layers to predict the azimuthal mode number needed to bring about
a change in the global behavior, from stable to unstable. Disturbance development to the genuine
spatially dependent inhomogeneous flow is then numerically simulated for an extensive range of
rotating-cone half-angles and flow settings. Finally, conclusions are presented in Sec. V.

II. FORMULATION

A. Undisturbed flow

In a fixed orthogonal curvilinear coordinate system {x∗, θ, z∗}, a rigid cone with circular cross
section and half-angle ψ , rotates about its axis of symmetry with a constant angular frequency �∗ in
an otherwise still fluid (as illustrated in Fig. 1). The cross-sectional radius of the cone r∗ = x∗ sin ψ ,
while the streamwise and wall-normal directions are assumed to be semi-infinite: 0 � x∗ < ∞ and
0 � z∗ < ∞. The origin {x∗, z∗} = {0, 0} is located at the apex of the cone. The undisturbed flow
field associated with this particular coordinate system is denoted by the dimensional vector

U∗ = {U ∗
x ,U ∗

θ ,U ∗
z },

where an asterisks represents dimensional quantities. As the cone rotates within a fixed frame of
reference, Coriolis force terms are omitted from all subsequent equations. Thus, numerical solutions
are more easily compared with the theoretical analysis of Garrett and Peake [8], who implemented
a similar treatment of the Coriolis force terms in their study.
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The nondimensional steady basic state is obtained by introducing a von Kármán [2] type
similarity substitution,

{U ∗
x ,U ∗

θ ,U ∗
z } = {x∗�∗ sin ψF (z), x∗�∗ sin ψG(z), δ∗�∗H (z)}, (1)

where the wall-normal functions F , G, and H denote the velocity profiles along the respective
streamwise, azimuthal, and wall-normal directions. The streamwise and wall-normal axes are then
dimensionalized on the length scale δ∗ = (ν∗/�∗)

1
2 , where ν represents the kinematic viscosity

of the fluid: x = x∗/δ∗ and z = z∗/δ∗. Additionally, the circumferential speed of the rotating-cone
about a streamwise reference position x∗

o is used to nondimensionalize the velocity field. Thus, the
nondimensional representation of the undisturbed flow on the rotating-cone is given as

UB(x, z, ψ ) =
(

x sin ψ

Re
F (z),

x sin ψ

Re
G(z),

1

Re
H (z)

)
, (2)

where the Reynolds number is defined as

Re = x∗
o�

∗δ∗ sin ψ

ν∗ = x∗
o sin ψ

δ∗ = xo sin ψ. (3)

On substituting the similarity variables (1) into the Navier-Stokes equations for curvilinear
coordinates [41], the following system of ordinary differential equations is obtained:

(F 2 − G2) sin ψ + F ′H = F ′′, (4a)

2FG sin ψ + G′H = G′′, (4b)

2F sin ψ + H ′ = 0, (4c)

where a prime denotes differentiation with respect to z. This particular system of equations is similar
to that derived by von Kármán [2] for the rotating-disk boundary layer, in the instance that ψ = 90◦.
Equations (4a)–(4c) are solved (using routines available within MATLAB) subject to the boundary
conditions on the cone surface

F = G − 1 = H = 0 on z = 0 (4d)

and the freestream conditions

F → 0, G → 0 as z → ∞. (4e)

Figure 2 displays the steady velocity flow profiles F , G, and H for four cone half-angles ψ ∈
[20◦ : 80◦] at intervals �ψ = 20◦.

B. Velocity-vorticity formulation

The global linear stability of perturbations to the system of infinite rotating-cone boundary layers
was examined by deriving a velocity-vorticity formulation, similar to that utilized in the earlier
studies on the infinite rotating-disk [9,10,15]. Total velocity and vorticity fields are respectively
defined as

U = UB + u, � = �B + ω,

where UB is given by (2) and the undisturbed vorticity �B = ∇ × UB. Perturbation variables are
denoted as

u = (ux, uθ , uz ), ω = (ωx, ωθ , ωz ),
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FIG. 2. Steady velocity flow profiles for four cone half-angles. (a) F , (b) G, (c) H .

which are separated into primary {ωx, ωθ , uz} and secondary components {ux, uθ , ωz}. The three
primary fields are given as solutions of the linearized governing equations

∂ωx

∂t
+ 1

h

{
∂Nz

∂θ
− ∂ (hNθ )

∂z

}
= 1

Re

{
∇2ωx − sin ψ

h2
(ωx sin ψ + ωz cos ψ ) − 2 sin ψ

h2

∂ωθ

∂θ

}
, (5a)

∂ωθ

∂t
+ ∂Nx

∂z
− ∂Nz

∂x
= 1

Re

{(
∇2 − 1

h2

)
ωθ + 2

h2

∂

∂θ
(ωx sin ψ + ωz cos ψ )

}
, (5b)

∇2uz = 1

h

(
∂ωx

∂θ
− ∂ (hωθ )

∂x

)
, (5c)

where

h = x sin ψ + z cos ψ, (5d)

∇2 = ∂2

∂x2
+ sin ψ

h

∂

∂x
+ 1

h2

∂2

∂θ2
+ ∂2

∂z2
+ cos ψ

h

∂

∂z
, (5e)

and

N = (Nx, Nθ , Nz ) = �B × u + ω × UB. (5f)

Equations (5a) and (5b) represent the streamwise and azimuthal components of the vorticity
transport equation in curvilinear coordinates, while (5c) is the wall-normal component of the
Poisson equation. The three secondary variables are defined directly in terms of the primary
variables using explicit formula that are derived from the definitions for vorticity and the solenoidal
condition:

ω = ∇ × u and ∇ · ω = 0.
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Boundary constraints are then formulated in the manner outlined by Davies and Carpenter [10],
where the no-slip conditions are replaced with integral conditions imposed on the primary variables.

For the subsequent global linear stability investigation, perturbations are assumed to be periodic
with respect to the azimuthal direction:

{u,ω} = {û, ω̂}einθ , (6)

where n = βRe is the integer valued azimuthal mode number and β is the azimuthal wavenumber
that is more commonly used to indicate regions of linear instability in studies that have implemented
a homogeneous flow approximation. No other assumptions are made about the form of the
perturbations.

In local linear stability analysis that applies a homogeneous flow approximation to the basic
state [1,8], the variable h in (5d) is simplified, by assuming that z/x sin ψ 	 1. Additionally, the
x-dependence of the base flow (2) is removed by setting x = xo. Thus, the scale factor h is set equal
to Re. However, for the subsequent study, the homogeneous flow approximation is only imposed in
those cases used to validate the numerical simulation results; refer to §II.C. For the main numerical
computations presented in §IV, disturbance development is simulated to the inhomogeneous flow
where the streamwise x-dependence is retained.

Discretization of the governing Eqs. (5) was achieved using the scheme outlined in Davies
and Carpenter [10]. A fourth-order centered, compact finite difference method was implemented
along the streamwise x-direction and a Fourier spectral expansion (outlined above) was used in
the azimuthal direction. The wall-normal z-direction was treated using a Chebyshev spectral series
representation, with coordinates carefully mapped from the semi-infinite domain onto a finite
interval. Finally, time-marching was achieved using semi-implicit methods. Further details of the
numerical formulation are presented in Davies and Carpenter [10].

C. Code validation

Perturbations were impulsively excited through a localised streamwise forcing that was imple-
mented via a linearisation of the no-slip conditions on the cone surface. The impulsive forcing was
centered about a streamwise position x f and was applied for a sufficient time duration to excite a
broad range of stationary and traveling perturbations. Eventually the strongest growing perturbations
form spatial-temporal wave packets, which can be used to draw conclusions regarding the global
linear stability of the system of rotating-cone boundary layers.

Table I compares the critical conditions for absolute instability given by Garrett and Peake [8]
with those results obtained via numerical computations based on a homogeneous flow approxima-
tion (bold font). Temporal frequencies and growth rates were computed using the complex-valued
quantity

f = i

ωθ,w

∂ωθ,w

∂t
, (7)

where ωθ,w is the azimuthal vorticity perturbation on the cone surface. The real and imaginary parts
of f define the respective temporal frequency and growth rate of the disturbance at each point in
space and time. To avoid expensive computational costs, numerical simulations were carried out
for integer valued Re and n only. Although this inevitably introduces some minor variations in
the critical parameters, the computations tabulated in Table I are still in excellent agreement with
those results presented in Garrett and Peake [8]. In most instances, both fc and the streamwise
wave number αc (which was determined using a similar formula to that defined above) are identical
to within two or three decimal places. Additionally, frequency calculations (in Table I and in the
subsequent discussion) are presented as g = f Re, where a multiplicative factor of the Reynolds
number has been introduced to help draw comparisons between numerical simulations based on the
homogeneous and inhomogeneous flows.
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TABLE I. Critical values for the onset of absolute instability as found by Garrett and Peake [8] using a
localized stability analysis with a homogeneous flow approximation. Values given in bold are determined from
numerical simulations using the same approximation.

ψ Rea βa na fa αa ga

20◦ 289.95 0.080 23 0.059 0.375 − i0.208 17.11
20◦ 290 0.080 23 0.0592 0.373 − i0.206 17.17
30◦ 353.47 0.096 34 0.071 0.309 − i0.172 25.10
30◦ 353 0.096 34 0.0712 0.311 − i0.169 25.13
40◦ 402.49 0.109 44 0.081 0.272 − i0.152 32.60
40◦ 403 0.109 44 0.0806 0.274 − i0.147 32.50
50◦ 440.60 0.118 52 0.088 0.249 − i0.139 38.77
50◦ 441 0.118 52 0.0875 0.250 − i0.135 38.59
60◦ 469.42 0.126 59 0.093 0.234 − i0.131 43.66
60◦ 470 0.126 59 0.0933 0.235 − i0.126 43.85
70◦ 489.78 0.131 64 0.097 0.224 − i0.125 47.51
70◦ 490 0.131 64 0.0970 0.223 − i0.121 47.53
80◦ 502.12 0.134 67 0.099 0.219 − i0.122 49.71
80◦ 502 0.134 67 0.0992 0.220 − i0.118 49.80
90◦ 507.32 0.135 68 0.099 0.217 − i0.122 50.22
90◦ 508 0.135 68 0.1000 0.218 − i0.117 50.80

III. PREDICTING GLOBAL INSTABILITY VIA THE GINZBURG-LANDAU EQUATION

Thomas and Davies [15,21] utilized solutions of the linearized Ginzburg-Landau equation [24]
to provide an explanation for why disturbances in the infinite rotating-disk boundary layer can
become globally unstable or remain stable. Parameters of the Ginzburg-Landau equation were
carefully matched to disturbance properties of the numerical simulations, allowing Thomas and
Davies to interpret the stability characteristics and predict the critical azimuthal mode number nc,
whereby for n > nc global instability ensues. The same procedure will be utilized here to predict the
azimuthal mode numbers nc needed to bring about global linear instability in the family of infinite
rotating-cone boundary layers. However, instead of repeating the detailed description of the method
presented in Thomas and Davies [15,21] we will only outline the salient points of the strategy here.

The linearized Ginzburg-Landau equation is given as

∂A

∂t
+ U

∂A

∂x
= μA + γ

∂2A

∂x2
, (8)

where A(x, t ) is a measure of the disturbance amplitude at the spatial location x and time t . The
parameters μ, U , and γ denote the stability, flow convection, and diffusion/dispersion effects,
respectively. If μ is allowed to vary linearly with the spatial direction,

μ(x) = μ0 + μ1x,

where the real and imaginary parts of μ1 represent the respective spatial variations in the temporal
growth rate and matching frequency, the following impulse Green’s solution to (8) can be derived
[21,24]:

G(x, t ) =
√

1

4πγ t
exp

(
1

2
μ1xt + 1

12
μ2

1γ t3 − x2

4γ t

)
exp{i(α0x − f0t )}, (9a)
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where

f0 = i

(
μ0 − U 2

4γ t

)
and α0 = −i

U

2γ
. (9b,c)

The temporal frequency f0 and radial wave number α0 = α0,r + iα0,i are both complex, while
the spatial coordinate x is shifted, so that the impulse is centered about x = 0. In the instance that
μ1 = 0, the imaginary part of μ0 represents the temporal growth rate that determines whether or not
the flow is stable, convectively unstable, or absolutely unstable.

The complex temporal frequency of the Green’s solution (9a) can be determined using (7) (by
replacing ωθ,w with G) to give the disturbance growth rate

Re( f ) → ρt2 as t → ∞ for ρ = [(
μ2

1,r − μ2
1,i

)
γr − 2μ1,rμ1,iγi

]
. (10a,b)

Thus, for large time t the response of the disturbance is governed by the stability coefficient
μ1 = μ1,r + iμ1,i and the diffusion/dispersion parameter γ = γr + iγi. A negative valued ρ will
then bring about temporal decay and global stability, while positive ρ corresponds to temporal
growth and global instability.

Parameters μ1 and γ can be chosen using the procedure outlined in Thomas and Davies [15,21],
leading to the expressions

μ1,r = 2
∂gi

∂x
and μ1,i = −2

∂gr

∂x
, (11a,b)

where g = gr + igi is the complex temporal frequency obtained via numerical simulations of the
disturbance development to the homogeneous flow. Meanwhile, dispersion and diffusion effects are
given by the relationships

1

γ
= γr

|γ |2 − i
γi

|γ |2 , (12a)

for

γr

|γ |2 = −2α0,i

U
and

γi

|γ |2 = 2

U

(
∂φ

∂x

∣∣∣
max

− α0,r

)
, (12b,c)

where the convection velocity U is measured about the contour line that the disturbance achieves a
maximum amplitude and ∂φ

∂x |
max

represents the corresponding phase shift.
Disturbance development to the homogeneous flow was simulated for an extensive range of

parameter settings (i.e., Re and n) and for cone half-angles ψ ∈ [20◦ : 90◦] at intervals �ψ = 10◦.
For each azimuthal mode number n investigated, the analysis was performed about the streamwise
location (Reynolds number) corresponding to critical absolute instability. The parameters required
for computing ρ [recall Eqs. (10)–(12)] were carefully calculated, and solutions are plotted in Fig. 3.
Each curve (eight in total) corresponds to a fixed half-angle ψ and represents a measure of the
predicted long-term growth as a function of the azimuthal mode number, where ψ increases in
size from left to right. The plot on the outer right corresponds to the solution given by Thomas
and Davies [15] for the infinite rotating-disk (ψ = 90◦). Cross markers, located along each curve,
indicate the respective azimuthal mode numbers na for the onset of absolute instability. For each
half-angle modeled, a negative valued ρ is obtained for n = na. However, for larger azimuthal mode
numbers, a positive valued ρ is eventually achieved. This would suggest that for sufficiently large
n, unstable behavior is realized for all cone half-angles. The predicted azimuthal mode number nc

required for positive ρ and unstable characteristics are documented in Table II. In each instance
nc > na (compare results given in Tables I and II). For example, the above method predicts that for
ψ = 40◦, global instability will appear for

n � nc = 51 > 44 = na.

043902-8



GLOBAL LINEAR INSTABILITY OF ROTATING-CONE …

0 20 40 60 80 100
n

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ρ

ψ = 90o

ψ = 80o

ψ = 70o

ψ = 60o

ψ = 50o

ψ = 40o

ψ = 30o

ψ = 20o

FIG. 3. Growth rates ρ as a function of the azimuthal mode number n for cone half-angles ψ = [20◦ : 10 :
90◦]. Cross markers indicate the respective azimuthal mode numbers for critical absolute instability.

For all n > nc, strong temporal growth and global instability might be expected to develop in the
inhomogeneous flow.

IV. DISTURBANCE DEVELOPMENT IN THE INHOMOGENEOUS FLOW

The evolution of disturbances to the genuine spatially dependent family of infinite rotating-cone
boundary layers was numerically simulated to verify the above predictions for the onset of global
instability. We will first illustrate and describe the type of behavior that develops on the rotating-cone
with a half-angle ψ = 40◦ and then extend the analysis to the larger spectrum of rotating-cone
boundary layers.

TABLE II. Critical azimuthal mode numbers nc for the appear-
ance of globally unstable disturbances. Values nc,H are predictions
based on coupling solutions of the Ginzburg-Landau equation with
numerical simulations of the homogeneous flow, while nc,I repre-
sents the parameter range inferred by disturbance development to
the inhomogeneous flow.

ψ nc,H nc,I

20◦ 26 20–30
30◦ 39 30–50
40◦ 51 50–60
50◦ 61 60–70
60◦ 70 70–80
70◦ 76 70–90
80◦ 80 80–90
90◦ 83 80–90
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FIG. 4. Temporal growth rates gi as functions of time, for disturbances impulsively excited about the
location x f for critical absolute instability, for n ∈ [40 : 10 : 80] and ψ = 40◦.

A. Cone half-angle ψ = 40◦

Several perturbations to the rotating-cone with a half-angle ψ = 40◦ were impulsively excited for
azimuthal mode numbers n ∈ [40 : 80] at intervals �n = 10 about the matching streamwise location
x f for critical absolute instability (based on the homogeneous flow approximation). The value for x f

associated with each azimuthal mode number is listed within the legend of Fig. 4, which depicts the
corresponding growth rates gi as functions of time t/T . The time variation has been scaled on the
cone rotation rate T = 2πRe. Although not included in Fig. 4 or any of the subsequent illustrations,
temporal frequencies gr were found to vary in time and along the streamwise x direction. Thus, much
like the earlier investigations on the infinite rotating-disk [9,15,20], no fixed global frequencies were
obtained, at least for the time duration that the computational results could be accurately relied upon.

The growth rate nearest the bottom of Fig. 4 corresponds to the disturbance generated for n =
40 and x f = 622 (Re = 400). For the time duration shown, this particular growth rate is always
negative and is decreasing after the first period of rotation (i.e., t/T > 1). Thus, the disturbance
exhibits strong temporal decay. For larger azimuthal mode numbers n, the growth rate is shifted
vertically upwards in ascending order of n. For n = 50, the growth rate is again negative for the
entire time period plotted, but is less negative than that illustrated for n = 40. Indeed, towards the
end of the second period of rotation, the growth rate (associated with n = 50) appears to approach
a fixed (negative) constant. However, it is worth noting that if the disturbance development was
extended to larger time, the growth rate might eventually follow the trend displayed for n = 40 and
begin to decrease. Nevertheless, there is clearly a marked difference between the solutions obtained
for n = 40 and 50.

For those larger azimuthal mode numbers (n � 60) modeled in Fig. 4, positive increasing tempo-
ral growth rates are realized. These particular growth rates increase over the full time illustrated, with
little to suggest that they will reverse direction at some later point in time. Furthermore, growth rates
increase more rapidly as n is raised to larger values, establishing strongly unstable characteristics.
Thus, the global linear stability behavior is similar to that found by Thomas and Davies [15] for
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FIG. 5. Temporal growth rates gi for disturbances impulsively excited about x f = 650 (Re = 418) and
for ψ = 40◦. Development plotted about x = x f − 25 (solid lines), x = x f (dashed), x = x f + 25 (chain) and
x = x f + 50 (dotted), while the solid-crossed lines depict the corresponding solutions in the homogeneous flow
about the impulse center. (a) n = 40, (b) n = 50, (c) n = 60, (d) n = 70.

the infinite rotating-disk (see Fig. 9 of their paper). Positive increasing temporal growth and a
form of globally instability develops for sufficiently high azimuthal mode numbers. However, it
should be mentioned that the streamwise location associated with these larger azimuthal mode
numbers is significantly greater than that corresponding to critical absolute instability (na = 44 and
xa ≈ 627 for ψ = 40◦). Additionally, a change in the global response (stable to unstable) appears for
values of n that are broadly comparable with the predictions presented in the preceding section that
were based on solutions of the linearized Ginzburg-Landau equation. The Ginzburg-Landau model
predicts that disturbances will become globally unstable for n � 51, while those results displayed in
Fig. 4 suggest that a change in the global linear response arises for n ∈ [50 : 60]. Thus, a reasonable
estimate for the appearance of global linear instability is achieved by coupling the Ginzburg-Landau
equation with the local stability properties of the homogeneous flow.

Further perturbations were numerically simulated to offer additional support to the argument
that global linear instability develops for large enough azimuthal mode numbers. Figure 5 depicts
the temporal growth rates associated with four disturbances impulsively excited about x f = 650.
The azimuthal mode number in each instance is increased from n = 40 to 70 at ten unit intervals.
Temporal growth rates are plotted about the impulse center x f and for three additional streamwise
positions, located upstream and downstream of x f . The solutions established about the impulse
center for the corresponding homogeneous flow are plotted within each illustration using a solid-
crossed line, where Re ≡ x f sin ψ = 418. Growth rates associated with the homogeneous flow
asymptote towards fixed values as time increases. Positive growth and absolute instability are
achieved for disturbances n = 40 and 50, while for the two larger azimuthal mode numbers negative
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temporal growth and at most a convective form of instability develops. However, for the genuine
spatially dependent flow, growth rates behave very differently. First, growth rates vary in time and
with the streamwise location, which is to be expected given the observations of Fig. 4 and the
similarities between the current study and those investigations undertaken by Davies and co-workers
[9,15,21–23]. Second, there is contrasting behavior in the long-term response. For n = 40 and 50,
growth rates are decreasing, and in the former instance negative growth rates are eventually realized.
Furthermore, given the trend of those curves plotted in Fig. 5(b), negative growth rates and temporal
decay might be expected to emerge within the next period of rotation. On the other hand, rapidly
increasing growth rates are observed for those disturbances generated for n = 60 and 70, which are
significantly greater than those growth rates obtained via the matching homogeneous flow analysis.
For n = 60 and the time duration shown, positive growth rates are attained at all but one of the
given streamwise locations, and it is expected that temporal growth will soon be realized about
x = x f − 25 (solid line). Although growth rates remain negative for n = 70 over the full time period
shown, the trajectories of those plots depicted in Fig. 5(d) suggest that positive temporal growth
might be expected at all streamwise locations considered, within one or two periods.

The streamwise variation of the temporal growth rate gi, that is computed by measuring variations
in gi about a fixed point in time, is considerably greater for those results presented for n = 70. This
last observation was also documented by Thomas and Davies [15] for disturbances in the infinite
rotating-disk boundary layer and via solutions to the Ginzburg-Landau equation. The flow became
globally unstable once the streamwise variation of the temporal growth rate, ∂gi/∂x, was sufficiently
large, which arose for azimuthal mode numbers n greater than the conditions for critical absolute
instability. Indeed, for those ρ calculations plotted in Fig. 3, ∂gi/∂x increases with the azimuthal
mode number, eventually becoming large enough to bring about a positive valued ρ and unstable
behavior.

Figure 6 displays the spatial-temporal disturbance development corresponding to those perturba-
tions illustrated in Fig. 5. The disturbance evolution is depicted in the streamwise-temporal plane
using contours of |ωθ,w|, where solutions have been normalized about t = 0.2T . Additionally,
contour levels are drawn using a logarithmic scaling,

N = ln |ωθ,w|.
The leading and trailing edges of the four disturbance wave packets are identified as those outer
contours labeled N = −1 that originate from the initial impulse centered about x f = 650. In each
instance, the leading edge propagates downstream with approximately the same nonzero velocity.
However, the four trailing edges display very contrasting features, bringing about very different
forms of global linear stability. For n = 40, convectively unstable characteristics appear to dominate
the impulse response, as the trailing edge propagates downstream, with what appears to be an
increasing velocity. As the azimuthal mode number is increased to larger values, n = 60 and 70,
the trailing edge can be seen to reverse direction and propagate upstream as it approaches the
streamwise location xa for the onset of absolute instability associated with that particular azimuthal
mode number [represented by vertical dashed lines in Fig. 6(c) and 6(d)]. Given the wave-packet
formations depicted for the two latter perturbations, and their corresponding temporal growth rates
plotted in Fig. 5, it would appear that a form of global instability is emerging.

Two more disturbances were impulsively excited about x f = 700, for n = 40 and 60. The spatial-
temporal disturbance wave packets and matching temporal growth rates for these two parameter
settings are illustrated in Fig. 7. The line types for the growth rates are the same as those described
in Fig. 5. Absolute instability is clearly demonstrated in both instances when the homogeneous
flow approximation is enforced, as positive temporal growth is obtained at large time (solid-crossed
lines). Meanwhile, growth rates corresponding to those disturbances to the inhomogeneous flow are
decreasing for n = 40 and increasing for n = 60. Temporal decay is observed about all streamwise
positions for the smaller modal disturbance, while strong increasing temporal growth is obtained
for the larger azimuthal mode number. The two disturbance wave packets plotted in Figs. 7(a)
and 7(b) further illustrate the differences in global behavior that are realized for variable n. The
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FIG. 6. Spatial-temporal disturbance development of the azimuthal vorticity on the disk surface |ωθ,w|, for
an impulsive center about x f = 650 (Re = 418) and for ψ = 40◦. (a) n = 40, (b) , (c) n = 60, (d) n = 70.
Vertical dashed lines in (c) and (d) represent the streamwise location xa for the onset of absolute instability,
associated with the given azimuthal mode numbers.

trailing edge associated with the disturbance for n = 40 initially propagates upstream, but eventually
reverses direction and appears to be moving downstream by the end of the given time period. On the
other hand, the trailing edge matching to n = 60 propagates upstream for the entire time duration
shown and global linear instability develops. Hence, numerical simulations provide a convincing
and compelling argument for the appearance of globally unstable characteristics at high azimuthal
mode numbers.

B. Cone half-angles ψ ∈ [20◦ : 80◦]

The above analysis was extended to a further six rotating-cone geometries, with half-angles ψ ∈
[20◦ : 80◦]. Figure 8 reproduces the earlier analysis presented in Fig. 4 for ψ = 40◦, comparing
temporal growth rates associated with disturbances generated for several combinations of the cone
half-angle ψ and azimuthal mode number n (listed within each legend and the caption of Fig. 8).
Each perturbation was impulsively excited about the streamwise location x f (given within each
legend) that matches the respective onset of absolute instability. For each value of ψ modeled,
growth rates display similar trends. For relatively small n, growth rates decrease and disturbances
decay. However, for larger n, strong temporal growth and a form of global instability develops.
The azimuthal mode number n required to bring about a change in the global response (stable to
unstable) decreases with smaller cone half-angles. Furthermore, numerical simulations suggest that
the critical value nc necessary to engineer global linear instability is broadly comparable with the
earlier predictions obtained by coupling local stability results with the Ginzburg-Landau equation.
For instance, the Ginzburg-Landau model suggests that for ψ = 60◦, n � 70 was sufficient to bring
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FIG. 7. Spatial-temporal disturbance wave packets and matching temporal growth rates for an impulse
centered about x f = 700 (Re = 450) for ψ = 40◦. (a) and (c): n = 40; (b) and (d) n = 60. Line types for
growth rates in (c) and (d) are the same as those given in Fig. 5.

about globally unstable behavior, while numerical simulations [Fig. 8(c)] infer that global instability
emerges for n ∈ [70 : 80]. Additionally, for ψ = 20◦, n � 26 was predicted as being necessary for
global linear instability, while results plotted in Fig. 8(f) suggest a change in global behavior is
realized for n ∈ [20 : 30]. Similar comparisons were also obtained for the remaining four rotating-
cones investigated, and results are included in Table II for comparison.

V. CONCLUSIONS

The global linear stability of the family of rotating-cone boundary layers has been investigated
for an extensive range of cone half-angles and flow parameter settings. The cones were rotated
within a quiescent medium and modeled as infinitely long in the streamwise x direction. A localised
impulsive wall forcing, implemented via a linearization of the no-slip condition, was used to
excite perturbations and study their evolution. For those numerical simulations established using
a homogeneous flow approximation (whereby the streamwise dependence of the basic state was
ignored), solutions were found to be in excellent agreement with local linear stability results that
utilize the same flow assumptions [8].

Disturbances to the genuine spatially varying inhomogeneous flow were found to display global
stability characteristics qualitatively similar to that observed in the infinite rotating-disk boundary
layer. For azimuthal mode numbers below a critical threshold nc, the flow was globally stable;
disturbance evolution was dominated by convective characteristics that were similar in appearance
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FIG. 8. Temporal growth rates gi, for disturbances impulsively excited about the onset of absolute
instability x f for variable n. (a) ψ = 80◦, (b) ψ = 70◦, (c) ψ = 60◦, (d) ψ = 50◦, (e) ψ = 30◦, (f) ψ = 20◦.

to that observed by Davies and Carpenter [9]. However, for larger azimuthal mode numbers,
disturbances displayed features matching the recent observations of Thomas and Davies [15]; a
form of global instability was realized that is characterized by a faster than exponential temporal
growth. In all instances modeled, the azimuthal mode number nc required for a change in the global
response was greater than the critical conditions for absolute instability.

The azimuthal mode number nc required for a change in the global behavior was predicted by
coupling solutions of the linearized Ginzburg-Landau equation with the local stability properties of
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disturbances to the homogeneous flow. Radial variations in the temporal growth rate were found to
increase for larger azimuthal mode numbers, eventually becoming sufficient to bring about global
linear instability. For all rotating-cone systems studied, the predictions for nc were reasonably
consistent with the numerical simulation results obtained for the inhomogeneous flow. Globally
unstable disturbances are thus found in many rotating boundary layers. The local-global linear
stability properties are similar to that outlined in Huerre and Monkewitz [19], whereby a region of
local absolute instability is a necessary but not sufficient condition for global instability to develop.

Although the above study clearly demonstrates that globally unstable disturbances can develop
in the infinite rotating-cone and -disk boundary layers, it remains to be seen what effect this has on
the laminar-turbulent transition process in real-life experiments. Using direct numerical simulations
of the rotating-disk with disturbances excited via finite roughness elements, Appelquist et al.
[42] found that convective instabilities were the primary mechanism for the onset of transition to
turbulence. Indeed, Thomas and Davies [15] concluded that the high azimuthal modal disturbances
were very unlikely to be observed in experimental studies of the rotating-disk, due to the huge
spatial growth associated with the convective crossflow instabilities. Moreover, recent investigations
[11–14] that modelled finite disk effects, suggest that globally unstable disturbances can be created
at lower azimuthal mode numbers than that necessary herein. Thus, there remain several questions
for the future study of rotating boundary layers. Do the high n azimuthal mode numbers feature in
the transition process and what are the implications for finite cone or disk models?
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