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Thermal convection in a cylindrical annulus with solid-body rotation and subject
to an inward radial heating is investigated by the linear stability analysis and direct
numerical simulation using the periodic boundary conditions. The Archimedean buoyancy
is neglected in order to investigate the properties of thermal convection induced solely
by the centrifugal buoyancy. The Coriolis buoyancy, which is usually neglected in similar
studies, is included in the flow equations. The critical state occurs in the form of columnar
vortices drifting in the retrograde direction. The critical parameters of these convective
columnar vortices are determined for different values of the radius ratio and the Prandtl
number (Pr). Instantaneous flow and temperature fields are computed for Pr = 1 in order
to investigate higher instability modes and chaotic states. The kinetic energy and the
coefficient of heat transfer by columnar vortices are evaluated for a large range of values
of the Rayleigh number.
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I. INTRODUCTION

Thermal convection in a rotating cylindrical annulus is encountered in turbomachinery where
the rotation acceleration may reach 104 times the acceleration of gravity g and therefore may
dominate the thermal convection in sealed rotating annular cavities [1,2]. In the steady-state
operation or during the take-off period of an aero-engine, the rotating shroud (i.e., the outer
cylindrical surface) is usually at a higher temperature than the inner cylindrical surface. Such a
temperature difference may generate convection induced by centrifugal buoyancy in the rotating
cavity under certain conditions. Buoyancy-induced convective flows introduce temperature and
pressure inhomogeneities on rotating parts and generate additional mechanical and thermal stresses
that might be estimated accurately when designing rotating machineries such as gas turbines [2].

Recently, Pitz et al. [3] performed numerical simulations of flows induced by centrifugal
buoyancy in a cylindrical cavity rotating rigidly with its endplates. They found well-defined
convection columns that drift relative to the rotating annulus and have a single azimuthal mode.
They identified a limit-cycle oscillation for low values of Rayleigh number and a chaotic motion for
its high values. Nevertheless, the nonlinear regime was not thoroughly described and the variation
of the heat transfer and of the kinetic energy with the control parameter were not presented in their
study.
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Centrifugal buoyancy in rotating flow systems may serve as an alternative driving force to
produce convective motion in a fluid and to enhance heat transfer in the microgravity environment
in connection with space exploration. Other alternative driving forces of the convection have
been investigated such as dielectrophoretic force induced by high-frequency voltage applied to a
dielectric liquid subject to a temperature gradient [4–6] or magnetic force due to the magnetic field
acting on ferrofluids under a temperature gradient [7].

Thermal convection in a solid-body rotating cylindrical annulus with an inward radial tempera-
ture gradient also represents the simplest model of the convection in geophysical fluid dynamics
[8–18]. In fact, near the equatorial zone, the spherical shell can be replaced by a cylindrical
annulus, so that the gravity is perpendicular to the rotation axis. In this case, the Archimedean
buoyancy competes with the centrifugal buoyancy, but the latter can dominate yielding columnar
vortices at the threshold of the convection depending on the values of the temperature difference
and of the rotation rate [10–13]. This thermal convection is controlled by two dimensionless
parameters [10]: the convective Rossby number Roc =

√
α�T g/�2d , which is the ratio between

the buoyancy to Coriolis forces, and the Ekman number E = ν/2�d 2, which is the ratio of the
viscous to Coriolis forces. In these expressions, α and ν are the thermal expansion coefficient and
the kinematic viscosity of the fluid, �T is the temperature difference, � is the rotation frequency, d
is a characteristic length, and g is the gravity acceleration. When Roc � 1, the rotation dominates
convection dynamics, while when Roc � 1, convection is almost unaffected by rotation. Busse
and co-workers [8,9,14–18] have ignored the Archimedean buoyancy and investigated linear and
nonlinear properties of thermal convection driven by centrifugal buoyancy in cylindrical annuli,
mostly using the small-gap approximation. They also conducted numerical and experimental
investigations in cylindrical annuli with conical endplates [17,18]. These studies were limited to
high rotation rates that reinforced the two-dimensional character of the motion according to the
Taylor-Proudman theorem [19].

The purpose of the present manuscript is to investigate the thermal convection induced by
centrifugal buoyancy in the spirit of Busse’s work and to include the effects of Coriolis buoyancy in
a rigidly rotating cylindrical annulus with an inward radial heating. While the effects of the density
variation in the centrifugal buoyancy have been considered in previous studies [8,9,15–17,20], the
density variation in the Coriolis force term has been neglected even for high-rotation rates. In the
present study, we assume that the density is constant everywhere except in the terms of centrifugal
and Coriolis forces. In fact, for relatively large values of rotation rate, we will show that the Coriolis
buoyancy may become significant and modify the flow dynamics. We will determine the critical
parameters of the thermal convection (threshold, wave number, frequency) using linear stability
analysis (LSA) for different values of the radius ratio (η), buoyancy parameter (γa), and Prandtl
number (Pr). We present direct numerical simulation (DNS) results for two values of η (η = 0.5, 0.8)
and three representative values of Pr: Pr = 1 for gas (e.g., water steam), Pr = 10 for intermediate
viscosity liquids such as water at low temperature or light organic liquids, and Pr = 100 for high
viscosity liquids such as transformer oils. DNS will then be used to detect higher instability modes
and to compute the flow kinetic energy and heat transfer coefficient on the inner cylinder for η = 0.5
and Pr = 1.

The manuscript is organized as follows. The next section contains the problem formulation with
the flow equations. The LSA and corresponding results are described in Sec. III. Section IV consists
of the description of the DNS method and the results on the nonlinear behavior of flow patterns:
higher modes, kinetic energy, and heat transfer. Discussion of the results is provided in Sec. V and
the last section contains the conclusion.

II. PROBLEM FORMULATION

We consider a cylindrical annulus of radius ratio η (=ri/ro) and length L which rigidly rotates
about its axis with the angular velocity �� (=��ez ), as shown in Fig. 1. The annulus is filled with a
Newtonian fluid of kinematic viscosity ν, thermal diffusivity κ , and thermal expansion coefficient
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FIG. 1. Flow geometry: A cylindrical annulus in solid-body rotation about the z axis with inward heating
(To > Ti).

α. The inner and outer cylinders are held at uniform but different temperatures Ti and To(>Ti ),
respectively, yielding a radial temperature gradient acting on the fluid with an inward heat flux. We
use a Boussinesq-type approximation, in which we keep the linear temperature dependence of the
density [i.e., ρ = ρ0(1 − αθ )] in terms involving centrifugal force and Coriolis force. The quantity
θ = T − Ti is the deviation from the inner cylinder temperature Ti.

Under these conditions, the governing equations written in the rotating frame of reference with
an angular velocity �� around the annulus axis read

⇀

∇ · �u = 0, (1)

∂�u
∂t

+ (�u ·
⇀

∇ )�u + 2�� × �u = −
⇀

∇P + ν∇2�u + �B, (2)

∂θ

∂t
+ (�u ·

⇀

∇ )θ = κ∇2θ, (3)

where �u is the velocity vector (ur, uϕ, uz). The last term on the right-hand side of Eq. (2)
represents the buoyancy force �B = αθ [2�� × �u − ��2�r] from Coriolis and centrifugal accelerations.
The centrifugal force per unit mass ��2�r is conservative and it has been lumped with the pressure to
yield P = p/ρ0 − (�� ×�r)2/2. In geophysical models of rotating thermal convection, the buoyancy
is �B = αθ [�g − ��2�r], where �g is the gravity acceleration.

To make the problem dimensionless, we used the gap width d as a length scale, the characteristic
time of viscous diffusion τν = d 2/ν as a timescale, and the temperature difference �T = To − Ti as
a temperature scale. The dimensionless parameters are the radius ratio η, the aspect ratio � = L/d ,
the Prandtl number Pr = ν/κ , and the centrifugal Rayleigh number Ra = γa gcentd3/νκ , where γa =
α�T is a buoyancy parameter representing the dimensionless thermal expansion of fluid and gcent =
�2R̄ is the centrifugal acceleration determined at the mean radius R̄ = (ri + ro)/2. The centrifugal
Rayleigh number and the Coriolis number [21] τ = �d2/ν are related by Ra = γaPr τ 2/C(η),
where C(η) ≡ 2(1 − η)/(1 + η) is the dimensionless curvature of the median cylindrical surface.
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From now on, all the quantities in this paper are dimensionless. The dimensionless equations of
the conservation of mass, momentum, and energy read

∇ · �u = 0,

∂�u
∂t + (�u · ∇ )�u + 2�τ × �u =−∇P + ∇2�u + �B,

∂θ
∂t + (�u · ∇ )θ = 1

Pr ∇2θ,

(4)

where �τ = τ�ez and the dimensionless buoyancy force reads

�B ≡ γaθ

[
2�τ × �u − C(η)

Ra

γaPr
r�er

]
. (5)

The variation of Ra can be achieved either by varying γa or τ . In our study, γa will be fixed
and chosen such that γa < 10−1 [22] so that the increase of Ra will be achieved by increasing the
Coriolis number τ .

In the nondissipative limit and neglecting the advection term compared to Coriolis acceleration,
the system (4) reduces to

∇ · �u = 0,
∂�ω
∂t

= 2τ�ez · ∇�u + ∇ × �B,
∂θ

∂t
+ (�u · ∇ )θ = 0, (6)

where �ω = ∇ × �u is the vorticity. If the motion is steady or quasisteady, the second equation is
reduced to 2τ�ez · ∇�u = −∇ × �B, so that the Taylor-Proudman theorem may be violated by the
buoyancy force. Taking the curl of the vorticity equation and differentiating the result with respect
to the time, one obtains the equation of the thermal inertial waves:

∂2∇2�u
∂t2

+ 4(�τ · ∇ )2�u = −2(�τ · ∇ )∇ × �B − ∇ × ∇ × ∂ �B
∂t

. (7)

In the absence of the buoyancy force (�B = 0), this recovers the equation of inertial waves in
rotating fluids [23]. Depending on its magnitude, the buoyancy force will modify the dynamics of
rotating flows, in particular, the two-dimensional character cannot be admitted a priori.

From the momentum equation [Eq. (4)], one can derive the equation for the time variation of the
volume-averaged kinetic energy per unit volume k = 〈�u2/2〉V ,

dk

dt
= −τ 2〈γaθurr〉V − 〈ε〉V with〈X 〉V = 1

V

∫
X dV, (8)

where the dissipation rate of the kinetic energy ε in cylindrical coordinates (r, ϕ, z) is given by

ε = 2

[(
∂ur

∂r

)2

+
(

1

r

∂ur

∂ϕ
+ur

r

)2

+
(

∂ur

∂z

)2
]

+
[

r
∂

∂r

(uϕ

r

)
+ 1

r

∂ur

∂ϕ

]2

+
[

1

r

∂uz

∂ϕ
+∂uϕ

∂z

]2

+
[
∂ur

∂z
+∂uz

∂r

]2

. (9)

The rate of heat transfer in the thermal convection induced by the solid-body rotation can be
computed using the averaged radial heat current �J through the cylindrical surface of radius r in the
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annular gap; it is defined from the energy equation [Eq. (4)] [24] as follows:

J th
r = r

〈
Pr urθ − ∂θ

∂r

〉
A

, where 〈X 〉A = 1

2π�

∫∫
X dϕdz. (10)

The dimensionless local heat transfer coefficient is given by the local Nusselt number Nu(r) =
J th

r /J cond
r [24] at a given cylindrical surface (r = const) where Jth

r is the heat current in conduction
state.

III. LINEAR STABILITY ANALYSIS

A. Linearized equations

For an infinite-length cylindrical annulus, the system of equations (4) possesses a stationary
conduction state. This base state represents the symmetric invariant solution of the problem in the
axial and azimuthal directions. The velocity, temperature, and pressure of the base state are given
by

�ub = 0, θb = ln [(1 − η)r]

ln η
, Pb(r) = 1

2

C(η)

ln η

Ra

Pr

[
ln (1 − η)r − 1

2

]
+ P0, (11)

where Po is the pressure at the outer cylinder.
To perform the linear stability analysis which allows for the determination of critical parameters,

we superimpose infinitesimal perturbations on the base state, i.e., �u′ = (u′
r, u′

ϕ, u′
z ) and θ = �b +

θ ′. The resulting set of equations is then linearized around the base state and the perturbations are
developed into normal modes:

(u′
r, u′

ϕ, u′
z, p′, θ ′)T = (ûr, ûϕ, ûz, p̂, θ̂ )T exp(st + inϕ + ikz) + c.c. (12)

where c.c. stands for the complex conjugate. Since the centrifugal buoyancy may violate the Taylor-
Proudman theorem [Eq. (6)], we cannot a priori choose two-dimensional perturbations. The hatted
quantities denote the amplitudes of the perturbations which only depend on the radial coordinate.
The quantity s = σ + iω is a complex number whose real part σ is the growth rate and imaginary
part ω represents the frequency; n is the integer number of modes along the azimuthal direction
and k is the axial wave number which is real since cylinders of infinite length are considered. The
azimuthal wave number is computed at the median cylindrical surface so that it is given by q =
2n (1 − η)/(1 + η). The set of linearized equations can be written as follows:

0 =
(

D + 1

r

)
ûr + in

r
ûϕ + ikûz, (13a)

sûr = −Dp̂ + �ûr − ûr

r2
− 2inûϕ

r2
+ 2τ (1 − γaθb)ûϕ − C(η)

Ra

Pr
rθ̂ , (13b)

sûϕ = − in

r
p̂ + �ûϕ − ûϕ

r2
+ 2inûr

r2
− 2τ (1 − γaθb)ûr, (13c)

sûz = −ik p̂ + �ûz, (13d)

sθ̂ = −Dθbûr + 1

Pr
�θ̂. (13e)

Here, we have introduced the following operators: D = d/dr and � = r−1D(rD) − n2r−2 − k2.
The perturbations satisfy homogeneous boundary condition at the cylinder surfaces,

ûr = ûϕ = ûz = θ̂ = 0 at r = η/(1 − η) and r = 1/(1 − η). (14)

Equations (13b) and (13c) show that the Coriolis buoyancy terms intervene in both the radial and
azimuthal directions, while the centrifugal buoyancy acts only in the radial direction.

Equations (11)–(14) were discretized using a Chebyshev spectral collocation method. To ensure
the convergence of the numerical scheme, the highest order of the Chebyshev polynomials was
chosen from 13 to 27, depending on values of the radius ratio η. The resulting eigenvalue problem
is solved by a QZ decomposition [25,26].
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FIG. 2. Variation of the critical Rayleigh number (Rac) with the radius ratio (η).

B. Critical parameters

The eigenvalue problem has been solved for a given set of parameters (η, Pr, γa). Searching for
the conditions where the growth rate of perturbations changes its sign leads to marginal curves in the
plane (k, Ra) for different values of n. The global minimum of these curves determines the critical
state (kc, nc, Rac, ωc). We have plotted the variation of the critical Rayleigh number (Rac) with the
radius ratio η in Fig. 2.

The threshold Rac decreases with increasing η and approaches the value of Rac = 1708 when
η → 1. The latter value corresponds to the threshold of the Rayleigh-Bénard convection in a
horizontal fluid layer between two parallel plates with a vertical thermal gradient [19]. It is found
that the critical modes take the form of Taylor columns (kc = 0), independently on the radius ratio.
The critical Rayleigh number Rac, as well as the critical wave number qc, are independent from the
values of Pr and γa. The change of the slope in the curve Rac (η) corresponds to the jump by 1 of
the value of nc. The variation of qc with the radius ratio η undergoes discontinuities [Fig. 3(a)] due
to the change of nc. In the small-gap approximation (i.e., when η → 1), we found the limit value of
qc = 3.117, which is the critical wave number of the Rayleigh-Bénard thermal convection between
parallel plates [19].

For the considered values of Pr � [0.1, 100], the critical modes occur via oscillatory columnar
vortices (kc = 0) with an azimuthal wave number (qc �= 0) and a nonzero frequency (ωc �= 0).
The columnar vortices rotate in the retrograde direction at the angular frequency ωc that depends
on the parameter Pr/γa in such a way that −ωPr/τ γa ≈ 0.07 when η → 1 [Fig. 3(b)], i.e.,
ω ∼ τγa/Pr. These columnar vortices represent thermal inertial wave modes. The critical states
are two dimensional, i.e., they are independent of the axial coordinate and they do not have an axial
velocity so that they satisfy the Taylor-Proudman theorem.

IV. NONLINEAR PROPERTIES OF COLUMNAR VORTICES

To investigate the nonlinear properties of the columnar vortices, we have performed direct
numerical simulations (DNS) of Eqs. (4). The boundary conditions imposed on the flow domain
are the following:

u = 0, θ = 0 at r = η/(1 − η),

u = 0, θ = 1 at r = 1/(1 − η), (15)

u(r, ϕ, z) = u(r, ϕ, z + �), θ (r, ϕ, z) = θ (r, ϕ, z + �).
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FIG. 3. Variations of (a) the critical wave number qc and (b) the critical frequency multiplied by Pr/τγa

with the radius ratio (η) for Pr = 10 and 100.

The no-slip condition was employed at the cylindrical surfaces, each of which is maintained at
constant temperature. Velocity and temperature were assumed to be periodic in the axial direction
(z) with a period �.

A. Description of the DNS method

The governing equations in Eqs. (4) were discretized using a finite volume method in a cylindrical
coordinate system. A second-order central difference scheme was utilized for spatial discretization.
A hybrid scheme was used for time advancement; nonlinear terms and cross diffusion terms were
explicitly advanced by a third-order Runge-Kutta scheme, and the diffusion terms were implicitly
advanced by the Crank-Nicolson method [22,25,27]. A fractional step method was employed to
solve the first and second equations of the system (4) by using a pseudopressure to correct the
velocity field so that the continuity equation is satisfied at each time step [28]. The Poisson equation
that resulted from the second stage of the fractional step method was solved by a fast Fourier
transform (FFT) [28].

The computational grids have been determined by a grid refinement study. For high Ra, further
refinements doubled in each direction show less than 1% of differences in the mean values of
velocity and temperature, compared with the corresponding result of the present run. The number of
grid points and the minimum grid size are presented in Table I. For η = 0.5 and Pr = 1, the finer grid
is used at high Ra (Ra > 3 × 105). More grid points are allocated near the cylinder walls in the radial
direction (r), while the grid cells in the azimuthal (ϕ) and axial (z) direction are uniform (Fig. 4). The
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TABLE I. The grid resolution.

η Pr γa Nr×Nϕ×Nz �rmin

0.5 1 10−2 64 × 128 × 128, 0.005
64 × 256 × 128

10 10−3 64 × 128 × 128 0.005
100 10−3 96 × 128 × 128 0.002

0.8 1 10−2 64 × 256 × 128 0.005
10 10−3 64 × 256 × 128 0.005
100 10−3 96 × 256 × 128 0.002

domain size in the axial direction (z) is � = 2π . For graphic representation, the velocities obtained
from DNS have been multiplied by τ .

B. Critical convective flow and nature of bifurcation

To test the validity of the code, we have determined the threshold Rac of the thermal convection
and the characteristic time τ0 of the perturbations just above the onset for two values of the radius
ratio (η = 0.5 and η = 0.8) and three values of Pr (Pr = 1, 10, 100). The results are presented in
Table II and they are in good agreement with the results from LSA (with a difference of 0.6%). We
found that critical modes are made of counter-rotating columnar vortices with axis parallel to the
cylinder axis. Their number depends on the radius ratio: n = 5 for η = 0.5 and n = 14 for η = 0.8,
in agreement with the LSA (as long as Ra is close to the onset Rac), independently of Pr and γa. The
number of pairs of counter-rotating columns can be estimated from the azimuthal aspect ratio �ϕ if
the width of each column coincides with the gap width: n = int(�ϕ/2) = int[π (1 + η)/2(1 − η)].
The number of columnar pairs in the gap is n = 5 for η = 0.5 and n = 14 for η = 0.8. With periodic
boundary conditions, we found that the flow in columnar vortices has no z dependence and no axial
velocity component, and it is periodic in the azimuthal direction. So the thermal convection induced
by centrifugal buoyancy is a two-dimensional flow, in agreement with the Taylor-Proudman theorem
as predicted by the LSA. This suggests that the columnar structure can be assimilated to a rotating
wave in the retrograde sense of the azimuthal direction with respect to the rotation of the annulus.

FIG. 4. Grid system for η = 0.5 (every other grid point is plotted in each direction for clarity); (a) r-ϕ
plane, (b) r-z plane. Here, x = r − η/(1 − η).
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TABLE II. Critical values and characteristic coefficients for few values of η, Pr, and γa.

η Pr γa γaPr Rac(LSA) Rac (DNS) τ0 (DNS) τ0 (LSA) ξ0 (LSA) l(DNS)

1 10−2 10−2 1776.3 1780.6 0.036 0.036 0.268 28229
0.5 10 10−3 10−2 1777.0 1780.4 0.244 0.248 0.270 411853

100 10−3 10−1 1777.0 1784.7 2.233 2.360 0.270 451354

1 10−2 10−2 1712.8 1719.0 0.039 0.039 0.274 8973
0.8 10 10−3 10−2 1712.9 1719.1 0.268 0.268 0.273 128357

100 10−3 10−1 1713.1 1733.6 2.298 2.559 0.272 143532

Near the threshold, the columnar vortex pattern can be represented as follows:

(ur, uϕ, P, θ )T (t, r, ϕ) = A(t )(U (r) sin φ, V (r) cos φ, P(r) cos φ, �(r) sin φ)T , (16)

where φ = nϕ − ωdt is the phase, ωd is the angular frequency, and U(r), V(r), P(r), and �(r) are
determined by DNS.

The flow is characterized by the vorticity ωz, the temperature, and the pressure field (Figs. 5
and 6), which depend on the radial and azimuthal coordinates (r, ϕ) and vary periodically in time
with the frequency f = ωd/2π [Figs. 7(a) and 7(b)].

To follow the temporal evolution of the columnar vortex structure, we have plotted in Fig. 7(c)
the temperature and radial velocity component as functions of time. The power spectrum of the
temperature [Fig. 7(d)] exhibits the drift frequency fd of the rotating wave, together with its
harmonics. The periodicity of the wave can also be visualized by the single closed loop in the
phase plane (ur, uϕ) in Fig. 7(e).

The vorticity of the columnar flow �ω = ω(t, r, ϕ)�ez satisfies the following equation obtained
from Eqs. (4)–(7):

∂ω

∂t
−

[
1

r

∂

∂r

(
r
∂ω

∂r

)
+ 1

r

∂2ω

∂ϕ2

]
= 2τγaθb

[
d lnθb

dr
− 1

r

]
ur, (17)

where the expression for θb is given in Eq. (11). This equation shows that the source of the axial
vorticity in the columnar vortices is the coupling between the Coriolis force, the temperature of the
base state, and the perturbation of the radial velocity.

FIG. 5. Instantaneous flow and temperature fields on the r-ϕ plane for Ra = 1811 (ε = 0.019), Pr = 1,
γa = 10−2, and η = 0.5; (a) contour of axial vorticity (ωz), (b) contour of temperature, (c) vector plot of the
velocity field and contour of pressure. Here, ε = (Ra − Rac )/Rac is the criticality.
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FIG. 6. Instantaneous flow and temperature fields on the r-ϕ plane for Ra = 1755 (ε = 0.021), Pr = 1,
γa = 10−2, and η = 0.8; (a) contour of axial vorticity (ωz), (b) contour of temperature, (c) contour of pressure.

FIG. 7. Time variations of velocity and temperature for Ra = 1811 (ε = 0.019), Pr = 1, γa = 10−2,
and η = 0.5; (a) space-time diagram of radial velocity component along the axial direction at (x =
0.5, ϕ = π, z), (b) space-time diagram of temperature along the azimuthal direction at (x = 0.5, ϕ, z =
� /2), (c) time histories of temperature (red line) and radial velocity component (blue line) at
(x = 0.5, ϕ = π, z = �/2), (d) corresponding time frequency spectrum of the temperature where fd =
6.18 × 10−2, (e) phase portrait of (ur, uϕ) at (x = 0.5, ϕ = π, z = �/2).
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FIG. 8. Perturbation mode for Pr = 1, γa = 10−2, and η = 0.5; (a) growth and saturation phases of the
perturbation amplitude for Ra = 1811: there is a strong decrease near the time origin because of the random
noise; (b) growth rate as function of Ra.

To determine the nature of bifurcation from the base state to the columnar vortex state, we have
computed the amplitude of the perturbation using the norm of the radial velocity defined as

A = 1

2π�τ

∫ �

0

∫ 2π

0
|ur (x = 0.5, ϕ, z)| dϕdz. (18)

Near the onset of the convection, the amplitude A satisfies the complex Ginzburg-Landau
equation [29],

τ0
∂A

∂t
= ε(1 + ic0)A + ξ 2

0
∂2A

∂y2
− l (1 + ic2)|A|2A, (19)

where τ0 and ξ0 are the characteristic time and the coherence length of the perturbation, respectively,
and y is the azimuthal coordinate measured at the median plane, i.e., y = ϕ(1 + η)/2(1 − η). The
Landau constant l gives information on the saturation of the perturbation growth, and c0 and
c2 are the linear and nonlinear dispersion coefficients. The amplitude |A| is plotted against the
time [Fig. 8(a)] in a semilogarithmic scale. The exponential part of the curve yields the growth
rate σ of the perturbation for each value of Ra > Rac. The linear fit of σ (Ra) determines the
threshold Rac as the intersection of the straight line with the horizontal axis; its slope gives the
characteristic growth rate of the perturbation σ0 = 1/τ0 [Fig. 8(b)]. The plateau of the curve A(t) in
Fig. 8(a) corresponds to the saturation and allows for the determination of the Landau constant
l . Data computed by DNS in the neighborhood of the threshold are presented in Table II for
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η ∈ {0.5, 0.8} and Pr ∈ {1, 10, 100}. We found that the columnar vortices occur via a supercritical
Hopf bifurcation (i.e., the Landau constant l > 0) with a frequency very close to that predicted by
the LSA. The coefficients c0 and c2 cannot be determined easily due to computational cost near the
threshold, but their difference can be derived from the drift frequency of the columnar vortices near
the threshold, where it grows linearly with the criticality ε with the slope (c0–c2)/τ0 = 0.583. This
gives the value c0–c2 = 0.021. The increase of Ra leads to the reduction of the frequency growth
because of the nonlinear mode interaction.

C. Flow patterns and their spectral analysis

In order to investigate the structure of the flow patterns and their spectral contents, we fixed the
Prandtl number at Pr = 1 and the radius ratio at η = 0.5 and we increased the Rayleigh number
from Ra = Rac to Ra ∼ 107. The value of Pr = 1 was chosen as it is close to values of Pr of gases.

1. Steady wave state and stationary heat transfer

Counter-rotating vortices in each pair of columns have the same size and intensity, i.e., there is a
symmetry between positive-circulation and negative-circulation columns [Fig. 5(a)]. Vortices which
rotate in the same direction as the annular cavity (cyclonic vortices) create low-pressure regions,
while those which rotate in the opposite sense (anticyclonic vortices) create high-pressure regions
[Fig. 5(c)]. This results in a periodic circumferential pressure gradient which ensures the existence
of the periodic azimuthal velocity component [Fig. 7(e)]. The latter reinforces the Coriolis force in
fluid between inflow and outflow. Near the onset, the temperature fluctuation has a small amplitude,
and the heat diffusion remains dominant in the radial direction.

As Ra increases, the amplitudes of the velocity components and of the temperature fluctuations
increase: the counter-rotating columnar vortices become asymmetric, and positive vortices are larger
than negative vortices [Fig. 9(a)]. The temperature fluctuations are organized into hot thermal
plumes which develop in the inflow zones and cold jets in the outflow zones; they penetrate into
the thermal boundary layers near the cylindrical surfaces. Each thermal plume is symmetric with
respect to the diametral axis [Fig. 9(b)]. The centers of the low-pressure and of the high-pressure
zones are no longer on the same radial position [Fig. 9(c)]. The signals of velocity components and
temperature are periodic but non sinusoidal [Fig. 9(d)]. Their spectra show higher harmonics which
have power density comparable with that of the fundamental mode [Fig. 9(f)]. The weak sidebands
correspond to large-scale modulations. The time-averaged Nusselt number over a period remains
stationary [Fig. 9(e)] because the density of the heat current through a cylindrical surface of radius r
is time independent and is given by j th

r = r|A|2U (r)�(r)/2. Thermal plumes deform the azimuthal
velocity field and a secondary loop appears in the phase portrait [Fig. 9(g)].

The increase of Ra is accompanied by the appearance of long-wavelength modulation in the
azimuthal direction, leading to the Eckhaus instability of the drifting columnar zones. Indeed, the
number of columnar vortices jumps from n = 5 to n = 6 and 7 as a result of the readjustment of the
columnar vortices in the fixed circumference �ϕ . The jumps �n = 1 and �n = 2 correspond to the
azimuthal wavelength equal to the perimeter and the half perimeter, respectively.

Averaging the velocity field and temperature along the circumference, we found that the steady
wave state is characterized by a vanishing averaged radial velocity and a nonzero negative averaged
azimuthal velocity [Fig. 10(a)]. The latter is related to the drift of columnar vortices in the retrograde
direction. The radial profiles of the mean temperature in the steady wave state are shown in
Fig. 10(b) for Ra � 1.5 × 104; they exhibit a progressive flattening of the temperature profile in the
central part of the gap and the formation of a thermal boundary layer near each cylindrical surface
as Ra increases. The thickness of each boundary layer decreases as Ra increases. The central parts
correspond to the thermal convective zones. The state of the steady wave was obtained in DNS up
to Ra = 6 × 104.
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FIG. 9. Steady wave state for Ra = 3.375 × 104; (a) cross section of the axial vorticity, (b) cross
section of the temperature field, (c) cross section of the pressure. Temporal characteristics of the steady
waves (SW); (d) time signals of radial (red line) and azimuthal (blue line) velocity components at
(x = 0.5, ϕ = π, z = �/2), (e) time variations of the temperature (red line) at (x = 0.5, ϕ = π, z = �/2) and
the Nusselt number (blue line) on the inner cylinder, (f) corresponding frequency spectrum of the temperature,
(g) phase portrait of (ur, uϕ) at (x = 0.5, ϕ = π, z = �/2).

2. Quasiperiodic state and periodic heat transfer

For some values of Ra larger than 6 × 104, the asymmetry between positive-circulation and
negative-circulation columns becomes more intense [Fig. 11(a)] and it favors the development of
the azimuthal velocity component, which in turn amplifies the Coriolis force. The amplitude of
radial velocity increases and the plumes are more intense and oscillate in the azimuthal direction
[Fig. 11(b)]. The temperature perturbations bear the signature of the plumes’ development. The
zones of low and high pressure do not have the same extent [Fig. 11(c)]. The temporal signals of the
azimuthal velocity and temperature fields show a biperiodic behavior [Figs. 11(d) and 11(e)], while
that of the radial velocity component is highly nonlinear but has a constant amplitude. The Nusselt
number is now time periodic [Fig. 11(e)]. The spectrum of the temperature indicates, beside the peak
at the frequency fd , the appearance of a second peak at fv . Only the peak at fv and its harmonics
appear in the spectrum of the Nusselt number [Fig. 11(g)]. For Ra = 1.35 × 105 (Fig. 11), we found
fd = 11.9, fv = 27.8; all the peaks in the spectrum of the temperature are combinations of fd and
fv or their harmonics. In particular, the first peak in the spectrum is fv − 2 fd = 4. The frequency fv
corresponds to the oscillations of thermal plumes; it is incommensurate with the drift frequency fd .
The corresponding state is called a quasiperiodic state or amplitude vacillation [11–13,30].
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FIG. 10. Radial profile of (a) the mean azimuthal velocity (uϕ), (b) the mean temperature for different
values of Ra, for η = 0.5, Pr = 1, and γa = 10−2.

The oscillations of plumes originate in the Coriolis force, which increases the amplitude of the
azimuthal velocity and tends to incline the thermal plumes in the (r, ϕ) plane. The number of
columnar vortex pairs varies between 5 and 6. The phase portrait for this state appears in the form
of a double connected loop with a finite thickness and it is characteristic of the quasiperiodic state
[Fig. 11(h)]. The thickness of the trajectory is a signature of the azimuthal velocity modulation.

With the increase of Ra, the cross sections of columnar vortices become elongated and inclined
in the azimuthal direction [Figs. 12(a)–12(c)]. Thermal plumes are asymmetric [Fig. 12(b)]. The
temporal signals of the azimuthal velocity and of the temperature show a long-period amplitude
modulation, while the signals of the radial velocity component and of the Nusselt [Figs. 12(d) and
12(e)] do not show this modulation. The spectrum of the radial velocity component exhibits three
different peaks at fd , fv , and fm and their linear combinations [Fig. 12(f)]. The spectra of the Nusselt
number exhibit only the peak at fv and its harmonics [Fig. 12(g)]; this means that the modulation
of the amplitude is periodic and does not contribute to the heat transfer. The phase portrait shows
a more complex structure, although it is not chaotic yet [Fig. 12(h)]. Such a state is often called
modulated amplitude vacillation [11–13]. For the four computed states, we found the same number
of five columnar vortex pairs.

3. Chaotic regime

At relatively higher rotation rate, the time signals of the velocity and temperature components
exhibit irregular variations with strong growth and decay accompanied by the modulation of a lower
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FIG. 11. Quasiperiodic state for Ra = 1.35 × 105; (a) cross section of the axial vorticity, (b) cross
section of the temperature, (c) cross section of the pressure. Temporal characteristics of the amplitude
vacillation (AV); (d) time signal of radial (red line) and azimuthal (blue line) velocity components at
(x = 0.5, ϕ = π, z = �/2), (e) time signals of the temperature (red line) at (x = 0.5, ϕ = π, z = �/2)
and the Nusselt number (blue line) on the inner cylinder, (f) corresponding frequency spectrum of the
temperature, (g) corresponding frequency spectrum of the Nusselt number, (h) phase portrait of (ur, uϕ) at
(x = 0.5, ϕ = π, z = �/2).

frequency in Figs. 13(d) and 13(e). The dominant peak at fd is still found in the frequency spectrum
of the temperature [Fig. 13(f)], whereas the modulation frequency fm is detected in the spectrum
of the Nusselt number [Fig. 13(g)]. However, the power spectra show a large background noise,
characteristic of chaotic states. The phase portrait demonstrates the chaotic behavior [Fig. 13(h)]
and it displays rather irregular trajectories and does not have a distinct structure. On the other
hand, as the rotation rate further increases, the modulation behavior disappears in the signals of
velocity components and temperature, and fd is only detectable in the frequency spectrum of the
Nusselt number [Fig. 13(f)]. So the transition scenario to chaos in the thermal convection driven by
centrifugal buoyancy (single periodic state followed by quasiperiodic states and then a chaotic state)
is similar to the transition scenario observed in the Rayleigh-Bénard convection.

4. Variation of the number of columnar vortices and their frequency

The variations of the number n of column pairs and of their frequency with Ra are summarized
in Fig. 14. For low values of Ra, the number of vortices remains unchanged and corresponds
to the number of vortices whose size is the gap width, i.e., n = 5. We have already mentioned
the change in number of columns induced by the Eckhaus instability. This instability indicates
the energy exchanges between the unstable mode (n = 5) and the nearby sidebands by resonant
excitation of two neighboring waves with n + 1 or n − 1. We have superimposed the marginal
stability [Fig. 14(a)]. The number of column pairs varied between 4 and 7 for all computed flow
regimes. Some of the states of columnar vortices are shown in Fig. 19.
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FIG. 12. Modulated amplitude vacillation for Ra = 3.75 × 105; (a) cross section of the axial vorticity,
(b) cross section of the temperature, (c) cross section of the pressure. Temporal characteristics of the modulated
amplitude vacillation (MAV); (d) time signals of radial (red line) and azimuthal (blue line) velocity components
at (x = 0.5, ϕ = π, z = �/2), (e) time signal of the temperature (red line) at (x = 0.5, ϕ = π, z = �/2)
and the Nusselt number (blue line) on the inner cylinder, (f) corresponding time frequency spectrum of the
temperature, (g) corresponding frequency spectrum of the Nusselt number, (h) phase portrait of (ur, uϕ) at
(x = 0.5, ϕ = π, z = �/2).

Figure 14(b) shows the variation of the pattern frequencies with Ra. The drift frequency increases
linearly just above the threshold [see inset of Fig. 14(b)] and then changes the slope. For large
values of Ra, the new frequencies are those of the quasiperiodic state [amplitude vacillation and
modulated amplitude state (Fig. 14(b)]. The present transition scenario was obtained in the case of
the periodic boundary conditions in the axial direction; the presence of the endplates may modify it
in a substantial way.

D. Variation of kinetic energy with Ra

Equation (8) shows that the rate of the temporal variation of the kinetic energy consists of the
centrifugal buoyancy power and the energy dissipation by viscosity [Eq. (9)]. The Coriolis force and
Coriolis buoyancy do not contribute to the variation of the kinetic energy. The dynamic equilibrium
is realized when there is a balance between the power from the centrifugal buoyancy and the energy
dissipation. We computed the values of the centrifugal buoyancy and of the dissipation and we
averaged them on the cylindrical surface A of radius r in order to analyze the radial distribution:

dEk

dt
= −τ 2〈γa�urr〉A − 〈ε〉A; Ek = 1

2π�

∫ �u2

2
dϕdz. (20)

The results are illustrated in Fig. 15 for few values of Ra. The kinetic energy is mainly produced
by the centrifugal buoyancy in the middle of gap, while it is mostly dissipated near the cylinders,
with the maximum of the dissipation on the inner cylinder. For large values of Ra, the radial profiles
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FIG. 13. Chaotic flow for Ra = 3.375 × 106; (a) cross section of the axial vorticity, (b) cross section of
the temperature, (c) cross section of the pressure. Temporal characteristics of the chaotic flow regime; (d)
time signals of radial (red line) and azimuthal (blue line) velocity components at (x = 0.5, ϕ = π, z = �/2),
(e) time signals of the temperature (red line) at (x = 0.5, ϕ = π, z = �/2), and the Nusselt number (blue
line) on the inner cylinder, (f) corresponding frequency spectrum of the temperature, (g) corresponding
frequency spectrum of the Nusselt number, (h) phase portrait of (ur, uϕ) at (x = 0.5, ϕ = π, z = �/2).

of the centrifugal buoyancy power and of the energy dissipation are flattened in the central zone of
the flow. Near the cylindrical surfaces, the centrifugal buoyancy vanishes smoothly (ur = 0), while
the energy dissipation is much stronger in the thermal boundary layers.

For each value of Ra ∈ [103, 106], we computed the kinetic energy of the columnar vortices and
then made the time and volume average. The result is plotted in Fig. 16. The kinetic energy increases
continuously in the steady wave state and then it saturates in the quasiperiodic state. It increases
again in the state of the modulated amplitude. No computation was made in the chaotic state.

E. Heat transfer rate

To estimate the efficiency of the heat transfer in thermal convection induced by centrifugal
buoyancy, we computed the Nusselt number [Eq. (10)] as a function of Ra. Computed radial profiles
[Fig. 17(a)] show that the radial heat current (J th

r ) is conserved along the radial direction, i.e.,
dJ th

r /dr = 0. Small peaks near cylindrical walls for Ra > 3.375 × 104 are due to thermal plumes
that appear in the gap.

The heat transfer through the inner cylindrical surface where ur = 0 is given by the time-averaged
Nusselt number [25], Nui = −[ηlnη/(1–η)](∂θ/∂r)r=ri

. The computed values of Nui are plotted
in Fig. 17(b) as a function of Ra. This plot shows how columnar vortices induced by centrifugal
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FIG. 14. Flow regime diagrams for Pr = 1, γa = 10−2, and η = 0.5; (a) variation of the number of pairs of
columnar vortices vs Ra; the solid line is the marginal stability curve; (b) variation of the frequency vs Ra.

buoyancy enhance the heat transfer in the annulus. For Ra < Rac, Nui = 1, and for Ra > Rac, Nui

continuously grows with increasing Ra due to columnar vortices which drive heat from the outer to
the inner cylinder.

In the vicinity of the threshold of the thermal convection, the Nusselt number is a linear function
of the criticality parameter ε [Fig. 17(b), inset] [31]:

Nui − 1 = Bε. (21)

The coefficient B represents the slope of the linear growth near the threshold and is related to the
Landau constant l in the Eq. (19) [31]. Table III shows that B depends on γa, Pr, and η.

We have superimposed values of Nu (Ra) from two-dimensional (2D) computations in the plane
(r, ϕ) for Pr = 0.7 by King et al. [32] in a cylindrical annulus with η = 0.5 and we found a very
good agreement between the two sets of results [Fig. 17(b)]. Available experimental data on the
rotating annular cavity [2] are in the range of Ra ∈ [107, 1012], which is beyond our range of Ra.

For large values of Ra, the growth of the Nusselt number can be fitted using a power-law scaling
of Nu with Ra, i.e., Nu ∝ Raδ . For our computed data, the scaling exponent is δ = 0.225. The value
of the scaling exponent obtained in our case for Pr = 1 was reproduced in many studies of Rayleigh-
Bénard convection where δ takes values between 0.2 and 0.33 [33–35]. However, the range of Ra
covered by our data is relatively small compared to those in the experiments on Rayleigh-Bénard
convection.
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FIG. 15. Radial profiles of different terms of the kinetic energy balance equation for η = 0.5, Pr = 1, and
γa = 10−2.

V. DISCUSSION

The cylindrical annulus in a solid-body rotation about its axis and subject to a radial inward
heating represents a good system to investigate the dynamics of columnar vortices formed when the
critical value of the Rayleigh number is exceeded. These columnar vortices remain 2D for a large

FIG. 16. Variation of the mean kinetic energy with Ra for η = 0.5, Pr = 1, and γa = 10−2.
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FIG. 17. Heat transfer for η = 0.5, Pr = 1, and γa = 10−2; (a) profiles of averaged radial heat current
across the cylindrical surface of radius r for different values of Ra (x: see caption of Fig. 4), (b) variation of the
Nusselt number with Ra (+: comparison with King et al. [32]); inset gives the linear growth near the threshold.

values of Ra, but exhibit a complex temporal and spatial dynamics. The present study has revisited
the linear stability analysis in order to cover different values of the radius ratio, while most of the
studies have been focused on the limit of large radius ratio (small-gap approximation [8,9,14–18])
or to specific values motivated by specific applications [1,2]. In particular, the study has allowed the
prediction of the variation of critical parameters with radius ratio and Prandtl number. For each value
of the radius ratio η, the critical frequency ωc of the columns is a function of the ratio γa/Pr and of
the Coriolis number τ . In the limit of the small-gap approximation (η →1), the critical frequency is
given by the approximate formula ωc = −0.07γaτ/Pr so that it vanishes for τ → 0, in agreement

TABLE III. Values of slope B.

η Pr γa γaPr B

1 10−2 10−2 1.306
0.5 10 10−3 10−2 1.319

100 10−3 10−1 1.157

1 10−2 10−2 1.311
0.8 10 10−3 10−2 1.321

100 10−3 10−1 1.026
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with the study of Auer et al. [36] who considered the values of τ < 100. The frequency dependence
on the parameter γa/Pr suggests that the columnar vortices drifting in the retrograde sense are
thermally induced modes favored by the rotation. The critical values of the Rayleigh number given
in Table I can be transformed into critical centrifugal gravity for a fixed geometry and fluid. For the
experiment system reported in [18] in which air flow is confined in the cavity with d = 1 cm and
η = 0.867, the threshold of the thermal convection induced by centrifugal buoyancy corresponds to
the centrifugal gravity gcent ≈ 6g for γa = 10−2.

The DNS has allowed one to confirm the supercritical nature of the bifurcation to columnar
vortices and to determine temporal properties of the higher states, energy dissipation, and heat
transfer. The drifting frequency of the columnar vortices is a linear function of Ra near the threshold.
Table III shows that near the onset, the slope of the variation of the Nusselt number with Ra depends
on η and Pr, but is smaller than that of the Nusselt number of the Rayleigh-Bénard in a horizontal
fluid layer heated from below (where B = 1.43) [37].

As Ra increases, the Coriolis force also increases and the radial velocity becomes important,
resulting in the increase of the Nusselt number which also becomes oscillating with the secondary
frequency (vacillation frequency). The number of columnar vortices decreases from 14 to 8. Our
DNS have been limited to values of Ra = 107 where the convective flow regime was already chaotic.
The obtained values of Nu coincide with those obtained by King et al. [32], who simulated a 2D
flow in the polar coordinates (r, ϕ).

We have included the Coriolis buoyancy term which has been often neglected in previous studies.
Indeed, it is well known that the Coriolis force delays the onset of thermoconvective instability
[19,36], and therefore the Coriolis buoyancy cannot be neglected especially for large values of the
Rayleigh number as those reached in fast rotating annular cavities in turbomachinery [1,2] where
Ra > 106. To test the influence of the Coriolis buoyancy on flow patterns, we have performed
simulations with and without this term in the buoyancy force [Eq. (5)]; we found that results differ
for Ra > 105. As soon as Ra ∼ 105, columns and thermal plumes remain symmetric when the
Coriolis buoyancy is neglected (γaτ = 0), while when it is taken into account (γaτ �= 0), they

FIG. 18. Cross sections of the temperature field and pressure for Ra = 2.4 × 105 (a), (b) without and (c),
(d) with Coriolis buoyancy terms.

043501-21



KANG, MEYER, YOSHIKAWA, AND MUTABAZI

become asymmetric with respect to the diameter. Moreover, their frequency is very low for γaτ = 0
( fd = 0.146), while it becomes significant for γaτ �= 0 ( fd = 16.47). Figures 18 illustrates this
difference for Ra = 2.4 × 105. In the absence of the Coriolis force [Figs. 18(a) and 18(b)], the
thermal plumes are symmetric with respect to the diametral axis, and the columnar vortices have
the same size and their centers are localized at the same radial position. When Coriolis buoyancy
is taken into account [Figs. 18(c) and 18(d)], the thermal plumes are no longer symmetric and
the centers of the negative-circulation columns are closer to the inner cylindrical surface, while
those of positive-circulation columns are localized near the outer cylinder. So the Coriolis buoyancy
has second-order effects on flow structures. We believe that these second-order effects induced by
Coriolis buoyancy might be detected in more sophisticated models of rotating thermal convection
in spherical configurations.

Our results are complementary with those obtained recently by Pitz et al. [3], but they differ in
some points. We have taken into account the Coriolis buoyancy, while Pitz et al. [3] neglected it.
Moreover, our study differs with theirs by the boundary conditions: while we consider an infinite
aspect annulus, they considered a flow system with aspect ratio � = 1.04 with the top and bottom
endplates rotating at the same angular velocity as the cylinders. The difference in critical values of
Rayleigh numbers can be explained by the dissipation at the endplates used in their simulations.
The DNS results have been obtained using periodic boundary conditions; they are therefore more
appropriate to thermal convection in large aspect ratio systems rather than in small aspect convective
flows where the endplates affect the flow structures so that the transition scenario may differ from
the one described here.

A future study will focus on the turbulent convection regime for Ra > 107 which is more realistic
for fast rotating flows such as those encountered in turbomachinery. Indeed, experimental data on
heat transfer in a gas-filled rotating annular cavity of radius ratio η = 0.52 with an azimuthal aspect
ratio �ϕ = 9.95 and an axial aspect ratio �z = 1.04 [2] have been fitted by Nu = 0.317Ra0.211 for
Ra ∈ [107, 1011]. Such a value of the fitting exponent seems to be smaller than the expected value
of δ = 0.28 ± 0.03 in the turbulent regime [34].

Columnar vortices have also been reported in studies of solid-body rotation of a cylindrical
annulus with a radial inward gravity and outward heating [38–41]. These studies focused on the
critical modes and on thermal and inertial modes. They found that for small values of the radius ratio,
the helical vortices can be critical instead of the columnar vortices. Rotating waves and their higher
modes have also been predicted in a rotating annulus with an inward radial heating filled with water,
by Fein [42] and Hide and Mason [43] who reported subcritical Hopf bifurcation in the case of a free
surface as the upper boundary. This was confirmed in the simulations in Refs. [30,44]. Higher modes
similar to those reported in the present work [steady waves (SW), amplitude vacillation (AV), and
modulated amplitude vacillation (MAV)] were obtained when the centrifugally induced convection
dominates the baroclinic convection [13,30,42–44]. One may question if this transition scenario is
peculiar to the Coriolis effects since it is observed in all flows with the solid-body rotation.

In Figs. 19–22, we present additional material that provides further information on the flow
structure and temperature for different values of Ra.

VI. CONCLUSION

Thermal convection in a cylindrical annulus with a solid-body rotation subject to a radial
temperature gradient has been investigated when the Archimedean buoyancy is neglected. The
centrifugal buoyancy induced by the coupling between the centrifugal acceleration and the radial
temperature gradient can be associated with the centrifugal gravity oriented towards the hot outer
cylinder and therefore responsible for the formation of the columnar vortices. The Coriolis buoyancy
has been included in momentum equations. The critical values and characteristic constants of the
linear growth of the perturbations have been determined for different parameters (the radius ratio
η, the Prandtl number Pr, and the buoyancy parameter γa). The critical state that occurs through a
Hopf supercritical bifurcation is composed of columnar counter-rotating vortices drifting in the
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retrograde direction along the azimuth. Flow structures at the onset of columnar vortices and
higher states obtained for Pr = 1 and η = 0.5 show a complex transition scenario when the control
parameter Ra increases from the steady wave state to amplitude vacillation, followed by modulated
amplitude vacillation and a chaotic state. Frequency spectra and phase portraits have been plotted
for each regime. The increase of the Ra is accompanied with the increase of the Coriolis force
and buoyancy, which reinforce the radial velocity and therefore the heat transfer. Higher states of
columnar vortices are characterized by the presence of thermal plumes towards the inner cylinder,
which also have a complex temporal dynamics that affects the heat transfer. The Coriolis buoyancy
has a significant effect on the plumes’ dynamics. The heat transfer in the steady wave state is
governed by the mean flow, while higher harmonics intervene in the heat transfer for other states,
leading to a time-dependent Nusselt number. The time-averaged Nusselt number and the time- and
volume-averaged kinetic energy continuously increase with Ra.
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APPENDIX: SUPPLEMENTARY MATERIAL

The columnar structures of the vortices are visualized by the iso-surfaces of Q [45] in Fig. 19,
where Q = −(λ2

1 + λ2
2 + λ2

3)/2 with λk (k = 1, 2, 3) being the eigenvalues of the velocity gradient
tensor D = (∂ui/∂x j ).

FIG. 20. Instantaneous contours of axial vorticity (ωz) on r-ϕ plane for Pr = 1, γa = 10−2, and η = 0.5.
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The evolution of the columnar vortices, of the thermal plumes and of the pressure fields are
identified by the contours of the axial vorticity (Fig. 20), of the temperature (Fig. 21) and of the
pressure (Fig. 22) in the (r) plane.

FIG. 21. Instantaneous contours of temperature on r-ϕ plane for Pr = 1, γa = 10−2, and η = 0.5.
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FIG. 22. Instantaneous vector plots and contours of pressure (every other vector is plotted in each direction
for clarity) on the r-ϕ plane for Pr = 1, γa = 10−2, and η = 0.5.
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