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While data-based approaches were found to be useful for subgrid scale (SGS) modeling
in Reynolds-averaged Navier-Stokes (RANS) simulations, there have not been many
attempts at using machine learning techniques for wall modeling in large-eddy simulations
(LESs). Large-eddy simulation differs from RANS simulation in many aspects. For one
thing, LES is scale resolving. For another, LES is in and of itself a high-fidelity tool.
Because data sets of higher fidelity are in general not frequently accessible or available,
this poses additional challenges to data-based modeling in LES. Further, SGS modeling
usually needs flow information at only large scales, in contrast with wall modeling, which
needs to account for both near-wall small scales and large scales above the wall. In this
work we discuss how the above-noted challenges may be addressed when taking a data-
based approach for wall modeling. We also show the necessity of incorporating physical
insights in model inputs, i.e., using inputs that are inspired by the vertically integrated
thin-boundary-layer equations and the eddy population density scalings. We show that
the inclusion of the above physics-based considerations would enhance extrapolation
capabilities of a neural network to flow conditions that are not within the train data. Being
cheap to evaluate and using only channel flow data at Reτ = 1000, the trained networks
are found to capture the law of the wall at arbitrary Reynolds numbers and outperform the
conventional equilibrium model in a nonequilibrium flow.
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I. INTRODUCTION

Wall-bounded flows are often encountered in real-world engineering [1–3]. Resolving all scales
and conducting direct numerical simulations (DNSs) for engineering analysis is usually not possible
because of limited computational resources and the high Reynolds numbers of practically relevant
flows [4–6]. The same is true for wall-resolved large-eddy simulation (LES), where large-scale
energy-containing motions are resolved. To alleviate the strict near-wall resolution requirement and
reduce computational cost, wall models are often necessary [7]. In the case of incompressible flows,
for instance, an LES wall model is a model for wall-shear stress. Simple as it may sound in terms of
purpose, the fact remains that wall modeling is the pacing item in LES [8,9]. Conventionally, LES
wall models have been physics and mathematics based [10,11]. Here we briefly review a few of the
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existing wall modeling techniques. The commonly used algebraic equilibrium wall model specifies
wall-shear stress by enforcing the law of the wall locally and instantaneously [12]. The zonal model
solves the thin-boundary-layer equation on a set of refined mesh near the wall [13–15]. The integral
wall model adds to the otherwise equilibrium logarithmic velocity profile an additional linear term
and accounts for near-wall nonequilibrium effects by solving the vertically integrated momentum
equation [16]. A similar approach was pursued in Ref. [17], where a plug flow is used within the
wall-adjacent cell. The wall model by Inoue et al. [18] models wall-shear stress fluctuations using
the predictive inner-outer model [2,19]. Finally, the dynamic slip wall model models the wall-shear
stress by applying a differential filter in LES [20,21].

The conventional wall models as reviewed above have been quite useful in predictive modeling
for both low- and high-speed flows [22–28]. However, with an increasing number of high-fidelity
DNS data sets being made publicly available [29–34], augmenting physics-based models with
data-based approaches or vice versa may aid researchers in solving some of the pressing issues
in wall modeled LES (WMLES), including, but not limited to, flow separation and heat transfer
[8]. Data-based approaches, particularly machine learning (ML), are conventionally used for video
classification [35] and voice recognition [36]. Recently, machine learning techniques such as neural
networks and random forests were used for subgrid scale (SGS) modeling in Reynolds-averaged
Navier-Stokes (RANS) simulations [37–39] and there have been a few works utilizing physics-
informed data-based approaches [40–44]. For example, Ling et al. [40,41] embedded tensorial
invariance in network input and Xiao and co-workers [43,44] developed physics-informed random
forests where a number of relevant flow quantities with physics-based normalizations are fed to
the model. The reader is directed to the review by Duraisamy et al. [45] for a detailed overview
of recent advancements. While data-based approaches are advantageous for applications such as
SGS stress and scalar flux modeling [46–49], wall-bounded flows [50,51], and multiphase flow
turbulence model development [52,53], in this work ML is used for wall modeling in LES.

Although both wall and SGS models deal with unresolved turbulence, due to the difference in
flow physics, modeling Reynolds and wall-shear stresses requires the use of substantially different
techniques [54]. Compared to SGS modeling in RANS simulations, WMLES poses additional
challenges to data-based approaches. For one, time averaging in (steady) RANS simulation kills
turbulence and therefore (steady) RANS simulation is a model for a deterministic system. Large-
eddy simulation, on the other hand, is scale resolving and therefore models a stochastic system. This
difference is crucial since the training process in ML for modeling a stochastic system is inherently
more difficult than modeling a deterministic system. This difficulty is exacerbated by the necessity
of more training data for a stochastic system. The second challenge is also physics related. The
purpose of SGS models is to dissipate turbulent kinetic energy at large scales so that an LES grid
does not need to resolve the Kolmogorov scales [55]. Turbulence dissipation is only a function
of large scales, therefore calibrating an SGS model at moderate Reynolds numbers and using the
calibrated model for flows at high Reynolds numbers are usually not problematic [56]. The same
cannot be said for wall modeling, however. This is because wall-shear stress depends on both large
scales and small scales, e.g., the friction would be different on a smooth versus rough wall even if
the large-scale motions above the wall are the same.

The starting point for using an ML technique is often a lack of knowledge of the physics that
is needed for developing a closure model. To that end, one often needs high-fidelity data to train
a closure model for low-fidelity simulations. Both LES and DNS are high fidelity for RANS
simulation, therefore data obtained from either of the two or from experimental measurements
can be used for data-based RANS modeling. Moreover, because only mean fields such as mean
velocities, Reynolds stresses, or turbulent budget terms are needed for the development of data-
based closure models for RANS simulations, data sharing is often not difficult, and several
such databases are available [57–59]. For LES, however, only DNS is high fidelity, and due to
prohibitive computational costs of DNS and difficulties in data sharing, high-fidelity DNS data
sets are often unavailable for use in data-based modeling. While the database at Johns Hopkins
University has been a great platform for sharing high-fidelity DNS data and for leveraging the

034602-2



PREDICTIVE LARGE-EDDY-SIMULATION WALL …

FIG. 1. (a) Schematic of the setup of WMLES. The near-wall turbulence is not resolved, therefore the
no-slip condition does not apply. Instead, a wall model is used. (b) Mean velocity profiles of a channel at
Reτ ≈ 180 [64] and Reτ ≈ 5200 [31]. The plus superscript indicates normalization by wall units. The dashed
lines are at y+ = 18 and y+ = 520, respectively, which are roughly the locations of the first off-wall grid of
typical WMLES of the two flows.

shared data for developing LES closure models [30,46,48,60,61], the available DNS data are limited
to canonical flows in simple geometries, including only channel flow, boundary-layer flow, and
isotropic turbulence. The challenge in data sharing is possibly an explanation for why wall modeling
has traditionally relied on physics-based approaches. If data-based approaches are to be useful for
WMLES, ML must only be done using limited data, but the model needs to work for all flows. This is
also the most oft-noted difficulty of ML, i.e., the ability to extrapolate, also known as generalization.

The traditional ML approaches have been solely based on data, and that may not be suitable for
the WMLES. To address this issue, a physics-informed ML approach [62,63], where physics-based
constraints and knowledge are imposed within the learning process, is preferred. Leveraging the
known physical laws and constraints would compensate for the lack of high-fidelity training data
and achieve more efficient learning.

For WMLES, we prefer the physics-informed approach. Here we briefly discuss why. In
WMLES, wall-shear stress is modeled using resolved LES velocity at a distance hwm from the
wall, where hwm is the distance of the first (dependent on the model implementation, second or even
the third [15]) off-wall grid point from the wall. Figure 1(a) shows a schematic of the typical setup
of a WMLES, where about O(10) grid points are used to resolve the flow in one boundary-layer
height and the wall-shear stress is modeled according to a wall model. Figure 1(b) shows the mean
velocity profiles in channel flow at Reτ ≈ 180 [64] and Reτ ≈ 5200 [31], where Reτ = uτ δ/ν is
the friction Reynolds number, uτ = √

τw/ρ is the friction velocity, τw is the mean wall-shear stress,
ρ = const is the fluid density, δ is the half channel height, and ν is the kinematic viscosity. Without
incorporating any physics, a neural network trained using data at Reτ ≈ 180 probably cannot be
directly used for flow at Reτ ≈ 5200, where the first off-wall grid point of the Reτ ≈ 5200 LES,
which is located at hwm ≈ 520, would already be above 180.

That is to say, flow at Reτ ≈ 180 would not provide any useful information for data-based
modeling of flow at Reτ ≈ 5200 if no physical insight is incorporated, simply because the entire
flow of the Reτ ≈ 180 channel is within the first grid of the Reτ ≈ 5200 LES. Unfortunately,
while one can include the Reτ = 5200 data in the training, real-world problems that require the
use of WMLES for engineering design involve flows at higher Reynolds numbers, for which often
neither DNS nor experimental measurements are available. Hence, we prefer physics-informed ML
approaches for WMLES, which, as we will show, have the extrapolating capability we need.

The rest of the paper is organized as follows. We briefly recap background information in Sec. II.
Two model problems are considered in Sec. III. In Sec. IV we present results of neural networks
for WMLES. We briefly discuss the present approach in Sec. V. Concluding remarks are given in
Sec. VI.
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II. BACKGROUND

In this section we provide a summary of relevant background information and the reasoning for
a few parameter choices in Secs. III and IV.

A. Flow physics in wall-modeled LES and choice of input features for learning

The law of the wall (LOW) reads

〈u+〉 = 1

κ
ln

(
y

y0

)
, (1)

where 〈·〉 is the ensemble average of the bracketed quantity, κ ≈ 0.4 is the von Kármán constant,
y0 = ν/uτ exp(−κB) is a viscous scale, B ≈ 5 is another constant, and ln is the natural logarithm.
The mean flow follows the LOW in the logarithmic range 30 � y+ and y/δ � 0.15 [65]. Within
the logarithmic range, the flow may be considered as universal [66]. A wall model can and should
model only the universal near-wall flow behavior.

Flow behavior near a solid boundary is, by and large, governed by the thin-boundary-layer
equation

∂u

∂t
+ ∂uu j

∂x j
= − 1

ρ

∂ p

∂x
+ ν

∂2u

∂y∂y
, (2)

where ui (i = 1, 2, 3) is the velocity in the ith Cartesian direction; u is the streamwise velocity; u, v,
and w are interchangeably used for u1, u2, and u3, respectively; x, y, and z are the streamwise, wall-
normal, and spanwise directions, respectively, and are interchangeably used with xi (i = 1, 2, 3); t
is the time; and p is the pressure. The solution to Eq. (2) is, in principle, a good approximation of
near-wall flow. However, solving Eq. (2) is often costly [13,25], and a more cost-effective way is to
solve the vertically integrated equation [16]. Time averaging Eq. (2) and integrating from the wall
to a wall normal distance hwm leads to

〈τw〉 = ν
∂〈u〉
∂y

∣∣∣∣
y=0

= −〈uv〉|hwm −
∫ hwm

0

1

ρ
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dy + ν
∂〈u〉
∂y

∣∣∣∣
hwm

−
∫ hwm

0

∂〈uu〉
∂x

+ ∂〈uw〉
∂z

dy, (3)

where the unsteady term is dropped and the wall-shear stress depends on [from left to right in
Eq. (3)] the Reynolds stress −〈uv〉, the pressure gradient term, the viscous term, and the convective
term. Although all the terms are functions of primitive flow quantities and one may use primitive
flow quantities u, v, w, hwm, p, etc., to model τw, according to Eq. (3), it is more straightforward
to use rearranged nondimensional LES quantities including (∂ p/∂x)hwm and uv|hwm as model input
for better predictive generality [16,67]. Ideally, a network will use all available flow information as
input, determine what information is relevant in a particular context, and output the wall-shear stress.

Including all the terms in a wall model is usually not straightforward, and it is quite common
that a wall model models only the term −〈uv〉 using only u‖ and hwm as model input, where u‖ is
the wall-parallel velocity at a distance hwm from the wall. If one uses only u‖ and hwm as model
input, one needs to determine the exact form of the input. For example, one may directly use h+

wm
and u+

‖ as the input. Alternatively, one may use f2(u‖, hwm ) and f1(u‖, hwm ) as the input, as long as
it is possible to back out both u‖ and hwm from f1(u‖, hwm ) and f2(u‖, hwm ). Here f1 and f2 are two
generic functions. Although any independent f1(u‖, hwm ) and f2(u‖, hwm ) may be used, selecting a
set of input that has the right physics reduces training efforts and improves model accuracy [40,41].

In this work, such physical insights will be provided by the hierarchical random additive
process model [68–72]. Figure 2 shows a schematic of the modeled boundary-layer flow, where
high-Reynolds-number boundary layers are modeled as collections of space-filling, wall-attached,
self-similar eddies. The population density of the attached eddies is P ∼ 1/y. If the friction velocity
uτ = √

τw/ρ is unity, i.e., using uτ for normalization, the velocity at a wall-normal distance hwm

is proportional to the number of attached eddies at that height. The number of attached eddies at
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FIG. 2. Schematic of the modeled boundary-layer structure. The attached eddies are space filling and
therefore the number of eddies doubles as their sizes halve.

a wall-normal distance hwm in the logarithmic range is approximately N = ∫
P (y)dy ∼ ln(hwm );

this number is N ∼ hwm in the viscous sublayer. Hence, ln(hwm/y0)/u+
‖ and u+

‖ /h+ are good
approximation of wall-shear stress for hwm being in the logarithmic range and the viscous sublayer.
In the following we will use ln(hwm/y0)/u+

‖ and u+
‖ /h+ as model input and we will show first that

both ln(hwm/y0)/u+
‖ and u+

‖ /h+ are only weak functions of the Reynolds number and second that
the trained physics-informed model would be able to be used at any Reynolds numbers.

The discussion above focused on using velocity and wall-normal distance as input and how one
may include physical insights. Both flow acceleration and convection can be included as model input
and while one may use directly primitive flow quantities including p, du/dx, du/dz, etc., using the
integrals in Eq. (3) is simply more physical and more convenient.

B. Neural network

We will use a feedforward neural network architecture for LES wall modeling, Figure 3 shows
a schematic of a feedforward neural network. A feedforward neural network contains one input
layer, multiple hidden layers, and one output layer. The outputs of each layer are fed forward
as inputs to the next layer, with the input layer being the starting point and the output layer
being the model prediction. Each layer has a number of neurons, which are computational units
that take weighted sums of the inputs to an activation function. In general, we prefer not to use
primitive physical quantities, i.e., velocities and pressure, as inputs to a neural net. Previous studies
[43,44,73] investigated the choice of ML inputs. Their conclusion was that inputs for ML need to
be Galilean invariance, rotation invariance, and properly normalized. However, for wall modeling,

FIG. 3. Schematic of a sample neural network. The neural network is fully connected. It has two hidden
layers HL1 and HL2. The input layer contains three neurons and the output layer contains one neuron.
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feeding velocity and pressure directly to a network may be acceptable because the wall provides an
intrinsic velocity reference and a local coordinate system.

The weights and bias of each neuron in the network are parameters that are determined through
fitting a set of training data utilizing backpropagation and an optimization algorithm such as the
stochastic gradient descent algorithm [74] and the Levenberg-Marquardt algorithm [75]. The fitting
procedure minimizes an objective function, which is usually a measure of misfit between model
and data, i.e., the error of the trained model. To prevent overfitting and improve generalization,
early stopping criteria are often used [76]. Training is halted if the model error (objective function)
evaluated using the data in the validation set stops decreasing for a few epochs, where in one epoch
all weights in a neural network are updated after each training vector is passed through the training
algorithm.

III. MODEL PROBLEMS

We consider two model problems in this section and discuss briefly how we may go about
addressing the challenges noted in Sec. I.

A. Intermittency

For the first model problem, we model a stochastic system whose behavior is governed by the
equation τ = u2(1 + r), where u and τ are the input (velocity) and the output (wall stress) of the
system, respectively. The input u is a Gaussian random variable with zero mean and unit variance
and r is a random number that conforms to a uniform distribution between −0.05 and 0.05. Being
Gaussian, u values cluster near its mean. The same behavior is found for velocity fluctuations
in a turbulent boundary layer and is known as intermittency. A lack of data at large |u| values
compromises learning effectiveness. We discuss a possible solution to this problem from a machine
learning perspective.

We train a neural network to model the system, where u is the input and τ = f (u) is the output.
The network contains one hidden layer and the hidden layer contains two neurons. For the activation
function, we use the hyperbolic tangent sigmoid transfer function. The training data contain N =
105 pairs of u and τ = f (u). The objective function is the weighted mean square of the model error
and is

e = 1

N

N∑
n=1

wn[τn − fNN(un)]2, (4)

where N is the total number of training data, wn ≡ 1 is the error weight, and fNN(un) is the network
output. The weights and bias in the network are initialized randomly. The neural network models
the system as a deterministic one and therefore the expected model behavior is fNN(u) = u2. The
results are shown in Fig. 4. The network [ fNN(u) in Fig. 4] follows the expected quadratic behavior
closely for |u| < 3, where there is a good number of training data points available, but quickly levels
off.

While poor model performance is usually expected for a neural network when conducting
extrapolation, the extrapolation capability is highly desirable and even critical for WMLES. For
WMLES, training data are only available at low to moderate Reynolds numbers, and a network
trained at a low Reynolds number needs to model flow at high Reynolds numbers, where the flow is
usually more stochastic, with an increasing number of events away from the mean. Although there
is no general solution to this problem, improved model performance is found when assigning error
weights wn according to wn = 1/[P(un) + ε], where P(u) is the probability density function (PDF)
of the Gaussian random variable u and ε = 10−5 to prevent division by zero. If input probability
distributions are not known a priori, as is often the case, they can be estimated from data, and once
trained, the information on the probability distribution is no longer needed when evaluating the
network. The model behavior with errors thus weighted are shown in Fig. 4 and is fNN,w(u). The
network follows the expected quadratic behavior up to x = 4.
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FIG. 4. Training data, network, and expected behavior. Because of symmetry, data are only shown for
x > 0 for brevity.

The above weighting is such that all u values are weighted evenly: The occurrence of a u value
is proportional to the PDF and the weight is inversely proportional to the PDF. Generally, one may
weight model error according to wn = 1/Pα (un), with α < 1, so that the objective function is biased
to likely events.

B. Limited training data and aggressive extrapolation

For the second model problem, we train a neural network to model the LOW. We generate
data of wall-shear stress and velocity at wall-normal distances y+ < 1000 according to the LOW.
The generated data are used for training a neural network and the trained network is then used
to predict wall stress given velocities at y+ = 10 000. The training data are generated as follows.
First, we randomly sample 105 wall-normal locations between y+ = 0 and y+ = 1000, i.e., hn,
n = 1, 2, 3, . . . , 105. Second, the velocities at the sampled wall-normal locations are specified
according to the LOW but with 10% of randomness, i.e., un = [1/κ ln(hn/y0)](1 + rn), where rn

is a random number sampled from a uniform distribution between −0.1 and 0.1. Finally, we use the
equilibrium wall model to compute wall-shear stresses as functions of both the velocity un and the
wall-normal distance hn according to

τ+
w,n = h+

n , y+ � 11.3

τ+
w,n =

[
κu+

n

ln(hn/y0)

]2

, y+ > 11.3, (5)

where all quantities are in wall units. Equation (5) is continuous at y+ = 11.3. The training data
contain 105 pairs of un and hn as input and τw as output. The test data at y+ = 10 000 are generated
in the same manner.

We train two forward-feed networks for this problem. For the first network fN1, we use u+
n and h+

n
directly as input, i.e., fN1(u+

n , h+
n ), and for the second network fN2, we use u+

n /h+
n and ln(hn/y0)/u+

n ,
i.e., fN2(u+

n /h+
n , ln(hn/y0)/u+

n ) (following the discussion in Sec. II A). The behavior of the system
to be modeled is slightly more complex than the one in the first model problem and therefore a
slightly larger sized network is used. Both networks contain four hidden layers, with ten, ten, ten,
and five neurons in the four layers. The above network layout is found to be the best in a simple
K-fold cross-validation test, where we split the training set to five groups and tested for five different
layouts containing two to six layers. We stop training if the objective function stops decreasing for
six epochs (known as early stopping). The training data are generated from uniform distributions
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LOW LOW

FIG. 5. (a) Wall-shear stress as a function of the velocity at y+ = 50. The mean of the velocity is removed.
The LOW is Eq. (5). (b) Same as (a) but at a wall-normal height y+ = 10 000. In (a), all three lines are almost
on top of each other. In (b), fN2 and the LOW are on top of each other.

and therefore weighting the errors as discussed in Sec. III A or not does not affect the results. Other
details of the two networks are the same as the one in Sec. III A and are not detailed here for brevity.

We first test the model performance at a wall-normal distance y+ = 50, which is well within
the wall-normal distance range of the training data. Figure 5(a) shows the model performance and
both networks follow the expected LOW closely. However, the two models differ at y+ = 10 000
[Fig. 5(b)], which is at a wall-normal location beyond the wall-normal distance range of the training
data. The net fN2 follows the expected LOW behavior. The model prediction is about 50% off for
fN2. To briefly summarize, training using regrouped inputs or primitive flow quantities makes no
difference if the trained network is used to predict behaviors of a flow in the training data set, but
an error of O(50%), if not higher, is expected if the trained network is used for a flow outside the
training data set.

While the data are not real turbulence and are generated according to the LOW, through this
exercise, we may still conclude that, at least for WMLES, incorporating the right physics is useful
[41,43].

IV. PHYSICS-INFORMED NEURAL NETWORKS

A. Training data

The Reτ = 1000 DNS channel flow data [30] are used for training. The computational domain
of the DNS is Lx × Ly × Lz = 8πδ × 2δ × 3πδ and is resolved by a grid of size Nx × Ny × Nz =
2048 × 512 × 1536. The grid spacing is uniform in both the x (streamwise) and z (spanwise)
directions. The resolution is �x+ × �y+ × �z+ = 12 × 6 × 6 at the channel center. The grid
resolution at the wall is �y+ = 0.017. The reader is directed to [30] for further details of the DNS.

For training purposes, we use DNS data within the wall-normal distance range 10 < y+ and
y/δ < 0.1, where the flow behavior is universal (following the discussion in Sec. II A). Data in
y+ < 10 are precluded because no wall model would be needed when the small scales are also
resolved. Data above y/δ = 0.1 are not included for training because the flow away from the wall is
usually resolved by LES grids.

We spatially filter the DNS data so that the filtered data conform with solutions of WMLES (see
Fig. 6). A well-resolved LES will have data close to the wall available and a coarse-grid calculation
will only have data slightly away from the wall available. To filter the DNS data to typical LES
resolutions, we first define a virtual wall-adjacent LES grid. The grid is �x × �y × �z = Rhwm ×
hwm × Rhwm in size. Here R > 1 is the aspect ratio of the first off-wall grid (see Fig. 6) and 10 <

h+
wm, hwm < 0.1δ. If we conduct an LES using this grid, velocity information will only be available

at a distance y = hwm from the wall and at a wall-parallel resolution Rhwm × Rhwm. The same is
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wall
hwm

hwm · R

hwm · R

u

τ̃w

x

y z

t

n
q

FIG. 6. Sketch of the spatial filtering of the DNS data. Both the instantaneous velocity and the instanta-
neous wall stress are filtered within a virtual LES computational cell of size �x × �y × �z = hwmR × hwm ×
hwmR, where R varies from 1 to 12. A local coordinate system (t, q, n) is such that t is in the direction of the
filtered velocity at y = hwm, n is the wall-normal direction, and q is perpendicular to both t and n.

true for the wall-shear stress; scales smaller than Rhwm × Rhwm will not be resolved by the LES
grid. We use a top-hat filter in physical space and filter the DNS velocity at the distance y = hwm in
a square-shaped area of size Rhwm × Rhwm. The same filtration is applied to the wall-shear stress.
The filtered DNS data correspond to the LES solution within the wall-adjacent cell and will be used
as our training data. Vectors t , n, and q define a local coordinate system, where t is the direction
of the wall-parallel velocity, n is the wall-normal direction, and q is t × n, with × denoting cross
product here.

Since grid information is part of SGS models in LES, it is therefore quite natural to include grid
information, i.e., R, in data-based LES wall models. We vary R from 1 to 12, which are typical
aspect ratio values of the near-wall computational cells in WMLES [77–87]. It is worth noting that
a spatial filtering of the instantaneous DNS data will not be needed if the data are used for training
a neural network for RANS simulation, because time averaging would have already removed all
turbulence fluctuations. The filtered DNS data are fully three dimensional. We downsample evenly
in both the streamwise and spanwise directions such that the training data contain about 2 × 109

input-output pairs from four independent realizations.

B. Neural networks

We train a few neural networks by successively including more flow information to the network
input. A neural network models the expected wall stress given the model input, i.e., 〈τw|input〉,
where 〈A|B〉 is the expected value of A given condition B. In this section we compare the model
predictions directly to DNS, i.e., an a priori study. The results of a posteriori studies will be
presented in the next section, where the trained networks are used in WMLES. We note that the
results of an a priori study are not at all related to the results of an a posteriori study for ML-based
turbulence models [88–90]. Because the models are ultimately going to be tested in WMLES, we
partition the training data into a training and a validation set, with no testing data. We stop training
if the model error evaluated using the data in the validation set does not decrease for 15 epochs.
Details of the neural networks are presented in Table I. Depending on the choice of inputs, the
trained network may perform differently. For example, the outputs of NN1 will be independent of
the grid aspect ratio and the outputs of NN3 will depend on local pressure gradients. The impact
of our choices on the network inputs is shown in Figs. 7–9 by comparing the model results to the
training data and in Figs. 14 and 15 by comparing the WMLES to DNS.

The first network uses solely the single-point wall-parallel velocity u‖ at hwm. The model inputs
are |u‖|/hwm and ln(hwm/y0)/|u‖|, following the discussion in the preceding section. The local
wall-shear stress is projected in the velocity direction and is used as the model output. The wall-shear
stress in the q direction is neglected because 〈τw,q|u‖, hwm〉 = 0. The neural net contains three
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TABLE I. Details of the neural networks. Here NN denotes neural network and HL hidden layer. The
tabulated hidden layer size contains the number of neurons within each hidden layer. A local coordinate system
is set up such that the wall normal direction is n, the velocity direction is t , and the third direction is q (see
Fig. 6 for details). In addition, ∇q p denotes the pressure gradient in the q direction in the local coordinate
system. All quantities are in wall units.

NN HL size Input Output

NN1 (4,2,2)
|u‖|
hwm

, ln(hwm/y0 )
|u‖| |τw,t |

NN2 (6,4,3,3)
|u‖|
hwm

, ln(hwm/y0 )
|u‖| , R |τw,t |

NN3 (8,8,6,4,4)
|u‖|
hwm

, ln(hwm/y0 )
|u‖| , R, ∇q p hwm

δ
|τw,t |, |τw,q|

hidden layers with four, two, and two neurons, respectively. For wall modeling, being cheap to
evaluate is usually an equally important consideration as accuracy. A wall model is evaluated at
every wall location and every time step in a three-dimensional scale-resolving simulation. Limiting
the computation needed to evaluate the model (even if it is just a few multiplications and additions) is
therefore critical to model performance. This is quite different from other commercial applications,
e.g., image recognition, where evaluating a neural network is usually considered “free.” The neural
network architecture (in terms of hidden layers and neurons per layer) is determined through trial
and error and is found to be a good trade-off between model accuracy and computational cost.
Specifically, we start with a sufficiently large network and successively reduce the size of the
network until we cannot get a reasonably accurate prediction in an a priori sense. Once the size
of the neural network is determined, it takes about one day to train on a work station that contains
16 CPUs.

Figure 7 compares the model to the (filtered) DNS data at y+ ≈ 10 and y+ ≈ 100. The (filtered)
DNS data and predictions of the zonal model [15] are included for comparison. In Fig. 7 we also
show the PDF of the wall-parallel velocity u‖. The DNS wall-shear stress is not solely a function
of the near-wall velocity, leading to the observed data scattering. Compared to the zonal model, the
neural network fits the data slightly better. Lacking the physical knowledge of flow at rare u‖ values,
the neural network levels off for u‖ being large and small, even when the model error is weighted
(following Sec. III A). Results at other wall-normal heights are similar and are not shown for brevity.

Next we include grid information, i.e., the grid aspect ratio R, in the model input. The grid R
is a measure of the LES filtering, i.e., a large R corresponds to a coarse grid in the wall-normal

FIG. 7. (a) The left axis gives the wall-shear stress as a function of the wall-parallel velocity at y+ ≈ 10:
×, filtered DNS data; —, predictions of NN1; −−, the mean velocity and the mean wall-shear stress; −−,
predictions of the zonal model. The right axis gives the PDF of the wall-parallel velocity: —, PDF of the
filtered velocity. All quantities are normalized using wall units. (b) Same as (a) but at the wall-normal distance
y+ ≈ 100.
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FIG. 8. (a) Wall shear stress as a function of the off-wall velocity at y+ ≈ 10. Different colors are used for
data of different R. The DNS data are dots and the neural network outputs are lines; WM denotes wall model.
(The red and orange lines are neural network outputs for R = 5 and 9, respectively.) The thin black line shows
the prediction of the zonal model. (b) Same as (a) but at y+ ≈ 100.

directions, which is a large-sized LES filter. Including grid information is almost trivial for a data-
based approach, despite the difficulty of interpreting results obtained from the trained network. For
conventional modeling approaches, incorporating grid information needs a physical understanding
of the coarse-grained near-wall turbulence [67,91], which is highly nontrivial and has barely been
tried. From this perspective, physics-informed data-based approaches are more advantageous to
conventional approaches.

The network contains four hidden layers, with six, four, four, and three neurons, respectively. We
compare output from the trained neural network with the DNS data and the zonal model in Fig. 8.
Direct numerical simulation shows less scattering for larger R, due to the effects of filtering. The
neural network output, on the other hand, is only a weak function of the grid aspect ratio R.

Finally, we include pressure gradient in the crossflow direction q in the input. For NN1 and NN2,
we have not modeled the wall-shear stress in the crossflow direction, which will be 0 by symmetry,
i.e., 〈τw,q|u‖, hwm〉 = 0. By including the pressure gradient in the crossflow direction, the symmetry
breaks down and we can include wall-shear stress in the crossflow direction τw,q in model output.
Following the discussion in Sec. II A, pressure gradient is included in the integral ∇q p+hwm/δ. Fig-
ure 9 shows the stress in the crossflow direction as a function of the pressure gradient in the same di-
rection. Here 〈τw,q|∇q p+hwm/δ〉 	= 0 if ∇q p+hwm/δ 	= 0. The scattering of DNS at ∇q p+hwm/δ = 0

FIG. 9. (a) Crossflow wall-shear stress as a function of the crossflow pressure gradient for h+
wm = 10.

(b) Same as (a) but for h+
wm = 100.
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FIG. 10. (a) Parameter space in terms of h+
wm and u+

‖ . The contour shows the PDF of the training data.
The Reτ = 1010 channel will cover the parameter space around the circled position. (b) Same as (a) but for
parameter space in terms of ln(hwm/y0 )/u+

‖ and u+
‖ /hwm.

shows that τw,q is not only a function of the pressure gradient in the crossflow direction. On the other
hand, the scattering of the neural network outputs shows that τw,q also depends on the wall-parallel
velocity and hwm.

C. Wall-modeled LES

In this section we test the trained neural networks in WMLES. The neural networks are
implemented and tested in the in-house code LESGO. LESGO has been used extensively for boundary-
layer-flow calculations [92–97]. The code uses pseudospectral discretization in the streamwise
and spanwise directions and a second-order finite difference in the wall-normal direction. A
second-order Adam-Bashforth method is used for time stepping. The SGS stress is modeled using
the scale-dependent Lagrangian Smagorinsky model [98–100]. Other details of the code may be
found in Refs. [68,101].

Two test flows are considered: One is plane channel flow from Reτ = 103 to Reτ = 1010 (which
are at equal or higher Reynolds numbers than the training flow at Reτ = 103); the other is a three-
dimensional boundary layer at Reτ ≈ 1000, which involves strong nonequilibrium effects that are
not present in the training data. For the channel flow case, the main challenge is the much higher
Reynolds number of the test flows compared to the training flow, which may necessitate aggressive
extrapolations and post challenges to data-based models. For three-dimensional boundary layers,
the prime challenge is nonequilibrium effects.

To address the first challenge, we have regrouped the model inputs. Figure 10 shows the
parameter space covered by the training data and approximately the parameter space of a Reτ =
1010 channel. The parameter space of a Reτ = 1010 channel is in the neighborhood of h+

wm ≈ 109

and u+
‖ = 1/κ ln(hwm ) + B = 56.8. If the wall-parallel velocity u+

‖ and the distance of the first
off-wall grid h+

wm are used directly for training, a neural network trained using data at Reτ = 1000
will rely completely on extrapolation for predicting flow at Reτ ≈ 1010 [Fig. 10(a)]. However,
regrouping h+

wm and u+
‖ to ln(hwm/y0)/u+

‖ and u+
‖ /h+

wm, a less aggressive extrapolation is needed
for the Reτ = 1010 channel [Fig. 10(b)].

The second challenge is addressed, partly, as we are training using instantaneous realizations of
the Navier-Stokes equation. While the channel is at equilibrium on average, the flow may be subject
to nonequilibrium effects from time to time. Trained using instantaneous data that are subject to
nonequilibrium effects, a network learns, albeit not directly, the effects of nonequilibrium terms on
the wall-shear stress. The above discussion involves two aspects of wall modeling. One aspect is
whether a wall model can transmit the resolved unsteadiness to the modeled wall-shear stress. The
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FIG. 11. (a) Mean velocity profiles as a function of wall-normal distance for a channel at Reτ = 1000.
Symbols show the results of WMLES. (b) Mean velocity profiles as a function of wall-normal distance for
channel flow at friction Reynolds numbers from Reτ = 103 to Reτ = 1010. The symbols show the results of
WMLES. The thin solid line is the logarithmic law of the wall and the bold solid line is the mean profile of the
DNS channel at Reτ = 1000.

other aspect is whether a wall model can infer from the resolved LES some information about the
unresolved near-wall flow and transfer that information to the modeled wall-shear stress. A simple
equilibrium wall model can already transmit the resolved unsteadiness to the modeled wall-shear
stress, but by imposing directly the law of the wall, the equilibrium wall model does not contain
any information about the flow between the wall and the first off-wall grid. In a channel flow,
any deviation from the law of the wall is a result of nonequilibrium effects and therefore velocity
fluctuations carry information about nonequilibrium effects (although not directly). Hence trained
using instantaneous data, a network “knows” the effects of the nonequilibrium terms, albeit in an
implicit and indirect manner through the training data. This effect is probably clear from Fig. 7(b).
Both the neural network and the equilibrium model transmit the resolved unsteadiness: The model
predicted wall-shear stress is a function of the resolved near-wall velocity. However, the functional
dependence of the wall-shear stress on the near-wall velocity does not follow the one suggested by
the law of the wall. Instead, at velocity values that are away from the equilibrium value, the neural
net predicts wall-shear stress that is slightly closer to the equilibrium value than the equilibrium wall
model. Because the mean flow follows the law of the wall at y+ = 100, the difference between the
neural net and the equilibrium wall model is the result of the nonequilibrium terms that are nonzero
instantaneously.

For canonical channel flow, WMLES is conducted for a half channel. A symmetry condition is
imposed at the top boundary. A grid of size Nx × Ny × Nz = 32 × 32 × 32 is used for a computation
domain of size Lx × Ly × Lz = 2πδ × δ × 2πδ. The flow is driven by a constant pressure gradient.
The flow statistics are obtained by averaging for ten flowthroughs, where t f = Lx/ub is one
flowthrough and ub is the bulk velocity. The velocity at the first off-wall grid is filtered before being
fed to the neural networks following Yang et al. [102]. Figure 11(a) shows the mean velocity profiles
as functions of the wall-normal distance for the Reτ = 1000 channel. Results of neural networks
are shown only for NN1. For channel flow, WMLES with wall-shear stress modeled using NN2
and NN3 is the same as that from NN1 WMLES. The WMLESs using both NN1 and the algebraic
equilibrium wall model follow the DNS profile closely. Figure 11(b) shows the mean profiles of
NN1 WMLES at friction Reynolds numbers from Reτ = 103 to 1010. The neural network predicts
the LOW, even though the network is not informed directly with this knowledge. Admittedly, using
ln(hwm/y0) as one of the inputs of the ML model may have helped the data-based model in finding
the logarithmic LOW. Hence it is probably not surprising that the neural network trained using fully
developed channel flow data at Reτ = 103 can be used for flow at any Reynolds number. Figure 12
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FIG. 12. Root mean square of the streamwise velocity for the same legend as in (a) Fig. 11(a) and
(b) Fig. 11(b).

shows the root mean square of the streamwise velocity fluctuation. The difference between the
network and the equilibrium wall model is not significant.

Next we consider a three-dimensional boundary-layer flow, where a mean spanwise pressure
gradient ∂ p/∂z = 10ρu2

τ is impulsively imposed to a fully developed Reτ = 934 channel flow,
where uτ is the friction velocity of the fully developed two-dimensional channel. The flow gradually
develops a mean velocity in the spanwise direction, and until the flow reaches a statistically
stationary state, the mean flow near the wall is not aligned with the wall-shear stress. We use
WMLES for this transient flow. The computational domain is Lx × Ly × Lz = 8πδ × δ × 4πδ,
and a grid of size Nx × Ny × Nz = 128 × 32 × 64 is used. The boundary conditions are the same
as the channel flow. Figures 13(a) and 13(b) show the contours of the instantaneous velocity

FIG. 13. (a) Contours of the instantaneous velocity at the wall-normal distance y/δ = 0.047 at t = 0.
(b) Same as (a) but at the wall-normal distance y/δ = 0.42. (c) Same as (a) but at a time t = δ/uτ . The
solid white line is the direction of the shear stress at the wall. (d) Same as (c) but at a wall-normal distance
y/δ = 0.42. Here uτ is the friction velocity of the two-dimensional channel. An underline denotes a vector and
| · | is the norm of the bracketed quantity.

034602-14



PREDICTIVE LARGE-EDDY-SIMULATION WALL …

0 0.25 0.5 0.75 1
tuτ/δ

0

10

20

30

40

α
(d

eg
)

NN
NN

DNS

FIG. 14. Direction of the spatially averaged wall-shear stress as a function of the time. Here α is the angle
between the spatially averaged wall-shear stress and the streamwise direction of the two-dimensional channel.

√
u2 + v2 + w2 at two wall-normal heights before the spanwise pressure gradient is imposed, which

we take as t = 0. Streaklike flow structures are found at both planes. The scales of the flow structures
are smaller at y = 0.047δ than at y = 0.42δ. Figures 13(c) and 13(d) show the contours of the
instantaneous velocity at the same wall-normal heights at time t = δ/uτ , where the streaks are
aligned with an off-x direction. The white lines show the direction of the plane-averaged wall-shear
stress. The near-wall streaks are aligned with the wall-shear stress already, but the streaks away from
the wall are not. Comparing Figs. 13(a) and 13(c), there appear to be more structures in Fig. 13(c).
Considering that the flow in Fig. 13(c) is at a higher Reynolds number than that in Fig. 13(a), it
is probably expected that there is a larger number of flow structures in Fig. 13(c). In general, the
flow in the outer region is well resolved by the LES grids. The equilibrium model and the neural
network lead to qualitatively similar flow fields; we show only the results of NN1. Figure 14 shows
the direction of the spatially averaged wall-shear stress as a function of time. NN1 follows the DNS
measurements closely [103] and is found to be more accurate than the equilibrium wall model.
The results of NN2 are very similar to NN1 and are not shown here for brevity. NN3, however,
overpredicts the stress in the spanwise direction, although the pressure gradient was explicitly
accounted for in the model. Figure 15 shows the spatially averaged spanwise velocity from t = 0
to tuτ /δ = 1.0. The WMLES results using both the equilibrium model and the neural network
follow the DNS quite closely. As the spanwise pressure is responsible for the momentum gain
in the z direction, it is probably not surprising that the mean flow results are not very sensitive
to near-wall turbulence modeling. In all, the data-based approach offers some advantages over
the conventional equilibrium model in model accuracy. However, including more flow information
does not necessarily lead to improved WMLES results. A detailed analysis of this flow and a
comprehensive comparison between wall models were presented in Ref. [103], and the reader is
directed to [103] for further details of this flow.

V. DISCUSSION

Data-based turbulence modeling faces very different challenges than conventional physics-based
approaches. Among other challenges, the most pressing ones are (i) how to incorporate prior
knowledge, e.g., a known scaling, in a neural network, without imposing that exact scaling; (ii) how
to deal with sparse, incompletely sampled parameter space; (iii) whether a data-based model will
be able to answer questions that are not directly registered around the training data; and (iv) how
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FIG. 15. Spatially averaged spanwise velocity as a function of the wall-normal distance at tuτ /δ ≈ 0.2,
0.4, 0.6, 0.8, and 1.0 (from bottom to top). The WMLES results are plotted every other point for a better
presentation. Velocities are normalized by the friction velocity of the two-dimensional channel flow.

to train a model such that it can be used for predictive modeling. This work addresses the above
challenges in the particular context of LES wall modeling, but issues including wall curvature,
pressure gradients, and flow separation, remain unresolved. Considering of the success of machine
learning in other disciplines, the general expectation is that, with the above challenges (i)–(iv)
addressed, a data-based model will “learn” from the data and handle pressure gradient, curvature,
flow separation, etc., when more data become available.

We show that, by incorporating prior knowledge on eddy population density, the trained network
can be used as a predictive model in the context of LES wall modeling and answer questions that are
not registered near the training data set. It is a consensus that to train a network for predictive causal
modeling, one has to incorporate prior knowledge. The challenge has been how one can go about
doing that. This work is devoted to answering the above question in the specific context of LES
wall modeling. Nonetheless, the proposed methodology may well be used in a different context.
Let us consider a variant of the example in Sec. III. Consider training a network to learn from
some data the relation y = x2, where x is the input and y is the output. The data are noisy, i.e., are
y = x2(1 + r), where r is a random number that adds 10% noise to the data. The training data are
between x = 0 and x = 1 and the objective is to predict y at x = 10. If we already know the scaling,
we could directly use x2 as network input, and by employing a rectified linear unit function as the
activation function, the problem is readily solved. However, the network breaks if one employs, e.g.,
a sigmoid activation function. A more robust approach is to train the neural net for y2(x) = y(x)/x2,
i.e., train using data pairs (x2, y/x2). The trained network y2(x) can be used to compute y according
to y = y2(x2)x2. Doing that and training a network using data between 0 and 1, one may employ any
activation function to predict y at x = 10 (results omitted for brevity). The proposition is as follows:
Knowledge of the functional dependence of y on x, if known, should be used such that, for network
training, the outputs are normalized by the known scaling. A trivial question may be, if we already
know the scaling, why do we still need machine learning? The answer is that known scalings are
often first-order approximations of the reality and we can use machine learning for second-order
effects.

VI. CONCLUSION

The usefulness of machine learning techniques is examined in the context of LES wall modeling.
Limited by the availability of DNS data, in the foreseeable future, learning with the objective of wall
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modeling will have to rely on data at moderate Reynolds numbers and flows in simple geometries.
In this work we trained neural networks using fully developed channel flow data at Reτ = 1000 and
the extrapolation ability of the trained networks was carefully tested. The trained networks NN1,
NN2, and NN3 captured the law of the wall at the Reynolds number of the training data and at
other Reynolds numbers, although the network was not directly informed with this knowledge. In
addition, network NN1 outperformed the conventional equilibrium wall model in a nonequilibrium
flow, although the training data for this network was obtained from the DNS of fully developed
equilibrium channel flow. The outcome of the work is a trained neural network that could be used
directly in WMLES of incompressible turbulent flows.

It is crucial to note that this work is but a first step towards data-based WMLES. In this work
we incorporated our knowledge of the mean flow scalings in network training. The advantage of
a data-based approach is its ability to go beyond a known scaling by learning from data. Since
we also know how the mean flow behaves when subject to weak nonequilibrium effects [16], we
may incorporate that knowledge in a data-based model when training a neural net using DNS data
of flows other than channel flow. For example, in order to train a neural net to handle pressure
gradient, we could use DNS of Couette flow with a spanwise pressure gradient; in order to train a
neural net to handle stream curvature, we could use DNS of flow between two rotating cylinders,
etc. However, because DNSs of such flows are not yet publicly accessible, we will leave pressure
gradients, curvature, and other nonequilibrium effects to future investigations. Many challenges
remain to be addressed. First, increasing the size of the training data set, e.g., including DNS of
flows with separation, could probably further improve model accuracy, but this exercise is only
possible if more DNS data sets including those in Refs. [104–106] are made publicly available.
Second, it is not entirely clear how much flow information needs to be included for model input.
For instance, we have shown with a high degree of confidence that including the pressure gradient
in the crossflow direction does not aid model accuracy improvements. Third, improving accuracy
while not letting computational costs skyrocket usually implies a trade-off in terms of the number of
hidden layers in a neural network, since training deep networks (deep learning) can be prohibitive
in terms of hours needed. This exact balance is yet to be found. Finally, other ML techniques such
as random forests and convolutional neural networks (CNNs) may prove to be more useful for
WMLES than fully connected neural networks; CNNs in particular are a possibility which needs to
be explored in the future.

The trained networks are publicly available through the FCPRL website [107], and can be shared
through email.

ACKNOWLEDGMENT

X.I.A.Y. would like to thank Penn State University for financial support. The computations are
performed on ACI at Penn State and XSEDE.

[1] J. Jiménez, Turbulent flows over rough walls, Annu. Rev. Fluid Mech. 36, 173 (2004).
[2] I. Marusic, B. McKeon, P. Monkewitz, H. Nagib, A. Smits, and K. Sreenivasan, Wall-bounded turbulent

flows at high Reynolds numbers: Recent advances and key issues, Phys. Fluids 22, 065103 (2010).
[3] A. J. Smits, B. J. McKeon, and I. Marusic, High Reynolds number wall turbulence, Annu. Rev. Fluid

Mech. 43, 353 (2011).
[4] P. Moin and K. Mahesh, Direct numerical simulation: A tool in turbulence research, Annu. Rev. Fluid

Mech. 30, 539 (1998).
[5] H. Choi and P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited,

Phys. Fluids 24, 011702 (2012).
[6] D. R. Chapman, Computational aerodynamics development and outlook, AIAA J. 17, 1293 (1979).

034602-17

https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1146/annurev.fluid.36.050802.122103
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1063/1.3453711
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311


YANG, ZAFAR, WANG, AND XIAO

[7] U. Piomelli and E. Balaras, Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech. 34,
349 (2002).

[8] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, CFD
vision 2030 study: A path to revolutionary computational aerosciences, NASA Langley Research Center
Report No. NASA/CR-2014-218178, 2014 (unpublished), available at http://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/20140003093.pdf

[9] P. Moin, J. Bodart, S. Bose, and G. I. Park, Wall-modeling in complex turbulent flows, in Advances in
Fluid-Structure Interaction, edited by M. Braza, A. Bottaro, and M. Thompson (Springer, Berlin, 2016),
pp. 207–219.

[10] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno, Large eddy simulation with modeled wall-stress:
Recent progress and future directions, Mech. Eng. Rev. 3, 15 (2016).

[11] S. T. Bose and G. I. Park, Wall-modeled large-eddy simulation for complex turbulent flows, Annu. Rev.
Fluid Mech. 50, 535 (2018).

[12] U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels
and annuli, J. Comput. Phys. 18, 376 (1975).

[13] G. I. Park and P. Moin, An improved dynamic non-equilibrium wall-model for large eddy simulation,
Phys. Fluids 26, 37 (2014).

[14] E. Balaras and C. Benocci, Subgrid-Scale Models in Finite-Difference Simulations of Complex Wall
Bounded Flows (AGARD, Neuilly-Sur-Seine, 1994).

[15] S. Kawai and J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution, and
accuracy, Phys. Fluids 24, 015105 (2012).

[16] X. I. A. Yang, J. Sadique, R. Mittal, and C. Meneveau, Integral wall model for large eddy simulations of
wall-bounded turbulent flows, Phys. Fluids 27, 025112 (2015).

[17] D. Chung and D. Pullin, Large-eddy simulation and wall modelling of turbulent channel flow, J. Fluid
Mech. 631, 281 (2009).

[18] M. Inoue, R. Mathis, I. Marusic, and D. Pullin, Inner-layer intensities for the flat-plate turbulent boundary
layer combining a predictive wall-model with large-eddy simulations, Phys. Fluids 24, 075102 (2012).

[19] X. I. A. Yang and M. F. Howland, Implication of Taylor’s hypothesis on measuring flow modulation,
J. Fluid Mech. 836, 222 (2018).

[20] S. Bose and P. Moin, A dynamic slip boundary condition for wall-modeled large-eddy simulation,
Phys. Fluids 26, 015104 (2014).

[21] H. J. Bae, A. Lozano-Duran, S. Bose, and P. Moin, Turbulence intensities in large-eddy simulation of
wall-bounded flows, Phys. Rev. Fluids 3, 014610 (2018).

[22] W. Cheng, D. Pullin, R. Samtaney, W. Zhang, and W. Gao, Large-eddy simulation of flow over a cylinder
with Red from 3.9 × 103 to 8.5 × 105: A skin-friction perspective, J. Fluid Mech. 820, 121 (2017).

[23] I. Bermejo-Moreno, L. Campo, J. Larsson, J. Bodart, D. Helmer, and J. K. Eaton, Confinement effects
in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations,
J. Fluid Mech. 758, 5 (2014).

[24] J. Larsson, S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl, and R. Vicquelin, Incipient thermal
choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II:
Large eddy simulations, Combust. Flame 162, 907 (2015).

[25] P. S. Iyer, G. I. Park, and M. R. Malik, Application of wall-modeled LES to turbulent separated flows,
Proceedings of the 69th Annual Meeting of the APS Division of Fluid Dynamics, Portland, 2016 (APS,
Ridge, 2016).

[26] X. I. A. Yang, J. Sadique, R. Mittal, and C. Meneveau, Exponential roughness layer and analytical model
for turbulent boundary layer flow over rectangular-prism roughness elements, J. Fluid Mech. 789, 127
(2016).

[27] X. I. A. Yang, J. Urzay, S. Bose, and P. Moin, Aerodynamic heating in wall-modeled large-eddy
simulation of high-speed flows, AIAA J. 56, 731 (2017).

[28] X. Yang, J. Urzay, and P. Moin, Heat-Transfer Rates in Equilibrium-Wall-Modeled LES of Supersonic
Turbulent Flows, Center for Turbulence Research, Annual Research Briefs (Stanford University,
Stanford, 2016), pp. 3–15.

034602-18

https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.4908072
https://doi.org/10.1063/1.4908072
https://doi.org/10.1063/1.4908072
https://doi.org/10.1063/1.4908072
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1063/1.4731299
https://doi.org/10.1063/1.4731299
https://doi.org/10.1063/1.4731299
https://doi.org/10.1063/1.4731299
https://doi.org/10.1017/jfm.2017.803
https://doi.org/10.1017/jfm.2017.803
https://doi.org/10.1017/jfm.2017.803
https://doi.org/10.1017/jfm.2017.803
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1103/PhysRevFluids.3.014610
https://doi.org/10.1103/PhysRevFluids.3.014610
https://doi.org/10.1103/PhysRevFluids.3.014610
https://doi.org/10.1103/PhysRevFluids.3.014610
https://doi.org/10.1017/jfm.2017.172
https://doi.org/10.1017/jfm.2017.172
https://doi.org/10.1017/jfm.2017.172
https://doi.org/10.1017/jfm.2017.172
https://doi.org/10.1017/jfm.2014.505
https://doi.org/10.1017/jfm.2014.505
https://doi.org/10.1017/jfm.2014.505
https://doi.org/10.1017/jfm.2014.505
https://doi.org/10.1016/j.combustflame.2014.09.017
https://doi.org/10.1016/j.combustflame.2014.09.017
https://doi.org/10.1016/j.combustflame.2014.09.017
https://doi.org/10.1016/j.combustflame.2014.09.017
https://doi.org/10.1017/jfm.2015.687
https://doi.org/10.1017/jfm.2015.687
https://doi.org/10.1017/jfm.2015.687
https://doi.org/10.1017/jfm.2015.687
https://doi.org/10.2514/1.J056240
https://doi.org/10.2514/1.J056240
https://doi.org/10.2514/1.J056240
https://doi.org/10.2514/1.J056240


PREDICTIVE LARGE-EDDY-SIMULATION WALL …

[29] R. D. Moser, J. Kim, and N. N. Mansour, Direct numerical simulation of turbulent channel flow up to
Reτ = 590, Phys. Fluids 11, 943 (1999).

[30] J. Graham, K. Kanov, X. I. A. Yang, M. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay,
R. D. Moser, and C. Meneveau, A Web services accessible database of turbulent channel flow and its
use for testing a new integral wall model for LES, J. Turbul. 17, 181 (2016).

[31] M. Lee and R. D. Moser, Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200,
J. Fluid Mech. 774, 395 (2015).

[32] S. Hoyas and J. Jiménez, Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,
Phys. Fluids 18, 011702 (2006).

[33] T. B. Hedley and J. F. Keffer, Turbulent/non-turbulent decisions in an intermittent flow, J. Fluid Mech.
64, 625 (1974).

[34] Y. Yamamoto and Y. Tsuji, Numerical evidence of logarithmic regions in channel flow at Reτ = 8000,
Phys. Rev. Fluids 3, 012602 (2018).

[35] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, Washington,
DC, 2014), pp. 1725–1732.

[36] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath, and B. Kingsbury, Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups, IEEE Signal Process. Mag. 29, 82 (2012).

[37] B. Tracey, K. Duraisamy, and J. Alonso, Application of supervised learning to quantify uncertainties
in turbulence and combustion modeling, Proceedings of the 51st AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, Dallas/Ft. Worth Region, 2013 (AIAA,
Reston, 2013), paper 2013-0259.

[38] B. D. Tracey, K. Duraisamy, and J. J. Alonso, Proceedings of the 53rd AIAA Aerospace Sciences Meeting
(AIAA, Reston, 2015), paper 2015-1287.

[39] K. Duraisamy, Z. J. Zhang, and A. P. Singh, Proceedings of the 53rd AIAA Aerospace Sciences Meeting
(Ref. [38]), paper 2015-1284.

[40] J. Ling, R. Jones, and J. Templeton, Machine learning strategies for systems with invariance properties,
J. Comput. Phys. 318, 22 (2016).

[41] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural
networks with embedded invariance, J. Fluid Mech. 807, 155 (2016).

[42] J.-L. Wu, J.-X. Wang, and H. Xiao, A Bayesian calibration-prediction method for reducing model-form
uncertainties with application in RANS simulations, Flow Turbul. Combust. 97, 761 (2016).

[43] J.-X. Wang, J.-L. Wu, and H. Xiao, Physics-informed machine learning approach for reconstructing
Reynolds stress modeling discrepancies based on DNS data, Phys. Rev. Fluids 2, 034603 (2017).

[44] J.-L. Wu, H. Xiao, and E. G. Paterson, Physics-informed machine learning approach for augmenting
turbulence models: A comprehensive framework, Phys. Rev. Fluids 3, 074602 (2018).

[45] K. Duraisamy, G. Iaccarino, and H. Xiao, Turbulence modeling in the age of data, Annu. Rev. Fluid
Mech. 51, 357 (2019).

[46] R. N. King, P. E. Hamlington, and W. J. A. Dahm, Autonomic closure for turbulence simulations,
Phys. Rev. E 93, 031301 (2016).

[47] M. Gamahara and Y. Hattori, Searching for turbulence models by artificial neural network, Phys. Rev.
Fluids 2, 054604 (2017).

[48] R. Maulik and O. San, A neural network approach for the blind deconvolution of turbulent flows, J. Fluid
Mech. 831, 151 (2017).

[49] A. Vollant, G. Balarac, and C. Corre, Subgrid-scale scalar flux modelling based on optimal estimation
theory and machine-learning procedures, J. Turbul. 18, 854 (2017).

[50] Z. J. Zhang and K. Duraisamy, Machine learning methods for data-driven turbulence modeling,
Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference (AIAA, Reston, 2015), paper
2015-2460.

[51] M. Milano and P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput.
Phys. 182, 1 (2002).

034602-19

https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1063/1.869966
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1017/S0022112074001832
https://doi.org/10.1103/PhysRevFluids.3.012602
https://doi.org/10.1103/PhysRevFluids.3.012602
https://doi.org/10.1103/PhysRevFluids.3.012602
https://doi.org/10.1103/PhysRevFluids.3.012602
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1007/s10494-016-9725-6
https://doi.org/10.1007/s10494-016-9725-6
https://doi.org/10.1007/s10494-016-9725-6
https://doi.org/10.1007/s10494-016-9725-6
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1103/PhysRevE.93.031301
https://doi.org/10.1103/PhysRevE.93.031301
https://doi.org/10.1103/PhysRevE.93.031301
https://doi.org/10.1103/PhysRevE.93.031301
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1017/jfm.2017.637
https://doi.org/10.1017/jfm.2017.637
https://doi.org/10.1017/jfm.2017.637
https://doi.org/10.1017/jfm.2017.637
https://doi.org/10.1080/14685248.2017.1334907
https://doi.org/10.1080/14685248.2017.1334907
https://doi.org/10.1080/14685248.2017.1334907
https://doi.org/10.1080/14685248.2017.1334907
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1006/jcph.2002.7146


YANG, ZAFAR, WANG, AND XIAO

[52] M. Ma, J. Lu, and G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations
for a simple bubbly system, Phys. Fluids 27, 092101 (2015).

[53] M. Ma, J. Lu, and G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations
for bubbly flows in vertical channels, Int. J. Multiphase Flow 85, 336 (2016).

[54] F. R. Menter, Review of the shear-stress transport turbulence model experience from an industrial
perspective, Int. J. Comput. Fluid D 23, 305 (2009).

[55] C. Meneveau and J. Katz, Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev.
Fluid Mech. 32, 1 (2000).

[56] K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, NCAR
Report No. 123, 1966 (unpublished).

[57] ERCOFTAC, ERCOFTAC classic collection database, available at http://cfd.mace.manchester.ac.uk/
ercoftac/

[58] C. L. Rumsey, NASA Langley Research Center, Turbulence modeling resource, 2017, https://
turbmodels.larc.nasa.gov

[59] AGARD, A selection of test cases for the validation of large-eddy simulations of turbulent flows,
AGARD Report No. 345, available at http://torroja.dmt.upm.es/turbdata/agard/

[60] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, A
public turbulence database cluster and applications to study Lagrangian evolution of velocity increments
in turbulence, J. Turbul. 9, N31 (2008).

[61] Johns Hopkins turbulence databases, available at http://turbulence.pha.jhu.edu
[62] R. S. Michalski, Understanding the nature of learning: Issues and research directions, Mach. Learn. 2, 3

(1986).
[63] G. Piatetsky-Shapiro, Knowledge discovery in real databases: A report on the IJCAI-89 workshop, AI

Mag. 11, 68 (1990).
[64] J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds

number, J. Fluid Mech. 177, 133 (1987).
[65] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2001).
[66] I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, On the logarithmic region in wall turbulence,

J. Fluid Mech. 716, R3 (2013).
[67] X. Yang, S. Bose, and P. Moin, A Physics-Based Interpretation of the Slip-Wall LES Model, Center for

Turbulence Research, Annual Research Briefs (Stanford University, Stanford, 2017), pp. 65–74.
[68] X. I. A. Yang and M. Abkar, A hierarchical random additive model for passive scalars in wall-bounded

flows at high Reynolds numbers, J. Fluid Mech. 842, 354 (2018).
[69] X. I. A. Yang and C. Meneveau, Hierarchical random additive model for wall-bounded flows at high

Reynolds numbers, Fluid Dyn. Res. 51, 011405 (2019).
[70] X. I. A. Yang, I. Marusic, and C. Meneveau, Hierarchical random additive process and logarithmic

scaling of generalized high order, two-point correlations in turbulent boundary layer flow, Phys. Rev.
Fluids 1, 024402 (2016).

[71] D. Krug, X. I. A. Yang, C. M. De Silva, R. Ostilla-Mónico, R. Verzicco, I. Marusic, and D. Lohse,
Statistics of turbulence in the energy-containing range of Taylor-Couette compared to canonical wall-
bounded flows, J. Fluid Mech. 830, 797 (2017).

[72] X. I. A. Yang, C. Meneveau, I. Marusic, and L. Biferale, Extended self-similarity in moment-generating-
functions in wall-bounded turbulence at high Reynolds number, Phys. Rev. Fluids 1, 044405 (2016).

[73] J. Ling and J. Templeton, Evaluation of machine learning algorithms for prediction of regions of high
Reynolds averaged Navier Stokes uncertainty, Phys. Fluids 27, 085103 (2015).

[74] L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMP-
STAT’2010, edited by Y. Lechevallier and G. Saporta (Springer, Berlin, 2010), pp. 177–186.

[75] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math.
2, 164 (1944).

[76] S. I. Gallant, Neural Network Learning and Expert Systems (MIT Press, Cambridge, 1993).
[77] X. I. A. Yang, On the mean flow behaviour in the presence of regional-scale surface roughness

heterogeneity, Bound.-Layer Meteorol. 161, 127 (2016).

034602-20

https://doi.org/10.1063/1.4930004
https://doi.org/10.1063/1.4930004
https://doi.org/10.1063/1.4930004
https://doi.org/10.1063/1.4930004
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.021
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.021
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.021
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.021
https://doi.org/10.1080/10618560902773387
https://doi.org/10.1080/10618560902773387
https://doi.org/10.1080/10618560902773387
https://doi.org/10.1080/10618560902773387
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1146/annurev.fluid.32.1.1
http://cfd.mace.manchester.ac.uk/ercoftac/
https://turbmodels.larc.nasa.gov
http://torroja.dmt.upm.es/turbdata/agard/
https://doi.org/10.1080/14685240802376389
https://doi.org/10.1080/14685240802376389
https://doi.org/10.1080/14685240802376389
https://doi.org/10.1080/14685240802376389
http://turbulence.pha.jhu.edu
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2018.139
https://doi.org/10.1017/jfm.2018.139
https://doi.org/10.1017/jfm.2018.139
https://doi.org/10.1017/jfm.2018.139
https://doi.org/10.1088/1873-7005/aab57b
https://doi.org/10.1088/1873-7005/aab57b
https://doi.org/10.1088/1873-7005/aab57b
https://doi.org/10.1088/1873-7005/aab57b
https://doi.org/10.1103/PhysRevFluids.1.024402
https://doi.org/10.1103/PhysRevFluids.1.024402
https://doi.org/10.1103/PhysRevFluids.1.024402
https://doi.org/10.1103/PhysRevFluids.1.024402
https://doi.org/10.1017/jfm.2017.625
https://doi.org/10.1017/jfm.2017.625
https://doi.org/10.1017/jfm.2017.625
https://doi.org/10.1017/jfm.2017.625
https://doi.org/10.1103/PhysRevFluids.1.044405
https://doi.org/10.1103/PhysRevFluids.1.044405
https://doi.org/10.1103/PhysRevFluids.1.044405
https://doi.org/10.1103/PhysRevFluids.1.044405
https://doi.org/10.1063/1.4927765
https://doi.org/10.1063/1.4927765
https://doi.org/10.1063/1.4927765
https://doi.org/10.1063/1.4927765
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1007/s10546-016-0154-9
https://doi.org/10.1007/s10546-016-0154-9
https://doi.org/10.1007/s10546-016-0154-9
https://doi.org/10.1007/s10546-016-0154-9


PREDICTIVE LARGE-EDDY-SIMULATION WALL …

[78] X. I. A. Yang and C. Meneveau, Large eddy simulations and parameterisation of roughness element
orientation and flow direction effects in rough wall boundary layers, J. Turbul. 17, 1072 (2016).

[79] F. Nicoud, J. Baggett, P. Moin, and W. Cabot, Large eddy simulation wall-modeling based on suboptimal
control theory and linear stochastic estimation, Phys. Fluids 13, 2968 (2001).

[80] J. A. Templeton, M. Wang, and P. Moin, An efficient wall model for large-eddy simulation based on
optimal control theory, Phys. Fluids 18, 025101 (2006).

[81] R. J. Stevens, M. Wilczek, and C. Meneveau, Large-eddy simulation study of the logarithmic law for
second-and higher-order moments in turbulent wall-bounded flow, J. Fluid Mech. 757, 888 (2014).

[82] W. Anderson and C. Meneveau, Dynamic roughness model for large-eddy simulation of turbulent flow
over multiscale, fractal-like rough surfaces, J. Fluid Mech. 679, 288 (2011).

[83] W. Anderson and C. Meneveau, A large-eddy simulation model for boundary-layer flow over surfaces
with horizontally resolved but vertically unresolved roughness elements, Bound.-Layer Meteorol. 137,
397 (2010).

[84] W. Anderson, J. M. Barros, K. T. Christensen, and A. Awasthi, Numerical and experimental study
of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise
heterogeneous roughness, J. Fluid Mech. 768, 316 (2015).

[85] D. Willingham, W. Anderson, K. T. Christensen, and J. M. Barros, Turbulent boundary layer flow over
transverse aerodynamic roughness transitions: Induced mixing and flow characterization, Phys. Fluids
26, 025111 (2014).

[86] X. Zhu, G. V. Iungo, S. Leonardi, and W. Anderson, Parametric study of urban-like topographic statistical
moments relevant to a priori modelling of bulk aerodynamic parameters, Bound.-Layer Meteorol. 162,
231 (2017).

[87] J. Yang and W. Anderson, Numerical study of turbulent channel flow over surfaces with variable span-
wise heterogeneities: Topographically-driven secondary flows affect outer-layer similarity of turbulent
length scales, Flow Turbul. Combust. 100, 1 (2018).

[88] S. V. Poroseva, J. D. Colmenares F., and S. M. Murman, On the accuracy of RANS simulations with
DNS data, Phys. Fluids 28, 115102 (2016).

[89] R. L. Thompson, L. E. B. Sampaio, F. A. V. de Bragança Alves, L. Thais, and G. Mompean, A
methodology to evaluate statistical errors in DNS data of plane channel flows, Comput. Fluids 130,
1 (2016).

[90] J. Wu, H. Xiao, R. Sun, and Q. Wang, RANS equations with Reynolds stress closure can be ill-
conditioned, arXiv:1803.05581.

[91] X. I. A. Yang and A. Lozano-Durán, A multifractal model for the momentum transfer process in wall-
bounded flows, J. Fluid Mech. 824, R2 (2017).

[92] M. Abkar and F. Porté-Agel, A new boundary condition for large-eddy simulation of boundary-layer
flow over surface roughness transitions, J. Turbul. 13, N23 (2012).

[93] M. Abkar and F. Porté-Agel, Mean and turbulent kinetic energy budgets inside and above very large
wind farms under conventionally neutral condition, Renew. Energ. 70, 142 (2014).

[94] M. Abkar and F. Porté-Agel, A new wind-farm parameterization for large-scale atmospheric models,
J. Renew. Sustain. Energ. 7, 013121 (2015).

[95] M. Abkar, H. J. Bae, and P. Moin, Minimum-dissipation scalar transport model for large-eddy simulation
of turbulent flows, Phys. Rev. Fluids 1, 041701 (2016).

[96] A. Andren, A. R. Brown, P. J. Mason, J. Graf, U. Schumann, C.-H. Moeng, and F. T. Nieuwstadt, Large-
eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes, Q. J. R.
Meteorol. Soc. 120, 1457 (1994).

[97] J. D. Albertson and M. B. Parlange, Surface length-scales and shear stress: Implications for land-
atmosphere interaction over complex terrain, Water Resour. Res. 35, 2121 (1999).

[98] F. Porté-Agel, C. Meneveau, and M. B. Parlange, A scale-dependent dynamic model for large-
eddy simulation: Application to a neutral atmospheric boundary layer, J. Fluid Mech. 415, 261
(2000).

[99] E. Bou-Zeid, C. Meneveau, and M. Parlange, A scale-dependent lagrangian dynamic model for large
eddy simulation of complex turbulent flows, Phys. Fluids 17, 025105 (2005).

034602-21

https://doi.org/10.1080/14685248.2016.1215604
https://doi.org/10.1080/14685248.2016.1215604
https://doi.org/10.1080/14685248.2016.1215604
https://doi.org/10.1080/14685248.2016.1215604
https://doi.org/10.1063/1.1389286
https://doi.org/10.1063/1.1389286
https://doi.org/10.1063/1.1389286
https://doi.org/10.1063/1.1389286
https://doi.org/10.1063/1.2166457
https://doi.org/10.1063/1.2166457
https://doi.org/10.1063/1.2166457
https://doi.org/10.1063/1.2166457
https://doi.org/10.1017/jfm.2014.510
https://doi.org/10.1017/jfm.2014.510
https://doi.org/10.1017/jfm.2014.510
https://doi.org/10.1017/jfm.2014.510
https://doi.org/10.1017/jfm.2011.137
https://doi.org/10.1017/jfm.2011.137
https://doi.org/10.1017/jfm.2011.137
https://doi.org/10.1017/jfm.2011.137
https://doi.org/10.1007/s10546-010-9537-5
https://doi.org/10.1007/s10546-010-9537-5
https://doi.org/10.1007/s10546-010-9537-5
https://doi.org/10.1007/s10546-010-9537-5
https://doi.org/10.1017/jfm.2015.91
https://doi.org/10.1017/jfm.2015.91
https://doi.org/10.1017/jfm.2015.91
https://doi.org/10.1017/jfm.2015.91
https://doi.org/10.1063/1.4864105
https://doi.org/10.1063/1.4864105
https://doi.org/10.1063/1.4864105
https://doi.org/10.1063/1.4864105
https://doi.org/10.1007/s10546-016-0198-x
https://doi.org/10.1007/s10546-016-0198-x
https://doi.org/10.1007/s10546-016-0198-x
https://doi.org/10.1007/s10546-016-0198-x
https://doi.org/10.1007/s10494-017-9839-5
https://doi.org/10.1007/s10494-017-9839-5
https://doi.org/10.1007/s10494-017-9839-5
https://doi.org/10.1007/s10494-017-9839-5
https://doi.org/10.1063/1.4966639
https://doi.org/10.1063/1.4966639
https://doi.org/10.1063/1.4966639
https://doi.org/10.1063/1.4966639
https://doi.org/10.1016/j.compfluid.2016.01.014
https://doi.org/10.1016/j.compfluid.2016.01.014
https://doi.org/10.1016/j.compfluid.2016.01.014
https://doi.org/10.1016/j.compfluid.2016.01.014
http://arxiv.org/abs/arXiv:1803.05581
https://doi.org/10.1017/jfm.2017.406
https://doi.org/10.1017/jfm.2017.406
https://doi.org/10.1017/jfm.2017.406
https://doi.org/10.1017/jfm.2017.406
https://doi.org/10.1080/14685248.2012.695077
https://doi.org/10.1080/14685248.2012.695077
https://doi.org/10.1080/14685248.2012.695077
https://doi.org/10.1080/14685248.2012.695077
https://doi.org/10.1016/j.renene.2014.03.050
https://doi.org/10.1016/j.renene.2014.03.050
https://doi.org/10.1016/j.renene.2014.03.050
https://doi.org/10.1016/j.renene.2014.03.050
https://doi.org/10.1063/1.4907600
https://doi.org/10.1063/1.4907600
https://doi.org/10.1063/1.4907600
https://doi.org/10.1063/1.4907600
https://doi.org/10.1103/PhysRevFluids.1.041701
https://doi.org/10.1103/PhysRevFluids.1.041701
https://doi.org/10.1103/PhysRevFluids.1.041701
https://doi.org/10.1103/PhysRevFluids.1.041701
https://doi.org/10.1002/qj.49712052003
https://doi.org/10.1002/qj.49712052003
https://doi.org/10.1002/qj.49712052003
https://doi.org/10.1002/qj.49712052003
https://doi.org/10.1029/1999WR900094
https://doi.org/10.1029/1999WR900094
https://doi.org/10.1029/1999WR900094
https://doi.org/10.1029/1999WR900094
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1063/1.1839152
https://doi.org/10.1063/1.1839152
https://doi.org/10.1063/1.1839152
https://doi.org/10.1063/1.1839152


YANG, ZAFAR, WANG, AND XIAO

[100] R. Stoll and F. Porté-Agel, Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy
simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain, Water Resour.
Res. 42, W01409 (2006).

[101] F. Porté-Agel, A scale-dependent dynamic model for scalar transport in large-eddy simulations of the
atmospheric boundary layer, Bound.-Layer Meteorol 112, 81 (2004).

[102] X. I. A. Yang, G. I. Park, and P. Moin, Log-layer mismatch and modeling of the fluctuating wall stress
in wall-modeled large-eddy simulations, Phys. Rev. Fluids 2, 104601 (2017).

[103] M. Giometto, A. Lozano-Duran, G. Park, and P. Moin, Three-Dimensional Transient Channel Flow at
Moderate Reynolds Numbers: Analysis and Wall Modeling, Center for Turbulence Research, Annual
Research Briefs (Stanford University, Stanford, 2017), pp. 65–74.

[104] S. Leonardi and I. P. Castro, Channel flow over large cube roughness: A direct numerical simulation
study, J. Fluid Mech. 651, 519 (2010).

[105] N. Sandham, E. Schülein, A. Wagner, S. Willems, and J. Steelant, Transitional shock-wave/boundary-
layer interactions in hypersonic flow, J. Fluid Mech. 752, 349 (2014).

[106] H. Abe, Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent
separation bubble, J. Fluid Mech. 833, 563 (2017).

[107] https://sites.psu.edu/xiangyangmne/

034602-22

https://doi.org/10.1029/2005WR003989
https://doi.org/10.1029/2005WR003989
https://doi.org/10.1029/2005WR003989
https://doi.org/10.1029/2005WR003989
https://doi.org/10.1023/B:BOUN.0000020353.03398.20
https://doi.org/10.1023/B:BOUN.0000020353.03398.20
https://doi.org/10.1023/B:BOUN.0000020353.03398.20
https://doi.org/10.1023/B:BOUN.0000020353.03398.20
https://doi.org/10.1103/PhysRevFluids.2.104601
https://doi.org/10.1103/PhysRevFluids.2.104601
https://doi.org/10.1103/PhysRevFluids.2.104601
https://doi.org/10.1103/PhysRevFluids.2.104601
https://doi.org/10.1017/S002211200999423X
https://doi.org/10.1017/S002211200999423X
https://doi.org/10.1017/S002211200999423X
https://doi.org/10.1017/S002211200999423X
https://doi.org/10.1017/jfm.2014.333
https://doi.org/10.1017/jfm.2014.333
https://doi.org/10.1017/jfm.2014.333
https://doi.org/10.1017/jfm.2014.333
https://doi.org/10.1017/jfm.2017.694
https://doi.org/10.1017/jfm.2017.694
https://doi.org/10.1017/jfm.2017.694
https://doi.org/10.1017/jfm.2017.694
https://sites.psu.edu/xiangyangmne/

