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Streamline segment statistics propagation in inhomogeneous turbulence
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The streamline segmentation method proposed by Wang is applied to a turbulent wavy
channel flow to investigate the impact of pressure-driven strain on the streamline segment
probability distribution. While the asymmetrical shape of the probability distribution is
known to react to streamwise strains, in regions of detached flow this impact is severely less
pronounced. Using tomographic particle-image velocimetry measurements and numerical
data in attached and detached flow, the origin for this observation is found in the strong
compressive strain during attached flow. The responsible mechanism is determined by
introducing a concept of streamline segment locality, adapting the propagation equation
for streamline segment statistics to inhomogeneous flow and applying it to the numerical
data. A locally increased segment cutting rate is identified to cause the reduced sensitivity
of the segment probability distribution to the local strain.
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I. INTRODUCTION

Flows in engineering applications are predominantly turbulent, which has caused continued
interest in the research community for more than a century. While it is generally accepted that
turbulent flows are described by the Navier-Stokes equations [1], their direct numerical solution
will remain computationally infeasible for the majority of engineering problems for the foreseeable
future due to the wide range of nonlinearly interacting spatial and temporal scales. Because of
the enormous complexity and the high sensitivity toward initial conditions, turbulent flows have
traditionally been described as random processes that can be investigated by statistical means.
Tritton [2], however, notes that the seemingly random behavior must contain structures, as a
completely random behavior would render any definition of turbulence pointless.

An abundance of structures has been proposed as possible candidates to mitigate the difficulties
describing turbulent flows. Corrsin [3] tried to identify “naturally identifiable” geometries appearing
in turbulent flows. The decomposition of turbulent flows into various type zones presenting specific
characteristics was proposed by Hunt et al. [4]. Traditionally, vortices or eddies have been the corner
stone of turbulence descriptions ranging from Richardson’s energy cascade [5] to current vortex
tube analyses [1], suggesting vortex stretching as the main mechanism to transfer kinetic energy
from large to small scales. While there has been extensive research into vortex dynamics, even the
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definition of what constitutes a vortex is generally ambiguous with multiple established criteria
currently in use, as summarized by Haller [6]. Additionally, Ruetsch and Maxey [7] report that
approximately half of the dissipation occurs in regions not associated with vortex tubes such that
the suitability of a turbulence model solely based on vortex dynamics is to be questioned. Such
doubts were also raised by Pullin and Saffman [8] citing the required free parameters, neglected
inner vortex dynamics, and high levels of complexity by vortex tube models.

To address some of these shortcomings, Peters and Wang [9] proposed the dissipation element
method to describe turbulent fields. The method partitions a scalar field into units which are called
dissipation elements. Each element consists of all gradient trajectories connecting a particular pair
of local extrema consisting of a local maximum and minimum in the base scalar field. Since
every point of the field exhibits only one gradient, it is passed by exactly one gradient trajectory.
Therefore, dissipation elements are not only space filling but furthermore unambiguously defined
and nonoverlapping. Additionally, since they only span a region between local extrema, each
dissipation element is strictly monotonous. As a consequence, turbulent behavior is not found within
a single element. Rather, it is represented by the ensemble statistics of all elements. Typically, the
resulting elements are parametrized by their length and their inner scalar difference. The likelihood
of occurrence of a particular configuration of length and inner scalar difference is mapped in the joint
probability distribution function (jPDF). The length distribution function is referred to as marginal
PDF. Extensive studies have been conducted to develop a length distribution function [10] and to
determine typical scaling behavior of dissipation elements [11]. Experimental investigations have
substantiated these findings [12,13]. Additionally, the propagation equation has been used to predict
model constants in a Reynolds-averaged Navier-Stokes turbulence model [14].

A related method is the streamline segmentation method proposed by Wang [15]. Instead of
tracing gradient trajectories of an arbitrarily selected base scalar, streamlines are traced within the
flow. The streamline is thereafter divided into segments based on local extrema of the absolute
velocity. This approach preserves the flow’s inherent topology as the streamline directionality is
not lost, as it is when considering a scalar as the fundamental quantity for dissipation elements.
In contrast to dissipation elements, it can be distinguished between accelerating streamline seg-
ments with positive velocity differences (� > 0) and decelerating segments (� < 0). As a result,
accelerating segments will grow over time while decelerating segments will shrink in the absence
of any other mechanism. In homogeneous turbulence, these inherent kinematics lead to a skewed,
asymmetric probability distribution in which the mean segment length of all accelerating segments
l+
m exceeds the mean segment length of decelerating segments l−

m [15]. The close relation between
dissipation elements and streamline segments is evidenced by their relation to the isosurface where
the streamwise velocity gradients vanish. By definition, streamline segments begin and end on this
surface. When the turbulent kinetic energy is chosen as the base scalar of dissipation elements, their
constituent extremal points are located on the same surface.

In analogy to the dissipation element method, previous studies have developed a length distri-
bution function [16], a scaling for the mean segment length [17], and a model function for the
joint probability distribution function [18] of the segment length l and the inner velocity difference
� for homogeneous shear, decaying, and forced turbulence. Current research is focused on the
structure statistics in inhomogeneous flows. The findings for homogeneous flows were applied to
experimental data obtained in a wavy channel flow and could largely be confirmed for multiple
wave amplitudes and bulk Reynolds numbers [19]. By considering four small subvolumes near the
wavy channel wall, the same study was able to show the effects of mean background strain due to
the mean local acceleration on the asymmetry of the jPDF in inhomogeneous flows, which are
omitted in the model function derived for homogeneous turbulence. The relation is presented in
Fig. 1. However, in the region of the expansion slope and the trough of the wavy surface, i.e., in the
varying pressure region, deviating behavior could be observed at low Reynolds numbers and a large
wave amplitude. Under these conditions, a detached region is observed in the mean velocity field
[20]. These deviating subvolumes are represented by the circle (o) and nabla (∇) symbols.
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FIG. 1. Difference between positive and negative mean segment lengths depending on local flow accelera-
tion for various positions in the wavy channel flow [19].

This study will further investigate the cause for the deviating behavior within and in the proximity
of the expansion slope, when backflow events occur. Therefore, parameters yielding a distinct
separation region in the mean flow field are chosen. Tomographic particle-image velocimetry
(TPIV) measurements and numerical data are considered in the following analysis. The field of view
is expanded in comparison to Ref. [19] to capture the entire expansion slope of the wavy wall. The
acquisition of the experimental data and the postprocessing procedure are described in Sec. II A.
The numerical method is presented in Sec. II B. The results are discussed in four steps starting
with a comparison of the experimental and numerical results in Sec. III A. Whereas streamline
segment statistics of all recorded samples were evaluated in Ref. [19], attached and detached flow
conditions are considered separately in Sec. III B to understand the particular conditions in this
region causing the asymmetry of the jPDF to become less sensitive to the background strain, in
contrast to other regions of the flow. In particular, it is investigated whether large eruption events as
observed in Ref. [21] cause the deviating behavior in the detached region. Schäfer et al. [18] propose
the propagation equation for the probability distribution of streamline segments in homogeneous
turbulence, which models various processes acting on the streamline segments. To identify the
responsible mechanism for the locally deviating behavior, the propagation equation is reformulated
for inhomogeneous flows in Sec. III C. An increased segment cutting rate is observed to decrease
the statistical asymmetry of the jPDF since the occurrence rate of segment cutting events scales
with the segment length. The newly derived propagation equation is applied to the obtained data
in Sec. III D to obtain spatial distributions of this occurrence rate among other model parameters.
Finally, the findings are summarized in Sec. IV.

II. DATA ACQUISITION AND PROCESSING

A. Experimental setup and data processing

All experiments were conducted in an Eiffel-type wind tunnel that provides a fully turbulent
two-dimensional channel flow matching direct numerical simulation (DNS) results of Moser et al.
[22] in the test section, which was verified in previous studies by Schäfer et al. [12]. The test
section shown in Fig. 2 has an aspect ratio of 1:20 and measures 2h × w = 100 × 2 000 mm2

(height × span) at a test section length of l = 2 500 mm, i.e., 50h with the channel half-height h.
The test section is optically accessible and is attached to a 9-m-long inlet section (180h) with two
strips of sandpaper in the inlet to enforce laminar-turbulent transition. The test section possesses
exchangeable sidewalls, allowing it to be equipped with various geometries. In the current study,
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FIG. 2. Test section and tomographic PIV setup.

a sidewall with a sinusoidal shape, a wavelength of 2h = 100 mm, and an amplitude of 5 mm,
i.e., 0.1h, was investigated for a bulk Reynolds number of 3 200 based on the bulk streamwise
velocity uBulk = 1 m/s and the flat channel half-height h. The trough of the wave is aligned with
the previously flat surface such that the wave’s crests reach 10 mm into the flow. Because of the
waviness of the sidewall, locally adverse pressure gradient and favorable pressure gradient flow
conditions occur in the channel.

To improve the knowledge of the local variations of the streamline segment statistics and
therefore to better correlate the results with the instantaneous flow state, the tomographic PIV
setup consisting of four scientific complementary-symmetry metal-oxide semiconductor cameras
providing a resolution of 2560 × 2160 px2 at 16 bits per pixel and a dual cavity laser providing
200 mj per pulse was modified compared to previous studies [19], in which four narrow cuboid
volumes along the wave were illuminated by a beam aligned in the spanwise direction and
recorded separately without acquiring data from the surroundings. The modified setup provides an
approximately 8-mm-thick light sheet which is arranged perpendicular to the wavy channel surface
allowing for a more detailed analysis of the streamline segment statistics by capturing a wider range
of wall-normal distances and a larger section of the wave. The field of view was set to capture the
surroundings of the wave, where effects of the decelerating flow, i.e., separation onset due to the
adverse pressure gradients, were expected. The field of view (FOV) is depicted in Fig. 3.

The evaluation process itself consisted of the well-established simultaneous multiplicative
algebraic reconstruction technique volumetric intensity reconstruction [23], a direct multigrid
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FIG. 3. Field of view (FOV) of the tomographic PIV setup. (ES) defines the FOV in Ref. [19].
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correlation step [24], an motion tracking enhancement volume refinement step [25], and finally
another direct multigrid correlation step. The final intensity reconstruction consisted of 2497 ×
2552 × 418 vox3 with each interrogation volume spanning 323 vox3. At 50% overlap, the final
velocity grid contained 156 × 160 × 26 nodes. This corresponds to a volume in physical coordinates
measuring approximately 45 × 50 × 8 mm3 with an interrogation volume size of 0.62 mm and
therefore a vector spacing of 0.31 mm. Because of the high smoothness requirement for gradient-
based structure detection methods, the raw velocity fields were postprocessed by an fast Fourier
transform filter to compensate for measurement noise. The impact of the filtering process and its
validity is discussed in the previous study [19]. In total, 2500 independent image sets were recorded
and evaluated.

Since the cameras cannot be placed within the channel, the viewing angles are not perpendicular
to the thick light sheet. As a consequence, the wall reflection was visible in the captured images,
prohibiting the reconstruction in immediate wall proximity. This results in a near-wall region of
about 2 mm thick without reliable data. Hence, this region was masked in the source images.

B. Computational setup

The dimensions of the physical domain are Lx = 8h, Ly = 2h, and Lz = 4h in the streamwise,
wall-normal, and spanwise direction. The wavy surface of the lower wall of the channel has a
wavelength of λ = 2h = 100 mm such that four waves are included within the streamwise direction.
On the wall, a grid resolution in inner wall units of �+

x = 4.1, �+
y = 1.0, and �+

z = 8.2 is used,
with a relaxation of the y component toward the centerline of the channel. This yields a grid with
ncells = 400 × 120 × 100 = 4.8 × 106 cells. Periodic boundary conditions are applied at stream-
and spanwise boundaries. A no-slip boundary condition is used for the sidewalls. The Reynolds
number is uBulkh

ν
= 3200 to match the experimental conditions.

Due to the sufficiently high resolution, the compressible unsteady Navier-Stokes equations are
solved directly (DNS) on body-fitted grids. For the convective fluxes, the advection upstream
splitting method (AUSM) is used and a central scheme is employed for the viscous terms. The
temporal integration is performed by an explicit five-stage Runge-Kutta method at second-order
accuracy. Among numerous other studies, investigations in Ref. [26] have shown the high quality of
the results of this numerical method.

To obtain independent snapshots, the resulting data set encompasses 1000 samples with a
temporal sampling rate of �tSnapshot = 0.5h/uBulk. An increased sampling rate results in multiple
snapshots showing the same structures.

C. Streamline segment detection

The same streamline detection procedure was applied to experimental and numerical data.
Streamlines were traced starting from 10 000 homogeneously distributed seed points per snapshot.
A Runge-Kutta 4-5 scheme was used for the spatial integration while the step size was set to one fifth
of the local cell size. Local velocities between the grid points were determined using cubic spatial
interpolation. Consequently, the local coordinate along each streamline and the absolute velocity
were calculated from the spatial coordinates and local velocities of all contributing vertices resulting
in two simple vectors. Local extrema were identified as such vertices which have neighbors with
purely greater or lower absolute velocities. The streamline coordinates of such vertices were refined
by fitting parabolas onto their own and their neighbors’ velocities and determining the analytical
location of the extrema. All other vertices were discarded. A streamline segment is constituted
by two neighboring extrema. Its arclength l is the difference in the streamwise coordinates of the
constituting extrema, while its inner velocity difference � is the difference between the absolute
velocity values.
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III. RESULTS

The discussion of the results is divided into four sections. First, the experimental and numerical
results are validated by the comparison to the planar particle-image results from Ref. [19] in
Sec. III A. In Sec. III B, the streamline segment statistics are discussed with respect to the behavior
of the attached and detached flow states to identify the flow condition which leads to the decreased
sensitivity of streamline segments statistics to the background strain. To identify the mechanism
leading to this behavior, the model equation for streamline segment probability distributions by
Schäfer et al. [18] is extended for inhomogeneous flows in Sec. III C, applied to the DNS data, and
the resulting findings are presented in Sec. III D.

A. Comparison of experimental and DNS data and validation

Before any further analyses, the results from the experimental and numerical data are compared
to mutually show their quality. The data set obtained from planar PIV measurements in the previous
study [19] has already been demonstrated to match the findings of Zilker and Hanratty [20] and
is therefore used as reference. For this comparison, first- and second-order statistics of both data
sets were averaged in the z direction since each plane should converge toward the same statistical
properties due to the large span of the channel. The velocity and fluctuation profiles at several
streamwise locations within one wavelength are shown in Fig. 4. Note that no tomographic PIV
data are available at x/h = 1.2 and 1.6 due to the limited field of view shown in Fig. 3.

The mean streamwise velocities compare well for all data sets. The DNS results have a slightly
flatter profile toward the centerline of the channel. In the crest region x/h = 0, the mean streamwise
velocity distribution of the experimental data shows a plateau-like shape at y/h ≈ 0.75. In the DNS
data, this shape is less pronounced. The wall-normal component in the planar PIV data matches the
DNS data in shape and in magnitude while the velocities measured by tomographic PIV exhibit
an offset. This is due to a slight misalignment of the calibration target during the calibration
procedure, resulting in a minimal orientational mismatch of the coordinate systems between the
tomographic PIV measurements, planar PIV measurements, and DNS data. Generally, the shape of
the velocity distribution matches the reference data. The magnitude of the wall-normal velocity and
the offset lie within the generally accepted uncertainty of tomographic PIV of approximately half
a voxel.

The streamwise velocity fluctuations of both experimental data sets match very well, while
they slightly exceed the DNS data in magnitude. This is particularly visible in the fluctuation
peak associated with the buffer layer. A good match between all three data sets is obtained in the
wall-normal velocity fluctuation. The experimental data sets present a faster decay of the fluctuation
magnitude toward the channel’s center than what is found in the DNS data.

Overall, both data sets exhibit a satisfactory agreement concerning distribution and magnitude
of the observed statistics, which match in terms of velocity and fluctuation distribution trends and
detected features. The somewhat elevated level of velocity fluctuations found in the crest region, i.e.,
in the region x/h ≈ 0, in both experimental data sets suggests a slight difference in the Reynolds
number between the experimental facility and the DNS data.

B. Attached and detached flow state

While it could be shown that the mean strain has a significant impact on the streamline segment
statistics and their asymmetry, the expansion slope and trough regions showed deviating behavior
when large backflow events occurred, i.e., the asymmetry of the joint PDF did not scale with the
background strain due to the mean local acceleration asl = [(�v · ∇)�v] · �tv , where �tv is the unit
vector tangential to the mean flow. While the flow is highly three-dimensional and intermittent, such
backflow events are referred to as separation and otherwise is interpreted as an attached flow state.
Instead, values indicating almost symmetrical distributions or even somewhat longer accelerating
segments usually found in homogeneous flows were detected [19]. Since this behavior seems to be
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FIG. 4. Profiles of first- and second-order statistics in multiple streamwise locations. The wall position is
indicated by the vertical solid line.
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FIG. 5. Artificially generated reference flow for a fully attached flow field.

confined to the volumes with reversed flow events, a closer look at these events is required. Due
to the highly unsteady flow behavior, the flow does not present a continuous detached flow region.
Instead, instances of attached flow following the contour of the wave can be observed in this flow
regime as well as flow detachment with the occurrence of large eruption events as noted, e.g., by
Cherukat [21].

Because of the highly fluctuating nature of this flow configuration, individual snapshots do not
necessarily exhibit a smooth and clearly distinguishable separation bubble. To identify samples
in which separation occurs, a hypothetical flow configuration with purely sinusoidal streamlines
was used as reference. The deflection of the streamlines was chosen such that it matches the wall
contour and decreases linearly to zero toward the channel’s centerline. The resulting streamline
configuration and an instantaneous velocity field are shown in Fig. 5. The normalized scalar product
between the reference streamline tangential vector �tref and the tangential vector of the local velocity
�tv was determined. Its volumetric average within the domain � in each snapshot was used to
distinguish between attached and detached flow states, where high values point to the respective
snapshot exhibiting an attached flow state, while low values are used to detect strong separation
events. The domain � encompasses the full streamwise extent of the experimental FOV. It ranges
from y = 0.5 to the wall in the wall-normal direction since the effect of the wavy sidewall becomes
negligible toward the channel’s center.

To determine the effect of a large detached flow region, only the 250 snapshots exhibiting the
lowest values in the previously described selection criterion, i.e., 10% of all recordings, were
compared to the 250 samples presenting very high numbers. In Fig. 6(a), the selection criterion
for all experimentally recorded snapshots is illustrated. Additionally, the mean flow field of these
two subsets are visualized by streamlines in Figs. 6(b) and 6(c), confirming that the chosen criterion
is suitable to distinguish between attached and detached samples.

The same procedure was applied to the numerical data. However, due to the massively larger
domain when compared to the experiment and the highly three-dimensional structure of the
backflow events, a single snapshot can exhibit clearly attached and detached regions at the same
time. Therefore, the domain was divided into subvolumes with a length of a single wavelength and
a spanwise extent of 0.25h. The resulting subvolumes were then considered individually and treated
as independent snapshots.

The resulting selections of snapshots can be analyzed separately to determine if the deviating
behavior with respect to the statistical asymmetry found in the expansion slope and trough regions
is caused by the highly unsteady detachment events as described, for example, by Cherukat [21].
To further investigate the statistical asymmetry, the local ratio between mean segment lengths of
accelerating and decelerating segments was determined within the streamwise range of the slope
(ES) region in Fig. 3, where the deviation was first observed in Ref. [19]. Since a larger FOV is
available in the current experimental data set, the extent in the wall-normal direction of the analyzed
region was increased to fit the FOV. Additionally, the contraction slope region (CS) behavior found
in the numerical data is considered for comparison.
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FIG. 6. Selection criterion and attached and detached flow in the TPIV data (a) Selection criterion, (b)
Mean attached flow field, (c) Mean detached flow field.

Figure 7 shows the mean local acceleration asl as an indication of the local normalized
background strain in the streamwise direction and the resulting statistical asymmetry based on
all snapshots from the experimental data set, the samples presenting clearly attached flow, and
the clearly detached samples. Overall, the mean acceleration caused by the background strain is
relatively homogenously distributed at moderate negative values in large portions of the considered
region. Close to the wall, a layer of much stronger deceleration with a clearly visible peak
deceleration at y/h ≈ 0.8 which decays toward the wall is observed. The subset of samples in which
the flow remains attached to the sidewall is generally comparable in its shape to the distribution
obtained from all snapshots. Toward the channel center y/h = 0, the moderate deceleration appears
almost constant at roughly the same level as the overall average. From y/h > 0.4 on, the attached
flow undergoes a stronger deceleration. The shape of the distribution remains comparable to the
overall average with the deceleration peak moving closer toward the wall. In contrast to this, the
subset in which the flow detaches presents a magnitude decreasing background strain reaching
values of roughly zero at y/h ≈ 0.6. Beyond this point, the detached region causes the flow to
significantly decelerate, reaching its strongest deceleration at y/h ≈ 0.75. This deceleration is far
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FIG. 7. Strain and statistical asymmetry in the expansion slope region (ES) based on the TPIV data (a)
Normalized mean streamwise strain, (b) Ratio between the mean segment length of positive and negative
segments (thick) and empirical prediction (fine).

weaker than the peaks found in either the complete sample set or particularly the attached flow case.
From this point on, the background strain increases, even forming a local maximum with a value
significantly larger than zero near the wall, which corresponds to the reversed flow in this layer.

The statistical asymmetries quantified by (l+
m − l−

m )/lm for all samples and both subsets are also
shown in Fig. 7(b). Additionally, the empirical prediction for the asymmetry from Ref. [19] is
shown. It can be expressed as a linear relation between the mean acceleration and the statistical
asymmetry

(l+
m − l−

m )/lm ≈ 0.5
aslλ

u2
Bulk

+ 0.01.

Toward the centerline of the channel at y/h < 0.2, a steep decline of the segment length ratio
can be observed. This is likely an artifact of the boundary of the measurement volume, which
causes the streamline detection to omit segments extending beyond the measurement volume.
Decelerating segment detection is more likely since those segments tend to point toward the
wave’s trough and therefore reach further into the measurement volume. Additionally, this dis-
tinct behavior is confined to the near boundary region where the DNS data shown in Fig. 8
do not show a comparable trend. Beyond y/h = 0.2, the streamline segment asymmetry in
Fig. 7(b) reflects the trends that are observed in the local mean acceleration in Fig. 7(a). The
detached subset exhibits the smallest absolute asymmetries while the attached subset shows a
much larger asymmetry. The statistics obtained from the detached subset in Fig. 7(b) correlate
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FIG. 8. Strain and statistical asymmetry in the expansion slope region (ES) based on the DNS data (a)
Normalized mean streamwise strain, (b) Ratio between the mean segment length of positive and negative
segments (thick) and empirical prediction (fine).

closely with the respective background strain in Fig. 7(a). That is, the local extrema occur at
comparable positions. The attached subset and the overall statistics possess roughly constant
asymmetry values in the range of 0.4 < y/h < 0.8. Neither set shows a clear peak at y/h ≈
0.8 comparable to the one found in the mean acceleration in Fig. 7(a). This is particularly
apparent when the empirical relation between the mean acceleration and the streamline segment
asymmetry depicted by the fine lines is considered as reference. While it underestimates the impact
of the background strain in the range 0.4 < y/h < 0.7, the general shape of the asymmetry is
predicted well. In the region y/h > 0.7, only the detached subset curve resembles the prediction
based on this relation. The attached flow state and the overall statistics do not exhibit the large
asymmetry peak near the wall, which is predicted based on the background strain. Consequently,
this suggests that the deviation from the previously observed relation is not determined by the
separation. Rather, the large compressive strain coinciding with near-wall shear of the attached
flow state appears to cause segments to break. Additionally, the data obtained from the current
setup suggests that the coefficient for the linear relation between the two quantities is higher than
estimated in Ref. [19] for moderate accelerations. A possible reason for the underestimation in the
previous study is the smaller measurement volume, which suppresses long segments, which in turn
are responsible for large asymmetries.

Analogously, the corresponding data obtained from the DNS data are shown in Fig. 8. The
essential findings from the experimental data are confirmed. The detached subset of samples
exhibits a strong correlation between the mean acceleration in Fig. 8(a) and the streamline statistic
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FIG. 9. Strain and statistical asymmetry in the trough region (T) based on the DNS data (a) Normalized
mean streamwise strain, (b) Ratio between the mean segment length of positive and negative segments (thick)
and empirical prediction (fine).

asymmetry in Fig. 8(b). In line with the experimental data, the attached subset in Fig. 8(b) does
not form the pronounced peak which the mean acceleration in Fig. 8(a) suggests. In the region
between 0.4 < y/h < 0.7, the segment length ratios of all subsets show the same trend as the
mean acceleration. That is, the barely decelerated detached subset exhibits a smaller streamline
length ratio than the subset of the attached samples. The prediction in the previous study [19]
underpredicts this effect. This is consistent with the findings from the current experimental data.
A notable difference between the experimental and numerical data sets is the trend of the segment
length ratio toward the center of the channel. All three sample sets of the DNS data in Fig. 8(b)
tend toward zero or even slightly positive values. This is in good agreement with the prediction by
Wang for homogeneous shear flows [15] since the influence of the wavy wall diminishes toward the
channel’s centerline. Consequently, the deviating behavior observed in the experimental data set in
this regard appears to be an effect caused by the finite FOV.

In the trough region, the subsets for attached and detached flow conditions correlate well with
the mean acceleration as shown in Fig. 9. However, the magnitudes of the observed asymmetries are
well below their respective predictions. This is in good agreement with observations in Ref. [19],
where the linear relation was not valid in the trough region. As a result, the overall asymmetry does
not reflect the peak in the local mean acceleration. This is expected since the mean deceleration
magnitude is comparable to the magnitude found in the attached subset of the expansion slope
region, in which the correlation to the asymmetry neither matched.

The mean acceleration in the contraction slope region and the corresponding segment length
ratios are shown in Fig. 10. In contrast to the more complex flow structure in the separation region,
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FIG. 10. Strain and statistical asymmetry in the contraction slope region (CS) based on the DNS data
(a) Normalized mean streamwise strain, (b) Ratio between the mean segment length of positive and negative
segments (thick) and empirical prediction (fine).

the mean acceleration in this region exhibits only positive values, due to the contracting sidewall
contour, which reach a distinct peak close to the wall and decrease toward the channel center where
the sidewall effect diminishes. The mean acceleration profiles show a difference; i.e., in the detached
case the near-wall acceleration region is wider with a smaller near wall peak than what is determined
in the attached sample subset. While the segment length ratios in Fig. 10(b) follow the overall trend
with the largest statistical asymmetries near the wall, the location of the near-wall peak is somewhat
shifted off the wall compared to the location in the mean acceleration. Like in the expansion slope
area, the effect exceeds the predictions of the previous study.

When the streamline segment statistics are evaluated locally in a number of small subvolumes
homogeneously distributed across the entire domain by considering only those segments passing
each volume, a quasilinear relation between �lm/lm and asl can be observed, as shown in Fig. 11.
Each data point corresponds to the streamline segment distribution in a specific location. Because of
the asymmetric flow within each wave, locations experiencing deceleration are significantly more
abundant than accelerating locations, which are confined to a small region near the contraction slope.
As previously observed in the individual regions, the linear relation is limited to moderate mean
accelerations and corresponding background strains. The streamline segment statistics can reach
larger degrees of asymmetry during acceleration, i.e., expansive strain, than during deceleration,
i.e., compressive strain, before showing asymptotic behavior. Additionally, some states shown in
the figure do not adhere to the linear relation and resemble hysteretic behavior, indicating that the
structures convected through this flow field cannot adapt to their new surroundings immediately
and do not reach an equilibrium state suiting the local conditions. Even though a large portion of the
flow is decelerated, the overall mean acceleration within this periodic domain is zero. Because of the
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FIG. 11. Overall relation between local normalized acceleration and streamline segment length ratio based
on the DNS data.

larger linear range of positive asymmetries, the overall asymmetry will remain positive and resemble
the streamline segment statistics obtained from isotropic turbulence, which has been shown by
Hennig et al. [27]. Note that higher asl values are observed in this case when compared to the
data from the wall-normal subvolume shown in Fig. 3. The high values originate from small, highly
localized spots close to the wall. Because of the evaluation per layer and the streamwise extent of
the wall-normal subvolume, these highly local data points only contribute to the final value of the
profile like more moderate neighboring values do, which occur more often, as seen in Fig. 11.

The separate discussion of the attached and detached flow states evidences the immediate effect
of local strain acting upon the streamline segments during local acceleration and deceleration. It
is even more apparent than found in Ref. [19]. For each state, a close correlation between the
streamline segment asymmetry and the mean acceleration can be observed. Contrary to former
expectations, the deviation from their approximately linear relation appears to be generated by
the strong compressive background strain which occurs during the deceleration in the attached
flow state. When passing the expansion slope region, streamline segments cannot adapt instantly
to the surrounding conditions. Only after having undergone deceleration for a while, an apparent
correlation between the background strain and the streamline segment asymmetry is recovered in
the trough region, albeit falling short of the prediction.

While the state-based consideration of the collected data gives insight into the origin of the
occurring effects, any sort of prediction cannot rely on the knowledge of a number of exact snapshots
and their respective attachment or detachment state since fully resolved and statistically categorized
data would render further predictions unnecessary. A model that explains the observed effects is
definitely more interesting. Therefore, the streamline segment propagation equation proposed by
Schäfer et al. [18] will be considered and adapted to account for this inhomogeneous flow in the
following section.

C. Streamline segment statistics propagation equation under inhomogeneous conditions

To identify the mechanisms causing the local phenomena within the streamline segment statistics,
the propagation equation proposed by Schäfer et al. [16,18] building on the propagation equation
for dissipation elements by Wang and Peters [28] is applied to the local joint probability distribution
(jPDF) of streamline segment length and inner velocity difference obtained from the DNS results.
In the following, two kinds of categorization will be used when discussing streamline segments.
A type of streamline segment will refer to either accelerating � > 0 and decelerating segments
� < 0. A class encompasses all segments with a specific combination of length l and inner velocity
difference �. The original form of the propagation equation is expressed per segment class. It is
based on a Poisson process and has previously been applied to forced and decaying as well as
shear turbulence. Since it was derived for homogeneous turbulence, the probability distribution is
considered homogeneous in space such that all detected segments are considered regardless of their
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position in space. Therefore, the jPDF is also independent of any position �x:

∂

∂t
P(l,�, t ) + ∂

∂l
[a1,l P(l,�, t )] + ∂

∂�
[a1,�P(l,�, t )]

= λc

⎛⎜⎜⎜⎝2
∫ ∞

0

∫ ∞

l
δ

(
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(
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)
− �

)
P(y, ψ, t )dydψ︸ ︷︷ ︸
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− lP(l,�, t )︸ ︷︷ ︸
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⎞⎟⎟⎟⎠

+ 2μa

⎛⎜⎜⎝∫ �
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∫ l

0

y

l
P(l − y,� − ψ, t )P(y, ψ, t )dydψ︸ ︷︷ ︸

GR

− P(l,�, t )︸ ︷︷ ︸
RR

⎞⎟⎟⎠.

This propagation equation describes two types of processes which streamline segments undergo.
The first type is a slow drift in length l as well as in inner velocity difference �, which continuously
occurs due to stretching and diffusion. These effects are represented by their respective drift terms
a1,l and a1,�, which can be expressed by

a1,l = −cl,ν

l
{1 − cs[1 − exp(−2l )]} + C��,

a1,� = −c�,ν

�

l2
exp(−3l ) + sgn(�)K + �

τ+,− .

The lengthwise drift term a1,l consists of two parts. The first part describes the diffusive change of
segment length. Short segments in particular decay on average, which is expressed by −cl,ν/l . This
can only occur when the two defining local extrema of the streamline segment move toward each
other such that the neighboring segments grow in length. This is expressed through the following
expression, in which the value of cs is chosen such that the overall change of length of all segments
is zero. The second part of the lengthwise drift represents the growth or decay of streamline
segments due to their inner kinematics. Accelerating segments possess a leading extremum with
a higher velocity than the trailing one, which causes it to grow over time. The opposite is true
for decelerating segments. The parameter C� reflects the impact by the instantaneous streamwise
pressure distribution, counteracting the segment stretching and compression kinematics. It assumes
values between zero and one.

The velocity drift term a1,� consists of three contributions. In analogy to the lengthwise drift,
the contribution lead by c�,ν represents the diffusive decay of local velocity extrema, leading to
a decrease in the segments’ inner velocity difference �. The source term sgn(�)K is required
to maintain statistical equilibrium in homogeneous turbulence [18]. The third term describes the
inner velocity evolution due to the segment kinematics. Note that the associated timescales assume
different values for accelerating (τ+) and decelerating (τ−) segments.

The second type is a breakup or cutting process, which occurs when the zero velocity gradient
surface moves onto a previously monotonous streamline segment, instantaneously cutting it into
two pieces. A reversal of this process causes a small segment to disappear by effectively reattaching
two neighboring segments. While each of these instantaneously occurring effects represents a single
process, they are represented by two terms in the equation. A particular class of streamline segments
can be generated by the cutting (GC) or reattachment (GR) processes. At the same time, these
processes also remove segments of that class from the distribution, which is expressed by RC and
RR. The redistribution within the jPDF due to the instantaneous processes depends only on the jPDF
itself and the occurrence rates λc and μa.

The statistical consideration of the streamline segments from all snapshots leads to an effectively
time-averaged representation, in which the temporal derivative is zero. Unlike in Ref. [18], the
probability distribution is now a function of the position in the domain �x due to the inhomogeneity
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FIG. 12. Schematic of streamline segment selection based on subvolumes.

in the current study and therefore it requires the addition of a convective term �v · ∇P(�x, l,�) to
represent the local propagation of the segments within the flow field

∂

∂t
P(�x, l,�)︸ ︷︷ ︸

=0

+�v · ∇P(�x, l,�) + ∂

∂l
[a1,l P(�x, l,�)] + ∂

∂�
[a1,�P(�x, l,�)]

= λc

(
2

∫ ∞

0

∫ ∞

l
δ

(
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y

)
− �

)
P(�x, y, ψ )dydψ − lP(�x, l,�)

)
+ 2μa

(∫ �

0

∫ l

0

y

l
P(�x, l − y,� − ψ )P(�x, y, ψ )dydψ − P(�x, l,�)

)
.

Note that the newly introduced local dependence of the jPDF is not straightforward since the
segments have a spatial extent such that they are not unambiguously associated with a single
position in space. The simplest way to deal with local statistics is a subdivision of the flow domain
into smaller subvolumes, in which the local streamline segment statistics can be obtained as if
they were homogeneous. However, to achieve a high degree of localization the subvolumes must
be small. Since streamline segment length distributions can span the entire range of turbulent
length scales, the evaluation of very small subvolumes will omit large segments, introducing a
bias toward small segments. Large subvolumes can capture such segments at the cost of a clearly
local probability distribution since the result will be a volumetric average distribution of the entire
subvolume. Additionally, any subvolume-based localization method will suffer from boundary
effects, introducing an additional bias since large segments can only be detected if they entirely
fall into the subvolume. Therefore, segments with lengths close to the subvolume length will only
be detected if they are located in the center of the volume while small segments can be detected
anywhere in a subvolume if they do not cross the subvolume’s boundary.

A sketch of the subvolume approach is shown in Fig. 12 with two subvolumes. For two
exemplary streamlines, the velocity distribution is shown and the local extrema defining the
streamline segments are marked. Streamline 1 is comprised of mostly long segments. Two relatively
long segments are labeled A and B. When the small subvolume is considered, it is obvious that
neither segment A nor segment B can be captured, leaving only the two segments in between as local
segments, which cover only about half of the subvolume length. For the larger subvolume, segment
B falls entirely into the subvolume, while the segment A requires the size to be increased even
further to be locally captured. In contrast, streamline 2 consists of rather short segments. Therefore,
the part of the streamline that is considered local is much less sensitive to the subvolume size. For
both subvolume sizes, the number of streamline segments is much larger than what is found for
streamline 1. This clearly illustrates how a locality definition based on a subvolume will introduce
bias toward small segments.

034605-16



STREAMLINE SEGMENT STATISTICS PROPAGATION IN …

ξ

s

FIG. 13. Association of streamline segments with grid points.

To unify these seemingly contradicting requirements, a different concept of streamline segment
locality is introduced in this study. Instead of subdividing the spatial domain, locality is determined
on a per-segment basis. Each segment is associated with all points in the flow domain it passes.
Therefore, all segments that have passed a certain point in space constitute the set from which the
local probability distribution can be obtained. The main benefit of this approach is that it does not
introduce any spatial limits that can lead to the omission or bias toward a certain class of segment.
Nonetheless, it provides an exact localization scheme which can be evaluated at any point within
the flow domain.

Since fully converged statistics are required for any further analysis, a single streamline segment
per snapshot and point of interest is not sufficient. Therefore, the localization approach was
adapted such that all streamline segments passing the point of interest within close proximity of
ξ contribute to its probability distribution. A schematic of this approach is shown in Fig. 13. A grid
of points where local probability distributions are evaluated are passed by two exemplary streamline
segments. All points in close proximity to the streamline segment are highlighted as the segment
will contribute to the probability distributions of those points.

In his original study [15], Wang elaborates on the equivalence of volume weighting of streamtube
segments and the averaging over all streamline segments determined by tracing streamlines from a
homogeneously spaced grid. This argument was later used to derive the model equation for the
length distribution of dissipation elements [28] and streamline segments [16] and the equation for
the joint probability distribution of streamline segments [18] determined by a balance of grid points
occupied by a certain class of structure. However, due to the chosen locality definition in this study,
each streamline segment can contribute to the statistics of more than one cell of the statistics grid,
invalidating the conservation of grid points and direct volume weighting in the event of cutting or
reattachment.

To account for this, the propagation equation’s terms representing the segment generation by
cutting and reattachment processes (GC and GR) have to be adapted. While the terms responsible
for the removal of streamline segments RC and RR refer to streamline segments already included
in the local jPDF, the generation terms GC and GR are subject to the localization scheme such that
only one fragment of a newly cut segment will be registered locally. Analogously, a newly merged
long segment will be registered anywhere, where one of its original parts was registered as well.

Except for the δ function introduced by Schäfer et al. [18] to distinguish between classes of
streamline segments which differ only in their inner velocity difference, the fundamental derivation
of this term was done by Wang and Peters [28] by counting all grid points which are transferred to
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ζa
ζc

FIG. 14. Detection and cutting location for a single streamline segment.

the segment class of length l

∂

∂t
[nlP(l )]GC = λc

∫ ∞

l
Py→l ny yP(y)dy.

The term Py→l reflects the average fraction of grid points that is transferred to class l , when a
segment of class y is cut, the quantity ny represents the number of grid points in class y, and yP(y)
counts the number of segments of class y being cut. In the original publication, it is assumed that
all grid points from segments being cut will be redistributed to other classes and that the occurrence
rate of each resulting class is the same such that Py→l must be proportional to the resulting length l .
Therefore, Py→l is determined to be of the form

Py→l = Al.

Its integral between zero and y must be one, which allows the coefficient A to be determined.
In the current study, this is not the case. Rather, the number of grid points, which will remain part

of the local streamline segment ensemble, depends on the relative position where the cutting event
occurs (̃ζc = ζc/l) and the relative position where the original segment passes the cell with which
it is associated (̃ζa = ζa/l). Analogously to the original derivation, the probability density of cuts
along the segment is assumed to be uniform. The probability density of the associated cells’ relative
position within the segment must be uniform as well, since their spatial distribution is homogeneous.
Effectively, this results in P(̃ζc, ζ̃a) = 1 for all ζ̃c and ζ̃a. A schematic of these two positions is shown
in Fig. 14.

To calculate the average fraction of grid points which remain part of the local ensemble, two
cases can be considered. If the cell is located between the beginning of the segment and the cut, the
fragment of the segment associated with the cell has a normalized length of ζ̃c. Since the number of
grid points in a segment only depend on the segment length, the fraction of grid points which remain
local also assumes the value of ζ̃c. This is represented by the first term of the equation below. If the
cell position lies beyond the location of the cutting event, only the fragment of length 1 − ζ̃c remains
local, which is expressed by the second term. The integration over all possible cut and cell locations
yields ∫ 1

0

⎛⎝∫ ζ̃c

0
ζ̃c P(̃ζc, ζ̃a)︸ ︷︷ ︸

=1

d ζ̃a +
∫ 1

ζ̃c

(1 − ζ̃c) P(̃ζc, ζ̃a)︸ ︷︷ ︸
=1

d ζ̃a

⎞⎠d ζ̃c = 2

3
.

Not only does this illustrate that one fragment of a previously cut segment becomes nonlocal but
it also indicates that the locality definition causes long fragments to be more likely to remain part
of the local ensemble than small ones. To account for this, Py→l is modified such that it is not only
proportional to the length of the receiving segment class but also scaled by the probability that the
fragment will be part of the remaining segment ensemble. Because of the homogeneous distribution
of statistic cells, this probability is simply l/y. The resulting and adapted distribution function
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P∗
y→l is

P∗
y→l = A∗ l2

y
,

where A∗ is the coefficient possessing a new value. As shown, only a fraction of the grid points
remains local when a segment is cut. Therefore, the integral must yield∫ y

0
P∗

y→l dl = 2

3
.

The adapted term GC∗ will therefore take the following form:
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∫ ∞
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δ
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P(y, ψ )dydψ.

The adaptation of GR is somewhat more straightforward. The original derivation integrates over
the probability of all segment classes with smaller parameters for l and � than the target class
multiplied by the occurrence probability of a neighboring segment with the length and velocity
difference suitable to form a segment of the target class. Each merging segment of length y will
contribute ny grid points to the target class:

∂

∂t
[nlP(l,�)]GR = 2μa

∫ �

0

∫ l

0
P(l − y,� − ψ )nyP(y, ψ )dydψ.

When divided by nl , the resulting expression will include the factor ny/nl , which is equivalent
to the length ratio of contributing and target segment length. However, under the current locality
definition, only one fragment of the newly created segment is part of the local streamline segment
ensemble prior to the reattachment event. This means that the missing segment grid points will be
added to the already considered segments’ grid points. As a consequence, every reattachment event
will contribute nl instead of ny grid points to the target segment class. The ratio of segment lengths
must therefore vanish in the adapted expression for GR∗:

∂

∂t
P(l,�)GR∗ = 2μa

∫ �

0

∫ l

0
P(l − y,� − ψ )P(y, ψ )dydψ.

D. Application of the adapted propagation equation

To be able to compare the current results to previous studies, all quantities are made dimen-

sionless by σ (�x) = 〈�2|�x〉 1
2 , lm(�x) = 〈l|�x〉, or a suitable combination thereof. Local dimensionless

streamline segment probability distributions were calculated on a regular Cartesian grid in the
range of x/h ∈ [0, 2] and y/h ∈ [0.5, 1]. With a grid spacing s of 0.01h, this yields 201 × 51
local probability distributions. For satisfying statistical convergence, the proximity parameter ξ was
chosen to be 0.01h, yielding the segment count distribution shown in Fig. 15. In each cell, the jPDF
was determined spanning l/lm ∈ [0, 3.5] and �/σ ∈ [−3.5, 3.5] discretized into 20 by 40 bins.

By definition, each positive segment is followed by a negative one and vice versa such that in
pure numbers, both types of segments should occur with the same probability. However, the locality
definition causes each segment to be assigned to multiple cells on the statistics grid. Because of
this locality definition, long segments are assigned to more cells than short segments, increasing
their occurrence rate per cell. This leads to an unbalanced jPDF in which there is not necessarily
the same number of positive and negative segments assigned to each cell. While this might be
an accurate representation of the time each cell is occupied by positive or negative segments,
this poses a problem when convective fluxes are considered since incoming and outgoing fluxes
at each cell might not have the same ratio between positive and negative segments. This would
require a mechanism capable of transforming accelerating segments into decelerating ones and vice
versa which, by definition, is impossible because there is no segment type for which the velocity
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FIG. 15. Number of segments detected per cell.

difference is zero. Yet, any transformation between these two types of segments would have to pass
this state. In fact, the slow drift processes merely change the length and inner velocity difference of
the segments such that the probability distribution is deformed. While the fast cutting and merging
processes change the number of segments contributing to the distribution, they cannot change the
ratio between positive and negative segments since a merging process removes two segments and
creates one larger segment of one type of segments. At the same time, the merging can only occur
due to the removal of a small segment of the opposite type. Consequently, one segment of each type
is removed and the ratio between the two types is not altered. The reversal of this process occurs
when segments are cut.

The original number ratio between positive and negative segments is shown in Fig. 16. In regions
of large statistical asymmetry, e.g., the contraction slope at x/h ≈ 1.6, the occurrence of very long
accelerating segments is increased, leading to a higher detection rate of this segment type. To avoid
the need for a process capable of transforming between the two types of streamline segments, the
detected local jPDFs are rebalanced such that∫ ∞

0

∫ ∞

0
P(l,�)d�dl =

∫ ∞

0

∫ 0

−∞
P(l,�)d�dl = 1

2
.

Note that a similar approach is taken by Schäfer et al. [18]. The jPDF is iteratively approximated
by the given propagation equation and renormalized after each iteration, until it reaches a steady
state. In the current study, however, the local jPDFs are given and the parameters of the propagation
equation are fitted. To guarantee that the propagation equation can adequately represent the local
jPDF and flux, the rebalancing is required.

After balancing all jPDFs, its convective fluxes were determined. In contrast to [18], the
timescales τlm and τσ associated with the rate of change of the reference values lm and σ have to
be considered due to their convective change. This means that even two neighboring dimensionless
jPDFs presenting the same distribution will have a nonzero flux if the reference values are not the
same, since they do not represent the same segment classes in dimensional values. This change in
segment classes must be reflected by some local process. Therefore, the convective flux is extended

FIG. 16. Ratio between positive and negative segment numbers.
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FIG. 17. Logarithm to base 10 of the magnitude of convective time scales (a) Logarithm of T̃ lm (b)
Logarithm of T̃ σ .

by expressions to account for the convective change of the normalization references
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To obtain τlm and τσ , lm and σ are determined locally and their spatial gradients are calculated.
Since the local normalization parameters refer to the converged statistics of a large number of
snapshots, their local rate of change is zero. Therefore, the required time scales are of purely
convective nature, which are specific to inhomogeneous flows. They can be expressed by

τlm = lm
�v · ∇lm

and τσ = σ

�v · ∇σ
.

The ·̃ notation defines the dimensionless quantities. Note that dP̃
dt |conv is not fully dimensionless,

yet. Thus, the convective rate of change is still based on dimensional time. Therefore, with
nondimensional time, the final expression is
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∂�̃

]
.

The importance of the timescales in this case can be observed when logarithmically plotting their
magnitude within the flow domain as shown in Fig. 17. Only very confined regions have very large
values. Most of the flow is dominated by dimensionless timescales below ten. Schäfer et al. [18] note
timescales for the inner velocity evolution of τ̃+ ≈ 4.7 and τ̃− ≈ 7.6. While these timescales will
be redetermined based on the inhomogeneous data, this serves as an argument that τlm and τσ cannot
be neglected ad hoc. Additionally, since the reference variables lm and σ do not monotonously
increase or decrease within the flow domain, positive and negative timescales will occur.
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TABLE I. Free model parameters and
values for homogeneous turbulence [18].

c̃l,ν 0.5
c̃�,ν 1.0
C̃� 0.1
K̃ 0.05
c 1.155
a 2c

τ̃+/− 4.695/7.633

With the local jPDFs and fluxes available from DNS data, the model equation and parameters
can be linearly fitted to the given data in each cell of the grid. More details concerning the parameter
fitting procedure are provided in the Appendix. A list of the free parameters of the model function
and the values reported by Schäfer et al. [18] for the homogeneous decaying and forced turbulence

DNS are given in Table I. Note that the occurrence rates of the fast processes c = λc
l2
m
σ

and
a = μa

lm
σ

are given in dimensionless form. Additionally, to maintain a steady state, Schäfer et al.
[18] set their ratio to two.

When used in the inhomogeneous wavy flow, these parameters resulted in very large residuals as
they were unable to correctly approximate the fluxes, where the residual R is defined as the mean of
the squared difference between the statistically detected PDF flux and the flux calculated based on
the fitted parameters over all N discrete PDF bins:

R = 1

N

N∑
i

{[(˜�v · ∇)P̃]stat − [(˜�v · ∇)P̃]fit}2.

A fully free fit reduces the residual significantly but results in a very low magnitude and
somewhat patchy parameter distribution for c̃l,ν which does not seem to be correlated to the local
flow conditions. Additionally, merging events require the diffusive decay of small segments, causing
their neighbors to reattach. As a consequence, with near-zero diffusion, negative segments would
only asymptotically decrease in length because of their inner kinematics and cutting events without
any mechanism to increase their length. Since this behavior is not observed but the periodicity of the
wave is resembled in the streamline statistics, a certain degree of lengthwise diffusion is required
such that decelerating segments can merge and maintain a nonzero mean length. Therefore, the
parameters were also fitted with c̃l,ν fixed at 0.5 as was done by Schäfer et al. in Ref. [18]. The
resulting residual remained low and within the range of statistical uncertainty to the fully free fit.
This indicates that the larger diffusive contribution can be compensated by other mechanisms to
effectively result in the same flux. This means that the parameter optimization can effectively yield
a number of nearly equivalent results from a solution space. To obtain a single unique solution, at
least one parameter has to be fixed. The quantity c̃l,ν = 0.5 is a good candidate since it represents a
viscosity-driven phenomenon which has been made dimensionless to account for the local structure
sizes. Alternatively, fixing c̃�,ν resulted in significantly increased residuals. The residuals for the
fully free fit, the fit with a fixed c̃l,ν = 0.5, the fit with a fixed c̃�,ν = 1.0, and the fit with the first
four parameters matching the Schäfer et al. [18] values are shown in Fig. 18.

To assess the quality of the parameter optimization, the PDF flux was determined by the fitted
model equation using the previously presented sets of fitting constraints. As an example of the
fit quality at x/h = 1.5 and y/h = 0.8, i.e., the contraction slope, where the largest absolute mean
acceleration is located, the resulting fluxes, and the actual flux obtained from the streamline statistics
are compared in Fig. 19. The parameters for homogeneous turbulence result in a flux distribution
which strongly differs from the actual flux. There is no coherent region of positive flux for either
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FIG. 18. Logarithm to base 10 of the parameter fitting residuals. (a) Parameters for homogeneous
turbulence, (b) fully free fit, (c) c̃l,ν fixed at 0.5, and (d) c̃�,ν fixed at 1.

FIG. 19. Exemplary jPDF fluxes. (a) Fluxes based on statistics, (b) parameters for homogeneous turbu-
lence, (c) fully free fit, (d) c̃l,ν fixed at 0.5, and (e) c̃�,ν fixed at 1.
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FIG. 20. Comparison of inner kinematics and background strain distributions (a) C̃�-distribution (b)
Background strain.

positive or negative inner velocity differences as found in the distribution obtained from the segment
statistics. Instead, the flux of very short segments with small inner velocity difference assumes very
high values surrounded by negative fluxes. Additionally, the fluxes of segments with large inner
velocity differences present larger values than found in the statistics. A similar result is observed
when only c̃�,ν is set to a fixed value of one. Neither of these fluxes matches the statistics from the
DNS data well, which agrees with the residuals found throughout the grid. The fully free fit and the
fit with c̃l,ν set to 0.5 yield very similar distributions and magnitudes. Both fluxes do equally well
approximate the actual flux based on the local statistics. This is hardly surprising given their very
low residuals.

Based on the parameter distributions obtained with c̃l,ν at 0.5, other parameters can be analyzed.
This case is chosen since it fits the statistical data equally well while presenting coherent regions in
its parameter distributions which correlate with the mean velocity statistics. The first item of interest
is the contribution of the streamline segment kinematics to the overall statistics. In work by Schäfer
et al. [18], the characteristic asymmetry of the jPDF is a sole function of C̃�, which represents
the rate of change of the segments’ lengths due to their inner velocity difference. However, its
distribution in the wavy channel flow presents large regions where its value is approximately zero.
Two notable exceptions can be observed in the trough region and the reattachment point in particular
and in a fan-shaped region following the wave’s upstream crest. Interestingly, the comparison
with Fig. 20(b) shows two regions of moderate acceleration and therefore background strain. This
suggests that this mechanism is dominated by the background strain in other regions. Additionally,
in between those regions the expansion slope of the wave presents a distinct local area, in which C̃�

approaches zero, while a large compressive background strain can be observed.
Concerning the evolution of the inner velocity differences due to the streamline segment

kinematics, the corresponding timescales τ̃+ and τ̃− are shown in Fig. 21. Similar to the distribution
of C̃�, in large portions of the flow the kinematics appear to be dominated by other effects
since these nondimensional timescales show values beyond a million, rendering the impact of the
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FIG. 21. Dimensionless timescales of inner kinematics (a) T̃ +-distribution (b) T̃ −-distribution.

kinematics negligible. However, in the regions with large values for C̃� such as the wave crest
and the reattachment point, the timescales drop significantly, suggesting a larger contribution by
the streamline segment kinematics. The region associated with the reattachment point extends well
into the channel along the boundary between positive and negative background strain, spanning the
narrow area of moderate strain.

In homogeneous turbulence, the fast processes balance the effects of the streamline kinematics
and the diffusive contributions. The characteristic asymmetry in homogeneous turbulence is a
simple balance between the inner kinematics and the cutting process. To maintain a statistically
steady state, the occurrence rates of merging and cutting are required to assume a ratio of exactly
two. Because of the convective flux, this is no longer the case in inhomogeneous turbulence, even
though the previous considerations concerning the residuals suggest that an increased contribution
of one process will result in other process activities being increased as well. The occurrence rates

c = λc
l2
m
σ

and a = μa
lm
σ

are shown in Fig. 22. The reattachment process occurs almost exclusively
in the crest regions while the cutting process is most apparent along the shear layer of the separation
bubble. Even though each fast process type can be considered the inverse process of the other, there
is one major difference in their occurrence rates. While the occurrence of a reattachment event is
equally likely for all segment classes, the cutting frequency is expressed as occurrence rate per
segment length. Therefore, the expectancy value for the segment length of the segment created
during a reattachment event is twice the mean segment length of the merging segment type. As
a consequence, the reattachment process cannot change the asymmetry of the jPDF since both
segment types equally grow in length. However, the cutting process is more likely to cut long
segments which causes the longer segment type to be cut more often. Effectively, this process
counteracts the asymmetry in any jPDF. The elevated levels of cutting rates in the shear layer and
the separation region as shown in Fig. 22(a) indicate that this might in fact be the cause for the
asymmetry to not scale with the background strain in such regions.

Lastly, the generic source term for velocity differences is investigated. The original formulation
by Schäfer et al. [18] became necessary to reach a steady state in homogeneous turbulence by
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FIG. 22. Dimensionless occurrence rates of cutting and reattachment processes (a) c-distribution (b) a-
distribution.

increasing or decreasing the overall level of velocity differences which otherwise would decay
over time. As previously described, this source term of the form K̃sgn(�) is part of the velocity
drift. However, this formulation assumes the source strength to be independent of the segment
length. Under inhomogeneous conditions, this is hardly the case. At the contraction slope, the large
mean acceleration will not only stretch passing structures but instead also modify the inner velocity
difference since the leading portion of the structure will already undergo an acceleration before the
remaining portion reaches this area. This effect will be more pronounced for large structures, which
makes it reasonable to assume that the velocity difference source must scale with length. Therefore,
the source term was modified to K̃ ∗̃l .

Note that this no longer forces the two segment types to experience opposite source effects
since the sign of the inner velocity difference was removed. Consequently, the source strength
now only scales with the segment length regardless of other factors. The parameter optimization
was repeated for the adapted propagation equation with the modified source term. The residual of
the modified case is very similar at the same level of the residual found for the original source
term, indicating equally well-fitting solutions. The source strengths for parameters obtained with
the original and adapted source terms are shown in Fig. 23. Note that the modified source strength
in Fig. 23(b) presents a distribution roughly comparable to the background strain as shown in
Fig. 20(b), indicating that the streamwise background strain can cause the fluctuations of the
individual structures to grow or decay.

Overall, the results indicate a vastly changed behavior in comparison to homogeneous tur-
bulence. The parameters obtained from the adapted model function undergo strong variations
throughout the domain. Particularly the parameters associated with the kinematics of the streamline
segments are dominated by the pressure-driven background strain in most regions. Nonetheless,
the model parameters can indicate which processes are responsible for the observations from
experiments.

To investigate the suitability of the novel formulation of the streamline statistics propagation
equation for describing inhomogeneous flows, synthetic joint probability distributions were gen-
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FIG. 23. Dimensionless source terms for the velocity difference within the segments (a) K̃-distribution
(b) K̃∗-distribution.

erated based on the previously determined process parameters and convective structure fluxes.
Different from the parameter optimization, the parameters are known now while the jPDF is
unknown, resulting in a nonlinear optimization problem with 800 degrees of freedom, which
corresponds to the resolution of the probability distribution. The residual is formulated as the
squared sum of all convective structure flux differences between the values obtained from statistics
and the values calculated from the synthetic jPDF and the model equation similarly to the process
parameter optimization. Since some properties of the nondimensional jPDF of streamline segments
are known [18], they are imposed as optimization constraints.∫ ∞

0

∫ ∞

−∞
P(̃l, �̃)d�̃dl̃ = 1,

∫ ∞

0

∫ ∞

−∞
lP(̃l, �̃)d�̃dl̃ = 1,

(∫ ∞

0

∫ ∞

−∞
�̃2P(̃l, �̃)d�̃dl̃

) 1
2

= 1.

Additionally, the distribution approaches zero at all boundaries and at �̃ = 0. Furthermore, since
the streamline segment detection bias was accounted for and compensated such that the same
number of positive and negative segments are included in the statistics, this can be used as an
additional constraint: ∫ ∞

0

∫ ∞

0
P(̃l, �̃)d�̃dl̃ =

∫ ∞

0

∫ 0

−∞
P(̃l, �̃)d�̃dl̃ .

As the initial point for the optimization process, an entirely uniform distribution is selected.
The nonlinear optimization process iteratively lowers the residual until it reaches a minimum. In
the current case, this typically requires approximately 100 iterations resulting in nearly 100 000
evaluations of the residual. An exemplary synthetic jPDF and the actual jPDF obtained from
statistics in the contraction slope region are shown in Fig. 24.

The two characteristic lobes of streamline segment jPDF are evident. While the synthetic
distribution presents a somewhat more scattered �-wise shape, the asymmetry is quite comparable

034605-27



A. RUBBERT, M. ALBERS, AND W. SCHRÖDER

FIG. 24. Original (a) and synthetically generated jPDF (b) at x/h = 1.5 and y/h = 0.8.

to the real distribution since positive segments clearly exhibit a larger mean segment length than
negative segments. The asymmetry characteristics can be compared using the mean inner velocity
difference 〈�̃〉 and the mean segment length ratio (l+

m − l−
m )/lm. The average mean differences are

quite comparable at 0.21 for streamline statistics and 0.197 for the synthetic distribution. The mean
segment length ratios match well at 0.61 and 0.63. Considering the uncertainties due to the statistical
noise affecting the model function parameters and the structure flux, the results can be viewed as a
proof of concept that the novel formulation of the model equation can describe the propagation of
streamline segment statistics in inhomogeneous flows.

IV. CONCLUSION AND DISCUSSION

The streamline segment statistics in a wavy channel flow is investigated by tomographic particle-
image velocimetry and direct numerical simulations. The influence of the background strain on the
statistics is confirmed. The selection of the observed region can introduce a bias in the detection
of streamline segments. Because of the extended field of view in the current study, the impact
of the background strain could be determined more accurately than in former investigations.
However, the impact of the background strain on the streamline segments is not an immediate
deformation of the probability distribution.

To gain further insight into the mechanism acting on the probability distribution, its propagation
equation is adapted for inhomogeneous flow by proposing a locality definition, which is able to
capture segments of all length classes without introducing a bias. Because of the added complexity
under inhomogeneous conditions, the novel propagation equation accounts for the paradigms
necessitated by the locality definition.

Using the newly adapted propagation equation, the various process parameters are fitted locally.
Most notably, it is found that the point of detachment, the shear layer above the separation, and
the reattachment point present strongly increased levels in their segment cutting frequency. The
cutting mechanism severely limits the local statistical asymmetry by splitting long segments and
therefore counteracting the effect of the background strain. This agrees well with the observations
from tomographic PIV data, in which the asymmetry could not align with the near-wall background
strain at attached flow since the elevated shear level encourages the cutting process and counteracts
larger asymmetries. In terms of the propagation equation, the background strain can be used as a
source term for the velocity drift.

Finally, because of their inner velocity difference the kinematics of streamline segments is
one of the driving factors in equilibrium homogeneous turbulence. Under the current condition,
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the outcome of the analysis of the kinematics is emphasized in regions of near-zero background
strain.
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APPENDIX: PARAMETER FITTING PROCEDURE

The parameter fitting procedure is performed for each cell of the statistics grid individually on
the following equation:

dP̃

dτ

∣∣∣∣
conv

+ ∂

∂ l̃
[ã1,l P̃(̃l, �̃)]︸ ︷︷ ︸

I

+ ∂

∂�̃
[ã1,�P̃(̃l, �̃)]︸ ︷︷ ︸

II

= c

(
2

∫ ∞

0

∫ ∞

l̃
δ

(
ψk

(
l̃

y

)
− �̃

)
P̃(y, ψ )dydψ − l̃ P̃(̃l, �̃)

)
︸ ︷︷ ︸

III

+ 2a

(∫ �̃

0

∫ l̃

0

y

l̃
P̃(̃l − y, �̃ − ψ )P̃(y, ψ )dydψ − P̃(̃l, �̃)

)
︸ ︷︷ ︸

IV

.

Based on the locality definition proposed in Sec. III C, all segments associated with a particular
cell are identified and the parameters lm and σ can be determined. Based on these parameters, the
normalized jPDF can be determined for each cell. To compensate for the detection bias of one
segment type depending on the asymmetry, the jPDF is rebalanced as described in Sec. III C:∫ ∞

0

∫ ∞

0
P̃(y, ψ )dydψ =

∫ ∞

0

∫ 0

−∞
P̃(y, ψ )dydψ = 1

2
.

The spatial derivatives of the lm, σ , and P̃(̃l, �̃) fields can now be obtained by a simple linear fit of
all immediately adjacent cells. These quantities allow for the evaluation of dP̃

dτ
|conv for each bin of

the jPDF.
The drift terms can be split into expressions with the model parameters as leading coefficients

while the cutting and reattachment terms already present this form:

I = c̃l,ν
∂

∂ l̃

({
cs

l̃
[1 − exp(−2̃l )] − 1

l̃

}
P̃(̃l, �̃)

)
︸ ︷︷ ︸

IA

+ C̃�

∂

∂ l̃
[�̃P̃(̃l, �̃)]︸ ︷︷ ︸

IB

II = c̃�,ν

∂

∂�̃

[
−�̃

l̃2
exp(−3̃l )P̃(̃l, �̃)

]
︸ ︷︷ ︸

IIA

+ K̃
∂

∂�̃
[sgn(�̃)P̃(̃l, �̃)]︸ ︷︷ ︸

IIB

+ 1

τ̃+,−
∂

∂�̃
[�̃P̃(̃l, �̃)]︸ ︷︷ ︸

IIC

.

Finally, a linear system, in which each row represents one of N bins of the jPDF, can formulated and
solved for the local parameters. Each bin represents a certain combination of l̃ and �̃. To be able to
detect τ̃+ and τ̃− separately, the term IIC is duplicated. The matrix entries marked with an asterisk
(∗) assume the value 0 when �̃ is smaller than 0. The opposite is true for the term labeled with two
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asterisks (∗∗): ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I1
A −I2

A . . . −IN
A

−I1
B −I2

B . . . −IN
B

−II1
A −II2

A . . . −IIN
A

−II1
B −II2

B . . . −IIN
B

−II∗,1
C −II∗,2

C . . . −II∗,N
C

−II∗∗,1
C −II∗∗,2

C . . . −II∗∗,N
C

III1 III2 . . . IIIN

IV 1 IV 2 . . . IV N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c̃l,ν

C̃�

c̃�,ν

K̃
1

τ̃+
1

τ̃−

c

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

dP̃
dτ

∣∣1
conv

dP̃
dτ

∣∣2
conv
...

dP̃
dτ

∣∣N

conv
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