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Extreme nonequilibrium electrophoresis of an ion-selective microgranule
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We investigate the electrophoresis of an ion-selective microgranule in an electrolyte
solution. A semianalytical analysis of a small length of the electric double layer as well as
overlimiting and extreme overlimiting currents is complemented by the direct numerical
study of the full nonstationary Nernst-Planck-Poisson-Stokes system, with the correspond-
ing boundary and initial conditions. Our results are in reasonably good agreement with the
available experimental data. Moreover, they can be used to modify Dukhin’s formula for
the electrophoretic velocity. A steady-state solution is observed for moderate electric fields.
Three boundary layers, nested inside each other, are formed in this solution as follows: an
electric double layer, a space-charge region, and a thin diffusion layer. Only the electric
double layer is present in the area of the outgoing ion flux. This flux generates a jet of
high electric conductivity. Increasing the external field makes this jet narrower, but its
conductivity increases. At the point on the granule surface where the ion flux vanishes, a
separation of the diffusion boundary layer occurs. For sufficiently strong fields, the steady-
state solution loses stability. Instability arises in the diffusion layer region but manifests
itself in other regions. In particular, it generates electrokinetic microvortices. Two kinds
of microvortices are found: large steady Dukhin-Mishchuk vortices and electrokinetic
vortices that propagate from the pole of the particle towards the Dukhin-Mishchuk vortices.
At small supercriticality, the oscillations of the unknowns are periodic, but increasing the
external field makes the flow chaotic in the Feigenbaum scenario fashion.

DOI: 10.1103/PhysRevFluids.4.043703

I. INTRODUCTION

The motion of charged micro- and nanoparticles and macromolecules under the influence
of an external electric field is addressed in the present work. Electrophoresis is a fundamental
phenomenon in theoretical physics with ever-increasing applications in microfluidics [1,2] and
bioanalysis [3], enabling the efficient manipulation of charged particles in microfluidic devices. The
applications include laboratory-on-a-chip technologies, DNA transport, the separation of dispersed
micro- and nanoparticles and cells [4], and so on.
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One of the most promising applications of ion-selective particles is medical analysis. The small
charged molecules of different peptides can act as biomarkers for certain diseases. The problem
is that their concentrations in a biological fluid are extremely low (below pg/ml), which makes it
difficult to identify these molecules [5]. Wang et al. [6] showed that a sixth-order enhancement in
the ion concentration (superconcentration) can be achieved locally within the double layer if the
particle is permeable to ions. This effect may be the key to the early detection of various diseases
by biomarkers. Another application of ion-selective particles was stated by Dukhin and Mishchuk
[7,8] for electrodialysis intensification. An increase of the electric field leads to an increase of the
current until the current saturation is observed (so-called limiting current). The limiting current
regime constrains the electrodialysis efficiency. The manifestation of electrokinetic phenomena of
the second kind allows avoiding the limiting current. For this purpose, Dukhin [7] proposed a mixed-
bed ion exchanger, in which a layer of the cation-exchange granule alternates with a layer of a
cation-exchange planar membrane.

It should be noted that this phenomenon strongly depends on the properties of the particle-
electrolyte surface. Distinct results have been obtained for different kinds of particles in the
literature, particularly between charged dielectric and ion-selective particles.

The study of the electrophoresis of dielectric particles, which are impermeable both for cations
and for anions, began more than a century ago with the works of Helmholtz [9] and Smoluchowski
[10], who studied the electrophoresis and electro-osmosis of dielectric particles. They obtained a
simple mathematical description of these phenomena, including a formula for the electrophoretic ve-
locity under the assumption of a thin electric double layer (EDL) and a weak external electric field,

ũ∞ = ε̃ζ̃

μ̃
Ẽ∞. (1)

The velocity ũ∞ is linearly proportional to the applied electric field Ẽ∞ and the zeta potential ζ̃

and is inversely proportional to the viscosity μ̃. Here ε̃ is the dielectric permittivity of the medium
around the particle. It can be seen that there is no dependence of the velocity on the particle size.
The electrophoresis described by the relation (1) is called electrophoresis of the first kind or linear
electrophoresis.

After the works of Helmholtz and Smoluchowski, a whole series of experimental and theoretical
papers were devoted to the electrophoresis of dielectric particles. The effects of the surface
conductance, the finite thickness of the EDL, the surface charge, and transition processes were
investigated by Van Der Put and Bijsterbosch [11], Wiersema et al. [12], O’Brien and White [13],
Bazant [14], and Lyklema [15].

Hamed and Yariv [16,17] used a weak-field expansion to analyze the steady-state electrokinetic
flow around an ideally polarized spherical nanoparticle for the case of a large Debye thickness
in relation to the particle size. Yariv and Davis [18] used a macroscale model that was proposed
by Yossifon et al. [19] to analyze electrokinetic flows around dielectric surfaces for a thin EDL.
The authors developed and analyzed electrokinetic effects, wherein solid polarization modifies the
ζ -potential distribution. They found that nonlinearity had a hindering effect.

Smoluchowski’s theory predicts a linear enhancement of the velocity with the growth of the
ζ potential, but this dependence was derived for small-ζ -potential values and thus is unreliable
for moderate values [20,21]. Schnitzer and Yariv [20] proved analytically that this relation is still
reliable for moderate-ζ potentials but is not valid for larger ones. In their next study, Schnitzer
and Yariv [21] presented a generic analysis of electrokinetic transport around highly charged
dielectric solids in a thin EDL, which was not restricted to weak fields. In the nonlinear regime,
non-Smoluchowski electrophoretic mobilities should be used. Schnitzer et al. [22] generalized the
results of the work in Ref. [21] to large-ζ potentials, when surface conduction became significant in
thin EDL electrokinetic transport.

The behavior of a charge-selective granule, which allows only one kind of ions, i.e., cations
or anions, to penetrate through its surface is very different from the behavior of the dielectric
particles. The mathematical formulation of the problem near a planar charge-selective solid, when
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two charge-selective surfaces were separated by a layer of electrolyte, was provided by Rubinstein
and Shtilman [23]; a one-dimensional quiescent solution was found where electromigration was
balanced by diffusion. This process is accompanied by the flux of ions through the membrane
surface, so this is a nonequilibrium phenomenon. Two kinds of regimes were distinguished. (a)
At a small drop of the potential, the influence of the ion flux can be neglected and the regime is
practically in equilibrium or, to be more precise, in quasiequilibrium (the so-called underlimiting
currents). The EDL is formed near the charge-selective surfaces. (b) If the external field increases,
then the ion flux through the surface cannot be neglected. Moreover, it dominates other processes
and a nonequilibrium structure, the space-charge region (SCR), appears from the quasiequilibrium
structure of the EDL. This nonequilibrium regime is called the limiting current regime. The
formulation [23] was successfully used by Rubinstein and Zaltzman [24] to study analytically
the electrokinetic instability for the extreme overlimiting currents by Zaltzman and Rubinstein
[25], to develop a universal theory of the electrokinetic instability that is uniformly valid for both
quasiequilibrium and nonequilibrium conditions. Demekhin et al. [26–28] developed a numerical
approach for the linear and nonlinear electrokinetic instability. In works by Pham et al. [29] and
Druzgalski et al. [30], the direct numerical simulation of the mentioned processes near a planar
charge-selective surface was fulfilled.

A charge-selective microgranule can be considered as a sophisticated type of electric membrane.
In particular, in contrast to the planar geometry, a curved interface (along with the electrokinetic
instability) is one of the conditions for the nonlinear phenomena to appear. Experimental inves-
tigations of the electro-osmosis and electrophoresis of charge-selective granules were conducted
in the studies by Mishchuk and co-workers [31–33] and Barany [34]. Despite the differences
between the problems of electrophoresis and of electrokinetics near planar membranes, they also
have similarities. Dukhin and Mishchuk and co-workers found two kinds of electrophoresis of
charge-selective granules. At small external fields, the granule velocity is proportional to the field
strength and independent of the granule size, as in the classical electrophoresis at a small electric
field, so it is the electrophoresis of the first kind connected with the quasiequilibrium EDL near the
surface. With increasing external field the behavior of the particle becomes of nonequilibrium type
(the influence of the ion flux now plays a dominant role) and the particle mobility now depends on
the electric field. The nonequilibrium electro-osmosis related to the SCR is called electro-osmosis
of the second kind, as described by Dukhin and Mishchuk and co-workers (see [7,31]). Numerous
experimental data were presented by the researchers. However, the main result of these works is that
the linear dependence of the electrophoretic velocity on the electric field at sufficiently large field
breaks down and changes to a quadratic dependence (see [7])

ũ∞ = 2
ε̃ãẼ2

∞
μ̃

. (2)

Moreover, in contrast to the relation (1), there is now a dependence of the velocity on the granule
size ã. Dukhin named this electrophoresis of the second kind, or nonlinear electrophoresis.

In the work by Yariv [35] the behavior of an ion-selective particle was for the first time
investigated for a small Debye layer and weak external field, using asymptotic methods. In our
recent work [36] we investigate numerically and asymptotically the case of weak and moderate
electric fields and a transition zone from the electrophoresis of the first and the second kind.
It was shown that at a sufficiently large electric field, the electrophoretic velocity and other
variables become independent of the properties of the fabric of the ion-exchange membrane. In
our formulation, this means independence from the surface charge p. In Fig. 1 the mobility of
an ion-exchange membrane is plotted as a function of the surface charge p (see [36] for details)
(the variables are in dimensionless form, here u∞ = ũ∞ã

D̃
and E∞ = Ẽ∞ã

�̃0
, where ã is the radius

of the sphere, D̃ is the coefficient of diffusion of ions, and �̃0 is the thermal potential); at
E∞ > 5 dependences for the mobilities for different p converge to one point. In other words, at
sufficiently high electric fields, the electrokinetic effects are controlled by the ion flux through the
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FIG. 1. Mobility vs E∞ for different p.

particle and the phenomenon acquires a nonequilibrium behavior. In the work of [36], using an
asymptotic method for a small external field and small Debye number, an analytical relation for the
electrophoretic velocity was derived,

ũ∞ = ε̃ζ̃

2μ̃

(
1 − 0.11

ζ̃

�̃0

)
Ẽ∞, (3)

where �̃0 is the thermal potential. This is different from the Helmholtz-Smoluchowski formula (1),
although the velocity is proportional to the electric field. For a small and moderate electric field, our
theoretical results are in good agreement with experiments [31–34].

The present work addresses the electrophoresis of the ion-selective microgranule for the nonequi-
librium and extreme nonequilibrium conditions. The investigation is fulfilled by direct numerical
simulation of the Nernst-Planck-Poisson-Stokes system along with a semianalytical approach.

II. FORMULATION

We consider a spherical solid microgranule with a semiselective ion-exchange surface, which is
impermeable to one kind of ions, without loss of generality, anions, with a radius ã, suspended in an
infinitely extending electrolyte solution. A symmetric (valence or charge number z+ = −z− = 1)
binary electrolyte with the diffusivity of cations and anions D̃, the dynamic viscosity of liquid μ̃, and
the electric permittivity ε̃ is considered. The microparticle is subjected to an electric field Ẽ∞, which
induces the electrophoretic velocity ũ∞. Notation with a tilde is used for the dimensional variables,
as opposed to their dimensionless counterparts without a tilde. We assume an axisymmetric problem
in spherical polar coordinates (r, θ ) (see Fig. 2).

The characteristic quantities to make the system dimensionless are as follows: ã, the radius of
the particle; ã2

D̃
, time; D̃

ã , velocity; μ̃, dynamic viscosity; μ̃D̃
ã2 , pressure; �̃0 = R̃T̃

F̃
, thermal potential;

c̃∞, unperturbed ion concentration far away from the particle; and D̃F̃ c̃∞
ã , electric current. Here F̃ is

the Faraday constant, R̃ is the universal gas constant, and T̃ is the absolute temperature.
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FIG. 2. Schematic of the flow near the granule under the external electric field E∞ and the fluid flow
velocity u∞ at infinity, directed along the x axis. The electrophoretic velocity of the particle is in the opposite
direction. In the spherical polar system x = r cos θ and y = r sin θ , u = uθ is the tangential velocity at the
particle surface and v = ur is the normal velocity at the particle surface. At the comoving reference frame, the
far-field velocity condition is u → −u∞ sin θ and v → u∞ cos θ .

The problem is described by the nondimensional equations for the ion transport,

∂c+

∂t
+ u

1

r

∂c+

∂θ
+ v

∂c+

∂r
=

[
1

r2 sin θ

∂

∂θ

(
sin θc+ ∂ϕ

∂θ

)
+ 1

r2

∂

∂r

(
r2c+ ∂ϕ

∂r

)]

+
[

1

r2 sin θ

∂

∂θ

(
sin θ

∂c+

∂θ

)
+ 1

r2

∂

∂r

(
r2 ∂c+

∂r

)]
, (4)

∂c−

∂t
+ u

1

r

∂c−

∂θ
+ v

∂c−

∂r
= −

[
1

r2 sin θ

∂

∂θ

(
sin θc− ∂ϕ

∂θ

)
+ 1

r2

∂

∂r

(
r2c− ∂ϕ

∂r

)]

+
[

1

r2 sin θ

∂

∂θ

(
sin θ

∂c−

∂θ

)
+ 1

r2

∂

∂r

(
r2 ∂c−

∂r

)]
; (5)

the Poisson equation for electric potential ϕ,

ν2

r2

[
∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)]
= c− − c+ ≡ −ρ; (6)

and the Stokes equations for creeping flow,

−1

r

∂


∂θ
+ ∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
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− u
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1

r

κ
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, (7)

−∂


∂r
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∂r2
+ 2

r
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∂r
+ 1

r2
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∂r
, (8)
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∂

∂θ
[sin(θ )ru] + ∂

∂r
[sin(θ )r2v] = 0. (9)

Here (u, v) are the velocity components, c+ and c− are the molar concentrations of cations and
anions, respectively, 
 is the pressure, ϕ is the electric potential, and ρ is the space-charge density.

The problem is considered in a particle-fixed frame. The dimensionless parameter ν is the Debye
number, which is the ratio of the Debye length λ̃D to the granule radius ã (ν � 1 is a small parameter
of the problem when a thin EDL is considered),

ν = λ̃D

ã
, λ̃D =

(
ε̃�̃0

F̃ c̃∞

)1/2

,

and κ is a coupling coefficient between the hydrodynamics and electrostatics,

κ = ε̃�̃2
0

μ̃D̃
.

This quantity characterizes the physical properties of the electrolyte solution and is fixed for a given
liquid and electrolyte.

This system is complemented by the proper boundary conditions (BCs). On the particle surface,
for r = 1, these conditions are

c+ = p, c− ∂ϕ

∂r
− ∂c−

∂r
= 0, ϕ = 0, u = v = 0. (10)

The first BC in Eq. (10) was introduced in the paper by Rubinstein and Shtilman [23] (see
also [24,25]). To better understand this BC, let us consider the structure of the membrane. The
cation-exchange membrane is an organic polymer that consists of a matrix and pores. In the matrix,
the anions ca are fixed and immobile, which creates a fixed membrane charge p (ca = p). When
the membrane is placed in the electrolyte without any electrical field, the pores are filled with
an electrolyte and ions of the opposite sign (c+) accumulate in them. Moreover, their number
is practically equal to the charge of the membrane (c+ = p); that is, the membrane as a whole
is screened from the inside. If the membrane charge is large enough (p � 1), then it is more
difficult for external forces to change the number of cations inside the membrane, so c+ = p can be
taken inside the membrane and at its surface with the electrolyte [see Eq. (10)]. Studies of planar
membranes [24–30] show that for the limiting and overlimiting current regimes, the solution is
practically independent of the value of p for p � 1. For the spherical semiselective granule for the
large enough external field E∞ (E∞ > 5) the solution of the problem does not depend on p (see
Fig. 1).

The second BC in Eq. (10) means there is no flux of anions through the surface. The third
condition sets a constant potential on the surface and, without loss of generality, this constant can
be assumed to be zero. The last condition in Eq. (10) is the no-slip condition at the rigid surface.

At large distances away from the granule, the electrolyte solution becomes electroneutral,
the electric field approaches the external applied field, and the fluid velocity approaches the
electrophoretic velocity u∞, for r → ∞,

c+ → 1, c− → 1,
∂ϕ

∂r
→ −E∞ cos θ, u → −u∞ sin θ, v → u∞ cos θ. (11)

The positive ions can penetrate the granule surface and their flux creates the electric current through
the surface, for r = 1,

j = c+ ∂ϕ

∂r
+ ∂c+

∂r
. (12)
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The cations do not accumulate inside the granule and the average density of the electric current must
therefore be zero, ∫ π

0
j sin(θ )dθ = 0. (13)

For a force-free particle, the viscous and the electrostatic forces are in balance,∫ ∞

1

∫ π

0
∇(Tv + Tm)dθ dr = 0, (14)

where Tv and Tm are tensors of viscous and Maxwell-Wagner stresses.
Adding initial conditions for the cations and anions completes the system (4)–(14). These

initial conditions arise from the following viewpoint: When there is no external electric field, the
distribution of ions is homogeneous and neutral. This corresponds to the condition c+ = c− = 1.
Some kind of perturbation should be superimposed on this distribution, to be natural from the
viewpoint of the experiment (for t = 0),

c+ = 1 + ĉ+(r, θ ), c− = 1 + ĉ−(r, θ ). (15)

The so-called room perturbations that determine the external low-amplitude and broadband white
noise should be imposed on the concentration. These perturbations are assumed to be exponentially
decaying with r and are periodic with respect to the angle θ . The Fourier series with respect to θ was
exploited: To mimic white noise, the amplitudes of the harmonics were taken to be equal to each
other and equal to a certain small number and their phases were set by a random number generator
with a uniform distribution in the interval [0, π ].

The nonlinear electrophoresis of ion-selective microparticles is described by a rather complicated
set of coupled partial differential equations with singularities caused by a small parameter ν. Hence,
the present problem is technically very challenging. In principle, the eventual purpose of our
investigation is the evaluation of u∞. This requires the detailed calculation of all of the unknowns
fields.

The problem is described by the four dimensionless parameters E∞, ν, κ, and p. In this paper,
we consider the case of large E∞ and hence the solution is independent of p; p = 3 is taken in
all the calculations. We consider the electrolyte as a NaCl solution, thus κ thus fixed, κ = 0.26
(which corresponds to a NaCl solution with concentration c̃∞ = 0.1 mol/m3). Hence, the solution
of the problem for a fixed liquid and electrolyte depends on two parameters: the strength of the
electric field E∞ and the Debye number ν. In addition, it is known that for the plane membrane the
dependence on ν for small ν is weak (see [25,27]). In all our calculations, ν is taken to be equal to
0.002 (which corresponds to the particle radius ã = 21.5 μm). Some calculations are performed for
ν = 0.001 to confirm a weak dependence for the case of microgranules.

III. RESULTS AND DISCUSSION

A. Qualitative structure of boundary layers

Our numerical analysis is accompanied by a semianalytical solution for the system (4)–(15).
Such a combination of numerical and analytical solutions has allowed us to get a full description
of electrophoresis in a wide range of experiments. Moreover, the semianalytical solution helps
us understand the sophisticated structure of the electrostatic, concentration, and hydrodynamic
fields near an ion-selective particle. It is convenient to introduce a new variable, counted from the
interface, y = r − 1. In Fig. 3 the investigated region 0 < y < ∞ and 0 < θ < 180◦ is divided into
several subregions. Thin layers I–III are described by the inner solution, while the outer solution
is related to region IV: I, the EDL region is located right next to the interface; II, the SCR of the
thickness ym is situated above the EDL; III, the diffusion layer of the thickness δ complements the
boundary layers, nested inside each other; and IV, the electroneutral outer region with a constant
conductivity K = 2. Note that we do not consider in our ad hoc model the jet of high conductivity,
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FIG. 3. Thin inner boundary layers, nested inside each other: the EDL, I; the SCR, II; and the diffusion
layer, III. Also shown is the electroneutral outer region IV with K = 2. Points 1 and 1′ separate regions of the
incoming and outgoing fluxes. Inset A shows the typical structure of the incoming flux region. Inset B shows
the typical structure of the outgoing flux region.

located behind the particle [see Fig. 6(a)], where salt advection becomes comparable to diffusion.
A similar kind of far-field singularity was found for a highly charged colloidal particle (see [22]).

For the flat ion-selective membrane, the areas of the incoming and the outgoing ion fluxes are
separated by the electrolyte layer (see, for example, Fig. 1 in Ref. [25]). An interesting peculiarity
of the ion-selective particle is that the topology of the problem changes and both areas are located
at the same interface, where the incoming and outgoing ion fluxes are separated by points 1 and
1′, at which the electric current vanishes, j(θ0) = 0 (see Fig. 3). These points separate the EDL
with a positive charge for the incoming current and the EDL with a negative charge for the outgoing
current. The SCR exists only for the incoming flux region and disappears when approaching θ = θ0.
The electro-osmotic velocity generated at the boundary of the SCR creates a thin diffusion layer. At
θ = θ0 separation of the diffusion boundary layer is expected (see [37]).

Let us evaluate the lengths of the thin inner layers at ν → 0 and E∞ → ∞, leaving the question
of the correlation between orders of ν and E∞ open. The EDL length is O(ν), the evaluation
of the SCR length ym, taken from [24], yields ym = O(ν2/3E1/3

∞ ), and it will be shown that the
diffusion layer length is O(E−1

∞ ). Note that all three lengths are much smaller than the radius of the
granule, the EDL length is much smaller than ym [the last is satisfied if E∞ � O(ν−2)], and ym/δ is
O(ν2/3E4/3

∞ ), where δ is the diffusion length (see Fig. 3). We will further show that both layers have
the same order of magnitude and the last ratio is O(1).

B. Steady-state regime

The numerical method [27] for our work was generalized to the polar spherical coordinates. The
time of establishment from the initial conditions (15) to the steady solution was in the interval ts =
0.1–1. The results for the established solutions for κ = 0.26 and ν = 0.002 are presented below.
Note that for E∞ < E∗

∞ ≈ 27, the imposed white noise disturbances decay and hence the steady-
state solution is stable.

The total salt concentration K (r, θ ) = c+ + c−, also referred to as the electrical conductivity, is
depicted in Figs. 4–6. In Fig. 4, the results for a moderate field E∞ = 5 are presented. In the thin
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FIG. 4. (a) Electric conductivity K (r, θ ) for a moderate external electric field E∞ = 5. The dashed line
stands for the edge of the diffusion layer. (b) Cross sections of K (r) at θ = 0◦ and θ = 180◦. The behavior in
the EDL, i.e., the depleted and enriched regions, is shown in the insets.

EDL, K (r) exponentially decays; it varies more slowly outside the EDL. The influence of the EDL
on the nonequilibrium phenomena is negligible and the role of the electric current is dominant. On
the left-hand side of the granule, in the area of the incoming ion flux, with θ around 180◦, there is
a salt-depleted electroneutral region with small K as it takes place for flat membranes (see [23]).
In this area, K changes from K ≈ 0 near the microgranule to K ≈ 2 at the edge of the diffusion
boundary layer [as shown by the dashed line in Fig. 4(a)]. The diffusion layer increases downstream
and eventually a separation of the diffusion layer takes place. This kind of separation was first
described by Levich [37]; see also our semianalytical prediction presented in Sec. III D. On the
right-hand side of the granule, in the area of the outgoing cations, with θ around zero, there is a salt-
enriched region with large salt concentration K . Note that as the distance from the granule y = r − 1
increases, the salt concentration K tends to 2 on the right-hand side of the granule much slowly than
on the left-hand side [see the insets in Fig. 4(b)]. As a result, two clouds of the salt concentration
are formed: a cloud of the depleted electrolyte solution, elongated along the left-hand side of the
microgranule, and a cloud of the enriched electrolyte solution, localized near the right-hand side of
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FIG. 5. (a) Electric conductivity K (r, θ ) for E∞ = 10. The dashed line stands for the edge of the diffusion
layer. The values have been clipped from the actual maximal value down to K = 5 in order to achieve contrast
with the diffusion layer. (b) Cross sections of K (r) at θ = 0◦ and θ = 180◦. The behavior in the EDL, i.e., the
depleted and enriched regions, is shown in the insets.
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FIG. 6. (a) Electric conductivity K (r, θ ) for E∞ = 20. The dashed line stands for the edge of the diffusion
layer. The values have been clipped from the actual maximal value down to K = 5 in order to achieve contrast
with the diffusion layer. (b) Cross sections of K (r) at θ = 0◦ and θ = 180◦. The behavior in the EDL, i.e., the
depleted and enriched regions, is shown in the insets.

the granule. Far from these clouds, K → 2. The decrease in the amount of electrolyte in the depleted
region is compensated by its increase in the enriched region, so the total amount does not change,∫ ∞

1

∫ π

0
(K − 2)r2dθ dr = 0. (16)

With an increase of the external field E∞, both electroneutral clouds of K change, but they do
so in different ways. The thickness of the diffusion boundary layer at θ = 0◦ in the depleted region
decreases with an increase of E∞ [compare the dashed lines in Figs. 4(a), 5(a), and 6(a)]. If the
thickness of the diffusion layer at θ = 180◦ for E∞ = 5 is about 1.5, then for E∞ = 10 it is about
1.2 and for E∞ = 20 it is 1.1 [see the insets in Figs. 4(b), 5(b), and 6(b)]. The salt concentration
in the electroneutral region on the right-hand side rapidly grows with increasing E∞. Moreover, the
form of this region is strongly deformed and a cloudlike structure at E∞ = 5 gradually transforms
into an extended jetlike structure, where the salt is expelled off the granule at a larger speed.

The next important unknown is the charge density ρ(r, θ ) = c+ − c−; its distribution is illus-
trated in Figs. 7–9. At moderate fields E∞ = 5, on the left-hand side of the microparticle, in
the area of the incoming ion flux θ0 < θ < 180◦, a positive electric charge is formed. Here θ0

r
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 = 180°
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FIG. 7. (a) Charge density ρ(r, θ ) for a moderate external electric field E∞ = 5. (b) Cross sections of ρ(r)
at θ = 0◦ and θ = 180◦ near the granule surface.
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FIG. 8. (a) Charge density ρ(r, θ ) for E∞ = 10. (b) Cross sections of ρ(r) at θ = 0◦ and θ = 180◦ near the
granule surface.

corresponds to the limit of the SCR with j = 0 [see also Eq. (12)] and it is numerically estimated
as θ0 ≈ 76◦. For the moderate and large external field E∞, the nonequilibrium effects are dominant
and ρ(r, θ ) distribution is controlled by the ion flux through the granule. This consists of a thin
EDL and the so-called space-charge region (SCR) with a characteristic local maximum away
from the particle surface [see Fig. 7(b)]. The formation of the SCR for the limiting currents is a
well-known nonequilibrium phenomenon and was first described for flat membranes by Rubinstein
and Schtilman [23] (see also [25,26]). Note that the total charge in the SCR is much larger than in
the EDL. The SCR coincides in the space with the depleted region for the salt concentration. Far
from the interface, ρ → 0 and the solution becomes electroneutral. On the right-hand side of the
microparticle, in the area of the outgoing ion flux 0 < θ < θ0, a negative electric charge is formed.
The SCR is absent in this area and it contains only a thin quasiequilibrium EDL; ρ exponentially
decays with increasing of r − 1 [see Fig. 7(b)]. With an increase of the external field E∞, the total
charge in the SCR grows, the point of maximal ρ, rmax = ym + 1, departs further from the surface of
the granule, the area of the incoming ion flux is extended, and the area of the outgoing flux shrinks:
For E∞ = 5, θ0 ≈ 76◦, while for E∞ = 20, θ0 ≈ 59◦.
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FIG. 9. (a) Charge density ρ(r, θ ) for E∞ = 20. (b) Cross sections of ρ(r) at θ = 0◦ and θ = 180◦ near the
granule surface.
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FIG. 10. Theoretical stream function distribution for (a) E∞ = 5, (b) E∞ = 10, and (c) E∞ = 20. (d) Elec-
trokinetic flow from [38] around a 1-mm ion-selective particle at Ẽ∞ = 100 V/cm, which corresponds to
dimensionless E∞ = 200 and Debye number ν ≈ 8.68 × 10−5.

The stream function for the axisymmetric case ψ (r, θ ) in the the polar spherical coordinates is
defined as

u = − 1

sin θ

1

r

∂ψ

∂r
, v = 1

sin θ

1

r2

∂ψ

∂θ
.

The distribution of the stream function ψ (r, θ ) for E∞ = 5, 10, and 20 is illustrated in Fig. 10(a)–
10(c), respectively. An interesting phenomenon can be noticed: Large vortices form on the right
hand-side of the particle. These vortices were experimentally discovered by Dukhin et al. [38]
and are called Dukhin-Mishchuk vortices. They are generated at sufficiently large strength of the
external electric field. The physical reason for their appearance is rather simple: The positive electric
charge in the SCR, in combination with the tangential component of the electric field to the granule
surface, produces the Coulomb force, which in turn creates the electro-osmotic velocity near the
particle. Our numerical simulation results in Figs. 10(a)–10(c) show good qualitative agreement
with regard to the appearance of Dukhin vortices.

When the boundary is curved and the applied field is sufficiently strong, a similar transition
may occur over part of the boundary. This renders a more complex electrokinetic flow mechanism,
termed electro-osmosis of the second kind [7]. Dukhin in Ref. [7] suggested that the familiar
Smoluchowski slip formula could be applied to second-kind electro-osmosis in overlimiting
conditions, provided the ζ potential also accounts for the voltage drop on the space-charge layer.
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FIG. 11. (a) Charge distribution ρ = c+ − c− and (b) electric conductivity K = c+ + c−, with E∞ = 30 for
regions I and II of the standing and traveling waves, respectively. Arrows show the direction of propagation.

Using these heuristic arguments, Dukhin obtained [7] an electrophoretic velocity that scales as the
square of the applied field. This analysis was improved by Mishchuk and Takhistov [31]. Ben
et al. employed asymptotic methods to derive an approximate current-voltage characteristics for
a one-dimensional model problem. Using these characteristics to describe the transport process on
the cathodic hemisphere, the authors obtained a more sophisticated model for the electrophoretic
problem. In a later analysis, Ben et al. [39] found a different scaling for the velocity, as the electric
field to the 2/3 power, at the large-Péclet-number limit. Both of these power-law predictions are
in some qualitative agreement with existing experimental data for different regimes (see [7,40]).
A different velocity scaling, with the third power of the electric field, was found by Zaltzman and
Rubinstein [25] (see also [41]).

The tangential component of the velocity is diminished (the liquid flow slows down) and the
normal component of the velocity field increases due to the mass conservation [Eq. (9)]. The
consequences of this increase and decrease of the components of the velocity field lead to a vortex.

C. Electrokinetic instability and transition to the chaotic regime

At the external electric field above the critical one (steady to unsteady), E∞ > E∗
∞ and E∗

∞ ≈ 27
(estimated from numerical simulations), the imposed white-noise disturbances (15) grow and finally
destroy the steady-state solution. The previously described steady-state regime loses its stability
with respect to the electrokinetic mode. The electrokinetic instability of a one-dimensional quiescent
state in flat membranes was discovered by Rubinstein and Zaltzman [24,25]; for the cation-exchange
membranes this instability occurs near the surface of the incoming ion flux. Near the outgoing-ion-
flux surface, the solution is stable.

Three factors make the present case of the electrokinetic instability more complicated and more
peculiar than the case of a flat membrane: (i) the steady state is not a one-dimensional solution,
(ii) convection of salt and liquid occurs, and (iii) both surfaces of the incoming and outgoing fluxes
are geometrically just two fragments of the entire granule surface and there is a singularity at their
junction at θ = θ0 (see the semianalytical solution in the following section).

The instability is possible only on the left-hand side of the particle, in the SCR and the diffusion
boundary layer. Indeed, our numerical solution shows that for a small supercriticality E∞ > E∗

∞,
in a small vicinity of θ = 180◦, the flow becomes unstable and small sinusoidal waves propagate
along the granule’s surface towards smaller angles θ and finally decay at θ = θ0. The flow on the
right-hand side of the microparticle is always stable.

Figure 11 shows snapshots for the charge density ρ and the salt concentration K far from the
threshold of instability for the strongly nonlinear regime, E∞ = 30. Periodic oscillations of the
charge density and the salt concentration occur in region I. These oscillations are perpendicular
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(a)

(b)

FIG. 12. (a) Blow-up of region I of Fig. 11(a). (b) Spikes for a flat membrane [27,42]. The normal to the
membrane coordinate is strongly compressed in comparison to the direction along the membrane.

to the microgranule’s surface and they are rather strong. They completely destroy the classical
texture of the SCR, the depleted region, and the diffusion layer, but the EDL is not affected by
these oscillations. They can be interpreted as strongly nonlinear standing waves. At the sides of
region I, in region II, these standing waves cause nonlinear traveling waves. Figure 11(a) shows that
propagating disturbances of the charge density ρ take a spiked shape, as it was first described in the
works [26–28,42] on flat membranes. There is a rather sharp boundary between the space-charge
region and the diffusion region. The salt concentration K of the traveling waves forms cloudlike
structures. See the Supplemental Material in [43] for video of these instabilities from our direct
numerical simulation (DNS) for ρ(r, θ, t ) and K (r, θ, t ).

In Fig. 12, a small vicinity of region II from Fig. 11(a) is compared with the distribution of ρ

calculated numerically for a flat membrane (see [27,42]). There is a striking similarity between the
distributions: Inside the spikes, ρ is very small (the spikes are “empty”). The spikelike structures are
joined by thin regions of large space charge. The work by Shelistov et al. [44] has shown that the
opening angle of the spike does not depend on the parameters of the problem and is about θs ≈ 120◦.
This evaluation is applicable not only for flat membranes, but also for a more complicated case of
a corrugated membrane (see [45] and Fig. 4). In the present case, the spikelike coherent structures
are not quiescent: They propagate towards smaller angles and hence they should be disturbed by
the convection. Still, θs is close to 120◦; this angle did not change in our other calculations with
different E∞.

In region I of Fig. 11, all the unknowns vary periodically with time, forming a standing wave
near the pole. The charge density ρ and the salt concentration K at θ = 180◦ as a function of the
radius r for different time instants are shown in Fig. 13. Without loss of generality, the initial time
can be assumed to be zero, t = 0.

At t = 0, the large-amplitude space charge is located close to the interface r = 1 and it moves
towards the larger r. At t = 0.005, the charge is spread in space, it is located far from the interface,
and its amplitude is significantly reduced. At t = 0.03, the small-amplitude charge turns back, and
at t = 0.075 it returns to the same position and restores its profile and value. This time is in fact a
period; the process is repeated periodically.

At t = 0, the salt concentration has a small flat depleted region with K ≈ 0 and a flat region
of electroneutral solution with K = 2, which are connected by a kink, together forming a frontal
concentration wave. The front concentration wave moves away from the granule surface, towards
larger r, and the depleted region is expanding. The concentration in the EDL is unaffected during
the process. These kinds of concentration waves, called shock waves, were found by Bazant [14].
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FIG. 13. (a) Cross section of ρ(r) at θ = 180◦ and at different time instants. (b) Cross section of K (r) at
θ = 180◦ and at different time instants. The wave is bouncing back from the edge of the diffusion layer defined
by δ.

At t = 0.03, the shock wave comes back and eventually returns to the same position and restores
its profile and value. This process is repeated periodically. If the radius of the granule varies from
25 to 250 μm, for the aqueous solution of NaCl, dimensional period varies from 0.05 to 5 s (the
corresponding typical frequency of oscillation is within the window from f̃ = 20 Hz to f̃ = 0.2 Hz).

The description of the hydrodynamic fields completes the picture. A snapshot of the unstable
regime is shown in Fig. 14. The standing wave at θ = 180◦ creates the Rubinstein-Zaltzman
microvortices I, which are convected towards the smaller angles. As for a flat membrane [26,42],
these microvortices are located in a thin diffusion layer. Upon reaching the angle θ = θ0, the
Rubinstein-Zaltzman microvortices eventually merge with the Dukhin-Mishchuk vortices II and
completely disappear. The microvortices I cannot penetrate the Dukhin-Mishchuk vortices II and the
region of the outgoing ion flux 0 < θ < θ0 is completely quiescent. See the Supplemental Material
in [43] for videos of DNS for the stream function for different E∞.

The electric current that is created by the flux of cations on the surface, j, normalized by its
maximum value jmax, as a function of the angle θ , is shown in Fig. 15 for different values of E∞.
The area of the incoming ion flux for E∞ = 30 is approximately two times larger than the area of
the outgoing flux θ0 ≈ 63◦, which represents the separation angle of the regions of incoming and
outgoing ion fluxes. The maximal absolute value of the current in the area of outgoing ion flux is
three to five times larger than that in the incoming area. The depicted profile for the electric field
leading to an unstable regime E∞ = 30 is a snapshot and the solid line stands for some time instant
t = t0. The oscillations connected with the electrokinetic instability are clearly seen in the snapshot;
the instability starts at θ = 180◦ and ends at θ = θ0. The dashed line stands for the electric current
at the next time instant t = t0 + �t , �t = 0.0008. The velocity of the propagating wave can be
evaluated as cv ≈ 250.
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FIG. 14. Stream-function distribution for the unstable regime E∞ = 30. Here I stands for the Rubinstein-
Zaltzman microvortices and II stands for the Dukhin-Mishchuk vortices. The arrows show the propagation of
the Rubinstein-Zaltzman microvortices.

The nonlinear electrophoretic velocity u∞ is plotted as a function of E∞ in Fig. 16. At E∞ = 10,
at a sufficiently large time, the steady-state solution is established and u∞ does not change with
time, u∞ = 18.72. At a small supercriticality E∞ = 27, the established electrophoretic velocity
u∞ is not constant, but sinusoidally varies with time, so the average velocity is 〈u∞〉 = 94.9
and the amplitude of oscillations �umax = 0.06. With an increase of E∞ to 28, the oscillations

FIG. 15. Electric current normalized to its maximum value along the microgranule surface 0 < θ < 180◦,
for different strengths of the external field E∞. The inset shows the variation of the ion flux in time for the
unstable case, which shows a traveling wave. In this inset, all subsequent curves are for t0 + n�t , n = 1, 2, 3.
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FIG. 16. Time records of the electrophoretic velocity u∞ at different strengths of the electric field E∞.

lose their sinusoidal nature but remain periodic. With a further increase of E∞, period-doubling
bifurcation or the subharmonic transition, E∞ = 29, occurs. Soon after the first period doubling, the
regular oscillations are replaced by the chaotic ones, E∞ = 30. It is reasonable to assume that the
Feigenbaum scenario [46,47] is responsible for this transition. Note that, because of high viscosity,
the oscillations of u∞, either periodic or chaotic, have a small amplitude, not more than 5%–6% of
the mean velocity, and hence it is difficult to detect them in experiment.

D. Semianalytical solution of the problem at E∞ → ∞ and ν → 0

1. The EDL (region I) and SCR (region II)

In the thin EDL and the SCR ∂/∂t, ∂/∂θ � ∂/∂y, with y = r − 1, and the solution can be
assumed locally steady and one dimensional and hence Eqs. (4)–(6) transform into one nonlinear
ordinary differential equation (ODE) (see [24,25])

ν2 d2E

dy2
+

[
j(ym − y) − ν2

2
E2

]
E + j = 0, (17)

where E ≡ ∂ϕ/∂y and ym is an unknown constant of integration. The influence of the EDL for the
extreme overlimiting regimes is negligible [24], and in the present formulation it will be neglected.
Note that generalizing the basic ideas of [25] for the present problem and taking into account
the influence of the EDL would allow us to develop a semianalytical approach, encompassing
all regimes from the quasiequilibrium one to the extreme nonequilibrium one. However, this
approach requires inadmissibly cumbersome calculations and formulas. For extreme nonequilibrium
conditions, as ν → 0 and E > O(log10 ν), the ODE (17) becomes a cubic algebraic equation[

j(ym − y) − ν2

2
E2

]
E = 0. (18)
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FIG. 17. Schematic bifurcation diagrams. (a) Solutions of Eq. (18) have an imperfect pitchfork bifurcation,
which is structurally unstable [48]. (b) Plot of Eq. (17); for a small but finite ν this kind of bifurcation is
destroyed. The solid line corresponds to the solution that makes physical sense.

Equation (18) has three solutions (see Fig. 17), but only two of them make physical sense. The
first one is valid in the SCR,

E = 1

ν

√
2 j(ym − y), νϕ = 2

√
2

3 j
( j ym)3/2 − (2 jym − 2 jy)3/2

3 j
for 0 < y < ym. (19)

The relations (19) make sense only inside the region 0 < y < ym(θ ) and the constant of integration
ym acquires the physical meaning of the SCR length. The dependence on the angle θ is parametric.
Let us designate �ϕ as a potential drop across the SCR, 0 < y < ym; then from the second relation
of (19) it follows that

ν�ϕ = 2
√

2

3
y3/2

m j1/2. (20)

The relation (20) can be rewritten in the convenient form

y3
m = 9

8
ν2 �ϕ2

j
. (21)

The SCR coincides with the salt-depleted region; in the approximation adopted, for 0 < y < ym, the
salt concentration K = 0.

Since the independent variables of the system in the SCR are not constant with respect to the
angle but instead are slowly varying functions, ∂/∂θ � ∂/∂y gives rise to nonzero electro-osmotic
velocity components v � u. Equations (7) and (8) in the SCR are transformed into

−∂


∂X
= ∂2u

∂y2
− κ

∂E

∂y

∂ϕ

∂X
,

∂


∂y
= κ E

∂E

∂y
, (22)

with the boundary conditions

u = 0 for y = 0,

∂u

∂y
= 0 for y = ym, (23)

where X ≡ π − θ . The solution of (22) and (23) results in the electro-osmotic slip velocity um =
u(ym) (see [24]),

1

κ

um = 1

8
�ϕ2 1

j

∂ j

∂X
+ 1

2

∂

∂X
�ϕ2. (24)

The normal velocity component at ym, vm, can be neglected for a flat membrane, but for the
spherical granule it becomes important in the diffusion layer and should be taken into account. This
component can be found from the mass balance equation (9) as

vm + um
∂ym

∂X
= κ

ν2

1

sin X

∂

∂X

[
sin X

(
7

20
y4

m

∂ j

∂X
+ 4

5
y3

m j
∂ym

∂X

)]
. (25)
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The electro-osmotic velocity in the region of the outgoing ion flux for the extreme overlimiting
regimes is negligibly small, um = vm = 0.

2. Self-similar solution for the diffusion boundary layer (region III)

The thin electroneutral diffusion layer is located above the SCR, y > ym, and it has a charac-
teristic length δ(X ). In this layer, the salt concentration K is convected along the granule surface
at the electro-osmotic velocity and at the same time diffuses from K = 0 in the depleted region to
the equilibrium value K = 2 in the outer bulk region. By adding Eqs. (4) and (5) and assuming
that the diffusion layer thickness δ is small in comparison with the granule radius, we obtain the
convection-diffusion equation in the boundary-layer approximation

∂K

∂t
+ U

∂K

∂θ
+ V

∂K

∂y
= ∂2K

∂y2
. (26)

At y = ym, at the boundary of the depleted region, the salt concentration is assumed to be zero and
its flow normal to the surface; the ion flux is determined by diffusion, as

K = 0,
∂K

∂y
= j for y = ym. (27)

At the outer edge of the diffusion layer, the salt concentration tends to the equilibrium value

K = 2 for y − ym � δ. (28)

In a thin diffusion layer, the tangential velocity can be assumed to be constant with respect to y
and equal to the electro-osmotic slip velocity u = um(X ), but it varies along the surface. To find the
normal velocity v, we will use the mass balance equation (6),

∂

∂y
(v sin θ ) + ∂

∂θ
(u sin θ ) = 0. (29)

Upon changing the independent variable X = π − θ and integrating (29), we get∫ y

ym (X,t )

∂

∂y
(v sin X )dy −

∫ y

ym (X,t )

∂

∂X
(u sin X )dy = 0, (30)

from which the relation for v follows,

v sin X = vm sin X + η
∂

∂X
(um sin X ), (31)

where η ≡ y − ym and the v component is formed by the electro-osmotic portion vm (in fact, it
is a liquid suction from the SCR) and by the variation of the longitudinal component um along
the granule. Equation (26), upon substitution of (31), becomes a linear partial differential equation
(PDE) with respect to K ,

∂K

∂t
sin X − um sin X

∂K

∂X
+ η

∂

∂X
(um sin X )

∂K

∂η
+ Wm sin X

∂K

∂η
= ∂2K

∂η2
sin X, (32)

where um and vm are determined by relations (24) and (25) and

Wm ≡ −∂ym

∂t
+

(
vm + ∂ym

∂X
um

)
,

with the BCs

K = 0,
∂K

∂η
= j for η = 0,

K = 2 for η/δ → ∞. (33)
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The necessity of solving (32) and (33) even for a steady case ∂/∂t = 0 would greatly complicate
our model if the problem did not have an analytical self-similar solution. Indeed, let us seek a
solution of Eq. (32) in the self-similar form

K = K (Y ) where Y = η − b(X, t )

δ(X, t )
,

d2K

dY 2
+ 2Y

dK

dY
= 0, (34)

where b(X, t ) is an arbitrary self-similar function. Upon substitution of (34) into (32) and separation
of the b terms and δ terms, we get two one-dimensional PDEs

∂δ

∂t
sin X − ∂

∂X
(umδ sin X ) = 2

δ
sin X, (35)

∂b

∂t
sin X − ∂

∂X
(umb sin X ) = Wm sin X. (36)

The third equation, the algebraic one, can be derived from the solution of ODE (34), K =
const1 erf (Y ) + const2, by substituting the BC (33) into it,

jδ = 4√
π

exp(−b2/δ2)

1 − erf (−b/δ)
. (37)

Let us stretch the unknowns so that in the new form they are O(1),

um = E2
∞Um, vm = E2

∞Vm, ψ = E2
∞�, u∞ = E2

∞U∞,

�ϕ = E∞F, ϕ = E∞�, j = E∞J, ∂/∂t = E2
∞ ∂/∂T, (38)

b = ν2/3 E1/3
∞ B, ym = ν2/3 E1/3

∞ Ym, δ = E−1
∞ �.

The system (35)–(37) after substitution of the relations (24) and (25) for um and vm turns into the
system

∂�

∂T
sin X − κ

∂

∂X

(
F 2�

8J

∂J

∂X
+ �

2

∂F 2

∂X

)
= 2

�
sin X, (39)

∂B

∂T
sin X − κ

∂

∂X

[(
F 2

8J

∂J

∂X
+ 1

2

∂F 2

∂X

)
B sin X

]

= κ

38/3

16

∂

∂X

{[
7

20

F 8/3

J4/3

∂J

∂X
+ J

5

∂

∂X

(
F 8/3

J4/3

)]
sin X

}
− 32/3

2
sin X

∂

∂T

(
F 2/3

J1/3

)
, (40)

J� = 4√
π

exp(−χ2B2/�2)

1 − erf (−χB/�)
, (41)

with respect to four unknown functions J , F , �, and B. The BCs for the unknowns are conditions
of symmetry at the pole,

∂�

∂X
= 0,

∂F

∂X
= 0,

∂J

∂X
= 0,

∂B

∂X
= 0 at X = 0. (42)

At X → X0, which corresponds to θ → θ0, the electric current J → 0 by definition. After a brief
analysis of Eq. (41) it can be shown that � → ∞ at X → X0, because the right-hand side of Eq. (41)
is always positive. We conclude that the left-hand side could not tend to zero at X → X0, so � has to
tend to infinity, which in turn indicates the separation of the diffusion boundary layer. This kind of
separation was originally predicted by Levich [37] and can be seen in Figs. 5(a) and 6(a) resulting
from the DNS, so the theoretical foundations are now clearly shown for this problem of separation.
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TABLE I. Typical values of parameters.

ã (μm) E∞ ν χ

25 10 4 × 10−4 0.117
25 1000 4 × 10−4 54.3
500 10 2 × 10−5 0.0159
500 1000 2 × 10−5 7.368

The two small parameters of the system ν and E−1
∞ are now absorbed into one parameter χ =

O(1),

χ = ν2/3E4/3
∞ = O(ym)

O(δ)
.

Note that χ is the ratio of the SCR characteristic length ν2/3E1/3
∞ and the characteristic diffusion

length E−1
∞ [see the stretching parameters in Eq. (38)]. This ratio χ is evaluated in Table I with

λ̃D = 10 nm, ã = 25 μm to 500 nm, and E∞ = 10–103.
In order to close the analytical solution of the whole problem, we need to find a solution in the

outer bulk region. This solution has been developed in Ref. [49] and is given in the Appendix.

3. Results for the steady-state case, linear stability, and comparison with the DNS results

For the steady-state solution (∂/∂T = 0), Eqs. (39)–(41) and (A6) become a system of three first-
order ODEs and one singular integral equation. Boundary conditions (42) make the system com-
plete. The finite-difference method with uniform grid θ (1), θ (2), . . . , θ (n) (or X (1), X (2), . . . , X (n))
with respect to the angle transforms this system into a system of nonlinear algebraic equations with
respect to the unknowns J (k), F (k), �(k), and B(k) in the mentioned grid points. This system was
solved by Newtonian method and the results are comparable to those obtained by the DNS [27].

At χ = χ∗, the one-dimensional steady-state solution (19) becomes unstable with respect to
small time perturbations

� = �0(r, θ ) + �̂(r, θ ) exp(iλT ), J = J0(r, θ ) + Ĵ (r, θ ) exp(iλT ),

B = B0(r, θ ) + B̂(r, θ ) exp(iλT ), F = F0(r, θ ) + F̂ (r, θ ) exp(iλT ). (43)

These relations were substituted into the finite-difference analog of Eqs. (39)–(42) and (A6)
and linearized. The resulting generalized algebraic eigenvalue problem was solved by the QR
algorithm [50].

It can be readily seen from (39)–(41) that at X → X0 (or at θ → θ0) the SCR length tends to
zero but the diffusion boundary layer � → ∞. The last phenomenon is called separation of the
diffusion boundary layer (see [37]). Such a separation can be clearly seen from our DNS for the
steady regimes [see Fig. 6(a)] and even for the nonsteady regimes [see Fig. 11(b)]. An important
characteristic, the point of separation θ0, obtained by the semianalytical approach and by the DNS, is
presented in Fig. 18. Note that for χ > 1.28, the steady-state solution of the semianalytical statement
is compared with the unsteady solution of the DNS. As we mentioned earlier, the oscillations of the
unknowns, for either periodic or chaotic regimes, have a small amplitude that is not more than 6%
of the mean value. In Fig. 18, the averaged values of 〈θ0〉 = 1/(t2 − t1)

∫ t2
t1

θ0dt are given for the
DNS results for a sufficiently long interval of averaging. There is fairly good agreement between
analytical and numerical approaches, except for χ < 1.28. For χ < 1.28, DNS results go far beyond
the analytical results because they belong to the regime of underlimiting currents (for fixed ν and for
small values of χ , E∞ will be small, which contradicts the hypothesis of analytical considerations,
E∞ → ∞).
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FIG. 18. Separation angle of the diffusion boundary layer θ0 versus χ at κ = 0.26. The solid line stands
for the semianalytical solution and the triangles stand for the numerics.

The potential distribution [represented by the stretched variable F , Fm = F (ym) − F (0)] is
plotted as a function of the ratio of the SCR and diffusion lengths χ . Analytical and numerical results
show the same trend: F diminishes as χ increases. The first point of the numerical calculations
corresponds to a small electric field, which is not the case for the analytical calculations. The inset
shows the potential distribution as a function of θ : The potential is zero for 0 < θ < θ0, increases
for θ > θ0, and reaches a maximum at θ = 180◦.

The drop in potential in the SCR and EDL (in fact, it is a drop in potentials in the region of the
electro-osmotic slip, between the points Y = 0 and Y = Ym) is presented in Fig. 19. In this region,
the drop in potential is formed in the EDL and SCR for the DNS, but in the semianalytical approach
the influence of the EDL is neglected and only the influence of the SCR is taken into account.

The SCR is formed in the region 0 < Y < Ym; it exists in the area of the incoming ion flux
and disappears in the area of the outgoing ion flux. Numerically, Ym was calculated at the point
of maximum space charge ρ and the averaging took place for unsteady DNS calculations. A

0 2 4 6 8 10

1

1.5

2

F
m

0 50 100 150
0

0.5

1

1.5

0F

FIG. 19. Normalized drop of the electrical potential F in the region 0 < y < ym as a function of χ at
θ = 180◦, F = Fm, at κ = 0.26. The solid line stands for the semianalytical solution and the triangles stand
for the numerics. The inset shows Fm along the surface of the granule at χ = 1.
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(a) (b)

(c) (d)

FIG. 20. Length of the SCR, Ym, at different points of the granule surface. The solid line stands for the
semianalytical solution and the triangles joined by the dashed line stand for the numerics.

comparison of Ym obtained by the semianalytical approach and by the DNS is given in Fig. 20.
The DNS shows that the EDL in the area of the outgoing ion flux is zero with graphical accuracy.
Again, there is a rather good match between our two approaches.

The ion flux J (θ ) on the microgranule surface is shown in Fig. 21 for several values of χ . One can
find a perfect match between the DNS and analytics for the incoming ion flux J (θ ) > 0. In contrast,
for the outgoing ion flux J (θ ) < 0, the discrepancy between two approaches is rather significant.
This discrepancy is a consequence of the assumption that we excluded from our analytical analysis
the localized ion jet of high conductivity, located just behind the granule, at small angles θ [the
existence of such a jet is shown, for example, in Figs. 6(a) and 11(b)]. However, this discrepancy
has a small influence on the other unknowns.

The quantity of the most practical interest is the electrophoretic velocity u∞. This velocity,
normalized by κ and obtained by our semianalytical approach, is plotted as a function of χ in
Fig. 22 for two boundary values of κ; it is located inside a rather narrow shaded area. The coupling
coefficient κ for practically important electrolyte solutions lies between these boundary values. The

(a) (b)

(c) (d)

FIG. 21. Ion flux J on the surface versus the angle θ for different χ . The dashed line stands for the DNS
results and the solid line stands for the analytics.
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FIG. 22. Electrophoretic velocity according to different theoretical approaches as a function of χ . Curves
1 and 2 are the predictions of our semianalytical theory: 1 stands for κ = 0.1 and 2 stands for κ = 1. Curve 3
corresponds to the DNS with κ = 0.26 and ν = 0.002. The dashed line corresponds to Dukin’s relation (45).

values of U∞/κ, calculated by the DNS, are also plotted in the figure. There is good agreement
between the analytical and numerical approaches except for small values of χ because they belong
to the regime of underlimiting currents (the electrophoresis of the first kind, according to Dukhin’s
terminology).

From physical considerations, Dukhin derived his famous formula for the electrophoresis of the
second kind (see Dukhin [7]), which in the dimensional form is

ũ∞ = 2
ε̃ãẼ2

∞
μ̃

. (44)

In our dimensionless form, the relation (44) becomes

U∞
κ

= 2. (45)

This dependence is plotted in Fig. 22 by the dashed line. We will return to the electrophoretic
velocity when we compare the theoretical and experimental data.

The nonstationary terms in the semianalytical formulation appear only from the convection-
diffusion equation (32). Thus, only a thin diffusion layer can be unstable. A typical discrete spectrum
of eigenvalues is plotted in Fig. 23 for χ = 2. Most of the eigenvalues come in complex-conjugate
pairs. Only one such pair is unstable. The eigenfunctions are oscillating and decaying with departure
from the pole θ = 180◦. Their profiles qualitatively correspond to the ones obtained numerically
(see Fig. 15). In Fig. 24, with an increase of χ , the number of unstable modes also increases. With
a decrease of χ , the real part of the unstable complex-conjugate pair decreases. Finally, at χ < χ∗
this mode becomes stable, λR < 0. Note that the unstable mode never becomes a real number.

The dependence of the real part of the most dangerous mode (with maximal real part) λR on
χ is shown in Fig. 24. The critical χ is, according to analytical evaluation, χa

∗ ≈ 0.55; the DNS
shows that the stationary mode is replaced by the nonstationary one at χN

∗ ≈ 1.28. This difference
is attributed to the simplifications in the semianalytical approach.

E. Comparison with experimental data

The results of our DNS and semianalytical analysis are compared with the experimental data. In
this work, we analyze the experimental data from the papers by Barany et al. [51] and Mishchuk
et al. [31,33,52] to compare with our theory. The radius of the cation-exchange particle ã varied from
0.5 to 600 μm in experiments; the concentration of the NaCl solution for which the comparison
was made was taken to be 10−4 mol/l. The intensity of the external electric field ranged from 1
V/m to 100 kV/m. Moreover, the ion-selective particles in the experiments were fabricated from
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FIG. 23. Typical spectrum of the linear stability problem for the semianalytical solution in the complex λ

plane for χ = 2. The top inset shows a conjugate pair of unstable eigenvalues in the vicinity of the origin. The
other insets show the real part of eigenfunctions at different points of the spectrum as a function of θ .

various types of material. The ion-selective particle is in fact a spherical membrane, which is an
organic polymer consisting of a matrix and pores. For a cation-selective particle, a concentration
of fixed and immobile anions is maintained on its surface, which creates a fixed membrane charge
p (ca = p). This fixed charge p is accounted for as an empirical parameter, varying with the type
of material. If this membrane charge is large enough (p � 1), then it is more difficult for external
forces to change the number of cations inside the membrane [36] and c+ = p is assumed inside the
membrane and at its surface with the electrolyte. From the viewpoint of our approach, changing the
particle fabric means changing the cation concentration p at the particle surface r = 1 [see the first
BC in Eq. (10)]. As we showed in our previous work [36], for the electrophoresis of the second
kind, the dependence on p is practically absent (see also Fig. 1). In other words, the dependence on
the particle fabric in our comparison was neglected.

The dimensional electro-osmotic velocity ũm along the microgranule is plotted in Fig. 25. The
velocity field from DNS was taken at the point ỹm. Experimental points were taken from the work
by Mishchuk and Takhistov [31]. In the region of the incoming ion flux, the maximum velocity is
reached at an angle of θ ≈ 60◦. The theoretical maximal velocity at this point and the profile of

FIG. 24. Maximum growth rate mode λR as a function of χ . Here χ a
∗ and χN

∗ are analytical and numerical
critical values, respectively. Regions I and II correspond to the numerical steady and unsteady regimes,
respectively.
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(a) (b) (c)

FIG. 25. The solid line stands for the results of our DNS and triangles stand for the experiment [31]. The
dimensionless parameter χ is (a) χ = 0.035, (b) χ = 0.088, and (c) χ = 0.151. In these plots the angle is
counted in the reverse direction to match the experiments.

the dependence are in good agreement with the experiment. In the region of outgoing ion flux, the
electro-osmotic velocity is zero with graphical accuracy, and this velocity could not be captured in
the experiment.

For the sake of convenience of comparison with the experiments, we collect the markers for
different experimental points in Table II. The dependence of the electrophoretic velocity on the
electric field is of the greatest practical interest, so the field strength is added to the table.

To get a better perspective, we present all the experimental points in our dimensionless
logarithmical coordinates u∞ vs E∞ (see Fig. 26). A region of electrophoresis of the first kind
(I) is clearly visible when the velocity is proportional to E∞. After the transition region (II), the
region of strongly nonlinear electrophoresis (III), as predicted by Dukhin, occurs. According to
Dukhin’s prediction (44), u∞ = 2κE2

∞, which corresponds to line 3 in the figure. One can see a
deviation of the experimental data from the Dukhin prediction. The dependence u∞ ∼ const2E4/3

∞
is much better suited to the experimental data.

It is instructive to present the normalized experimental and the theoretical electrophoretic
velocity U∞ = u∞/E2

∞ as a function of the universal variable χ = ν2/3E4/3
∞ . Such a dependence is

presented in Fig. 27. Similar to the previous graph, the vertical dashed lines represent the conditional
boundaries of the zones of small (I), moderate (II), and high (III) electric field strengths. Our
numerical code fails at a sufficiently large electric field and in Fig. 27 the solid line breaks off
at χ ≈ 8. Meanwhile, the semianalytical solution complements the DNS and can be extended for
any large χ . The mismatch between the analytical and numerical solutions at small χ is as much as

TABLE II. Experimental data from different references.

Marker Radius (μm) Reference Ẽ∞ (kV/m)

+ 600 [40,51] 2.5–8
• 375 [34,40,51,52] 2.5–30
� 250 [34,40,51,52] 0.5–100
× 112.5 [51] 10–90
� 100 [34,40,51,52] 0.5–100
� 62.5 [51] 15–90
� 50 [33,34,40,51,52] 0.5–100
� 25 [33,34,40,51,52] 2.5–90
� 5 [33,34,40,51,52] 1–10
♦ 2.5 [33,34,40,51] 1–10
� 0.5 [33,34,40,51] 0.2–10
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FIG. 26. Experimental dimensionless velocity u∞ as a function of E∞. Here I, II, and III are the region
of electrophoresis of the first kind, the transition region, and the region of electrophoresis of the second kind,
respectively. Lines 1, 2, and 3 stand for u∞ ∼ const1E∞, u∞ ∼ const2E 4/3

∞ , and u∞ ∼ const2E 2
∞, respectively.

twofold, but with increasing χ this difference rapidly decreases practically to zero. At χ > 8, only
the analytical method works, and it gives a very good match with the experimental data.

FIG. 27. Comparison of the theoretical and experimental electrophoretic velocities for the universal
variables U∞ vs χ . The markers for the experimental points are given in Table II; the solid line stands for
the results of our DNS at ν = 0.002 and the dashed line stands for the semianalytical results. Inset A shows
the behavior of u∞ for small E∞. The solid line stands the DNS and the dashed line stands for the analytical
solution. Inset B shows the behavior of u∞ for large E∞.
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As we have shown previously, the entire semianalytical solution and particularly the elec-
trophoretic velocity strongly depend on the diffusion-convection phenomenon in the diffusion layer.
As a result, at the fixed coupling coefficient κ, the normalized electrophoretic velocity U∞ is a
function of the parameter χ ,

U∞ = f (χ ). (46)

Our calculations for the semianalytical approach at large χ show that, at χ → ∞,

U∞ ∼ 1√
χ

. (47)

Unfortunately, we were unable to derive a simple analytical relation for this kind of asymptotic.
In Dukin’s approach, the influence of the diffusion layer is neglected and there is no dependence
on χ [see the relationship (45)]. In our opinion, this is the main reason for the mismatch between
Dukhin’s prediction (45) and the experiments. In the experiments shown in Fig. 27, one can see that
U∞ is not constant at all at χ → ∞ but decreases with an increase of χ , which is in full accord with
the semianalytical approach. The relation (47) can be also presented in the form

U∞ ∼ E−2/3
∞ or u∞ ∼ E4/3

∞ ,

which is in good agreement with experiments (see inset B of Fig. 27).

IV. CONCLUSION

Electrophoresis of an ion-selective granule in an electrolyte solution was investigated numeri-
cally and semianalytically for a small EDL and overlimiting and extremely overlimiting currents.
Numerical analysis was fulfilled on the basis of the full nonstationary Nernst-Planck-Poisson-Stokes
system with the corresponding BCs, initial conditions, and the condition of a force-free particle. For
a not very large external field, at t → ∞, a steady-state solution was achieved. The structure of this
solution in space is rather complicated. In the area of the incoming ion flux, three boundary layers
that are nested inside each other are formed: the EDL region, the SCR, and the thin diffusion layer.
Only one boundary layer, the EDL, is formed in the area of the outgoing ion flux. A separation of
the diffusion boundary layer occurs at the point of zero ion flux. In the area of the outgoing ion
flux, this flux generates a jet of high salt concentration. With an increase of the external field this jet
becomes narrower, but the salt concentration inside the jet is increased.

At the external electric field above the critical value, the steady-state solution loses its stability
with respect to the electrokinetic mode. The instability arises in the diffusion layer region
but manifests itself in other regions. In particular, it generates electrokinetic microvortices and
eventually two kinds of microvortices can be found: the large steady Dukhin-Mishchuk vortices and
the electrokinetic ones that propagate from the pole towards the Dukhin-Mishchuk vortices. At small
supercriticality, the oscillations of the unknowns are periodic, but the flow becomes chaotic with an
increase of the external field in the Feigenbaum scenario. The typical frequency of oscillations is
within the window f̃ = 0.2–20 kHz and the amplitude of the oscillations of the unknowns is small,
not more that 6% of the mean solution.

For very large external fields, our numerical analysis fails and thus was accompanied by a
sophisticated semianalytical solution of the system at E∞ → ∞ and ν → 0, but ν2/3E4/3

∞ = O(1).
The solution in the diffusion boundary layer was found to be self-similar and significantly simplified.
A nature of the separation of the diffusion layer was understood for this self-similar solution. A
linear stability of the steady-state solution was investigated and the fact of its instability against the
electrokinetic mode was confirmed.

Theoretical results for the DNS and semianalytical solution were successfully compared with
the available experimental data. The experimental electro-osmotic velocity and the electrophoretic
velocity are in reasonably good agreement with our theory. Moreover, in the comparison of
our theoretical electrophoretic velocity with experiments and the Dukhin relation, we found a
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discrepancy between the Dukhin formula in experiments and our theory. We have managed to
improve upon this discrepancy.

For very large external fields, our numerical analysis fails and should be accompanied by a
semianalytical solution for the system (4)–(15). Such a combination of numerical and analytical
solutions has allowed us to get a full description of electrophoresis in the whole range of experiments
[7]. A semianalytical solution helps us to better understand the nature of the electrophoresis of an
ion-selective particle and also the structure of its sophisticated boundary layers, which are nested
inside each other near the microgranule. Nonlinear electrophoresis of ion-selective microparticles
was described by a rather complicated set of coupled partial differential equations. The investigation
of this challenging open problem constitutes a desired extension of the present analysis.
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APPENDIX: SOLUTION IN THE BULK OUTER REGION IV

We derived a system (39)–(41) of three equations for four unknowns, J , F , �, and B. The fourth
equation to complete the system will be derived from the solution in the outer region 1 < r < ∞.
In this region, K = 2 and the electric potential is described by the Laplace equation

∇2� = 0. (A1)

The Laplace equation is complemented by two BCs: at r = 1 and r = ∞. The BC at r = 1 has to be
taken from the inner solution. The electric potential � in the inner regions is changed from � = 0
to � = F at the edge of the diffusion layer. This provides one BC,

� = F for r = 1. (A2)

The condition at infinity is determined by the third condition (11), taken in the form

� = − cos θ for r → ∞. (A3)

The solution of this problem has the form

� = −r cos θ +
∫ π

0
[F (s) + cos s]

∞∑
k=0

2k + 1

2rk+1
Pk (cos s)Pk (cos θ ) sin s ds, (A4)

where Pk (cos θ ) are the Legendre polynomials.
The relation for the ion flux j = K∂ϕ/∂r + ∂ρ/∂r should be used to get the dependence between

J and F . For the electroneutral bulk region with K = 2, it yields

J = 2
∂�

∂r
for r = 1. (A5)

The desired relation between J and F is easily deduced from the formulas (A4) and (A5),

J = −2 cos θ −
∫ π

0
[F (s) + cos s]

∞∑
k=0

(2k + 1)(k + 1)Pk (cos s)Pk (cos θ ) sin s ds. (A6)

The system of equations (39)–(41) and (A6) with BCs (42) is closed with respect to the unknown
functions J , F , �, and B.
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Hydrodynamic part

Let us consider hydrodynamics in the bulk flow, with ρ = 0 and K = 2. We can now solve the
flow problem, consisting of the homogeneous Stokes equations, taken for the stream function �

equation (see [49]),

D2(D2�) = 0, D2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
, (A7)

along with the slip condition at r = 1,

� = 0,
∂�

∂r
= −Um sin θ for r = 1, (A8)

and the far-field velocity condition

∂�

∂θ
= r2U∞ sin θ cos θ,

∂�

∂r
= rU∞ sin2 θ for r → ∞. (A9)

Since the problem (A7)–(A9) is linear, the solution is convenient to present as a superposition of
two solutions � = �∞ + �1, where �∞ is a solution with a zero slip Um = 0 and �1 is a solution
with a zero velocity at r → ∞, U∞ = 0. The first solution has a simple form

�∞ = −U∞

(
r2 − 3

2
r + 1

2r

)
sin2 θ

2
. (A10)

The second solution can be represented in the form

�1 = −(r2 − 1)
∫ π

0
Um(s)

∞∑
k=1

k(k + 1)(k + 2)

4rk
Qk (cos s)Qk (cos θ )ds, (A11)

where Qk (cos θ ) are the Gegenbauer polynomials. The distribution of Um is described by Eq. (24).
The value of U∞ is not specified a priori; rather, it is determined using the constraint of a force-

free particle condition (14), taking into account the inner solution. While straightforward, the present
flow problem is technically formidable and we deform the integration surface to the outer of the SCR
where the bulk description is valid and ρ = 0. For a granule without volume forces instead of this
constraint, it is convenient to apply the Leal theorem (see [49], relation 4-180): To get a force-free
particle, the steam function � = �∞ + �1 must be orthogonal to the first Gegenbauer polynomial
Q1 = cos θ . In our case, the consequences of this theorem finally reduce to the dependence

U∞ = −1

2

∫ π

0
Um(θ ) sin2 θ dθ, (A12)

which at fixed κ is a function of χ only.
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