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Bubble impact on a tilted wall: Removing bacteria using bubbles
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Dynamics of a bubble impacting and sliding on a tilted surface has been investigated
through experimental and computational methods. In experiments, bubble-wall interaction
has been characterized with an air bubble of about 550 pum in radius and a rising
speed of about 30 cm/s as it impacts a solid substrate of a wall angle between 0° and
40°. Specifically, shear stress generated on the wall has been calculated and compared
with bacterium adhesion force in order to evaluate a potential sanitization function. We
numerically solved a force balance including buoyancy, hydrodynamic inertia and drag,
and lift and thin film force to determine the bubble motion. Results showed that the shear
stress increases with the wall inclination. The maximum shear stress goes up to more than
300 Pa as a single bubble impacts and scrubs a tilted wall. We found that such a high
shear stress is attributed to a rapid change in thin film curvature (flipping bubble-water
interface) during the bouncing stage. Later, during the sliding stage, a smaller shear stress
up to around 45 Pa is generated for a longer period. We also showed that the shear stress
generated during the bouncing and sliding stages is high enough to remove bacteria from
a surface as a potential method for removing bacteria from tilted surfaces.

DOI: 10.1103/PhysRevFluids.4.043603

I. INTRODUCTION

The cleaning mechanism of using bubbles for wastewater treatments or microorganism removal
has been proven as a sustainable and environmentally benign method in many industrial applications
[1-5]. From a mechanics point of view, the force of a bubble impacting and sliding on a wall plays
an important role in removing biofilms and dirt from various surfaces [6-9]. Recently, it has been
shown that a continuous stream of single bubbles, with shear stress on the order of ~0.01 Pa, can
prevent biofouling growth [10]. Another new application of using the bubble-cleaning method is
to clean agricultural produce like fruits and vegetables, which has yet to be studied extensively.
Recently, cleaning foodborne pathogens on fruits and vegetables has drawn much attention due to
food poisoning of millions of people every year [11-13]. Bubbles could be used to clean fruits
and vegetables while also keeping them fresh with the gentle rubbing action from the bubbles
and a minimal use of chlorine [14]. As chlorinated solutions are known to be carcinogenic and
biohazardous [15-17], the use of bubbles for produce cleaning is a better alternative.

Understanding the dynamics of a bubble interacting with a solid surface is very important
in order to control the removal of microcontaminants from the surface. Practically, there are
two bubble-generation methods used: bubble-cavitation and bubble-injection methods. In general,
cavitated bubbles collapse and create liquid jets toward a solid surface, which produce enormous
shear stress to kill and remove cells from the surface [18,19]. However, this method can damage
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soft surfaces and increase the temperature of a liquid bath rapidly, which can elevate the bacteria
concentration in a liquid bulk. Another way to create bubbles is to inject pressurized air in water,
which does not increase the bulk temperature. Once bubbles are injected at the bottom of the tank,
the bubbles will then rise, impact, and scrub contaminated surfaces by impacting or sliding along
the surface. Also, the injected bubbles last longer compare to bubble-cavitation cases, which can
result in a longer cleaning time.

The shape, velocity, and path of a freely rising bubble have been investigated by many researchers
[20-24]. Generally, the bubble shape can be categorized into three regimes of spherical, ellipsoidal,
and spherical-cap bubbles as a function of the Reynolds, Bond, and Morton numbers [20]. Due
to our focus on small bubbles of a radius less than 1 mm, we consider only either spherical or
slightly ellipsoidal shaped bubbles. In terms of the interfacial mobility, the bubble dynamics can
be classified into two cases of mobile (or fast bubble) and immobile bubbles (or slow bubbles)
[25,26]. If a bubble-liquid interface is contaminated by particulates or surfactants, the interface
holds a condition of zero tangential velocity. It is referred to as an immobile bubble, which reaches
a slow terminal rising velocity. For a mobile bubble case (or fast bubble), the liquid-bubble interface
can have nonzero tangential velocity because of low contamination. Hence, a condition of zero
tangential shear stress is applied, and as a consequence, a mobile bubble achieves a higher terminal
velocity [26]. From a practical point of view, bubbles in tap water are observed to be both mobile
and immobile bubbles [23,25]. As a bubble approaches the wall, a thin liquid-film forms between
the bubble and the substrate and the surface wettability does not change the bubble dynamics as
long as a thin film exists [27]. Previous research on a thin film between a bubble and a wall has
shown that the stability of a thin film strongly depends on the mobility of the bubble-liquid interface
[28], the surface roughness [29], or even oscillations of the wall [27].

Most previous experiments or simulations have been performed only with horizontal surfaces
[26,30-32] except for only a handful of articles for tilted walls to the best of our knowledge [33-37].
Studies for spherical-cap bubbles [33] and spherical bubbles [34] showed different bouncing
and sliding behaviors of a bubble on a tilted wall. However, these previous studies focused on
experimental observations and used scaling arguments rather than solving coupled macroscopic
and microscopic equations. Furthermore, a lift force is not considered, which is important for
understanding the bubble bouncing behavior. Later, Podvin et al. [35] used a lubrication theory to
describe a thin film layer formed between an immobile bubble and a tilted wall without taking into
account a lift force. There have been some two-dimensional numerical simulations investigating the
effect of the Reynolds number, Bond number, and a wall angle [36,37]. But no detailed description
or explanation of a thin film profile was reported in these studies. In addition to the bouncing
stage, many studies have been dedicated to the sliding motion of the bubble in which the normal
component of velocity goes to zero and the bubble slides along the wall due to buoyancy force. In
fact, the dynamics and asymmetric shape of a thin film might play a key role in sliding dynamics
according to many studies of a similar effect of an asymmetric shape of a bubble or a droplet on its
motion in a Hele-Shaw cell [38,39], on a tube wall [40], and over a solid wall [41-43]. In summary,
the effect of an asymmetric thin film and lift force on an impacting three-dimensional bubble can be
crucial in understanding bubble-wall interactions.

To remove any substance including biofilms from a wall, scrubbing action with shear force is
required. The magnitude of shear force to remove biofilms strongly depends on the physical and
chemical properties of the wall surface and attached bacteria [44—47]. For example, in a laminar
flow without the presence of bubbles, Escherichia coli needs a shear stress of 0.03 — 5 (Pa) to get
detached from hydrophobic substrates [45], while this shear stress varies in the range of 24—144 (Pa)
for removing Listeria monocytogenes from a stainless steel surface [48]. But in case of having the
bubbles in fluid flow, Sharma et al. [7] reported that the presence of microbubbles in the channel
increases the detachment rate of A. naeslundii bacteria from 40% to 98% [7]. This is in line with
recent study in bubble-induced detachment, which shows air bubbles inside the channel can increase
the detachment of a Staphylococcus aureus strain up to 80% [49]. Furthermore, it has recently been
shown that the mechanical stress of fluid flow can be an important factor in forming a biofilm and
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act as a trigger for biofilm development [50]. Hence, shear flow induced by bubbles near the wall
can play a key role in forming biofilms and cleaning of microcontaminants from the solid substrate.

In summary, most of the previous studies on bubble dynamics have focused on the impact of a
bubble on the horizontal wall. To our knowledge, very little attention has been given to numerical
simulation and modeling of the shear force generation of mobile bubbles on inclined solid walls.
Hence, in the present study, we investigate the dynamics of a bubble interacting with an inclined
surface at various angles. Section II describes the experimental setup used to generate a bubble and
observe its interaction with a solid glass substrate at different angles. We numerically compute the
dynamics of a bubble impacting a tilted surface using force balances as described in Sec. III. First,
we numerically solve the governing equation of a thin liquid layer between bubble and wall and
compare the results with our experiments. The following Sec. IV compares the experimental and
numerical simulation results. We also discuss the application of a bubble impacting by calculating
the shear stress generated by the bubble on the wall surface. Our conclusion will be discussed in
Sec. V by comparing generated shear stress with minimum shear stress required to clean bacteria
from the surfaces.

II. EXPERIMENT SETUP
A. Bubble-impact chamber

We designed an experimental setup to study the dynamics of bubble-wall impact. An acrylic
container with a dimension of 10 x 10 x 12 cm was filled with distilled water. Then we fixed a glass
microscope slide after it was cleaned using ethanol (70%) solution, as shown in Fig. 1. To study the
effect of a bubble-impact angle, we changed the inclination of the glass plate from 0° to 42°. A glass
needle with a diameter of approximately 50 wm was used to generate a single bubble, which was
manufactured using a Flaming/Brown Micro-pipette puller (Sutter Instrument P-1000). A controlled
flow was used to inject air to generate bubbles using a syringe pump (NE-1000 Programmable
Single Syringe Pump). The radius of the injected bubbles was about R ~ 520-550 um. The motion
of a bubble was recorded at 4000 frames/sec using a high-speed camera (Edgertronic SC2+).
Figure 1(a) shows a schematic of the experimental setup used with a rising bubble.

High Speed
Camera

FIG. 1. (a) Large-scale schematic of a bubble rising and impacting a tilted surface; (b) zoom-in schematic
of a bubble impacting a substrate with a coordinate system; (c) a liquid film between a bubble and a wall is
squeezed and deformed due to the bubble impact.
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For each experimental condition, five repeated trials were conducted to check the statistical
significance of results. A rising bubble accelerates from the rest position at the tip of the needle
and rises toward the wall while it reaches a terminal velocity before its impact with the wall. During
the rising stage, the Reynolds number Re = 2pRV /. was found to be approximately 300 in our
experiment, where p is the water density, R is the bubble radius, V is the bubble velocity, and u is
water viscosity. Also when a bubble slides along a tilted wall, the Reynolds number can change in
the range 40—-120 depending on the tilt angle. Moreover, during the rise, the Bond number (Bo =
ApgR? /o), the Weber number (We = pV?2R /o), and the Morton number (Mo = g u*Ap/p?0?)
were measured to be 3.3-3.7 x 1072, 1.2-1.3, and 2.62 x 10~'!, respectively.

B. Particle image velocimetry

A similar setup was used to conduct particle image velocimetry (PIV) tests for capturing a
vorticity structure around the bubble. But the box size was reduced to a smaller one (5 x 1 x 8 cm)
to make sure that we can have enough particles in the plane of a bubble movement. For flow
visualization around a bubble, 10 um diameter hollow glass spheres (Dantec Dynamics 80 A6011)
were used, the same as in [51]. The bubble(R ~ 550 um) is released from the glass needle
(a diameter of approximately 50 um). A halogen lamp (Lowel Pro-light) was placed as a backlight
to capture the particles’ movement. Also, image sequences were recorded by a Photon camera
(FASTCAM Mini UX) at 4000 frames/sec, and the PIVIab software [52] was used to track the
particle motions around the bubble. The multipass, multigrid window deformation technique with
two passes and Gaussian subpixel fitting have been used, ensuring enough particles were in the
initial pass (64 x64 pixels) [51]. Here, by assuming a continuous liquid phase inside the bubble,
we estimated the imaginary point vortex (w,) at the bubble center from the circulation [I'(¢)]
around the bubble. Specifically, the vorticity, w,, was calculated from the tangential velocity, u;,
using the relation I'(¢) = f02 R Usds = wanz. Here s is a coordinate along a closed circle and u;
is the tangential velocity along the curve. To implement the vorticity in our numerical model, we
assume that vorticity follows a Gaussian distribution as w, = wg exp[— (¢t — #.)?/C] where wy, .,
and C are parameters obtained from PIV experiments.

III. THEORY

To describe the dynamics of a bubble near the tilted wall, all fluid forces that act on the bubble
should be taken into account. Buoyancy force drives a bubble toward the wall due to gravity and a
density difference. Drag force always acts in the opposite direction of the bubble movement, which
originates from pressure gradient or viscous resistance in the liquid. Also, we take into account an
added mass as a result of either accelerating or decelerating motions of the surrounding fluid. As
a bubble impacts and squeezes a liquid film between the bubble and the wall, the thin liquid layer
exerts resisting force against the bubble [26]. A history force takes into account the effect of vorticity
diffusion around a bubble as it changes its velocity [53]. In the previous studies, it was shown that
the order of magnitude of the history force in clean bubbles (mobile interface) is smaller than that
in contaminated bubbles (immobile interface) or solid spheres [54,55]. So we can assume that the
history force on a clean bubble at finite Re is negligible as assumed in other similar studies [26,56].
In this study, we modeled and emphasized the effect of lift force around a bouncing bubble. Lift
force has been discussed in many cases of the rising bubbles along a vertical wall [57,58]. However,
to our best knowledge, the effect of lift force on a bubble bouncing a tilted wall has not been studied.
In this section, we will go over all these forces in detail.

A. Buoyancy force

A bubble rises toward the wall due to the buoyancy force, which depends on the gravity
and the density difference between air and water. The buoyancy force on the bubble can be
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expressed as

FyY = pgQsin(9)e,, (1)
FY = —pgQcos(8) ey, )

where Q = ‘3—‘7tR3 is the bubble volume and é, and &, are the parallel and normal components of a
wall coordinate system depicted in Fig. 1(b).

B. Drag force

There have been many studies investigating drag force depending on many factors such as the
interfacial mobility, the Reynolds number, and the distance to the wall [26,57-61]. To determine the
surface mobility of a bubble, we measured the terminal velocity of the freely rising bubble in our
experiments, which is on the order of V7 ~ 29-30 cm/s. This is in a good agreement with reported
studies for a mobile bubble rising in water [26,32]. Hence our bubble can be assumed to have a
mobile bubble-water interface condition.

For the mobile bubble at high Reynolds numbers with a finite distance to the wall, the drag
coefficient can be obtained assuming a potential flow as [59,62]

© 48 11N
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where the normalized stand-off distance is b = (H + R)/R and H is the distance between a bubble
surface and the wall. Then the drag force can be determined as

EY = —%CS‘)(b) Re uRU ., )
FY = +%cg>(b) Re RV 2,. ©6)

C. Thin film force

A thin layer of a liquid is formed between a bubble and the wall as shown in Fig. 1. The film
thickness, #, is on the order of a few micrometers. If the thickness goes down to the nanometer scale,
it can lead to a thin-film rupturing event onto the wall [63,64]. However, based on Ref. [26], a liquid
thickness remains on the order of micrometers during the bouncing stage, and a stable liquid film
plays a crucial role in the motion of the bubble. To obtain a pressure distribution on a bubble-water
interface, the normal stress, T, is balanced with the surface tension, o, as [65] T -n =0V -in +
‘;—‘S’ f, where 7 and f are the normal and tangential unit vectors to the interface, respectively. The

normal vector 7 can be expressed as i1 = —%éx +eé, — ';—’Z’ é,. With a small-slope assumption of
|Vh| « 1, the curvature (V - 1) can be approximated as —V?A. Hence, the pressure difference inside
a thin film becomes [35]
P-=2—0—0<82—h+82—h> (7)
TTR a2 8z2)

Here we assume that thin film dynamics are governed by a lubrication approximation (i.e., the
Stokes-Reynolds equation). Then we calculate the thickness profile of a thin film as [66]

oh _ dh 1 3 (9P 1 9 (aP
—=U—+ — (L) + ——(=Ln*). ®)
ot ox  3udx\ ox 3udz \ 0z

043603-5



ESMAILI, SHUKLA, EIFERT, AND JUNG

FIG. 2. A reminiscent wake flow behind a rising bubble makes the bubble rotate during the bouncing stage.

where U = Vr sin(6). We can solve Egs. (7) and (8) simultaneously using appropriate boundary
conditions [P =0 and dh/dt = —V = —Vrcos() at x = £1.2R and z = £1.2R as shown in
Fig. 1(c)]. Consequently, by having the pressure distribution and thickness of a thin film, the force
of a thin film onto a bubble can be obtained by

dh
FP = //(Pf~nx)dxdzéx = —//Pf_dXdZéx’ ©)
A A d.x

FY = //(Pf.ny)dxdzéy = /[ Pydxdze,. (10)
A A

D. Added mass force near a wall

Next, the added-mass terms are considered since a bubble moves unsteadily near the wall. Added-
mass coefficients are C,‘,L (parallel to the wall) and Cj; (perpendicular to the wall). Then the inertia
force of a rigid bubble becomes as reported in Ref. [67]

FO _ _d(pCLQU)
o mt T

dt o
d(pCLQv) 1[d(pCl Q) d(pCLQ)
FO =2 m2 2+ 2 =2 y? n22y2 e, 11
! AT T & (1n

Here C) and C;; depend on the bubble shape or the stand-off distance [31,59,67,68]. We will use the
added mass coefficients depending on the bubble shape as C! = C+ =C,, = 0.62x —0.12 [31].
We use x as the ratio of the major to minor lengths of a rising bubble that is defined as y =
(1 — 1.171 +2.74)2)/(0.74 + 0.451), where . = R/R, and Ry is chosen to be 1 mm [26]. We will
also study changes in the added mass coefficients, depending on the distance from the wall as [68]

CE =0.5+0.19222 57" 1 0.06214 b~5*3! 4 0.0348 H*% +0.0139 1207,
Cl = 0.5+ 0.09608 b +0.0194 b~°° 4+ 0.00546 b2, (12)
where the normalized stand-off distance b = (R + H)/R.

E. Lift force

When a bubble rises, a wake is created behind and follows the bubble. Shortly after the bubble
bounces off from a wall, the bubble is pushed in an angle depending on the wall orientation. Then
the reminiscent rising wake keeps flowing around the bubble and generates a shear flow as illustrated
in Fig. 2. Consequently the flow field around the bubble would produce a lift force which can make
the bubble migrate laterally in the x direction.

To estimate the lift force, the effect of vorticity, @, is taken into account as [69]

FL=CpQaxV, (13)
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where the bubble velocity is \7 = (U, -V, 0), the fluid vorticity at the center of the bubble is o=
(0,0, w,), and Cy, is the lift force coefficient. Previous studies addressed how a lift force of a bubble
depends on various parameters such as an interfacial mobility, the vortex structure, the Reynolds
number, and the bubble-wall distance [57,58,69-72]. Even though to our best knowledge there are
no analytical expressions available for C;, of a clean bubble impacting the wall at moderate Reynolds
numbers, we found that C;, for a clean bubble in a shear flow can range from 0.3 to 0.75 [69,71]. With
the range of our conditions (Re = 50-140, maximum impact deformation = 1.12 Rand x ~ 1.5), it
has been shown that a lift coefficient can be considered as a constant [71,72]. Hence, it is reasonable
to assume a constant lift coefficient for clean bubbles in our study. The lift force in the x and y
directions will be

FY =CpQVaw.e, FY =CLpQUao,e, (14)

where V is positive when a bubble is moving towards the wall.

F. Force balance

By combining all forces described above (i.e., buoyancy, hydrodynamic drag, inertia with the
added mass, film pressure, and lift force) in the x and y directions, we can get governing equations as

olc dUu d(CmH)VU
PR ar T Tam
_ T o dh
= pgQsin(0) — €y Re uRU — [ Pr——dxdz+ CLoQVo:, (15)
A X
av. 1 d(Cu1) o  dCyy), »
QCu— + | - Vit ——U
p{Ldt+2[ a0 T an

= pgScos(6) — %cg) Re wRV — // Py dxdz — CppQUw,. (16)
A

To calculate U and V of a bubble’s centroid, we need to solve two differential equations (15)
and (16) numerically. In addition to the two unknowns U and V, the pressure inside a thin film,
p, should be numerically computed. The thin film pressure and the bubble velocities are coupled
through Eqgs. (7) and (8). Similar to the previous work, a square computational domain has been
used to represent a thin film area between a bubble and the wall [35], where a half of the domain size
is 1.2R. Since the maximum half-width of a deformed bubble is larger than its original radius, we
chose the computation domain of 1.2R throughout simulations. The domain is divided into N x N
nodes, and Eqgs. (7) and (8) are discretized using a finite difference method. An initial condition
for a thin film to solve Eq. (8) is assumed to be a parabolic distribution as ho(x, z) = Hy + (x> +
z2)/(2R) where H, is an initial distance between the bubble surface and the wall. Also, on the
outer boundary at x = +1.2R and z = %1.2R, thin film pressure goes to zero, Py = 0, and the film
thinning rate is assumed to be the normal speed of a bubble, dh/dt = —V . Hence, N x N nodes in
addition to Egs. (15) and (16) were solved using a MATLAB odel5s solver. A similar numerical
method has been reported previously [26,31,35,73]. Also, the mesh independency has been tested,
which results in no significant change in the bubble motion for the following number of nodes:
75 x 75,105 x 105, 135 x 135. In this study, N = 105 x 105 has been used to calculate the bubble
velocity profile except for Sec. IV D, where we increase the number of nodes to N = 135 x 135 to
a better resolution in calculating the shear stress on the wall.

It is also worth mentioning that the current method of using both the lubrication approximation
for a thin film and the potential theory for a bubble motion has been investigated by many other
researchers, showing good agreement between computational results and experimental observations
[26,31,35]. This current method will ensure to have all the forces to be continuously computed to
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simulate a bubble motion over an entire course of time without any discontinuity. The minimum
Reynolds number is about 50 even when a bubble has zero normal velocity. But the Reynolds
number stays around a few hundred most of the time, which ensures the validity of the potential
theory. For the lubrication approximation, when a bubble is away from the wall, this approximation
is not valid theoretically. However, the film force based on the lubrication approximation is close to
zero while a bubble is away as shown below in Fig. 9. Hence, the final bubble kinematics will not
be affected even though we keep the lubrication approximation over the entire time.

G. Numerical methods

To understand and characterize the bubble-wall interaction with a tilted wall, force balance equa-
tions shown in Eqs. (15) and (16) are solved numerically. We perform three different simulations
to study the effect of lift force and different added mass coefficients and compared them with
experiments. In the first model, we neglect the lift force and consider only added mass coefficients
depending on the bubble shape (C,, = 0.62x — 0.12). Before bouncing, the shape parameter, x,
is calculated as described in Sec. III D. But after the first impact, we assume the bubble is almost
spherical i.e., x = 1 [26] and C,, = 0.5. The second model considers the added mass coefficients of
a sphere depending on the wall distance [Eq. (12)], while we still do not consider the lift force effect.
For the third model, we include the lift force just between the first to second impact [Eq. (14)], while
the added mass coefficients depend on the bubble shape (C,, = 0.62x — 0.12, x = 1). In the above
three models, we set an initial distance to the wall to be 3.3 mm and assume that the bubble has
already reached to its terminal velocity of V; =~ 30 cm/s.

IV. RESULTS

A. Parallel and normal velocity of a bubble

Figure 3(a) shows different image sequences of a bubble interacting with the solid wall at an
angle of 18°. A dotted blue line indicates the trajectory of a bubble centroid from t = —3.5 ms
to 55.5 ms. At the time of t = —3.5 ms, the bubble has already reached its terminal velocity of

(a)
t=-3.50 ms

(b)

t=-5.50 ms

FIG. 3. A bubble impacting a wall. (a) A bouncing bubble from a tilted wall at 18°. The blue dotted line
shows a trajectory of the bubble centroid, and the light green dot shows the centroid at a given time; (b) a
bubble impacting a horizontal wall.
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FIG. 4. Velocity profiles of a bubble with R = 520-550 um at five different tilted angles. (a) Parallel
velocity, (b) normal velocity. The reference time is the impact time, and all velocity profiles are shifted to
start at time 0. For each angle, an error bar is calculated by the root-mean-square deviation method for five
trials over the time. Then average error bar of all angle is plotted at left corner.

Vr =~ 30 cm/s. After the bubble rises toward the wall, it impacts the surface at t = 0. As a result, a
thin liquid film gets squeezed between the solid wall and the bubble, which results in increasing the
pressure in the film. Such high thin film pressure pushes the bubble away from the solid wall, and
the bubble bounces off. Therefore, the bubble accelerates, moves away from the wall, and reaches
its maximum distance from the wall. When the bubble gets away from the wall, we can assume the
thin film force and the wall effects are negligible and buoyancy force pushes the bubble back to the
wall again. As the bubble approaches the wall, the normal velocity keeps descending, and the bubble
impacts the surface for the second time at #r = 23.75 ms. A similar bouncing process is repeated for
three times or more. Later, as the bubble dissipates its kinetic energy, it slides along the wall.

To elucidate the effect of the wall angles, Fig. 4 shows the parallel and normal velocities of the
bubbles (U and V) with a radius of R ~ 520-550 pm for different inclinations of the wall. Here
the error bar is estimated from the standard deviation of five trials on the same configuration. With
an increase in the wall inclination, U velocity of the bubble increases, although V velocity slightly
starts to decrease, showing more buoyancy force [F; ~ pgQ2sin(8)] has been transferred to the x
direction. Also, normal velocity profiles in Fig. 4(b) shows that the period between two impacts
expands as the wall angles increases, mostly due to increasing of U velocity.

B. Numerical results

Figure 5 shows the comparison of three models with experimental velocity profiles for the case
of the wall at an angle of & = 18°. Gray circles denote experimental results, and experimental error
bars are shown in the left-top corner in black based on twice the standard deviation of five runs. The
first and second models (pink and green lines) investigate the effect of added mass on the bubble
dynamics, considering the higher order terms to added mass coefficient (green line) does not lead to
accurate prediction for U velocity. Indeed, Eq. (12) has been derived for a sphere moving in ideal
flow field [68] but might not be valid in our case due to rotational flows around the bubble. However,
as shown in Fig. 5, the simulation including a lift force (the blue line) results in good agreement with
the U velocity component compared to other models. This explains that when a bubble moves away
from the wall, V < 0, the x component of the lift force in Eq. (14) acts as an extra drag on the bubble.

To obtain the bubble vorticity for applying in the third model (the blue line), we performed the
PIV experiments as the bubble rises and impacts the wall at an angle of & = 18°. Figure 6 shows
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FIG. 5. (a) Parallel and (b) normal velocities of a bubble R = 550 ;«m impacting a solid wall at an angle of
0 = 18°. Gray circles are the averaged velocity of five experimental trials, and the corresponding error bar of
twice the standard deviation is shown on the top-left corner in blue.

different snapshots of our PIV tests, revealing a strong clockwise rotation of particles inside the
gap between the bubble and the wall as the bubble bounces off from the surface. In Fig. 7(a) the
vorticity distribution around the bubble bouncing from the wall is shown. In Fig. 7(b) experimental
results have been fitted with a Gaussian distribution, w, = wg exp[—(t — t.)?/C], with the following
parameters: wp = 90.30 s7!, . = 9.07 x 1073 s, and C = 6.16 x 107> s?. We simulated our force
model, Egs. (15) and (16), with different C; as shown in Fig. 8(a). C; = 0.5 is in better agreement
with our experiments than other C;, values (0.3 and 0.75). To check the sensitivity of our vorticity
measurement, the parallel velocity of the bubble with C;, = 0.5 was plotted in Fig. 8(b) with 95%
confidence intervals of the fitted vorticity.

C. Lift force on a bouncing bubble

To simply explain the numerical results in the previous section, we use a scaling argument to
derive the order of magnitude of the lift force and its effect on the bubble dynamics. First, we

FIG. 6. Particles are scrubbed off from a wall by a bubble bouncing and rotating in the clockwise direction,
0 =18°.
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FIG. 7. (a) Vorticity structure around the bubble, obtained by a PIV test; (b) vorticity, w,(t), is calculated
from the circulation around the bubble; two trials (PIV1 and PIV2) in the case of # = 18° and R =~ 520 um.
The vorticity is related to circulation as I'(f) = w,(t)w R*> where circulation is measured around the bubble on
different closed paths by I'(t) = [ u,(t) ds. Circles represent the average vorticity obtained by calculating the
circulation along several closed paths with distances of 1.1R 1.2R, and 1.3R from the bubble center. The black
line is a fitted Gaussian distribution [w, = @ exp(—(t — t.)>/C)], which is used in a lift force model. The
best-fitted parameters are wy = 90.30 s~', . = 9.07 x 103 s, and C = 6.16 x 10> s> with 95% confidence
intervals [83.78, 96.75] s, [8.50 x 1073, 9.63 x 10~3] s, and [3.80x 107%, 8.52 x 1073] s2, respectively. Not

enough data are available as the bubble gets close to the wall due to difficulty in tracking the particles in the
gap between the bubble and the wall.

will estimate the order of magnitude of vorticity that is formed when a bubble bounces off. Then
the interval between two impacts will be calculated, which roughly shows the timescale that the
vorticity affects the bubble motion. Finally, by obtaining the magnitude of the generated vorticity
and the timescale, the order of magnitude of the lift force and its effect on U velocity will be evolved.

1. Vorticity

As we explained in Sec. III E, a wake flow behind a rising bubble rotates around the bubble as
it bounces away from the wall, and this can shape the vorticity structure around the bubble, leading
to the lift force (Fig. 2). To approximate the velocity of flow behind the bubble, we use potential
theory mainly due to high Reynolds number and the low aspect ratio during rising in our study
(x ~ 1.17). However, it is worth noting that when a bubble deforms significantly (large aspect ratio

~
Qo

N
~
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~

14 14
~ o ~— o
é 12" : ® Experiment 6 = 18 ‘ \;, 12 , ® Experiment 6 = 18 ‘
3; 10 o 3; 10 CL=05
2 VW a Z
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2 2 o
i C1=03 3 4
< _ <
5 0 CL=05 5 ol 95% confidence interval
N CL=0.75 . L of vorticity

0 50 100 0 50 100
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FIG. 8. (a) Parallel velocity of a bubble for several C; values; (b) parallel velocity of the bubble (C;, = 0.5)

with 95% confidence interval for vorticity fitting. The bubble (R = 550 um) is impacting a solid wall at an
angle of 6 = 18°.
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~2), the potential theory is not valid any longer [74] and the wake structure behind the bubble could
lead to a helical or zigzag motion [75]. Based on the potential theory, for a sphere with constant
velocity, V7, the radial velocity component is derived as u, = d¢/dr = V7 (R/r)? cos(y) in which
r is the distance from the bubble center and y is the angle from the axis of symmetry. For the
distance of » ~ (2R — 3R) behind the bubble, the velocity scales as u, ~ (0.03-0.12)Vr. Since this
velocity rotates around the bubble during the bouncing stage, we can assume the tangential velocity
around the bubble is on the same order of magnitude as the velocity in the wake flow behind the
bubble (u; ~ u,). Now the circulation around the bubble can be calculated as I" = f us ds, which
allows us to estimate the vorticity at the center of the bubble using the following relation: I'(t) =
w.mTR? = [ uy ds. Consequently, the vorticity at the bubble center scales as @, ~ u,/R. In our study,
for the terminal velocity of Vy &~ 30 cm/s and radius of R &~ 550 um, the generated vorticity can be
obtained as w, ~ (16-65) s~!, on the same order of magnitude with PIV experiments [Fig. 7(b)].

2. Frequency of bouncing

Here we define the frequency of bouncing as an inverse of the period between two impacts. We
divide it into two periods, At ~ At; + At,. The At corresponds to the time that a bubble is pushed
back by thin film force while A#, shows the later time when the effect of the thin film force vanishes
and buoyancy and inertia forces form the bubble dynamics. During the At, the inertia and thin film
forces are dominant [26], so we simply balance them in the y (normal-to-wall) direction and get

pCn2dV /dt ~ prR*. (17)

By approximating the pressure as p ~ ¢ /R and acceleration as dV/dt ~ (V,)/At,, where V, is the
maximum bubble velocity after bouncing, the following timescale is obtained: At} ~ pC,QV,/moR
represents the timescale for the bubble to get to V, from rest during the bouncing. If we choose the
V. to be on the order of the bubble terminal velocity (V, = V; &~ 30 cm/s), then At is on the order
of ~(1-2) ms, which is much smaller than the bouncing period observed in experiments (roughly
between 20 and 25 ms). It means that the thin film can affect the bubble only early during the
bouncing. Then, for the later period At,, the thin film force is negligible, and the bubble moves
along the following path: the bubble starts to slow down from V, as thin film force diminishes, and
the buoyancy force acts against the bubble motion. Following that, the bubble velocity gets to zero
at its maximum distance from the wall. Then the bubble changes its direction, and starts to get
accelerated towards the wall again due to buoyancy force. It has to be mentioned that there is a short
period before the bubble impacts the wall where a thin film force is dominant again. However, as we
have shown before, it is on the order of Af; and is smaller compared to the frequency of bouncing.
Also, the drag force is negligible due to small bubble velocity over the period Af,. So balancing
the inertia with the buoyancy force in the y direction, [pC,,2(2V,)/At, ~ pgS2 cos 6], shapes the
dynamics of the bubble. As a result, the inverse of the bubble frequency can be obtained as Ar ~
Aty ~ 2C,,V,/gcos(0), which is about 30 ms close to experimental measurements (20-25 ms).

3. Lift force effect

In Fig. 5 we showed that including the lift force after the impact results in better prediction of U
velocity of the bubble. Here we estimate the order of magnitude of the lift force in the x direction,
explaining how U velocity is changed due to the vorticity formed during the impact (w, ~ u;/R)
where u; ~ (0.03-0.12)Vr. Based on Eq. (14), the lift force in the x direction (C p 2V w,) can act as
an extra drag when the bubble moves away from the wall, V < 0. We consider half of the bouncing
time, At3 ~ At /2 ~ C,V,/gcos(f), as a time that the bubble velocity is negative (V < 0) and the
bubble is bouncing away from the wall. By balancing the inertia force with lift force in x direction
[pR2C,, dU/dt ~ pQ2CLw,V,/2, (V,/2) is an average normal velocity since it varies linearly from V.,
to 0], the following expression for velocity change can be derived: AU/At; ~ aCy/C,,V?/2R. Here
AU is achange in velocity due to the effect of forming vorticity around the bubble. If we assume that
the lift force and added mass coefficients are on the same order of magnitude (C; ~ C,,), the radius
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FIG. 9. Forces in x and y directions for the bubble at &6 = 18°. The results are for the model with constant
added C,, = 0.62x — 0.12 including lift force (blue line in Fig. 5). (a) Forces in the x direction; (b) forces in
the y direction.

is about R & 550 um, o ~ (0.03-0.12), V, &~ 30 cm/s, and 6 ~ 18", then AU can be estimated to
be 4-15 cm/s, which is on the same order of magnitude as a change in U velocity during the first
impact in Fig. 4(a).

Figure 5 shows the vorticity generated around the bubble plays a crucial role in the bubble
velocity in the x direction. In the case of normal velocity, V, all three models are in good agreement
with experiments, while in the x direction, the only model with lift force is accurate enough. It can
be due to the order of lift force in the x and y directions. In fact, the ratio of lift force in the x and
y directions can be defined as F,/F, ~ U/V, from Eq. (14), showing if U velocity is small during
the bouncing compare to V/, the lift force in the normal direction can be small, F, ~ F.(U/V). More
importantly, the order of magnitude of inertia, thin film, and buoyancy forces in the y direction are
much bigger compared to the x direction (Fig. 9), making lift force even less important in the y
direction. That is why the bubble dynamics is less affected by lift force in y direction, while it can
play a key role in the x direction.

Figure 10 shows how a microscopic film between a bubble and a wall changes during the bubble
interaction with the wall of & = 18°. First, the pressure inside the liquid film slowly increases upon
the impact. Then, the high-pressure region spreads out radially, and a bubble dimple is formed
[76,77]. The dimple formation is a result of the faster drainage of a liquid near the edge of a film
than that of a liquid at the center. As shown in Fig. 10, the asymmetric shape of a film is observed.
While the bubble is approaching the wall during 1 = —0.86 ms to ¢ = 0 ms, two dimples are formed
at the left and right sides of the bubble, and minimum thickness occurs at the left side of the bubble.
But as the bubble bounces during t = 0 to¢ = 1.2 ms, the film location with the minimum thickness
shifts to the right side of the bubble. Such an asymmetrical profile can lead to the tangential thin
film force introduced in Eq. (9) and an extra drag.

After several bounces, a bubble starts to slide along the wall as its normal velocity goes to zero
(if 0 < Ogritical = 55° £5°) [34,35]. Here we briefly investigate the terminal velocity of mobile
bubbles, sliding along a tilted wall at different angles. It has been shown that a sliding bubble
experiences more drag compare to a freely rising bubble [34,60]. In the case of high Reynolds
number bubbles, the overall drag coefficient of Cp &~ 100/Re has been reported for 45 < Re < 200
[34], approximately twice bigger than a freely rising bubble in unbounded liquid (Cp ~ 48/Re)
[34]. It also has been shown that a viscous force of dynamic meniscus should be taken into account
[41,42]. In Fig. 11 we compare the terminal sliding velocity of the bubbles with experimental
values for different tilted angles, showing a good agreement between numerical and experimental
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FIG. 10. Thin film profiles for a bubble with R &~ 550 um during the impacting and bouncing stage at the
wall angle of & = 18°. X is normalized by the size of the domain.

velocities. In fact, in this study, a deformable bubble-liquid interface enables us to determine
the asymmetric shape of the thin film, A(x, z, ), and consequently the tangential thin film force

(= [[, P9 dx dz).

D. Shear force and shear rate

Fluid motions near a wall can generate normal and shear stresses at the surface, possibly enough
to remove biofilm from the wall. In this section, we investigate the shear stress induced by an
impacting bubble on the wall. When a bubble approaches a wall, a thin fluid layer between the
bubble and the wall is squeezed out from the center. Later, when the bubble gets away from the
wall, the fluid is sucked back in to fill the gap. Both squeezing and suction processes generate strong
shear rate and stress on the wall as the bubble approaches and bounces away. Here we calculate the
velocity profile inside the thin film in order to measure the generated shear stress on the wall. Based
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FIG. 11. Experimental and simulated sliding velocities of a bubble at different wall angles.
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on our assumptions in Sec. III C, fluid velocities in x and z directions are hyperbolic as

L L APy [y?
v =~ <y——hy>—U, (18)

noox \ 2

1 3P; (y?
@ (Y _, 19
v e (2 y)- (19)

Here, with a lubrication approximation, we neglect the normal component of velocity, v®) = 0.
Then the shear stresses on the wall can be derived as

vy opP

T = ,,L< e ) — 2t (20)
ay y=0 0x
0 0P

1@ = M(ﬁ) = _h—L. 1)
ay y=0 0z

Figure 12 shows how shear stress along the x direction (z,,) propagates as a bubble with radius
R =~ 520 pm impacts and bounces away from the horizontal wall, & = 0°. In Figs. 12(a) and 12(b),
as the bubble moves toward the wall, we observe that the peak of shear rate radially propagate
outward, as well as the position of a dimple [Fig. 12(c)]. But then it retreats back inside as the
bubble bounces back [Figs. 12(e) and 12(g)]. To evaluate the order of magnitude of shear stresses
generated during the bubble interaction with the wall, we plotted the maximum normal pressure
and shear stress in the x direction, ty,, for two different wall inclinations, Figs. 13(a) and 13(b). To
capture the high resolution of shear stress dynamics, we choose the time step of (At = 1 x 107 s)
during the bouncing process. As shown in Fig. 13, for each approach-retract motion, two peaks in
the pressure and shear stress have been formed. Two correspond to approach and retract moments,
for example, the period of (~—3 <t < 2) in Fig. 13(a). The peaks can get to 210 Pa and will be
explained latter by scaling arguments. Also, Fig. 14 shows that the maximum shear stress generated
during both the first impact, and the sliding stage increases with the wall angle. For example, on the
wall of 6 = 42°, the shear stress reaches up to 307 Pa during the first impact and 44.5 Pa during the
sliding stage.

Moreover, our study shows no significant effect of a lift force on the maximum and sliding shear
stress. For example, in the case of the wall angle of 18° we found a less than 2% difference between
the maximum shear stress with a lift force and the one without a lift force; the shear stress without
a lift force, 211 Pa, is slightly higher than the one with the lift force, 209.6 Pa. Also, during the
sliding stage, there is no rotational flow around a bubble, so the lift force does not affect the shear
stress during the sliding stage either. Therefore, all cases in Fig. 14 have been simulated without a
lift force due to the insignificant change by the lift force.

1. Scaling argument

Here we estimate shear stresses that can be generated during the bubble bouncing. Close to
the impact moment at ¢+ = 0, the schematic is shown in Fig. 12(d), the capillary-driven surface
deformation leads to the formation of two dimples. The dimple moves with v; velocity, which
can be defined as vy ~ /o /pR (capillary wave speed with the wave number of R~!) [78]. So we
can scale the shear stress as T ~ vy /h. By considering a bubble impacting the horizontal wall,
R =~ 520 and & ~ (5-10) um, shear stress of T ~ (37-74) Pa will be obtained, which is of the same
order of magnitude as the simulated value (tr ~ 30 Pa) in Fig. 13(a) at = 0.

By looking at the inset plot in Fig. 13(a), the second and sharper jump in shear stress emerges
right after the bubble bounces away from the wall. At this stage, due to the rising motion of the
bubble, the flow in the thin film is sucked toward the center, and two existing dimples start to move
inward. As they reach the center of the bubble and merge, the curvature of liquid profile changes
rapidly, pushes away the liquid, and generates larger shear stress on the wall [Fig. 12(h)]. We called
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FIG. 12. Shear stress (z,,) propagation and thin film profiles for the bubble(R ~ 520 um) impacting a

horizontal wall, 8 = 0. X and Z are normalized by the size of domain; (a)—(c) the shear stress formation and

thin film profile as the bubble impacts the wall; (d) the schematic of the bubble approaching the wall and

two dimples propagate toward the outside; (e)—(g) the bouncing stage; (h) the schematic of a thin film as its

curvature changes during the bubble bouncing from the wall, and two incoming dimples merge and result in a
rapid curvature change of the thin film, concave to convex profile from #, to t3.
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FIG. 13. Maximum normal and shear stress on a wall. (a) R =~ 520 um impacts on a horizontal surface,
0 = 0°; (b) R =~ 550 um impacts on a tilted surface, 6 = 18°.

this rapid change in curvature a flipping moment (concave to convex profile), in which the surface
energy of dimples is converted into the kinetic energy, even though part of it dissipates through
viscosity in the thin liquid film. To start the argument, we assume the surface energy of the interface
before flipping can be defined as a E; ~ on(r% + L?), in which r; is the size of the dimple before
flipping and L is the height from the dimple to the center part of the thin film [the schematic is
shown in Fig. 12(h)]. If we consider L ~ h, the surface energy can be rewritten as

E, ~ onri[l + (h/r)?]. (22)

To estimate the radius of the dimple, r,, we balance two Young-Laplace pressure terms in Eq. (7);
o /R ~ oh/r;. The result will give a location where the pressure crosses zero, close to the radius of

the dimple. Hence, we estimate the radius of the dimple as +/Rh.
To approximate the viscosity effect inside a thin film, we define the dissipation energy as

Ey~ f [(Vu) 1 dt ~ pu(u/hy*m (r2)*hAt, (23)
where Q; ~ mr,?h is the volume of liquid inside the thin film. Here u is the parallel velocity,
which can be approximated as u ~ vr,/2h using the mass balance and the normal velocity, v. Also,

At is the timescale of the motion of the bubble surface, which scales as At ~2L/v ~ 2h/v. By
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FIG. 14. Maximum shear stress generated during the first impact (M) and sliding stages (A) for several wall
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considering these scalings, the dissipation energy becomes E; ~ uvm(ry)*/(2h?). Here the net
energy of (E, — E;) will be transferred to the kinetic energy, E; ~ (1/2)pQ,v%. If we consider the
volume of a displaced liquid during flipping as the volume of a spherical cap, 2, ~ Z{énhr22[3 +
(h/ )?1}, the energy balance of (E; — E; = E}) leads to following quadratic equation for v:

%vth + (/)1 + pu(r )2/ (2h2) = o[l + (h/r)?]. 24)

For a bubble impacting horizontal wall [Fig. 13(a)] by considering r, ~ ~/Rh, u ~ vr,/2h, R ~
520 um, and h ~ 10 um, the scaling for the generated shear stress is obtained by t ~ pu/h ~
730 Pa, which is on the same order of magnitude as the shear stress in our simulation, ~200 Pa.
However, the value is a bit higher than the simulation one. One reason for the difference is due to a
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FIG. 15. Pressure profile inside liquid thin film as the bubble R &~ 520 um bounces away from the
horizontal wall.
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rough estimate of the dimple position of r, ~ ~/Rh based on a very simple pressure balance between
two terms in Eq. (7) (pressure profile inside thin film is shown in Fig. 15). It is worth noting that the
shear stress profile for the later part of bubble motions in Fig. 13(a) is in good agreement with the
previous study [79].

V. CONCLUSION AND DISCUSSION

In this study, we have investigated the dynamics of a rising bubble interacting with a wall and
calculated the shear stress that can be generated during this process. As a bubble impacts a surface,
a thin layer of fluid is formed between the bubble and the wall. Through the numerical model, we
simulated a profile of the thin liquid film which can give us both pressure distribution inside the
film and shear stress on the wall. Good agreement with experimental results has been obtained by
considering the lift force and asymmetric thin film profile. We showed that during the bouncing
stage, the generated shear stress inside the thin film can be up to the order of ~307 Pa. Such a
high shear stress has also been explained through the scaling law argument, in which a flipping
dimple during the bouncing stage leads to a rapid change in the interfacial curvature (change from
the concave to convex profile or flipping motion). Also, during the later sliding stage, the maximum
shear stress on the order of ~44.5 Pa has been calculated for a bubble moving along the wall with
0 = 42°. It shows that the bubble-wall interaction has a potential for removing the biofilm.

Due to shear or capillary force, fluid flows could remove bacteria from various surfaces
[45,48,80-85]. In practice, several parameters such as the type of bacteria and a surface, settling
time, and washing time can change the criterion of detachment. For example, in the case of E.
coli B/r cells, the critical shear stress of 0.03-5 Pa is needed to remove 99.5% of cells from
the polymer-treated glass or 65% of cells from the control octadecyl glass [45]. For Listeria
monocytogenes, the shear stress from 24 to 144 Pa is needed to eliminate bacteria from a stainless
steel surface up to 98% [48]. In Fig. 16 we summarize the critical shear stress (more than 50%
detachment) for five different types of bacteria to be compared with our simulation results for a
bubble impacting a tilted wall of 42°. In general, the generated shear stress of about 300 Pa is
enough to remove typical foodborne pathogens from surfaces.

It is worth noting that the applicability of our study with the assumption of clean bubbles. One
concern might be liquid contamination in real produce cleaning applications, while our study is
based on clean (mobile) bubbles for zero to low concentration of contamination. According to
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FIG. 16. Shear stress required to remove bacteria from a surface compared with the stress generated during
the bubble impact at 6 = 42°.
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previous studies [86—88], there is a range of concentration in a bulk fluid below which a bubble
interface can be considered as a mobile interface. The typical volume concentration of a bacterium
culture (Vpacteria/VBuik ~ 1.96 X 10~3) for foodborne disease studies based on real fruit biofilms
[89] is less than the critical concentration to be a mobile interface reported in the previous studies
[86-88]. In fact, even in our PIV test with micron-sized particles, we observed that the terminal
rising velocity was about 26.14 £ 1.04 (cm/s), which is much closer to the value of a clean bubble
rising velocity (29 cm/s [26]) as opposed to the value for contaminated bubble (around 10 cm/s
[26]). Another concern is the surface curvature and length scale of real fruit cases. The surface
curvature (inverse of length scale) is important only when the curvature is on the same order of
magnitude with the inverse of a bubble-bouncing distance. For a target fruit like tomato, which is
more than 5 cm in radius, radius of curvature is larger than the bouncing distance. So, even though
our study is on a tilted surface with a fixed angle, the effect of the wall curvature is not important
during a few bouncing motions. Therefore, we believe that our experimental and computational
study presented here is applicable to a device of using bubbles to clean real agricultural produce.
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