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At mesoscopic scales electrolyte solutions are modeled by the fluctuating generalized
Poisson-Nernst-Planck (PNP) equations [J.-P. Péraud et al., Phys. Rev. Fluids 1, 074103
(2016)]. However, at length and time scales larger than the Debye scales, electrolytes are
effectively electroneutral and the charged-fluid PNP equations become too stiff to solve
numerically. Here we formulate the isothermal incompressible equations of fluctuating
hydrodynamics for reactive multispecies mixtures involving charged species in the elec-
troneutral limit and design a numerical algorithm to solve these equations. Our model does
not assume a dilute electrolyte solution but rather treats all species on an equal footing,
accounting for cross diffusion and nonideality using Maxwell-Stefan theory. By enforcing
local electroneutrality as a constraint, we obtain an elliptic equation for the electric
potential that replaces the Poisson equation in the fluctuating PNP equations. We develop
a second-order midpoint predictor-corrector algorithm to solve either the charged-fluid or
electroneutral equations with only a change of the elliptic solver. We use the electroneutral
algorithm to study a gravitational fingering instability, triggered by thermal fluctuations, at
an interface where an acid and base react to neutralize each other. Our results demonstrate
that, because the four ions diffuse with very different coefficients, one must treat each ion
as an individual species and cannot treat the acid, base, and salt as neutral species. This
emphasizes the differences between electrodiffusion and classical Fickian diffusion, even
at electroneutral scales.

DOI: 10.1103/PhysRevFluids.4.043701

I. INTRODUCTION

A better understanding of transport phenomena in electrolytes is important for studying both
naturally occurring and synthetic systems at small scales. Living cells rely strongly on membrane
potentials and the electrodiffusion of ions. Batteries and fuel cells also rely on ionic transport.
In both of these examples the length scales and timescales involved are intractable for molecular
dynamics. A more efficient and tractable numerical approach for mesoscopic fluids is fluctuating
hydrodynamics (FHD), which extends conventional hydrodynamics by including a random com-
ponent in the dissipative fluxes in a manner consistent with irreversible thermodynamics and the
fluctuation-dissipation theorem. Access to tools to model systems involving complex electrolyte
mixtures with the inclusion of their inherent statistical fluctuations would not only increase our
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understanding of cellular mechanisms, but also provide a path towards better design tools for
bioengineering applications.

In our prior work [1] we formulated a charged-fluid form of the equations of fluctuating
hydrodynamics and developed associated algorithms for electrolyte mixtures containing an arbitrary
number of ionic or neutral species. Our formulation combined a generalized fluctuating Poisson-
Nernst-Planck (PNP) equation based on the Maxwell-Stefan formulation of electrodiffusion with the
fluctuating low-Mach-number Navier-Stokes (NS) equation for the fluid flow. In that formulation,
the fluid is considered to be a mixture of incompressible but miscible components (species), each
with its own density, and it is not necessary to distinguish a single species as a solvent.1 For very
dilute electrolyte solutions, in the absence of fluctuations the deterministic formulation reverts to the
classical PNP equations for the composition, coupled to an incompressible NS equation for the fluid
velocity. In recent work [2,3] we demonstrated that the addition of thermal fluctuations renormalizes
the PNP equations to reproduce the Debye-Hückel-Onsager theory for dilute solutions.

The charged-fluid formulation is designed for simulations where the spatial grid resolves the
Debye length λD, which is typically on the order of a few to tens of nanometers. In particular, the
time step size in the algorithm used in [1] was limited by τD = λ2

D/D [see Eq. (86) in [1]], where
D is a typical diffusion coefficient. In many practical applications one is interested in modeling
bulk electrolytes at length scales much larger than the Debye length, over diffusive timescales much
longer than τD. At such scales, the electrolyte is effectively electroneutral, and electrodiffusion is
described by the electroneutral limit of the PNP equations [4,5]. In this paper we formulate the
electroneutral limit of the generalized fluctuating PNP equations and develop a numerical method
to solve these equations. In the electroneutral limit, the evolution is constrained to preserve charge
neutrality by replacing the standard Poisson equation for the electric field with a variable coefficient
elliptic equation. Thus, with only a change of an elliptic equation solver, our algorithm can switch
from charged fluid to electroneutral, allowing us to use the same code to study a broad range of
length scales and timescales. Implicit in a coarse-grained description like FHD is the assumption
that each cell (coarse-graining volume) contains sufficiently many ions to justify neglecting the
discrete particle nature of molecules. While this assumption is problematic for charged-fluid FHD
except for dilute solutions (for which the Debye length is large compared to the inter-ion spacing),
in electroneutral FHD the cell dimensions are much larger than the Debye length and therefore
typically contain a large number of ions even for dense solutions (for which the Debye length is
comparable to or smaller than the inter-ion spacing).

Additionally, in this work we incorporate chemical reactions in the charged-fluid and electroneu-
tral algorithms following our prior work on non-ionic mixtures [6]. In the approach developed in
[6], fluctuating chemistry is treated using a discrete chemical master equation formulation, while
hydrodynamic transport including mass and momentum diffusion is treated using a fluctuating
hydrodynamics semicontinuum formulation. Our numerical algorithm is a modification of the
algorithm developed in [6] to replace diffusion by electrodiffusion for both formulations.

In [6] we modeled recent experiments [7] studying a gravity-driven instability of a front where an
acid (HCl) and a base (NaOH) neutralize each other to form a salt (NaCl). In these prior simulations
we followed the literature [7–9] and modeled the acid, base, and salt as neutral species (HCl, NaOH,
and NaCl); we will refer to this as the ambipolar approximation. In reality, however, these species
are all strong electrolytes and disassociate into ions (H+, OH−, Na+, and Cl−). It is well known that
electrodiffusion can be very different than ordinary diffusion because of the strong coupling of the
motions of the ions via the electric fields they generate; for example, an ionic species can diffuse
against its own concentration gradient [10]. In this work we use the electroneutral formulation to
model the fingering instability at an HCl/NaOH front but treating each ion as a separate charged
species. This avoids uncontrolled approximations and allows us to assess the quantitative accuracy
of the ambipolar approximation in a multispecies electrolyte.

1This formulation is also useful for modeling ionic liquids.
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We begin by formulating the stochastic partial differential equations of fluctuating hydrodynam-
ics for electrolytes in Sec. II. We first review the charged-fluid formulation in which the Debye
length is resolved in Sec. II A and then formulate the electroneutral equations in Sec. II B. We also
discuss the spectra of concentration fluctuations at thermodynamic equilibrium for both charged-
fluid and electroneutral formulations in Sec. II C. We present a second-order predictor-corrector
algorithm for both formulations in Sec. III. The methodology is applied to study a fingering
instability at an acid-base front in Sec. IV. We conclude with some directions for future research in
Sec. V.

II. CHARGED-FLUID AND ELECTRONEUTRAL FLUCTUATING ELECTROHYDRODYNAMICS

We consider an isothermal isobaric mixture of Ns species and use the following notation. Vectors
(both in the geometrical and in the linear algebra sense), matrices (and tensors), and operators are
denoted by bold letters. The mass density of species s is denoted by ρs and its number density by
ns, giving the total mass density ρ = ∑Ns

s=1 ρs and total number density n = ∑Ns
s=1 ns. The mass

fractions are denoted by w, where ws = ρs/ρ, while the number or mole fractions are denoted by
x, where xs = ns/n; both the mass and number fractions sum to unity. One can transform between
mass and number fractions by xs = m̄ws/ms, where ms is the molecular mass of species s and the
mixture-averaged molecular mass is

m̄ = ρ

n
=

(
Ns∑

s=1

ws

ms

)−1

.

A diagonal matrix whose diagonal is given by a vector is denoted by the corresponding capital letter;
for example, W is a diagonal matrix with entries w and M is a diagonal matrix of the molecular
masses m.

The charges per unit mass are denoted by z with zs = Vse/ms, where e is the elementary charge
and Vs is the valence of species s. The total density of free charges is thus

Z =
Ns∑

s=1

ρszs = ρzT w.

For an ideal solution the Debye length is given by

λD =
(

εkBT

ρzT W Mz

)1/2

=
(

εkBT∑Ns
s=1 ρwsmsz2

s

)1/2

, (1)

where ε is the dielectric permittivity of the mixture, kB is Boltzmann’s constant, and T is the
temperature.

A. Charged-fluid formulation

In this section we review the fluctuating hydrodynamics equations for an electrolyte mixture,
following the notation in [1]. Unlike this prior work, and following [6], here we make a Boussinesq
approximation and assume that the density of the mixture changes only weakly with composition,
ρ ≈ ρ0. This allows us to use an incompressible approximation of the momentum equation, which
greatly simplifies the construction of a numerical algorithm [6]. The dependence of the density on
composition is only taken into account in the gravity forcing term. This Boussinesq approximation is
certainly valid for moderately dilute electrolyte solutions. We neglect the effects of thermodiffusion
and barodiffusion on mass transport and assume constant temperature T and thermodynamic
pressure P.
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The incompressible equations of fluctuating hydrodynamics for an isothermal reactive electrolyte
mixture can be obtained by combining terms given in [1] with those given in [6]. Here we summarize
the resulting equations.

1. Quasi-electrostatic Poisson equation

In the electroquasistatic approximation (magnetic effects are neglected), the electric potential
�(r, t ) satisfies the Poisson equation

∇ · (εE ) = −∇ · (ε∇�) = Z, (2)

where the electric field is E = −∇� and the dielectric permittivity ε(w) can in principle depend
on composition. The boundary conditions for � are standard Neumann conditions for dielectric
boundaries or Dirichlet conditions for metallic boundaries.

The presence of charges and electric fields leads to a nonzero Lorentz force in the momentum
equation given by the divergence of the Maxwell stress tensor σM = ε(EET − ET EI/2),

f E = ∇ · σM = ZE − E2

2
∇ε.

In this work we assume that the permittivity is constant, which reduces the Lorentz force to
f E = ZE. Using the Poisson equation (2), we can rewrite this in the equivalent form

f E = ∇ · (εE )E = [∇ · (ε∇�)]∇�,

which is suitable for both the charged-fluid and the electroneutral formulations [5]. By contrast,
as we explain later, the traditional form f E = ZE cannot be used in the electroneutral limit since
formally Z → 0 but the Lorentz force does not go to zero in this limit [5].

2. Momentum equation

In the Boussinesq approximation, ρ = ρ0 and conservation of momentum gives the fluctuating
incompressible Navier-Stokes equations

∂ (ρv)

∂t
+ ∇π = −∇ · (ρvvT ) + ∇ · (η∇̄v + �) + ∇ · (ε∇�)∇� + f , (3)

∇ · v = 0. (4)

Here v(r, t ) is the fluid velocity, π (r, t ) is the mechanical pressure (a Lagrange multiplier that
ensures the velocity remains divergence-free), η(w) is the viscosity, ∇̄ = ∇ + ∇T is a symmetric
gradient, and � is the stochastic momentum flux. The buoyancy force f (w, t ) is a problem-specific
function of w(r, t ) and can also be an explicit function of time. Based on the fluctuation-dissipation
relation, the stochastic momentum flux � is modeled as

� =
√

ηkBT [Zmom + (Zmom)T ], (5)

where Zmom(r, t ) is a standard Gaussian white noise tensor field with uncorrelated components
having δ-function correlations in space and time. The two physical boundary conditions for the
charged-fluid equations that we consider here are the no-slip condition v = 0 on the boundary and
the free-slip boundary condition

vn = v · n = 0,
∂vn

∂τ
+ ∂vτ

∂n
= 0, (6)

where n is the unit vector normal to the boundary, τ is a unit vector tangential to the boundary,
τ · n = 0, and vτ is the tangential component of the velocity.
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3. Species equations

Conservation of mass for each species gives the dynamics of the composition of the mixture,

∂ (ρws)

∂t
= −∇ · (ρwsv) − ∇ · Fs + ms�s, (7)

where we remind the reader that in the Boussinesq approximation density is constant, i.e., ρ = ρ0.
The total diffusive mass flux Fs of species s is composed of a dissipative flux Fs and fluctuating
flux F̃s,

Fs = Fs + F̃s, (8)

and �s is a source term representing stochastic chemistry. Note that by summing up (7) over
all species we recover (4) since

∑
s Fs = 0 and

∑
s ms�s = 0. The formulation of the chemical

production rates �s is taken from [6] and summarized in Appendix A.
Diffusion is driven by the gradients of the electrochemical potentials

μs(x, T, P) = μ0
s (T, P) + kBT

ms
ln(xsγs) + zs�, (9)

where μ0
s (T, P) is a reference chemical potential and γs(x, T, P) is the activity coefficient (for an

ideal mixture γs = 1). This gives the dissipative diffusive mass fluxes [1]

F = −ρWχ

(
�∇x + m̄W z

kBT
∇�

)
, (10)

where χ is a symmetric positive-semidefinite diffusion matrix that can be computed from the
Maxwell-Stefan diffusion coefficients [6,11]. Here � is the matrix of thermodynamic factors

� = I + (X − xxT )H, (11)

where the symmetric matrix H is the Hessian of the excess free energy per particle; for an ideal
mixture H = 0 and � is the identity matrix [11]. The stochastic mass fluxes F̃ are given by the
fluctuation-dissipation relation

F̃ =
√

2m̄ρWχ1/2Zmass, (12)

where χ1/2 is a square root of χ satisfying χ1/2(χ1/2)T = χ and Zmass(r, t ) is a standard Gaussian
random vector field with uncorrelated components.

In summary, the composition follows Eq. (7), with electrodiffusive fluxes given by the sum of
(10) and (12); the chemical production rates are discussed in Appendix A and given by (A5).

For dilute species, the expression for the electrodiffusive dissipative fluxes reduces to that in
the familiar PNP equations. Specifically, for a species s that is dilute, xs � 1, we get the familiar
Nernst-Planck-Fick law (see Appendix A in [6])

Fs ≈ −ρ
msDs

m̄solv

(
∇xs + m̄solvwszs

kBT
∇�

)
= −ρDs

(
∇ws + mswszs

kBT
∇�

)
, (13)

where xs ≈ m̄solvws/ms and m̄solv = (
∑

solvent s′ ws′/ms′ )−1 is the mixture-averaged molecular mass
of the solvent, which could itself be a mixture of liquids. Here Ds is the trace diffusion coefficient of
the dilute species in the solvent, which can be related to the Maxwell-Stefan coefficients involving
species s [see (40) in [6]]. The stochastic flux also simplifies in the fluctuating PNP equations for
dilute species,

F̃s ≈
√

2ρmswsDsZmass
s .

The boundary conditions for (7) depend on the nature of the physical boundary. We consider
nonreactive impermeable walls and reservoirs; reactive boundaries can be accounted for [12], but
we do not consider them here. For both kinds of boundaries the normal component of the velocity is
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zero in the Boussinesq approximation [see Eq. (15) in [13] for a generalization to low-Mach-number
variable-density models]. This implies that the normal mass fluxes of all species at walls must be
zero, F (n) = F · n = 0. Reservoir boundaries are intended to model a permeable membrane that
connects the system to a large reservoir held at a specified concentration wresvr and correspond to a
Dirichlet condition on w.

B. Electroneutral formulation

The charged-fluid equations (2)–(4) and (7) suffer from a well-known stiffness: The characteristic
Debye length scale λD is typically much smaller than the macroscopic or device scales of interest.
Thin Debye boundary layers develop near physical boundaries, with thickness proportional to λD.
Outside of these layers, the fields vary much more smoothly on scales much larger than the Debye
length. On such scales, the electrolyte is effectively electroneutral, and electrodiffusion is described
the electroneutral limit of the PNP equations [4,5].

The electroneutral bulk equations can be justified by formal asymptotic analysis [4,5]. This
analysis leads to an elliptic equation for the potential � that forces the evolution to preserve charge
neutrality. Here we derive this equation by simply invoking charge neutrality as a local linear
constraint,

Z = ρzT w = ρ

Ns∑
s=1

zsws = 0, (14)

everywhere in the bulk. By differentiating the constraint Z (r, t ) = 0 we get

∂Z

∂t
= zT ∂

∂t
(ρw) =

Ns∑
s=1

zs[−∇ · (ρwsv) − ∇ · Fs + ms�s] = 0. (15)

Because advection preserves Z = 0,

Ns∑
s=1

zs∇ · (ρwsv) = ∇ ·
[(

ρ

Ns∑
s=1

zsws

)
v

]
= ∇ · (Zv) = 0, (16)

and reactions conserve charge,
∑Ns

s=1 zsms�s = 0, Eq. (15) simplifies to

Ns∑
s=1

zs∇ · Fs = ∇ ·
(

Ns∑
s=1

zsFs

)
= ∇ · (zT F ) = 0. (17)

1. Electroneutral elliptic equation

Using the expressions (10) and (12) for the diffusive mass fluxes, we can rewrite the condition
∇ · (zT F ) = 0 as an elliptic partial differential equation for the electric potential,

∇ ·
[(

m̄ρ

kBT
zT WχW z

)
∇�

]
= ∇ · (zT Fd ), (18)

where Fd denotes the diffusive fluxes without the electrodiffusion,

Fd = −ρWχ�∇x +
√

2m̄ρWχ1/2Zmass.

We see that in the electroneutral limit, the electric potential becomes a Lagrange multiplier
that enforces the electroneutrality condition. It is given by the solution of the modified elliptic
equation (18) and not by the quasielectrostatic Poisson equation (2). In summary, the fluctuating
electroneutral equations we consider in this work are given by (3), (4), (7), and (18).

It is worth pointing out that the validity of the electroneutral limit requires that λD be small
everywhere in the bulk, where we recall that for an ideal solution λD ∼ (zT W Mz)−1/2. This requires
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the presence of some charges everywhere in the domain, that is, one cannot use (18) when parts of
the domain are ion-free since in those parts of the domain λD would diverge; an example of a
situation not covered by the electroneutral limit would be the diffusive mixing of pure and salty
water. In particular, (18) is not uniformly elliptic if in some part of the domain zT WχW z → 0, i.e.,
if zsws → 0 for all species s. In practice, for water solutions, it is energetically very unfavorable to
remove all ions and purify water to the point where the Debye length would approach macroscopic
or device scales.2 We will therefore assume here that there are sufficiently many ions everywhere in
the domain to justify the electroneutral limit (3), (4), (7), and (18).

2. Boundary conditions

Obtaining proper boundary conditions for the electroneutral equations (3), (4), (7), and (18)
requires a nontrivial asymptotic analysis matching the electroneutral bulk outer solution on the
outside of the Debye layer to the boundary layer inner solution inside the Debye layer [5,14,15].
Since we are interested here in the electroneutral bulk, what we mean by boundary conditions are
the conditions not on the physical boundary itself but rather on the outer boundary of the Debye
layer. In the electroneutral limit λD/lmin → 0, where lmin is the smallest length scale of interest,
the thickness of the boundary layer is formally zero and the outer conditions become effective
boundary conditions for the electroneutral bulk equations. Though surface reactions can affect the
charge density bound to dielectric boundaries (e.g., electron exchange), in this paper we do not
consider surface chemistry.

Here we will assume that there is no surface conduction in the Debye layer, i.e., we only need to
consider normal mass fluxes (the curved surface analysis in [5] shows that curvature does not enter
in the leading-order asymptotics) at the outer edge of the double layer. For dielectric boundaries, a
careful analysis of the validity of the assumption of no surface currents is carried out in [14] and
it is concluded that it is valid only for weakly to moderately charged surfaces. For highly charged
dielectric boundaries, surface conduction enters even in the leading-order asymptotic matching. For
metals, a careful asymptotic analysis is carried out in [15] and shows that, in regions where the
potential jump across the layer is exponentially large (measured with respect to the thermal voltage
kBT/e), surface conduction also enters.

Under the assumption of no surface conduction, we first consider the boundary conditions for
the electrodiffusion equations (7) and (18) and then turn our attention to the velocity equations (3)
and (4). We recall that the electrodiffusive mass flux is

F = Fd −
(

m̄ρ

kBT
WχW z

)
∇�.

Since the flux must locally preserve the charge neutrality, zT F (n) = 0 on the boundary, where we
recall that F (n) = n · F defines the fluxes normal to the boundary. This immediately gives the
effective Neumann boundary condition for the potential

∂�

∂n
=

(
m̄ρ

kBT
zT WχW z

)−1(
zT F (n)

d

)
, (19)

where F (n)
d = n · Fd.

For dilute solutions and impermeable walls, in the deterministic case, one can show that F (n)
d = 0,

which means that (19) becomes a homogeneous Neumann condition for the potential, ∂�/∂n = 0,
which is the boundary condition for a dielectric boundary with no bound surface charge in the
charged-fluid formulation. The derivation is well known for binary dilute electrolytes [5] and it is

2For ultrapure water the ion mass fractions are approximately equal to 10
−10

and the Debye length is a few
microns.
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straightforward to generalize it to dilute multi-ion solutions as follows. From the electroneutrality
condition zT w = 0 we get zT (∂w/∂n) = 0. Focusing on the dilute ions only, we have from (13) that
the vanishing of the electrodiffusive flux is equivalent to

∂w

∂n
+ (∂�/∂n)

kBT
MW z = 0.

Taking the dot product with z of both sides of this equation, we obtain ∂�/∂n = 0 because
zT MW z ∼ λ−2

D > 0. This implies ∂w/∂n = 0 and therefore F (n)
d = 0. We will assume that

∂�/∂n = 0 also holds on impermeable walls for general mixtures and even in the presence of
fluctuations, even though we have not been able to rigorously justify this. It is worthwhile to note
that any choice of Neumann boundary condition on the potential gives identical total electrodiffusive
flux F (n); the only physically relevant boundary condition is that F (n) vanish at impermeable walls.
Only the Lorentz force in (3), which depends on �, is affected by the choice of Neumann boundary
condition. While the Lorentz force is essential for modeling electrokinetic flows, it plays a minimal
role in the problems we study here, so our choice to enforce a homogeneous condition ∂�/∂n = 0
for impermeable walls is inconsequential.

For reservoir boundaries, F (n)
d is known at the boundary from the Dirichlet conditions on w and

(19) becomes an inhomogeneous Neumann condition for the potential. In summary, at a physical
boundary, we impose the following boundary conditions for (7) and (18): F (n)

d = n · Fd = 0 and
∂�/∂n = 0 for impermeable walls and w = wresvr with zT wresvr = 0 and (19) for reservoirs. Note
that the condition (19) applies irrespective of whether the boundary (wall or membrane) is dielectric
(polarizable) or metal (conducting); the effective condition for the potential is always Neumann,
even if in the charged-fluid formulation there is a Dirichlet condition on the potential.

The electroneutral boundary conditions for the velocity equation (3) and (4) are even harder to
derive. In general, the fluid velocity on the outer boundary of the Debye layer is not zero, even for a
no-slip boundary. This means that the appropriate velocity boundary condition for the electroneutral
equations is a specified-slip condition vn = 0 and vτ nonzero. However, the velocity slip has only
been computed using asymptotic analysis for binary electrolytes and this analysis has not been
generalized to multi-ion mixtures. For dilute electrolytes, slip expressions have been proposed
without a careful asymptotic analysis [see, for example, (4) in [16]]. Because an asymptotic
analysis for multispecies electrolytes is not available and because in the example we consider
here there are no applied electric fields or highly charged surfaces (either of which could make
the apparent slip velocity large enough to play some role), in this work we will simply use the same
boundary condition (no slip or free slip) for the electroneutral and the charged-fluid formulations.
For no-slip boundaries this means vτ = 0, which is expected to be a good approximation for
dielectric boundaries if the surface charge density is sufficiently small. We emphasize, however,
that an effective no-slip boundary condition is not appropriate in general (e.g., slip is important for
ionic diffusiophoresis) and each specific application requires a careful consideration of the boundary
condition.

3. Effective salt diffusion

Let us define the vector field

g(�)
amb =

(
m̄ρ

kBT
zT WχW z

)−1

zT Fd, (20)

which simplifies for deterministic models of dilute electrolytes to

g(�)
amb = −(kBT )

∑
s zsDs∇ws∑
s msz2

s Dsws
. (21)
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For some specific special cases, the solution of the effective Poisson equation (18) is given3 by
∇� = g(�)

amb. This is sometimes stated as a fact; see, for example, Eq. (3) in [16]. However, except
for dilute binary electrolytes and for problems in one dimension, g(�)

amb is in general not a gradient,
unless w [and thus the denominator in (21)] can be approximated to be constant over the domain.

For dilute binary electroneutral electrolytes w2 = −z1w1/z2, which in the absence of fluctuations
gives

(kBT )−1g(�)
amb = − D1 − D2

m1z1D1 − m2z2D2

∇w1

w1
= − D1 − D2

m1z1D1 − m2z2D2
∇(ln w1), (22)

which is indeed a gradient of a function and therefore ∇� = g(�)
amb. Substituting (22) into Fick’s law

(13), we obtain

F1 = −ρ
(m1z1 − m2z2)D1D2

m1z1D1 − m2z2D2
∇w1. (23)

The effective diffusion coefficient of the salt is therefore the weighted harmonic mean

Damb = (m1z1 − m2z2)D1D2

m1z1D1 − m2z2D2
, (24)

which we will refer to as the ambipolar binary diffusion coefficient.
This shows that for a dilute binary electrolyte without fluctuations the electroneutral model is

equivalent to modeling a binary salt as an uncharged substance with an effective ambipolar diffusion
coefficient, i.e., the two ions tend to diffuse together. However, this correspondence is not true in
more general cases. Specifically, it is not valid when fluctuations are included, when the system is
not dilute, or when there are more than two ions. Although the equivalence is lost, a number of
prior studies [6,7,9] have used (24) to define effective diffusion coefficients of salts in more general
situations. We will refer to this type of approach as the ambipolar approximation and investigate it
in detail in Sec. IV B.

C. Thermal fluctuations

Important quantities that can be derived from the fluctuating hydrodynamics equations are the
spectra of the fluctuations at thermodynamic equilibrium, referred to as the static structure factors.
These structure factors can be obtained either from the more general results derived in [1] for the
charged-fluid equations or from equilibrium statistical mechanics. It is important to confirm that
our electroneutral FHD equations give the correct spectrum of fluctuations in order to justify our
formulation of the stochastic fluxes.

The matrix of equilibrium structure factors can be expressed in terms of either mass or mole
fractions. Here we define the matrix of static structure factors in terms of the fluctuations in the
mass fractions δw around the equilibrium concentrations, which for notational brevity we denote in
this section by w without any decoration,

Ss,s′ (k) = 〈[δ̂ws(k)][δ̂ws′ (k)]
〉, (25)

where s and s′ are two species (including s = s′), k is the wave vector, a circumflex denotes a Fourier
transform, and a star denotes a complex conjugate.

The static factors for an electrolyte mixture with an arbitrary number of species at thermody-
namic equilibrium are [1,11]

S = S0 − 1

k2λ2
D + 1

S0zzT S0

zT S0z
, (26)

3Note that the boundary condition (19) is consistent with ∇� = g(�)
amb on the boundary [cf. (20)].
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where the structure factor for a mixture of uncharged species (i.e., for z = 0) is [11]

S0 = m̄

ρ
(W − wwT )[�(X − xxT ) + 11T ]−1(W − wwT ), (27)

with 1 the vector of 1’s. The Debye length can be generalized to nonideal mixtures as

λ−2
D = ρ2

εkBT
zT S0z = m̄ρ

εkBT
zT W [�(X − xxT ) + 11T ]−1W z. (28)

See Eqs. (41) and (42) in [11] for a simplification for ideal mixtures, including dilute solutions.
The structure factor SZ (k) of the total free-charge density Z = ρzT w is

SZ = ρ2〈(zT δ̂w)(zT δ̂w)
〉 = ρ2zT Sz. (29)

Using the generalized definition of the Debye length (28) allows us to conveniently express it as

SZ = ρ2zT Sz = (ρ2zT S0z)
k2λ2

D

1 + k2λ2
D

. (30)

The fact that SZ (k) tends to zero for small wave numbers (kλD → 0) is a manifestation of the
transition to the electroneutral regime at large length scales. It is important to point out that at
scales much larger than the Debye length the fluctuations δw are electroneutral in addition to the
electroneutral mean composition w. This means that the composition w + δw strictly remains on
the electroneutral constraint at all times, consistent with our electroneutral formulation.

At thermodynamic equilibrium, for length scales much larger than the Debye length, the structure
factor (26) simplifies to

S(eln) = lim
kλD→0

S = S0 − S0zzT S0

zT S0z
, (31)

which is the spectrum of fluctuations in composition in the electroneutral limit. Note that S(eln)z = 0,
as expected from the electroneutrality. For dilute electrolyte solutions, which are necessarily ideal,
if we consider two ions of species s and s′, we have the explicit formula

S(eln)
s,s′ = ρ−1

⎡⎣wsmsδs,s′ −
(∑

k

mkz2
kwk

)−1

(wsmszs)(ws′ms′zs′ )

⎤⎦. (32)

In Appendix B we derive the same result for a dilute binary electrolyte using equilibrium statistical
mechanics, without referring to the generalized PNP equations.

It can be confirmed that the electroneutral equations (3), (4), (7), and (18) are consistent with
(31), which demonstrates that nothing special needs to be done in the electroneutral limit to handle
the fluctuating diffusive fluxes except to include them on the right-hand side of the modified Poisson
equation (18).

III. NUMERICAL ALGORITHM

In this section we describe our charged-fluid and electroneutral numerical algorithms, both of
which are second-order accurate in space and time deterministically and second-order weakly
accurate for the linearized fluctuating hydrodynamics equations. The algorithms are closely based
on the algorithm developed for isothermal constant-density reactive multispecies mixtures of
non-ionic species in our prior work [6]. The handling of the charged species and in particular the
quasielectrostatic Poisson equation has already been described in detail in our prior work [1]. Here
we only briefly sketch the algorithmic details and focus on the key differences with our prior work.

We note that special care is taken to ensure that the only difference between the charged-fluid
and electroneutral algorithms is that a different elliptic equation is solved to compute the electric
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potential �. We therefore present both cases together and note any differences explicitly where
necessary.

A. Spatial discretization

Our spatial discretization of reaction, advection, and diffusion is identical to the one used in
our previous work [6], which is itself a slight modification of the methods described in [1,11,17],
improved to accurately handle very small numbers of molecules. The spatial discretization is based
on a structured-grid finite-volume approach with cell-averaged densities, electric potential, and
pressure and face-averaged (staggered) velocities. We use standard second-order stencils for the
gradient, divergence, and spatial averaging in order to satisfy discrete fluctuation-dissipation balance
(DFDB) [18].

The discretization of the momentum equations (3) and (4), including no-slip or free-slip boundary
conditions, is the same as our previous works [1,6,11,17], with the important caveat that the
Lorentz force is evaluated as ∇ · (ε∇�)∇� so that the same implementation works for either the
charged-fluid or the electroneutral formulations. Standard centered second-order stencils are used
to discretize ∇ · (ε∇�)∇� on the faces of the grid.

The discretization of the electrodiffusion equations (7) and (18) is closely based on that
developed in [1,6]. Our implementation independently tracks the densities of all species ρs but
ensures the overall mass conservation in the Boussinesq limit

∑Ns
s=1 ρs = ρ0 in each grid cell to

within (Stokes) solver tolerance. For each species, we construct the mass fluxes on faces of the
grid and employ the standard conservative divergence in order to guarantee conservation of mass
for each species. Diffusive fluxes, including the dissipative and stochastic fluxes, are computed as
described in [6]. Chemical reaction terms are local and are computed independently in each cell as
in [6].

The elliptic equations (2) and (18) are discretized using a standard centered second-order
stencil and the resulting linear system is solved using a geometric multigrid algorithm [1]. For
the electroneutral elliptic equation (18), W and Wχ have already been computed on each grid
face to calculate diffusive mass fluxes (see [6] for details) and therefore the nonconstant coefficient
∼zT WχW z can be directly computed on each grid face.

Boundary conditions for the electroneutral electrodiffusion equations (7) and (18) are imple-
mented as follows. For impermeable walls, the condition F (n)

d = n · Fd = 0 is trivially implemented
in our finite-volume scheme by zeroing the total mass flux (including the stochastic fluxes) on the
boundary. The modified elliptic equation (18) is then solved with the homogeneous Neumann con-
dition ∂�/∂n = 0. For reservoirs, the Dirichlet condition w = wresvr is implemented by computing
∇x at the boundary using one-sided differences and the specified values on the boundary; this then
gives the dissipative portion of the diffusive mass flux Fd = −ρWχ�∇x. The generation of the
stochastic component of the diffusive mass flux F̃ at the boundary is described in prior work [19].
Once Fd = Fd + F̃ is computed on the boundary, (18) is solved with an inhomogeneous Neumann
condition computed using (19).

Advective mass fluxes ρ f v are computed on each face f of the grid by first computing face-
centered densities ρ f = ρw f = ρ0w f . Our implementation supports two ways to compute face-
centered densities ρ f . Centered advection uses two-point averaging of densities to faces and is
nondissipative and thus preserves DFDB [18]. However, in order to prevent nonphysical oscillations
in mass densities in high-Péclet-number flows with sharp gradients, we also use the Bell-Dawson-
Shubin (BDS) second-order Godunov advection scheme [20]; more details about how the BDS
scheme is used in our numerical implementations can be found in [17]. We note that BDS advection
adds artificial dissipation and does not obey a fluctuation-dissipation principle, but is necessary for
simulations where centered advection would fail due to insufficient spatial resolution.

An additional complication that arises in the electroneutral limit is ensuring that advection
preserves electroneutrality, i.e., ensuring that the spatial discretization maintains the continuum
identity (16). Since the advection velocity used in our discretization is discretely divergence-free,
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advection automatically maintains linear constraints on the cell-centered densities if the face
densities ρ f satisfy the linear constraint for each face f . For centered advection this is automatic
because the face densities are computed by linear interpolation. For BDS advection, however, the
face-centered densities are computed using a complicated space-time extrapolation that involves
nonlinear limiters and are not guaranteed to satisfy the same linear constraints as the cell-centered
densities. It is therefore necessary to project the densities back onto all linear constraints. One such
constraint is the mass conservation

∑
s ρs = ρ0 and the other is the electroneutrality

∑
s zsρs = 0.

Assume we are given a composition w f = ρ f /ρ0 on face f , which does not necessarily satisfy the
two constraints 1T w = 1 and zT w = 0. The projection onto both constraints can be accomplished
with the following sequence of updates:

w f ← w f − zT w f

zT z
z, w f ← w f

1T w f
.

The first update is a standard L2 projection onto the plane zT w = 0 and the second is a simple
rescaling that preserves 1T w = 1. This choice of projections is not unique and does not affect the
second-order accuracy for smooth problems.

B. Temporal discretization

Our second-order temporal integrator is taken from our prior work [6] and is summarized in
Sec. III C. Unlike the trapezoidal predictor-corrector method used in [1], here we use the midpoint
predictor-corrector method described in [6] to accommodate our treatment of chemical reactions and
to dramatically improve the robustness for large Schmidt number [6]. Furthermore, the Boussinesq
approximation allows us to simplify the algorithm compared to the low-Mach-number version
presented in [1]. Note that, relative to the algorithm in [6], we need to precompute some terms
related to charged species; however, the overall update strategy remains the same. In particular, in
the absence of charged species our algorithm is equivalent to that presented in [6].

Our algorithm introduces an important correction term on the right-hand side (rhs) in the
modified elliptic equation (18) in the corrector step. Namely, numerical tests revealed that errors
due to finite tolerances in the iterative elliptic solver lead to a slow drift away from electroneutrality
over many time steps. This drift can be prevented by modifying the elliptic equation as follows.
Consider an Euler update of the form

w(t + �t ) − w(t )

�t
= −∇ ·

[
Fd −

(
m̄ρ

kBT
WχW z

)
∇�

]
.

Requiring electroneutrality at the end of the step, zT w(t + �t ) = 0, without assuming electroneu-
trality at the beginning of the step, we obtain the corrected elliptic equation at time t ,

∇ ·
[(

m̄ρ

kBT
zT WχW z

)
∇�

]
= ∇ · (zT Fd ) −

(
zT w

�t

)
. (33)

In our numerical algorithm, we only employ this correction to the elliptic equation in the corrector
step. We have found this to be sufficient and to lead to a stable algorithm that maintains the charge
neutrality to a relative error below solver tolerances.4 In practice, we find that the numerical errors
introduced by the iterative geometric multigrid elliptic solvers create localized charges but not a

4We have found that in some cases (e.g., equal diffusion coefficients for all species) the rhs of (33) is
analytically (nearly) zero so that numerically it is dominated by numerical noise. This make the elliptic solver
do unnecessary work if we use a standard relative error tolerance based on the magnitude of the rhs. Instead,
we use a tolerance δ∇ · (|z|T Fd ) based on the absolute values of the charges per mass, where δ ∼ 10−12–10−9

is a relative tolerance for the iterative solver.
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global charge; therefore the spatial average of the rhs of (33) is zero within roundoff tolerance.
Nevertheless, in order to ensure that the elliptic equation (33) is solvable, in our implementation we
subtract from the rhs its spatial average.

By adding charges to the three-species mixture test described in Sec. III C 1 of [11], we
have verified (not shown) that our algorithm reproduces the correct spectrum of electroneutral
equilibrium fluctuations (31), for both ideal and nonideal mixtures, for either periodic, reservoir, or
impermeable boundaries. This validates our formulation and implementation of the stochastic mass
flux (including boundary conditions). We have also verified (not shown) second-order deterministic
accuracy for the acid-base fingering example by initializing the simulations from a smoothly
perturbed sine-wave interface.

C. Summary of the algorithm

We now summarize the nth time step that computes state at time t n+1 = (n + 1)�t from the
state at time t n = n�t . Superscripts denote the time point at which certain quantities are evaluated,
for example, f n+1/2,∗ = f (wn+1/2,∗, (n + 1/2)�t ) denotes the buoyancy force estimated at the
midpoint. We denote by (Wmom)n and (Wmass

(1) )n (for the predictor stage) and (Wmass
(2) )n(for the

corrector stage) collections of independent and identically distributed standard normal random
variables generated on control volume faces independently at each time step, and Wmom ≡
Wmom + (Wmom)T . We denote collections of independent Poisson random variables generated at
cell centers independently at each time step by P(1) (predictor stage) and P(2) (corrector stage) and
define [•]+ ≡ max(•, 0). The notation for computing the divergence of the advective fluxes using
the BDS scheme is defined and explained in Sec. III B 1 in [17]. We remind the reader that ρ = ρ0

is a constant in the Boussinesq approximation, maintained by our code to roundoff tolerance.
The nth predictor-corrector update consists of the following steps.
(i) Calculate predictor diffusive fluxes (deterministic and stochastic)

Fn
d = (−ρWχ�∇x)n +

√
2m̄ρ

�V �t/2
(Wχ1/2)n

(
Wmass

(1)

)n
. (34)

(ii) Solve the predictor elliptic equation for �n,

∇ · (εn∇�n) = −Zn for a charged-fluid form,

∇ ·
[(

m̄ρ

kBT
zT WχW z

)n

∇�n

]
= ∇ · (

zT Fn
d

)
otherwise. (35)

(iii) Calculate predictor electrodiffusive fluxes Fn and chemical production rates Rn,

Fn = Fn
d −

(
m̄ρ

kBT
WχW z

)n

∇�n, (36)

Rn
s = 1

�V �t/2

∑
r

∑
α=±

�να
srP(1)

((
aα

r

)n
�V �t/2

)
. (37)

(iv) Solve the predictor Stokes system for vn+1,∗ and πn+1/2,∗: ∇ · vn+1,∗ = 0 and

(ρv)n+1,∗ − (ρv)n

�t
+ ∇πn+1/2,∗ = ∇ · (ρvvT )n + 1

2
∇ · (ηn∇vn + ηn∇vn+1,∗) + f n

+ ∇ ·
(√

ηnkBT

�V �t
(Wmom

)n

)
+ {[∇ · (ε∇�)]∇�}n.
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(v) Calculate predictor mass densities

ρn+1/2,∗
s = ρn

s + �t

2

[ − ∇ · Fn
s + msR

n
s

] − �t

2
∇ ·

{
ρn

s

(
vn+vn+1,∗

2

)
if centered

BDS
(
ρn

s , vn+vn+1,∗
2 ,∇ · Fn

s ,
�t
2

)
otherwise.

(38)
(vi) Calculate corrector diffusive fluxes

Fn+1/2,∗
d = (−ρWχ�∇x)n+1/2,∗ +

√
2m̄ρ

�V �t/2

(
Wχ1/2

)n+1/2,∗
((

Wmass
(1)

)n + (
Wmass

(2)

)n

√
2

)
. (39)

(vii) Solve the corrector elliptic equation for �n+1/2,∗,

∇ · (εn+1/2,∗∇�n+1/2,∗) = −Zn+1/2,∗ for a charged-fluid form,

∇ ·
[(

m̄ρ

kBT
zT WχW z

)n+1/2,∗
∇�n+1/2,∗

]
= ∇ · (

zT Fn+1/2,∗
d

) − �t−1
(
zT wn+1/2,∗) otherwise.

(40)

(viii) Calculate corrector diffusive fluxes Fn+1/2,∗ and chemical production rates Rn+1/2,∗,

Fn+1/2,∗ = Fn+1/2,∗
d −

(
m̄ρ

kBT
WχW z

)n+1/2,∗
∇�n+1/2,∗, (41)

Rn+1/2,∗
s = 1

2

[
Rn

s + 1

�V �t/2

∑
r

∑
α=±

�να
srP(2)

{[
2
(
aα

r

)n+1/2,∗ − (
aα

r

)n]+
�V �t/2

}]
. (42)

(ix) Update the mass densities

ρn+1
s = ρn

s + �t[−∇ · Fn+1/2,∗
s + msR

n+1/2,∗
s ]

−�t∇ ·
{

ρn+1/2,∗
s

(
vn+vn+1,∗

2

)
if centered

BDS
(
ρn

s , vn+vn+1,∗
2 ,∇ · Fn+1/2,∗

s ,�t
)

otherwise.
(43)

(x) Solve the corrector Stokes systems for vn+1 and πn+1/2: ∇ · vn+1 = 0 and

(ρv)n+1 − (ρv)n

�t
+ ∇πn+1/2 = −1

2
∇ · [(ρvvT )n + (ρvvT )n+1,∗] + 1

2
∇ · (ηn∇̄vn + ηn+1∇̄vn+1)

+ 1

2
∇ ·

[(√
ηnkBT

�V �t
+

√
ηn+1kBT

�V �t

)
(Wmom

)n

]
+ f n+1/2,∗

+ {[∇ · (ε∇�)]∇�}n+1/2,∗.

IV. NUMERICAL STUDY OF ACID-BASE NEUTRALIZATION

In our previous work [6] we studied the development of asymmetric fingering patterns arising
from a gravitational instability in the presence of a neutralization reaction. In particular, we
performed three-dimensional simulations of a double-diffusive instability occurring during the
mixing of dilute aqueous solutions of HCl and NaOH in a vertical Hele-Shaw cell, as studied
experimentally in [7]. In this prior study, as in all other theoretical and computational studies of
this kind of instability [7,9], we treated HCl, NaOH, and NaCl as uncharged species in the spirit
of the ambipolar approximation described in Sec. II B 3. The acid-base neutralization reaction was
written as

HCl + NaOH → NaCl + H2O. (44)
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In reality, however, the acid, the base, and the salt are all strong electrolytes and essentially
completely disassociate into Na+, Cl−, H+, and OH− ions and the neutralization reaction is simply
the (essentially irreversible) formation of water

H+ + OH− → H2O,

with Na+ and Cl− being spectator ions. An important feature of this system is that the trace diffusion
coefficients of the four ions are very different; specifically, using cgs units (cm2/s), the literature
values are DNa+ = 1.33 × 10−5, DCl− = 2.03 × 10−5, DH+ = 9.35 × 10−5, and DOH− = 5.33 ×
10−5. Although the ambipolar approximation is only strictly valid for dilute binary systems, we
define effective diffusion coefficients for the neutral species by harmonic averages of the anion and
cation diffusion coefficients following (23) to obtain DHCl = 3.34 × 10−5, DNaOH = 2.13 × 10−5,
and DNaCl = 1.61 × 10−5.

Simulating this instability using the charged-fluid formulation would be infeasible because
the length scales of interest are on the millimeter scale. In this work we use the electroneutral
formulation to study this instability and assess the (in)accuracy of the commonly used ambipolar
approximation. Numerical studies based on the ambipolar approximation showed that the fingering
instability can be triggered on a realistic timescale (as compared to experiments) purely by
thermal fluctuations, without any artificial perturbations of the initial interface [6]. The studies
also demonstrated that the effect of fluctuations is dominated by the contribution of the stochastic
momentum flux and not by fluctuations in the initial condition, the stochastic mass flux, or the
stochastic chemical production rate. This can be understood as a consequence of the fact that
advection by thermal velocity fluctuations, which are driven by the stochastic momentum flux,
leads to giant concentration fluctuations in the presence of sharp concentration gradients [21–23].
These nonequilibrium fluctuations completely dominate equilibrium fluctuations at the scales of
interest and are sufficiently large to drive the fingering instability. We have confirmed that the same
conclusions apply when charges are accounted for. Therefore, in the simulations reported here we
do not include stochastic mass fluxes and reaction rate fluctuations and initialize the simulations
from a deterministic initial condition with a sharp interface between the acid and the base and zero
fluid velocity.

Because of the importance of giant concentration fluctuations to the formation of the instability,
in Sec. IV A we first validate our algorithm and implementation by computing the spectrum of
giant fluctuations in a ternary electrolyte. Then we study the fingering instability at an acid-base
neutralization front in Sec. IV B.

A. Giant nonequilibrium fluctuations in electroneutral ternary mixtures

In this section we examine the giant concentration fluctuations in a nonreactive dilute elec-
troneutral ternary electrolyte in the presence of a steady applied concentration gradient. Giant
fluctuations in a binary electrolyte were studied using the charged-fluid formulation in Sec. VB2 in
[1]. It was concluded there that for small wave numbers kλD � 1, the electroneutral nonequilibrium
fluctuations in a binary electrolyte can be described using the ambipolar formulation, as expected.
Specifically, the spectrum of the giant fluctuations is the same as it would be in a solution with
a single neutral species diffusing with the ambipolar diffusion coefficient (23). However, this
conclusion no longer holds for solutions with three or more charged species, even if dilute.

Therefore, here we examine the spectrum of the giant fluctuations in a dilute solution of three
ions with valencies V1 = V2 = 1 and V3 = −1, in the absence of gravity or reactions. In order to
focus on the nonequilibrium fluctuations we omit the stochastic mass flux from (7) so that the
fluctuations are generated entirely by the random velocity. In arbitrary units in which kB = 1 and
e = 1, we set ρ = 1 and T = 1 and assume equal molecular masses m1 = m2 = m3 = 1 and trace
diffusion coefficients D1 = 1, D2 = 1/2, and D3 = 3/2. The viscosity is set to η = 103 to give a
realistically large Schmidt number Sc ∼ 103 and we set ε = 0, which makes λD = 0 and removes
the (fluctuating) Lorentz force from the momentum equation. The domain is quasi-two-dimensional
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FIG. 1. Spectrum of giant nonequilibrium concentration fluctuations in a ternary electrolyte mixture in the
presence of an imposed concentration gradient of the two co-ions. To account for errors in the discrete approx-
imation to the continuum Laplacian, the x axis shows the modified wave number k̃x = sin(kx�x/2)/(�x/2)
instead of kx . Numerical results (symbols) for the components of k̃4

x S(kx, ky = 0) corresponding to the co-ions
(positive S11 and S22, and negative S12) are compared to the theoretical prediction (45) (lines).

with Lx = Ly = 64 discretized with 64 × 64 cells with grid spacing �x = �y = 1. The thickness
of the domain is set to �z = 106 to give weak fluctuations that can be described by the linearized
fluctuating hydrodynamics equations. We impose equal and opposite macroscopic gradients for
the co-ion species and no gradient for the counter-ion using reservoir boundary conditions, with
imposed w1 = 4.5 × 10−3, w2 = 5.5 × 10−3, and w3 = 10−2 at the y = 0 boundary and w1 =
5.5 × 10−3, w2 = 4.5 × 10−3, and w3 = 10−2 at the y = Ly boundary. We set the time step size
to �t = 0.05 and perform a total of 106 time steps, skipping 105 steps in the beginning to allow
the system to reach the steady state, after which we collect statistics on the spectrum of fluctuations
S(kx, ky = 0).

The theoretical spectrum of the giant fluctuations for a dilute ternary electrolyte can be computed
by following the computation described in Sec. IIIC in [1] and then taking the electroneutral limit
kλD → 0. The same result can also be obtained from the electroneutral equations directly; with the
help of a computer algebra system the limit kλD → 0 of the charged fluid S(k) is straightforward
to compute, so we follow that route. Just as for non-ionic solutions, a k−4

x power law is observed
until the confinement effect becomes significant for small kx � L−1

y . Following [1], we multiply the
theoretical result for an unconfined bulk system by a confinement factor [24] to obtain

Ss,s′ (kx, ky = 0) = fss′
kBT

ηD1

1

k4
x

[
1 + 4[1 − cosh(kxLy)]

kxLy[kxLy + sinh(kxLy)]

]
, (45)

where our theoretical calculations predict f11 = 147/124, f22 = 219/124, and f12 = −177/124.
Note that it is sufficient to examine only the part of S corresponding to two of the charged ions (here
the two co-ions), since electroneutrality dictates the spectra involving the third ion and conservation
of mass dictates the spectra involving the solvent. In Fig. 1 we compare our numerical results to the
theoretical predictions (45) and find good agreement for all three structure factors.

B. Fingering instability at an acid-base front

In this section we investigate the development of asymmetric fingering patterns arising from a
diffusion-driven gravitational instability in the presence of a neutralization reaction. This system
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has been studied experimentally and theoretically using a two-dimensional Darcy advection-
diffusion-reaction model [7,9] based on an ambipolar approximation where the acid, base, and
salt are treated as uncharged species instead of as disassociated ions. Here we perform large-scale
three-dimensional simulations with the ions treated as individual species.

Since the fingering instability is driven by the small changes of density with composition, it is
crucial to first match the dependence of density on composition between the ambipolar diffusion
(molecule-based) model used in Sec. IVD in [6] and the electrodiffusion (ion-based) model used
in this work. Following [6,7,9], we assume that the solution density is linearly dependent on the
solute concentrations in both cases, which is reasonable since the solutions are dilute. This gives the
buoyancy force

f (w) = −ρ

( ∑
solute s

αs

Ms
ws

)
gey, (46)

where αs is the solutal expansion coefficient, Ms is the molecular weight (in g/mol) of solute s,
and the gravitational acceleration g = −gey acts in the −y direction. For the ambipolar model, the
values of αs for s = HCl, NaOH, NaCl are obtained from Table II in [7]. For the ionic model, we
compute the four unknown coefficients αs for s = Na+, Cl−, H+, OH− by matching the dependence
of density on composition between the two models for electroneutral binary solutions of HCl,
NaOH, and NaCl. Only three independent coefficients αs matter because electroneutrality fixes the
concentration of the fourth ion, so we arbitrarily require that Na+ and Cl− have the same coefficient
αNa+ = αCl− . It is important to observe that this procedure matches the density between an arbitrary
dilute solution of HCl, NaOH, and NaCl and the corresponding ionic solution resulting after the
molecules disassociate completely into Na+, Cl−, H+, and OH− ions. The reverse is not possible,
that is, one cannot take an arbitrary solution of the ions and uniquely determine a corresponding
molecular solution. In particular, a solution of only H+ and OH− would not have a physically
reasonable density according to our model. We will validate shortly that any differences we see
between the molecular and ionic models of the instability stem from the difference between standard
Fickian diffusion and electrodiffusion and not from our procedure for matching the buoyancy force.

For the model setup and physical parameters, we follow Sec. IVD in [6] and mimic the
experiment of Lemaigre et al. [7]. We use cgs units unless otherwise specified and assume T = 293
and atmospheric pressure, neglecting any heat release in the reaction as justified in [9]. We set
g = 981, ρ = 1, and η = 0.01. We consider a Hele-Shaw cell with side lengths Lx = Ly = 1.6 and
Lz = 0.05, with the y axis pointing in the vertical direction and the z axis being perpendicular to the
glass plates. The domain is divided into 512 × 512 × 16 grid cells, which is twice finer than the grid
used in [6] in order to better resolve the sharp interface in the early stages of the mixing. We start
with a gravitationally stable initial configuration, where an aqueous solution of NaOH with molarity
0.4 mol/L is placed on top of a denser aqueous solution of HCl with molarity 1 mol/L. We impose
periodic boundary conditions in the x direction, no-slip impermeable walls in the z direction, and
in the y direction we use free-slip reservoir boundary conditions with imposed concentrations that
match the initial conditions of each layer. We use BDS advection because of the presence of an
initially sharp interface.

Since the neutralization equilibrium lies far to the product side, we only consider the forward
reaction. We use the law of mass action for a dilute solution (A4) and express the reaction propensity
in terms of number densities, a+ = k nHClnNaOH for the molecule-based model and a+ = k nH+nOH−

for the ion-based model.5 In reality, neutralization is a diffusion-limited reaction that occurs
extremely fast (with rate λ ∼ 1011 s−1), essentially as soon as reactants encounter each other. The

5Observe that the reaction rates are matched between the molecule-based model and the corresponding ion-
based model because the number density of HCl/NaOH in the non-ionic mixture matches the number density
of H+/OH− in the corresponding ionic mixture.
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FIG. 2. Asymmetric growth of convective fingering patterns in a Hele-Shaw cell, induced by a gravitational
instability in the presence of a neutralization reaction. The top row corresponds to electroneutral electrodiffu-
sion of ions, while the bottom row corresponds to ambipolar diffusion of acid, base, and salt molecules; both
simulations use the same random numbers for the stochastic momentum flux. The density of Na+ is shown with
a color scale at 20, 30, and 40 s (columns going left to right) from the beginning of the simulation, initialized
without any fluctuations. Two-dimensional slices of the three-dimensional field ρNa+ (x, y, z) are shown. The
square images show ρNa+ (x, y, z = Lz/2) (halfway between the glass plates) and the thin vertical side bars
show the slice ρNa+ (x = 0, y, z) corresponding to the left edge of the square images.

estimated value of k ∼ 10−11 cm3 s−1 is impractically large and would require an unreasonably
small grid spacing to resolve the penetration depth (which would be on molecular scales) and
an unreasonably small time step size to resolve the reactions. For our simulations, we choose a
smaller value k = 10−19 that is an order of magnitude smaller than the one used in [6] and enlarge
the time step size to �t = 10−2 by an order of magnitude accordingly. Deterministic numerical
studies presented in Appendix B in [6] show that increasing the rate beyond k = 10−19–10−18 hardly
changes the results, so we believe our simulation parameters are realistic. Nevertheless, our main
goal here is to compare molecule- and ion-based models and assess the accuracy of the ambipolar
approximation, so in this study it is more important to resolve the spatiotemporal scales in the
problem than to match experimental observations.

In Fig. 2 we compare the density profiles of Na+ between the model based on electroneutral
electrodiffusion with ions and that based on molecules using ambipolar diffusion coefficients.
For the molecule-based simulations, we compute the density of Na+ assuming that the acid
is completely disassociated. To enable a direct comparison between the two cases, we employ
the same sequence of pseudorandom numbers for the stochastic momentum flux in both cases.
Although the development of the instability follows similar trends in the two cases, there are
clearly visible differences between the top and bottom rows in the figure. For example, the Na+

fingers develop sooner and diffuse more for the ion-based simulations. These differences can also
be seen by comparing the lines in Fig. 3, where we show the norm of the y component of velocity
(corresponding to the progress of the instability) and the total mass of consumed H+ (corresponding
to the production of salt in the molecule-based model) as a function of time. Our findings clearly
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FIG. 3. Time dependence of (a) the norm of vertical velocity and (b) the total mass of H+ consumed in the
neutralization reaction. We compare simulations where the species are ions versus those where the species are
neutral molecules (see the legend). Lines are results based on the true tabulated diffusion values for the ions,
while symbols show results for fake values of the ion diffusion coefficients, artificially made to be closer to
each other.

demonstrate that quantitative predictions can only be made by solving the complete electroneutral
electrodiffusion equations presented here. The ambipolar approximation can only be used as a
qualitative model of the instability.

To demonstrate that the clear difference between electrodiffusion and ambipolar diffusion is
caused by the large difference in the true diffusion coefficients of the ions (DNa+ = 1.33 × 10−5,
DOH− = 5.33 × 10−5, DH+ = 9.35 × 10−5, and DCl− = 2.03 × 10−5), we also perform simulations
where we artificially match the diffusion coefficients for the reactant ions and molecules by
setting them to fake values DNa+ = DOH− = DNaOH = 2.13 × 10−5 (i.e., Na+ and OH− ions diffuse
with the same coefficient as NaOH) and DH+ = DCl− = DHCl = 3.34 × 10−5 (i.e., H+ and Cl−

ions diffuse with the same coefficient as HCl). In the molecule-based simulations, the diffusion
coefficient of NaCl is set to the harmonic average of the two fake diffusion coefficients of Na+ and
Cl− ions, DNaCl = 2.6 × 10−5. Figure 4 compares the density of Na+ in ion- and molecule-based
simulations using these artificial (fake) values of the diffusion coefficients. Figures 4(a) and 4(b)
are visually almost indistinguishable, showing very little difference between electrodiffusion and

FIG. 4. Density of Na+ at time t = 30 s for (a) the ion-based model and (b) the molecule-based model;
both simulations use the same random numbers for the stochastic momentum flux. These simulations use
fake values of the ion diffusion coefficients, artificially made to be closer to each other in order to make the
difference between electrodiffusion and ambipolar diffusion smaller.
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ambipolar diffusion, unlike the panels in Fig. 2. This is further demonstrated by the symbols in
Fig. 3. This demonstrates that the difference between electrodiffusion and standard Fickian diffusion
is large when the multiple ions involved diffuse with widely varying coefficients.

V. CONCLUSION

We formulated the electroneutral reactive generalized PNP equations and included thermal
fluctuations using fluctuating hydrodynamics and the chemical master equation. The only difference
between the charged-fluid equations and their electroneutral limit is in the elliptic equation for the
electric potential. We presented a second-order midpoint predictor-corrector scheme for both sets of
equations. We studied giant nonequilibrium fluctuations in ternary electrolytes in the electroneutral
limit and demonstrated that our numerical algorithm accurately reproduces theoretical predictions.
We also modeled a fingering instability at an acid-base mixing front and demonstrated that modeling
the acid, base, and salt as neutral species diffusing with ambipolar diffusion coefficients leads to
quantitatively incorrect results unless the diffusion coefficients of the ions are very similar.

The temporal discretization we used in this work treats mass diffusion explicitly. It can be shown
that the electroneutral integrator used here is the limit �t 
 λ2

D/D of a method for the charged-fluid
equations in which only the potential is treated implicitly, i.e., the Poisson equation (2) is imposed
at the end instead of the beginning of an Euler update. A major challenge for the future is to
develop algorithms that treat electroneutral electrodiffusion implicitly. This would require solving
a coupled linear system for both the composition and the electric potential at the end of the time
step. This is in some ways similar to our treatment of the velocity equation where we solve a Stokes
problems for both velocity and pressure. The main challenge in developing implicit electrodiffusion
discretizations is the development of effective preconditioners for the coupled electrodiffusion
system.

In this work we used Neumann boundary conditions for the potential that were consistent with
electroneutrality under the assumption of no surface conduction. Future work should carefully
derive appropriate boundary conditions for the electroneutral electrodiffusion equations using
asymptotic analysis, at least in the deterministic context. In this work we used the same velocity
boundary conditions for the charged-fluid and electroneutral formulations because of the absence
of any asymptotic theory for the effective slip for multispecies mixtures. It is important to carry out
such asymptotic theory, even if only for the case of small ζ or applied potentials or fields. Finally,
allowing for surface reactions in the formulation also requires changing the boundary conditions.
Future developments in these directions would allow us to model catalytic micropumps [25] without
having to resolve the thin Debye layers around the catalytic surfaces.
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APPENDIX A: CHEMICAL PRODUCTION RATES

In this Appendix we summarize how we compute the (deterministic or stochastic) chemical
production rates �s. We consider a liquid mixture consisting of Ns species undergoing Nr elementary
reversible reactions of the form

Ns∑
s=1

ν+
srMs �

Ns∑
s=1

ν−
srMs (r = 1, . . . , Nr ), (A1)

where ν±
sr are molecule numbers and Ms are chemical symbols. We define the stoichiometric

coefficient of species s in the forward reaction r as �ν+
sr = ν−

sr − ν+
sr and the coefficient in the reverse

reaction as �ν−
sr = ν+

sr − ν−
sr . We assume that each reaction r conserves mass

∑Ns
s=1 �ν±

sr ms =
0 and charge

∑Ns
s=1 �ν±

sr mszs = 0, which is suitable for bulk reactions in liquids (we do not
consider surface reactions here). It is important to note that all reactions must be reversible for
thermodynamic consistency, although in practice some reactions can be effectively considered to be
irreversible sufficiently far from thermodynamic equilibrium.

The mean number of reaction occurrences in a locally-well-mixed reactive cell of volume �V
during an infinitesimal time interval dt is given as a±

r �V dt , where a±
r are the propensity density

functions for the forward (reverse) [+ (−)] rates of reaction r. Accordingly, the mean production
rate of species s in the deterministic equations is given as

�s =
Nr∑

r=1

∑
α=±

�να
sraα

r . (A2)

The propensity density functions are given by the law of mass action (LMA) kinetics, suitably
generalized to nondilute mixtures [6],

a±
r = κ±

r

Ns∏
s=1

(xsγs)ν
±
sr , (A3)

where κ±
r (T, P) is the rate of the forward (reverse) [+ (−)] reaction r and γs(x, T, P) is the activity

coefficient of species s (for an ideal mixture, γs = 1). It is important to note that propensity density
functions (A3) are expressed in terms of mole fractions xs (for ideal mixtures) or activities xsγs

and not in terms of number densities. For reactions in a dilute solution (which is necessarily an
ideal solution for sufficiently dilution), mole fractions and number densities are proportional, xs ≈
m̄solvns/ρ, and one can alternatively write the LMA in the form

a±
r = k±

r

Ns∏
s=1

nν±
sr

s (A4)

for dilute solutions.
Following [6,26], we use the chemical master equation to describe fluctuations in the reaction

rates for small numbers of reactive molecules. For reactions in a closed well-mixed cell of volume
�V , the change in the number of molecules Ns of species s in a given cell during an infinitesimal
time interval dt is expressed in terms of the number of occurrences P (a±

r �V dt ) of each reaction r,

�s�V dt =
Nr∑

r=1

∑
α=±

�να
srP

(
aα

r �V dt
)
, (A5)

where P (m) denotes a Poisson random variable with mean m. Note that the instantaneous rate of
change is written as an Itô stochastic term. In the numerical algorithm described in Sec. III, we use
a second-order τ -leaping method [27], which discretizes (A5) with a finite time step size �t .
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APPENDIX B: ELECTRONEUTRAL FLUCTUATIONS OF COMPOSITION
FOR A BINARY ELECTROLYTE

For a binary electroneutral electrolyte, the covariance of the fluctuations of the two charged
species (32) is the matrix

S(eln)
ions = ρ

1 + b

[
m1w1 bm2w1

bm2w1 bm2w2

]
,

where b = −m1z1/m2z2 = V1/V2 is the ratio of the number of atoms of the two species in one
neutral salt molecule. It is important to observe that this is not what would be predicted from a naive
ambipolar approximation where one considers the two ions to be bound and diffusing with the
ambipolar diffusion coefficient (24), notably, such an approximation would not give the prefactor
(1 + b)−1.

One can understand the prefactor (1 + b)−1 by computing the entropy of mixing of the solution
under the constraint of charge neutrality. Consider a dilute ideal solution of N0 molecules of a solvent
species and N1 � N0 molecules of one ion and N2 � N0 molecules of another counter-ion. For an
electroneutral mixture we have the constraint N2 = bN1. The mixture has a free energy of mixing

(kBT )−1�Gmix ≈ N1

(
ln

N1

N0
− 1

)
+ N2

(
ln

N2

N0
− 1

)
= N1

(
ln

N1

N0
− 1

)
+ bN1

(
ln

bN1

N0
− 1

)
.

The second derivative of the free energy of mixing, which determines the width of the Gaussian
approximation of the entropy and thus the inverse of S11, is(

∂2�Gmix

∂N2
1

)
= (1 + b)

kBT

N1
,

which has the additional prefactor (1 + b) relative to the standard result without the electroneutrality
constraint.
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