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There has been much debate over the past decade or so over the scaling of the thickness
of the turbulent/nonturbulent (TNT) interface for turbulent shear flows. It is generally
considered to consist of the outer viscous superlayer, in which viscous processes are
significant, and an inner turbulent sublayer which is dominated by inertial processes.
Various authors have stated that the interface thickness scales with the Taylor length
scale λ while others state that it scales with the Kolmogorov length scale η [Buxton
et al., Phys. Fluids 23, 061704 (2011)]. Frequently, only self-similar turbulent flows are
considered in which a single value of either λ or η is sufficient to scale various phenomena,
including the thickness of the TNT interface. In this paper we show that for flows which
are not self-similar the local Kolmogorov length scale increases quite significantly as one
moves closer to the boundary between the turbulent and nonturbulent fluid. We find that
the variation of this local Kolmogorov length scale with normal distance from the TNT
boundary may be collapsed by the local Kolmogorov length scale computed from the TNT
boundary itself. We subsequently show that this variation in local Kolmogorov length scale
occurs concurrently with an increase in the small-scale anisotropy in the TNT interface.
This anisotropy peaks at the boundary between the viscous superlayer and the turbulent
sublayer, suggesting that these two sublayers are in fact quite distinct from one another.
We show that these results hold for a number of different TNT interfaces from various
flows and with the bulk turbulence being in a variety of states of development. The local
viscous scaling that we obtain, along with an increase in anisotropy primarily driven by an
increased magnitude of velocity gradients in the TNT-boundary-normal direction, leads us
to draw an analogy between TNT interfaces and the wall in wall-bounded turbulence.

DOI: 10.1103/PhysRevFluids.4.034603

I. INTRODUCTION

Fascinatingly, the turbulent and nonturbulent regions of free shear flows are demarcated with a
sharp and beautifully defined interface such that the fluid transitions from nonturbulent to turbulent
(and vice versa) over a very short distance. This turbulent/nonturbulent (TNT) interface is typically
highly contorted and may be characterized by a fractal dimension [1,2]. These contortions are caused
by the hierarchy of turbulent eddies within the turbulent portion of the fluid wrinkling the interface
itself. The interface is important since significant transfers of mass, momentum, vorticity, energy,
and scalar (if present) occur across the TNT interface. In particular, the entrainment rate is dictated
by the dynamics of the flow in the vicinity of the interface, which in turn sets the spreading rate of a
turbulent shear flow (along with the spatial decay of the mean momentum or momentum deficit for
a free shear flow) [3].

The seminal work of Corrsin and Kistler [4] was the first to hypothesise the nature of the bound-
ary between turbulent and nonturbulent fluid. They noted that nonturbulent fluid is irrotational,
whereas turbulent fluid is not, i.e., ωiωi = ω2 > 0, and hence the TNT boundary is simply an
enstrophy (ω2 = 0) surface. Given that the inertial source term of the vorticity transport equation
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is necessarily zero along this surface, the only means by which vorticity can be transferred from
turbulent to nonturbulent fluid is through the direct action of molecular viscosity. Due to its viscous
nature, they termed this layer the viscous superlayer and provided an explanation for why the TNT
interface is thin. The existence of this viscous superlayer has subsequently been experimentally
confirmed by Holzner and Lüthi [5] and characterized by Taveira and da Silva [6], who suggested
that its thickness scaled with the Kolmogorov length scale η = (ν3/ε)1/4, where ν is the kinematic
viscosity of the fluid and ε is the dissipation rate of turbulent kinetic energy. This is the scaling factor
for Kolmogorov’s first similarity hypothesis and embodies the length scale at which viscosity acts
to dissipate turbulent kinetic energy in a turbulent flow, i.e., it is representative of the smallest scales
present within the flow. Note that Corrsin and Kistler [4] postulated that the viscous superlayer
thickness may scale with η, but their intuition only led them to say that it should scale with some
viscous length scale.

In contrast to the viscous superlayer, the TNT interface itself is actually a layer of finite thickness
in which the statistical characteristics of the turbulence adapt to those of the bulk flow. It has thus
been educed that the TNT interface consists of both the viscous superlayer and a turbulent sublayer
(buffer layer) in which inertial processes take precedence over viscous effects, while the turbulence
properties adjust to those of the bulk flow [7,8]. Much work has subsequently concentrated on
trying to find the correct scaling for the thickness of the TNT interface. This has largely focused
on examining one-point statistics, usually the enstrophy ω2, conditioned on distance away from a
fixed position in the TNT interface, often the TNT boundary. Bisset et al. [9] were the first to do
this, defining the TNT boundary using a small but nonzero threshold of vorticity (to account for
background numerical noise) from the flat-plate-wake simulation data they used. They showed that
the vorticity jump occurred over a length scale δω ∼ λ, where λ is the Taylor length scale. This is a
mixed length scale defined in terms of the turbulent kinetic energy (large scale) and the dissipation
rate (fine scale) which is typically representative of inertial range fluctuations in a turbulent flow.
This δω ∼ λ scaling has subsequently been shown to hold not only for wakes, but for axisymmetric
jets [10], planar jets [7], mixing layers [11], and boundary layers [12].

More recently, some doubt has been thrown over this δω ∼ λ scaling. It can be shown that
the ratio λ/η ∼ Re1/2

λ , where Reλ is a local turbulent Reynolds number based on the local rms
velocity fluctuation and Taylor length scale. Silva et al. [13] used the fact that δω/λ ∼ Re−1/2

λ

concomitantly with η/λ ∼ Re−1/2
λ to argue that in fact the interface thickness scales with the

Kolmogorov length scale rather than the Taylor length scale. As they point out, the previously cited
works were conducted for modest Reynolds numbers at which it is very difficult to distinguish
between O(10)η and λ. In fact, they conclude that for higher-Reynolds-number flows (Reλ � 200),
the overall thickness of the TNT interface is δω ≈ 17η, with the viscous superlayer being of
thickness approximately equal to 5η and the turbulent sublayer being of thickness approximately
equal to 12η. These results are complementary to those achieved by Watanabe et al. [14–16],
who have shown that the ratio δω/λ decreases as the Reynolds number increases, casting doubt
on the δω ∼ λ scaling. Since many industrial and environmental flows occur at very large Reynolds
numbers, it is clearly imperative to get the correct scaling for the TNT interface from a modeling
perspective. Regardless of whether the interface scales with λ, η, or indeed some other viscous
length scale �, these are all local scales that must be computed at a given spatial location.

Free shear flows are inhomogeneous, which therefore raises the question of which spatial location
should be chosen to compute {η, λ, �}. More often than not this detail is omitted from the literature
such that we do not know whether, for example, the centerline Taylor scale is used or the bulk
average Taylor scale from the turbulent portion of the flow. Much of the existing literature (e.g.,
[7,11,13]) has considered the self-similar regions of turbulent flows. In the strictest sense, self-
similarity requires that all of the statistical profiles, e.g., mean velocity, turbulent kinetic energy
(TKE), dissipation rate, etc., at particular spatial locations of these flows can be collapsed with
a simple normalization. Specifically, the cross-stream coordinate (usually y) is normalized with a
single flow-specific macroscopic length scale (e.g., the vorticity thickness of a mixing layer) and
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the statistical quantity of interest is normalized with a single value, usually the centerline value, i.e.,
normalization of the TKE profile with the TKE at the centerline of the flow. Self-similarity thus
has two consequences relevant to the scaling of the TNT interface. First, by virtue of the fact that
the statistical profiles are normalized with a macroscopic (large-scale) length scale, the variation of,
e.g., dissipation or TKE (and hence η and λ) ought to be small over a length scale δω ∼ λ. Second, a
single value of either η or λ is sufficient to scale the flow at a given streamwise location, even if the
flow itself is inhomogeneous. However, for non-self-similar flows it is not clear a priori from which
spatial location one should choose to compute η or λ, which may vary considerably due to the flow’s
inhomogeneity. It should be noted that frequently some aspects of turbulent flows achieve a state of
self-similarity, usually the mean velocity profile does so at the farthest upstream location, without
becoming fully self-similar. In particular, Breda and Buxton [17] showed that the profile of mean
dissipation rate, a key constituent of the Kolmogorov length scale, did not achieve a self-similar
state at a downstream location at which both the mean velocity and Reynolds stress profiles had
become self-similar in axisymmetric jets.

In this paper we draw a (loose) analogy between the TNT interface and the wall for wall-
bounded turbulence. Such an analogy may have been previously inferred from the nomenclature of
“buffer layer” used by van Reeuwijk and Holzner [8] to describe the turbulent sublayer. Near-wall
turbulence consists of a thin layer very close to the wall in which viscous processes are dominant
followed by a slightly thicker buffer layer in which inertial processes gradually usurp the viscous
ones in importance before the bulk turbulence is reached in the logarithmic layer. The turbulence
properties of wall-bounded turbulence are collapsed with a local length scale that depends on
the shear stress at the wall, not within the turbulent bulk region of the flow. Further, one of the
most important effects that the wall has on the near-wall turbulence is to introduce a substantial
anisotropy, with gradients in the wall-normal direction becoming large in comparison to gradients
in the wall-parallel directions. In this paper we will consider two different data sets, one numerical
and one experimental, and examine the small-scale anisotropy in the TNT interface region of free
shear flows with differing flow properties.

II. DATA SETS

Two data sets are considered in Sec. III of this paper, one experimental and one from direct
numerical simulation (DNS). The vast majority of the results presented will be from the DNS data
set with comparison drawn against the experimental data set simply to broaden the scope of the
conclusions. The DNS is of a planar mixing layer and the experimental data are from a series of
turbulent jets at various stages of development, which broadens the scope of the conclusions since
there are multiple types of TNT interfaces present in such flows, with different properties.

A. DNS mixing layer data

The first data set that we consider is from the far field of a turbulent planar mixing layer
DNS, first published in Ref. [18]. Mixing layers produce two different types of TNT interfaces.
In one interface, termed the high-speed interface, the nonturbulent fluid is advecting faster than the
turbulent fluid and in the other, the low-speed interface, the turbulent fluid is advecting more rapidly
than the nonturbulent fluid. The flow is a planar mixing layer formed from two uniform streams of
velocities U1 and U2, in the ratio U1/U2 = 2, either side of a splitter plate of thickness h, similar to
the study of Laizet et al. [19]. The computational domain (Lx × Ly × Lz = 230.4h × 48h × 28.8h)
is discretized onto a Cartesian mesh that is stretched in the cross-stream (y) direction. This mesh
consists of 2049 × 513 × 256 mesh nodes, although in this paper we will only consider a subdomain
consisting of the final 301 × 513 × 256 in which the turbulence is fully developed with self-similar
mean velocity profiles throughout, similar to the one considered in Ref. [20], although the profiles
of higher-order statistics are not self-similar. The results are extracted from three statistically
independent snapshots which were stored and analyzed. Since this domain is small in streamwise
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extent, we make the assumption that the turbulence properties are homogeneous in x within this
subdomain, enabling us to better converge our statistics as only a limited number of snapshots were
available. This includes the threshold value that we choose to define the position of the turbulence
boundary which remains a constant across the streamwise extent of this subdomain. Due to the
spanwise periodic boundary conditions, we also assume that the flow is homogeneous in the z
direction. Note that these assumptions were also adopted in Refs. [20,21]. The mesh is stretched
in the cross-stream (y) direction, which leads to a minimal mesh size of 	y ≈ 0.03h, while it
is of a constant size in the streamwise and spanwise directions of 	x = 	z = 0.1125h, which
corresponds to approximately 2.5ηcl, where ηcl is the Kolmogorov length scale computed along
the centerline. The time step 	t = 0.05h/Uc, where Uc = (U1 + U2)/2, is low enough to satisfy
the Courant-Friedrichs-Lewy condition, ensuring temporal stability of the solution. The Reynolds
number based on Uc and h (Reh) is 1000 and the Taylor Reynolds number along the centerline of
the sub domain, computed as Reλ = u′λ/ν, is approximately equal to 200.

The code INCOMPACT3D [22], based on sixth-order compact schemes for spatial discretization and
second-order Adams-Bashforth schemes for time advancement, is used to solve the incompressible
nondimensionalized Navier-Stokes equations. The length and velocity scales used for the nondi-
mensionalization are h and Uc, respectively. To treat the incompressibility condition, a projection
method is used requiring the solution of a Poisson equation for the pressure. This equation is
fully solved in spectral space via the use of the relevant three-dimensional fast Fourier transforms.
The boundary conditions are inflow and outflow in the streamwise direction (velocity boundary
conditions of the Dirichlet type), free slip in the cross-stream direction at y = 0, Ly, and periodic
in the spanwise direction. The pressure mesh is staggered from the velocity mesh to avoid spurious
pressure oscillations. More details on the simulation, in particular the generation of the inlet or
initial conditions (including the boundary layers on both sides of the splitter plate), can be found in
Ref. [19] and more details about the code, its validation, and the original treatment of the pressure in
spectral space can be found in Ref. [22]. All velocity gradients were subsequently computed during
the postprocessing using a sixth-order-accurate Lagrange interpolating polynomials scheme.

B. Tomographic particle image velocimetry turbulent jet data

The jet data that are used are from the same data set described in Ref. [23] in which experiments
were conducted in an axisymmetric jet facility. Two orifices of identical open area (D2) were
attached to the jet exit and the flow rate was controlled to ensure that the Reynolds number
ReD = UD/ν = 1 × 104, in which U is the volumetric flow rate divided by the open exit area, was
kept constant across both jets. One was a simple round orifice while the other was a repeating fractal
pattern of fractal dimension 1.5, first described in Ref. [24], and with three fractal iterations. This
fractal orifice was shown to break down the azimuthally coherent structures present in the near field
of the jet such that a direct comparison between jets with and without coherent structures present
could be made [17,23]. The Taylor Reynolds number, defined as Reλ = u′λ/ν, was computed from
the turbulent bulk of the flow, i.e., that which exceeded our enstrophy threshold. Reλ ranged from
approximately 450 at x/D = 2 for the round jet to Reλ ≈ 220 at x/D = 25 for both jets. There was
a substantially smaller value of Reλ ≈ 225 for the fractal jet at x/D = 2 and intermediate values of
Reλ ≈ 330 (350) for the fractal (round) jets at x/D = 10.

Three-dimensional three-component velocity data were produced through tomographic particle
image velocimetry (PIV) experiments [25] in three slices of the jet parallel to the r-θ plane, of
thickness 0.33D. Note that the data are presented in a cylindrical polar coordinate system (x, r, θ )
in which x is the streamwise direction, r is the radial direction, and θ is the azimuthal direction.
These slices were centered on the streamwise locations x/D = 2, 10, and 25. A clearly defined
annular shear layer surrounding a potential core was present for both the round and fractal jets
at x/D = 2, giving us access to both an inner TNT interface (between the potential core and the
shear layer) and an outer TNT interface (between the shear layer and the background fluid). The
azimuthal coherent structures were significantly suppressed in the shear layer of the fractal jet,
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whereas they were highly energetic for the round jet [17]. Only the outer TNT interface existed
at X/D = 10, 25 with the mean velocity and Reynolds stress profiles (but not the dissipation-rate
profile) being self-similar at x/D = 25 but not at x/D = 10. At each measurement station 1500
images were acquired at a sufficiently low acquisition frequency that adjacent velocity snapshots in
the sequence were statistically independent of one another using four cameras in forward scatter.

The PIV images were processed using the MART algorithm (six iterations), a multiplicative
algebraic reconstruction [26]. To improve the quality of the reconstruction, the dark background
previously acquired was subtracted. Sliding minimum subtraction, Gaussian smoothing using a 3 ×
3 pixel kernel (to reduce the background noise), and sharpening (to reduce the number of ghost
particles) were also performed on the raw images, allowing the particle diameter to be of the order
of two pixels and the particle density to be within 0.04 and 0.05 particles per pixel. Volume self-
calibration [27] was then applied to the reconstructed particle image volumes to improve accuracy.
The vectors were reconstructed in three steps: an initial recursive direct correlation, followed by two
iterations of motion tracking enhancement [28] to reduce the number of ghost particles and a final
recursive direct correlation. The final interrogation volumes were of size 48 × 48 × 48 voxels, with
a 75% overlap between adjacent interrogation volumes, which led to a spatial resolution of between
5η and 11η.

To correct the nonzero divergence introduced through experimental noise, the data were corrected
using the divergence correction scheme of Ref. [29]. This scheme is based on a nonlinear
optimization-based constraint which minimally alters the acquired velocity field while restricting the
magnitude of the divergence to a maximum tolerance. The objective function to be minimized is the
ensemble average of the turbulent kinetic energy k̃ added to the measured velocity field to ensure that
the divergence is kept below the tolerance threshold chosen. In this case the divergence error was set
to be |∂ui/∂xi| < 10 s−1, which led to an average k̃/Ucl < 5%, where Ucl is the centerline velocity
of the jet. All velocity gradients were computed using a fourth-order-accurate central differencing
scheme. More details on the experimental setup can be found in Ref. [17], with a more detailed
discussion of the acquisition and processing of the tomographic PIV data found in Ref. [23].

III. RESULTS

A. TNT interface detection

Due to the presence of numerical noise, it is necessary to set a nonzero threshold of enstrophy
in order to detect the TNT interface (see, e.g., [7,9]). The most robust way to set this threshold
is to compute the overall proportion of a given data set identified as turbulent, i.e., ω2 > ω2

thresh,
where ω2

thresh is the enstrophy threshold chosen, as a function of ω2
thresh [3]. If a plateau region can

be found in which the percentage of fluid identified as being turbulent remains roughly invariant to
small changes in ω2

thresh, then a robust threshold has been identified. Such a plot for the DNS data is
presented in Fig. 1(a), which shows that a plateau can be identified and we chose to set our threshold
(marked with the dashed line) at ω2

thresh/〈ω2〉(t ) = 0.025. This threshold is a function of the local
bulk average of the enstrophy for each time step to account for variation between time steps. Note
that this is the identical threshold to that used in Ref. [20] to distinguish between turbulent and
nonturbulent fluid, however the plateau region is not completely flat. For this reason, a sensitivity
study was conducted to ensure that the results presented later on were insensitive to small changes
in the threshold chosen which was indeed found to be the case. Figure 1(b) presents an illustrative
example of both the high-speed and low-speed interfaces detected in a particular x-y plane for a
particular time step. Note that we exclude both islands of turbulent flow in the nonturbulent region
that have become separated from the turbulent bulk (usually such islands remain connected to the
turbulent bulk when considering the three-dimensional topography) and holes of irrotational fluid in
the turbulent region from the conditional statistics presented subsequently. The interface detection
algorithm will naturally produce some x locations at which the TNT interface has more than one y
location due to contortions of the interface that lead to overhangs. Such overhangs can be visualized
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(a) (b)

FIG. 1. DNS data set. (a) Percentage of data points identified as being turbulent as a function of enstrophy
threshold for all three time steps considered. The chosen threshold is denoted by the dashed line. (b) Example
of the turbulent region defined according to the chosen threshold. The red line denotes the high-speed TNT
interface and the blue line denotes the low-speed TNT interface.

in Fig. 1(b) and are discussed at some length in Ref. [30]. Note that when producing our conditional
statistics, special treatment is required for these overhangs. Cases in which a traverse along the
interface normal direction y∗ (see Sec. III B) crosses the TNT interface on more than one occasion
are excluded from our conditional statistics. Precisely this scenario is caused by the existence of
overhangs. The exclusion of these traverses that cross the TNT interface more than once is in
keeping with similar methodology used previously (e.g., [31]).

B. Coordinate transformation

As mentioned in Sec. I in this paper, we draw an analogy between the TNT interface and a wall.
Unlike a wall, however, the interface is highly contorted, thereby requiring a coordinate system
transform in order to draw the analogy. This is illustrated in Fig. 2, which shows how the interface
(defined in the present work in only two dimensions since the third dimension is not needed in the
present analysis) can be mapped onto a new coordinate system (x∗, y∗), which we will refer to as
the interface coordinate system. In this case x∗ is a coordinate tangential to the interface and y∗ is
a coordinate normal to the interface with the interface location being defined as y∗ = 0 with the
turbulent portion being subsequently defined as y∗ > 0. Both the tangent and normal lines defining
the directions of x∗ and y∗, respectively, are defined in two dimensions only. The velocity vector, and
subsequently velocity fluctuations and gradients, may now also be defined in the interface coordinate
system such that u = (ux∗, uy∗ , uz )T . This yields velocity components, discussed further in Sec. III E,

FIG. 2. Illustration of the coordinate transform from the Cartesian set (x, y) to the TNT interface parallel
or normal set (x∗, y∗).
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(a) (b)

FIG. 3. Conditional (a) mean enstrophy 〈ω2〉 and (b) dissipation rate ε as a function of interface-normal
distance y∗ for both interfaces of the mixing layer. The dashed black line in (a) indicates the Taylor length scale
as computed from the centerline of the flow and the dash-dotted black line indicates a thickness of 17η, where
η is the Kolmogorov length scale computed along the centerline.

that are parallel (ux∗) and normal (uy∗ ) to the interface (locally) in the x-y plane in addition to the
standard (Cartesian) spanwise component of velocity (uz).

C. Conditional mean statistics in the TNT interface region

The conditional mean enstrophy 〈ω2〉 as a function of y∗ is presented in Fig. 3. The form of
〈ω2〉(y∗) observed is similar to those presented in, e.g., [3,9], suggesting that δω ≈ 1.5h. Note that in
this paper we do not wish to comment on the correct scaling for the TNT interface thickness δω since
we do not have access to data over a sufficiently broad range of Reynolds numbers, and this has been
discussed at length recently in Ref. [13]. For this reason we choose to use the (uncontroversial) h,
i.e., the length scale input to the DNS solver, as the normalizing length scale for y∗ but note that the
centerline Taylor length scale is λ ≈ 1.55h. This length scale has been marked on the figure with
a dashed black line. In addition, we have marked a distance of 17η, the TNT interface thickness
quoted in Ref. [13], with a dash-dotted black line. It is thus clear that the enstrophy jump occurs
over a distance that is approximately equal in size to the Taylor length scale (or 17 Kolmogorov
length scales), which is consistent with previously reported literature (e.g., [7,10–13]). This gives
us confidence in the interface detection approach described in Sec. III A.

Figure 3(b) shows the conditional mean dissipation rate 〈ε〉 = 2ν〈si jsi j〉, in which si j is the
rate-of-strain tensor (the symmetric part of ai j = ∂ui/∂x j), as a function of y∗. The 〈ε〉 axis is
logarithmic, meaning that the apparently linear increase of 〈ε〉 with y∗ suggests that there is an
exponential increase in the dissipation rate moving from the turbulence boundary through the
presumed viscous superlayer (i.e., that part of the TNT interface closest to the turbulence boundary).
This is a similar finding for the rate of increase of conditionally averaged enstrophy through the
viscous superlayer as presented in [8]. In that case it was shown that the Kolmogorov length
scale adequately collapsed the variation of conditionally averaged enstrophy with interface-normal
distance in their temporal planar jets. While we do not have sufficient data sets at different Reynolds
numbers to confidently state that the Kolmogorov length scale also collapses the exponential
increase of 〈ε〉 with y∗, we note the collapse between the high-speed and low-speed interfaces.

The enstrophy transport equation is given by

1

2

(
∂ω2

∂t
+ u j

∂ω2

∂x j

)
= ωisi jω j + ν

∂2

∂x j∂x j

(
ω2

2

)
− ν

∂ωi

∂x j

∂ωi

∂x j
, (1)
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FIG. 4. Conditional mean value for the terms Tω of the enstrophy transport equation as a function of
interface-normal distance y∗ for both (a) the low-speed interface and (b) the high-speed interface of the mixing
layer.

in which si j is the strain-rate tensor

si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (2)

Let us generically call the source and sink terms on the right-hand side of (1) Tω, which are, from
left to right, the vortex stretching term, the viscous diffusion term, and the viscous dissipation term.
The vortex stretching term Pω = ωisi jω j is the inertial mechanism by which enstrophy is amplified
or suppressed due to the interaction between strain rate and rotation in the flow and 〈ωisi jω j〉 > 0
is a key indicator for developed turbulent flow [32]. On the other hand, Dω = ν∂2/∂x j∂x j (ω2/2)
is the viscous diffusion term. Clearly along an isosurface of ω2 = 0 this is the only nonzero
source term thereby yielding the original intuition of Corrsin and Kistler [4] regarding the viscous
superlayer.

Figure 4 shows the variation of Tω with y∗ for both the low-speed and high-speed interfaces. The
variation of both Pω and Dω with y∗ is extremely similar to that presented for the TNT interface of
planar turbulent jets in Ref. [6]. Note that there is a small but nonzero contribution to the viscous
diffusion term beyond the turbulence boundary. This result is consistent with the finding of Taveira
and da Silva [6]. Evidently there must be a source of enstrophy in the nonturbulent fluid in order for
the turbulent portion to grow in time and space. This is also consistent with the finding of da Silva
and Pereira [33], who observed non-negligible viscous dissipation of turbulent kinetic energy in the
nonturbulent fluid adjacent to the turbulence boundary. This was attributed to instantaneous pure
shear motions induced by the large-sale entraining motions in the nonturbulent fluid and highlights
the fact that viscous processes are indeed significant on both sides of the turbulence boundary.
The enstrophy amplification term Pω continues to increase beyond the TNT interface region, into
the turbulent bulk, which is also consistent with the results of Taveira and da Silva [6]. Note that
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Pω = 0 at y∗ = 0, which is the original intuition of Corrsin and Kistler [4], giving us confidence in
our interface detection threshold.

In Ref. [6] the viscous superlayer is arbitrarily defined as being the spatial region for which
the ratio |Dω/Pω| > 2. Contrastingly, in Ref. [8] the viscous superlayer is defined in terms of the
contribution towards the total entrainment velocity having a negligible contribution from the Pω

term (less than 5% in that paper). In both cases the extent of the viscous superlayer is perhaps
counterintuitively defined in terms of the relative contribution of the inertial term. Instead we will
focus on the viscous diffusion term Dω, which we clearly expect to act as a source of enstrophy in the
viscous superlayer. We note, similarly to Taveira and da Silva [6], that Dω is an increasing function
of y∗ close to the turbulent boundary before reaching a local maximum, then a local minimum, and
then finally settling to Dω ≈ 0 (as expected) in the turbulent bulk portion of the flow. We may thus
set a more robust definition of the viscous superlayer by defining its extent as the location at which
the diffusion term first crosses zero, thereby demarcating regions of the flow in which the diffusion
term acts as a source as opposed to a sink of enstrophy (or indeed becomes negligible). It should
be noted that occurs at y∗/h ≈ 0.28 ≈ 5ηcl for both interfaces. Note that this is the same thickness
quoted in Ref. [13] for the thickness of the viscous superlayer.

D. Local turbulent length scales in the TNT interface region

The Kolmogorov length scale is as defined as

η

h
=

(
1

2 Re2
h〈s̃i j s̃i j〉

)1/4

, (3)

where s̃i j is the nondimensional rate-of-strain tensor. Note that ensemble averaging is performed
when computing the mean strain-rate magnitude. It is frequently not reported what constitutes
this ensemble when reporting on the scaling of δω, the TNT interface thickness, in the literature.
Let us define a bulk Kolmogorov length scale 〈η〉 as being the solution to (3) in which the
ensemble constitutes all fluid defined as being turbulent, i.e., that for which ω2 > ω2

thresh. Now let us
define the local Kolmogorov length scale ηl : ηl is computed as the conditionally averaged value of
the Kolmogorov length scale, computed as in (3), in which it is averaged over x∗, z (=z∗), and the
three time steps and thus depends on interface-normal distance only. We may therefore also define
an interface Kolmogorov length scale η∗

l as ηl evaluated at y∗ = 0.
Figure 5 shows the variation of ηl with interface-normal distance y∗. It is normalized with the

bulk Kolmogorov length scale 〈η〉 in Fig. 5(a) and normalized with the interface Kolmogorov length
scale η∗

l in Fig. 5(b). As anticipated from the results of Fig. 3(b), it is immediately obvious that the
Kolmogorov length scale increases as it approaches the interface. Recalling that (for our particular
Reynolds number and flow configuration) δω ≈ λ = 1.55h, it can be seen that this increase of ηl

indeed does occur within a region less than or on the order of δω from the interface and hence
must be a function of the TNT interface dynamics. While the results of Fig. 5 appear accentuated,
a similar finding of ηl increasing as the turbulence boundary is approached was also reported in
Ref. [34]. In that case planar turbulent jets were analyzed and the value of ηl was found to increase
from the turbulent bulk to the turbulence boundary over a similar distance to that for which there
was a jump in the conditional mean vorticity, which is precisely the same finding that we present
in this paper. This accentuated effect can be explained by the fact that the flow considered in Ref.
[34] (turbulent planar jet) is self-similar, meaning that we would expect only a modest increase in
ηl over distances of the order of λ. Nevertheless, the percentage change in ηl over the TNT interface
region appears to be comparable to ours. A similar result can also be inferred from the findings
in a shear-free TNT interface, produced by means of an oscillating grid, in Ref. [35]. Here 〈si jsi j〉
is presented as a function of y∗ and it is clearly observed to drop as the turbulence boundary is
approached, which corresponds to an increase in ηl .

Further, there appear to be two slopes, perhaps corresponding to the dynamics of the viscous
superlayer (larger slope) and the turbulent sublayer (shallower slope) for both the high-speed and
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(a) (b)

FIG. 5. DNS data set. (a) Variation of the local Kolmogorov length scale ηl with y∗ normalized by the bulk
mean Kolmogorov length scale 〈η〉 for both interfaces. (b) Variation of the local Kolmogorov length scale with
y∗ normalized by the value at the interface η∗

l = ηl (y∗ = 0).

the low-speed interfaces. This is evidenced by the fact that the slopes change at the location at which
the diffusion term Dω changes from being an enstrophy source term to a sink from Fig. 4, which we
used as the definition for the viscous superlayer. Further, the spatial extents of these two slopes also
appear to be in roughly the ratio 2:1, which is that observed by Silva et al. [13] for the thicknesses
of the viscous superlayer (approximately equal to 5η) and the turbulent sublayer (approximately
equal to 12η). For y∗ � 1.5, i.e., beyond the TNT interface region and within the turbulent bulk,
ηl appears to level off to a constant value. We end this paragraph with a brief note on the physical
interpretation of the Kolmogorov length scale within the viscous superlayer. It is the turbulent length
scale at which viscosity becomes important but is clearly only meaningful in a turbulent flow and not
in a purely viscous (laminar) flow. Figure 4 shows that the inertial vortex stretching term Pω falls to
zero at y∗ = 0 (as expected) but remains comparable in magnitude to Dω until extremely close to the
turbulence boundary. In this sense an analogy may be made between the Kolmogorov length scale
within the viscous superlayer and the wall unit in wall-bounded turbulence δν = ν

√
ρ/τw, in which

τw is the time-averaged wall shear stress and ρ is the fluid density. In wall-bounded turbulence this
wall unit still collapses the behavior of the buffer layer (in which the viscous and inertial stresses
are of comparable magnitude) and the logarithmic layer (negligible viscous stresses) despite being
formed from a localized wall statistic.

Figure 5(b) shows that normalization of ηl with the interface Kolmogorov length scale η∗
l

collapses the behavior of the high-speed and low-speed interfaces onto the same trend in the
very-near-TNT-boundary region, i.e., the presumed viscous superlayer. We point out here that this is
a single observation, at one Reynolds number, but this collapse merits further investigation in other
flows. Given that viscous processes are significant in this region, this collapse could perhaps be
expected when using η∗

l in the same way that δν collapses the turbulence statistics in wall-bounded
turbulence. Since inertial processes become increasingly dominant in the turbulent sublayer of the
TNT interface, the lack of collapse from y∗/h � 0.5 onward in Fig. 5(b) suggests that there are
fundamental differences in the turbulence structure of the high-speed and low-speed TNT interfaces.
This is not surprising when considering the scatter of data observed for the conditional vorticity
jumps presented for various turbulent shear flows in the excellent review paper of [3]. In the analogy
of wall-bounded turbulence we also observe that the inner viscous scaling does not collapse the outer
part of the flow where the influence of viscosity is negligible.

Let us now consider the variation of the local Taylor length scale λl in the TNT interface region.
The Taylor scale may be defined in many different ways, but we choose a modified version of that
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from [36], defined as

λ2 = 2u′2〈(
∂u
∂x

)2〉 . (4)

Equation (4) is based upon an assumption of statistically isotropic small-scale turbulence and so
noting that ε = 15ν〈(∂u/∂x)2〉 under an assumption of small-scale isotropy, we arrive at the final
formulation for our Taylor length scale

λ =
(

30νu′2

〈ε〉

)1/2

=
(

15u′2

〈si jsi j〉

)1/2

(5)

in which the fully three-dimensional strain-rate tensor is used and no assumptions regarding small-
scale isotropy are made. Again we will vary the definition of the ensemble such that we can compute
a local Taylor length scale λl , which is again a function of y∗. Since there are numerous ways in
which to compute the Taylor scale, we also recomputed all of our results in several different ways
(including fitting a parabola to the autocorrelation function of the velocity fluctuations) and obtained
identical qualitative and extremely similar quantitative results.

Figure 6 shows the variation of λl with y∗ normalized by the bulk Kolmogorov length scale 〈η〉
in Fig. 6(a) and the local Kolmogorov length scale in Fig. 6(b). We can again see that there is a very
significant rise in the ratios of λl/η (whether η = 〈η〉 or η = ηl ) in the very-near-TNT-boundary
region, i.e., the presumed viscous superlayer. Figure 6(a) is qualitatively similar to the observations
of Ref. [11] that λl slightly decreases in the turbulent sublayer before increasing sharply as the
turbulence boundary is reached. The behavior that we observe for the variation of both ηl and λl

with y∗ is thus similar to that previously presented in self-similar flows [11,34]. Of most significance,
however, is the fact that it is classically assumed that λ/η ∼ Re1/2

λ . Figure 6(c) shows the variation
of the local Taylor Reynolds number Reλ versus y∗, which confirms that the qualitative behavior of
the ratio λl/η is indeed a symptom of the variation of Reλ across the TNT interface region. However,
(λl/ηl )2 clearly does not precisely vary with Reλ across the TNT interface, as would be required by
the λ/η ∼ Re1/2

λ scaling, when comparing the solid and dashed lines of Fig. 6(c). This suggests that
there may be at the very least a subtle change in the physics which modifies the (λl/ηl ) scaling in
the TNT interface region. Two possible explanations for this finding are that (i) the local turbulent
Reynolds number in the TNT interface region is different from that in the bulk of the flow or (ii) the
dynamics of the TNT interface region introduce significant anisotropy that affects the λ/η ∼ Re1/2

λ

scaling.
Point (i) is confirmed by Fig. 6(c). As for (ii), the derivation of the scaling λ/η ∼ Re1/2

λ relies on
Kolmogorov’s first similarity hypothesis [36]. This assumes a universal (and therefore isotropic)
form of the fine-scale motions of turbulence with a very large separation in scale space from
the (directional) energy-containing motions. We will now explore this small-scale (an)isotropy in
Sec. III E.

E. Small-scale anisotropy in the TNT interface region

We will quantify the small-scale anisotropy by using the following ratio �, which we define as
the anisotropy ratio:

� =
〈( ∂uy∗

∂y∗
)2〉

〈(
∂ux∗
∂x∗

)2〉 . (6)

Here the velocity vector has been defined in terms of the interface coordinate system as u =
(ux∗ , uy∗ , uz )T (i.e., uy∗ is the velocity component normal to the interface) and the differentiation has
been performed along the x∗ and y∗ directions, i.e., tangential and perpendicular to the interface,
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(a) (b)

(c)

FIG. 6. DNS data set. (a) Variation of local Taylor length scale λl with y∗ normalized by the bulk
mean Kolmogorov length scale 〈η〉 for both interfaces. (b) Variation of the local Taylor length scale with
y∗ normalized by the local Kolmogorov length scale ηl . (c) Variation of the local Taylor Reynolds number
Reλ with y∗ (solid lines) and variation of (λl/ηl )2, multiplied by some constant to match Reλ at y∗ = 0,
with y∗.

where required. We again perform the ensemble averaging in the x∗ and z∗ = z directions such
that � = �(y∗). The ratio � is unity for an isotropic flow and so excursions from unity signify
small-scale anisotropy.

Figure 7 shows the variation of both � and the local Kolmogorov length scale ηl with y∗ for
the low-speed TNT interface [Fig. 7(a)] and high-speed TNT interface [Fig. 7(b)]. We can see that
� reaches a maximum within the TNT interface, from values that approach unity in the turbulent
bulk. In both cases this region of increased small-scale anisotropy exactly coincides with the rise
of ηl . In both the low-speed and high-speed TNT interfaces it can be seen that the maximum value
of � is reached at precisely the same location at which the slope dηl/dy∗ increases sharply, i.e.,
the presumed boundary between the turbulent sublayer and the viscous superlayer. The small-scale
anisotropy is then reduced in the very-near-TNT-boundary region, in the viscous superlayer.

A similar anisotropy was found in the decaying shear-free turbulence results presented in
Ref. [37]. By consideration of a mixed physical and spectral space enstrophy budget they were
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(a) (b)

FIG. 7. DNS data set. Anisotropy ratio � and local Kolmogorov length scale ηl , normalized by the bulk
Kolmogorov length scale 〈η〉 as a function of y∗ for (a) the low-speed TNT interface and (b) the high-speed
TNT interface.

able to show a substantial degree of anisotropy in the interfacial region of their flow, where the
turbulent fluid meets the nonturbulent fluid. In particular, they observed that viscous diffusion
occurred at length scales in excess of those responsible for viscous mechanisms, i.e., dissipation,
in homogeneous turbulence. They observed that viscous diffusion occurred at large length scales
in a direction parallel to the interface, even in the thin viscous superlayer close to their turbulence
boundary. This was attributed to an anisotropic enstrophy cascade which produced large structures
parallel to the interface, even though the viscous superlayer remained thin (approximately equal
to 4η). Such results are clearly consistent with our findings in which the gradients normal to the
interface exceed those parallel to the interface.

In order to broaden our discussion of the importance of small-scale anisotropy in the TNT
interface region we will now consider the variation of the local Kolmogorov length scale ηl

and small-scale anisotropy in the TNT interface regions of a number of turbulent jets. For the
experimental data a similar approach to the one described in Sec. III A was used to define the
location of the TNT boundary in which a threshold on enstrophy ω2 was used. Rather than using
the interface coordinate system the results are presented simply in terms of the radial distance with
respect to the TNT boundary location which was set to ri = 0. This suffices for our purposes since
the interface is predominantly in the azimuthal direction, meaning that typically ri lies close to
perpendicular to the interface. The anisotropy measure that we choose to examine is defined as

K2 = 2

〈(
∂ux
∂x

)2〉
〈(

∂uθ

∂x

)2〉 , (7)

in which ux and uθ are the streamwise and azimuthal components of velocity, respectively, with x
correspondingly the streamwise coordinate. Again, K2 is equal to unity for an isotropic flow and
hence departures from unity are interpreted as an increase in the small-scale anisotropy.

Figure 8 presents the variation of the local Kolmogorov length scale ηl and isotropy measure K2

as a function of radial distance from the TNT interface ri for a variety of experimental jet test cases.
Note that in the near field of the jet (x/D = 2) the small-sale anisotropy in the turbulent bulk is
quite significant, whereas K2 approaches unity (i.e., small-scale isotropy) in the turbulent bulk for
x/D = 25. We see similar trends as presented in Fig. 7 with an increase in the local Kolmogorov
length scale approaching the TNT boundary (ri = 0) occurring concurrently with an increase in the
small-scale anisotropy for all jet test cases. Note that the spatial resolution of this tomographic PIV
data is insufficient to resolve the viscous superlayer, of presumed thickness approximately equal

034603-13



O. R. H. BUXTON, M. BREDA, AND K. DHALL

(a) (b)

FIG. 8. Tomographic PIV data set. (a) Local Kolmogorov length scale ηl , normalized by the bulk
Kolmogorov length scale 〈η〉, and (b) anisotropy ratio K2 as a function of radial distance ri from the TNT
interface. The ◦ denote the round jet and ∗ the fractal jet. Here OTNTI refers to the outer TNT interface and
ITNTI refers to the inner TNT interface at the measurement station x/D = 2.

to 5η [13], which explains why we do not see the subsequent decrease in K2 for very small ri.
These trends are observed at all three streamwise locations explored including x/D = 2, in which
the Kelvin-Helmholtz azimuthal vortices are dominant (for the round jet), and x/D = 25, where
the turbulence is fully developed and the mean velocity and Reynolds stress profiles have become
self-similar (for both jets) [17]. Nevertheless, the small-scale anisotropy and Kolmogorov length
scale are always shown to increase as the TNT boundary is approached. This is also observed for
the outer TNT interface, i.e., between the jet fluid and the quiescent background fluid, and the inner
TNT interface between the turbulent axisymmetric shear layer and the potential core of the jet at
x/D = 2. These results give us more confidence that the small-scale anisotropy in the TNT interface
is an important consideration for a variety of turbulent shear flows.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have considered a number of different TNT interfaces. These include those
in a planar turbulent mixing layer for which the turbulent fluid is advecting both more and less
rapidly than the nonturbulent fluid. We also considered a series of turbulent jets, with and without
the coherent structures being suppressed and both the inner and outer interfaces in the near field,
where two TNT interfaces exist. We have shown that the local Kolmogorov length scale ηl increases
in size as you approach the TNT boundary, regardless of the type of TNT interface. This is an
important consideration when determining the true scaling for δω, the TNT interface thickness,
since most often a bulk Kolmogorov (or Taylor) length scale is used rather than the local scaling.
We subsequently drew an analogy between a TNT interface and a wall for wall-bounded turbulence.
Much like the wall unit δν = ν

√
ρ/τw in the laminar sublayer of wall-bounded turbulence, it seems

that the local Kolmogorov length scale from the TNT boundary itself collapses the variation of ηl

with normal distance from the TNT boundary in the viscous superlayer (at least for the mixing-layer
flow that we consider). It does not however collapse this variation in the turbulent sublayer where
the inertial processes appear to vary from TNT interface to TNT interface, which does not make
them amenable to such a viscous scaling.

The wall also introduces anisotropy into a wall-bounded turbulent flow and we additionally show
that this is the case with the TNT boundary. The small-scale anisotropy of the flow increases to a
maximum at the same interface-normal location as the mean viscous diffusion of enstrophy crosses
zero, i.e., the viscous diffusion term Dω transitions from being a source of enstrophy immediately
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adjacent to the turbulence boundary to becoming a sink, or negligible, within the turbulent sublayer
or turbulent bulk of the flow. This location is also that at which the slopes of the functions of local
Kolmogorov and Taylor scales with respect to interface-normal distance y∗ change, due to the fact
that the dissipation rate no longer increases exponentially with y∗. Combining this information gives
a more robust definition for the boundary between the viscous superlayer and the turbulent sublayer,
i.e., the y∗ location at which Dω = 0, which does not depend on some arbitrarily chosen threshold.
The marked changes in flow physics at this location perhaps hints at the fact that these two layers
are quite distinct from one another. We additionally note that this anisotropic behavior appears to
be common across flows with substantially different turbulent structures. This includes both the
fractal and round jets (in which the large-scale coherent structures were and were not suppressed,
respectively) and the near field and far fields. This suggests that while the flow physics within the
TNT interface region must adjust to that in the turbulent bulk there may be a near-interface cycle,
analogous to the near-wall cycle of wall-bounded turbulence, governing the flow’s behavior within
the TNT interface region.

Our analogy between the TNT interface and a wall hinges on the introduction of anisotropy
as both are approached and scaling of the very-near-wall/TNT boundary with a (local) viscous
length scale. This is of course overly simplistic, not least because a wavy wall is in fact a very poor
analogy for a TNT interface and pressure fluctuations can penetrate the TNT interface but not a
wall. However, it is reasonably easy for one to picture the TNT boundary as a blockage as far as
the turbulent eddies within the TNT interface are concerned, leading to increased velocity gradients
in the interface-normal direction, as shown in Fig. 7. The analogy breaks down when considering
that the Kolmogorov length scale decreases as one approaches a wall [see, e.g., (8) in Ref. [38]],
whereas for a TNT interface we show that it increases

η ≈
(

ν3κy

(τw/ρ)3/2

)
. (8)

Nevertheless, we think that this is quite a useful analogy to draw due to the importance that we place
on the small-scale anisotropy in the TNT interface which strongly influences the local turbulent
length scales.

We show here that in the TNT interface region the small scales are in fact highly anisotropic. We
demonstrate this for a variety of spatially developing flows including axisymmetric jets at various
streamwise locations and a mixing layer. Additionally, the local turbulent Reynolds number varies
significantly throughout the TNT interface region. This variation in local turbulent Reynolds number
leads to a variation in the ratio of local turbulent length scales (λl/ηl ) across the TNT interface
region, evident in Fig. 6. The high degree of anisotropy in the TNT interface region is evident
in Figs. 7 and 8, and it occurs concurrently with the variation in λl/ηl . While the local turbulent
Reynolds number and ratio λl/ηl vary across the TNT interface region, they do not precisely vary
in the fashion λl/ηl ∼ Re1/2

λl
. A possible explanation for this is the high degree of anisotropy since

the derivation of λ/η ∼ Re1/2
λ is reliant upon Kolmogorov’s first similarity hypothesis. While not

wishing to comment on the “correct” scaling for δω, we urge caution in determining the scaling
of the TNT interface thickness from simple Reynolds number scaling arguments for flows that are
not self-similar, where a single turbulent length scale is inadequate to describe the behavior of the
flow across its cross-stream extent. In such flows, including the ones considered in this paper, local
turbulent length scales appear to give a better collapse of the data.
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