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Transverse velocity gradients can enhance the effective diffusion coefficient of a scalar
in the primary flow direction, a phenomenon known colloquially as Taylor dispersion.
In this work, we perform Taylor dispersion analysis on a canonical pressure-driven flow
in a channel with a cross flow, using both perturbation theory and Brownian dynamics
simulations. Moreover, we illustrate how mass transfer at the wall affects the evolution
of the scalar. By writing a one-dimensional advection-diffusion-mass-transfer equation
for the cross-sectionally averaged concentration, we elucidate how the effective diffusion
coefficients, effective advective velocities, and effective mass-transfer rates depend on the
strength of the cross flow and the wall transfer coefficient. We perform an asymptotic
analysis to investigate the limit of strong cross flow and demonstrate that, in this limit, dis-
persion rapidly decreases with increasing cross-flow velocity V as V −4 and scales with the
Brownian diffusivity D as D3. Additionally, we discuss the effect of the Schmidt number,
the ratio of momentum to mass diffusion, which effectively controls the extent to which
the cross flow affects the axial velocity profile. Finally, we describe how our results can be
extended to include transverse velocities and diffusivities that are spatially nonuniform.
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I. INTRODUCTION

In 1953, Taylor [1] showed that a scalar flowing in a circular pipe experiences an enhanced
effective axial diffusion coefficient. The phenomenon—also shown by studying moments of the
scalar distribution by Aris [2]—is a result of the coupling between velocity gradients in the
transverse direction with Brownian motion of the solute. Since this original work, many problems
extending the classical Taylor dispersion analysis have been posed and solved, where the goal is
typically to write an equation that governs the cross-sectionally averaged concentration of a solute.
For example, Taylor [3] extended his analysis to the case of turbulent flow, Nadim et al. [4] studied
the transport of a sedimenting solute in a pressure-driven pipe flow that is slowly rotated about its
axis of symmetry, Erdogan and Chatwin [5] analyzed the effect of a Dean flow on Taylor dispersion
in a gently curving pipe, and James and Chrysikopoulos [6] illustrated how the finite size of a
particle affects the dispersion properties.

Taylor dispersion analysis has also been extended to include the case where the solute adsorbs to
the walls [7–12]. Notably, Shapiro and Brenner [13] extended generalized Taylor dispersion analysis
[14] to include curvilinear flow, applied external forces on the solute, and spatially nonuniform
reaction constants. This work was further extended by Shapiro and Brenner [15], and in the latter
work, they considered the specific example of Brownian particles sedimenting under gravity in a
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Poiseuille flow between two parallel plates, where the bottom plate is reactive. When reaction is
negligible, they show that the Taylor dispersion coefficient increases slightly as the sedimentation
velocity increases slightly.

In general, any driving force causing the solute to move in the direction orthogonal to the
primary flow direction within a channel would be expected to affect Taylor dispersion analysis in a
nontrivial fashion. Such a situation arises, for example, in cross-flow filtration, where a starting
solution flows through a porous channel and a pressure difference across the porous wall—the
filter—drives the permeate out [16]. Essentially, this system is a leaky pipe where the cross flow
is set by an applied pressure difference. A related flow occurs in the treatment of a cancerous tumor
using nanoparticles. It is well known that the walls of tumor blood vessels are porous [17] and
that drug-delivery nanoparticles can extravasate through these pores. Interactions with red blood
cells drive nanoparticles toward the blood vessel walls, where there is a red blood cell-free layer
[18]. As in the cross-flow filtration example, pressure gradients across the blood vessel wall can
drive a suction flow, either inwards or outwards, carrying particles with it [19]. Additionally, the
use of a strong applied magnetic field has been shown to be a promising method to direct magnetic
nanoparticles to specific tumor sites [20,21], which drives particle motion orthogonal to the primary
direction of blood flow. The mass transfer across the porous blood vessel wall dictates the efficacy of
the drug-delivery nanoparticles [22], thus highlighting the importance of understanding how cross
flow and interfacial mass transfer affect particle transport.

In the present work, we study the transport of Brownian point particles in a channel with porous
walls, advected by a pressure-driven flow and a uniform cross flow in the transverse direction. The
cross flow advects the particles toward the bottom wall, which may or may not be then transferred
across the wall. Using both perturbation theory and Brownian dynamics simulations, we determine
the effective Taylor dispersion coefficient, effective velocity, and effective mass-transfer rate of
the cross-sectionally averaged particle concentration. Additionally, we elucidate the asymptotic
behavior of particle transport in the regime of strong cross flow, and we illustrate how the ratio
of momentum diffusivity to particle diffusivity, i.e., the Schmidt number, affects particle transport.
By considering the limit of infinite Schmidt number and weak cross flow, we show that our work
corresponds to the example of sedimenting Brownian particles given by Shapiro and Brenner [15],
but our results differ significantly. Importantly, as noted previously, they report an increase in
dispersivity with a mild increase in sedimentation velocity, but in fact we show that subsequent
increases in the cross-flow velocity actually lead to a rapid decrease in dispersivity. Finally, we
describe how our results can be extended to take into account a nonuniform transverse velocity
and diffusivity, since most cross flows in realistic settings are not spatially uniform. We describe
applications where this situation might arise and demonstrate the utility of our results by showing
how the lateral migration of particles in a viscoelastic channel flow affects dispersion properties.

II. PROBLEM SETUP AND METHODOLOGY

In order to investigate the effect of cross flow and wall mass transfer on the Taylor dispersion of
a scalar, we consider a canonical pressure-driven incompressible flow in a 2D channel of height H
with porous walls. A pressure gradient −d p/dx drives flow through the channel in the x direction,
and a constant, uniform cross-flow velocity V is supplied in the −y direction. The velocity field in
the channel, described pedagogically by Batchelor [23], pp. 282–285, is given by u = u(y)î + vĵ
and is shown in Fig. 1(a). In particular,

u(y) = −d p

dx

1

ρV

[
−y + H

1 − exp(−V y/ν)

1 − exp(−V H/ν)

]
, (1a)

v = −V, (1b)

where ρ and ν are the fluid density and kinematic viscosity, respectively. We note that when V = 0,
the flow reduces to plane Poiseuille flow.
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FIG. 1. (a) Schematic of the problem considered. A pressure gradient drives flow through the channel in
the x direction (Rev = 1 shown), and a constant, uniform cross-flow velocity V is supplied in the −y direction.
No flux is permitted at the top wall, and the scalar is transferred with a dimensional mass-transfer coefficient k,
or dimensionless Sherwood number Sh, at the bottom wall. (b) Cross-sectionally averaged concentration 〈C〉 is
shown when Peu = 10 for Pev = 0 (top) and Pev = 10 (bottom) at several times, in increments of �t = 2, with
a delta function initial condition. Numerically determined histograms are shown in gray, and best-fit Gaussians
are shown in black.

The scalar has a concentration field C = C(x, y, t ), and it is advected by the velocity field given
above and diffuses with a Brownian diffusion coefficient D. At the bottom wall (y = 0), the scalar is
transferred across the wall with first-order mass-transfer coefficient k, and at the top wall (y = H),
no flux is permitted.

We make our equations dimensionless with

u = Uu∗, v = V v∗, x = Hx∗, y = Hy∗, t = H2

D
t∗, C = CiC

∗, (2)

where U = −(d p/dx)H2/12ρν is the average velocity in the x direction across the channel when
V = 0, Ci is a characteristic initial concentration, and the asterisk denotes a dimensionless quantity.
This procedure yields four dimensionless numbers,

Peu = UH

D
, Pev = V H

D
, Rev = V H

ν
, Sh = kH

D
, (3)

where the first two are Péclet numbers based on U and V , respectively, the third is a Reynolds
number based on V , and the fourth is a Sherwood number. The Schmidt number is Sc = ν/D, so by
definition, Pev = RevSc. Henceforth, we omit the asterisk used to denote a nondimensional quantity
to simplify the notation, unless otherwise noted.

The scalar concentration field is governed by the following dimensionless Fokker-Planck
equation:

∂C

∂t
+ Peuu(y)

∂C

∂x
− Pev

∂C

∂y
= ∂2C

∂x2
+ ∂2C

∂y2
, (4a)

∂C

∂y
+ PevC = {Sh C, 0}, at y = {0, 1}, (4b)

where the dimensionless velocity in the x direction is

u(y) = 12

Rev

[
−y + 1 − exp(−Revy)

1 − exp(−Rev )

]
. (5)

When Sh = 0, there is no mass transfer through the bottom wall, and both walls are thus no flux
boundaries. In the first part of this paper, we hold Rev fixed at Rev = 1. In doing so, the strength of
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the cross flow is effectively decoupled from the axial flow: as Pev increases, Sc increases accordingly
to enforce a fixed Rev and the velocity field shown in Eq. (5) remains the same. In Sec. III F, we will
discuss the effect of holding Sc fixed: an increase in Pev now requires a simultaneous increase in
Rev , and based on the velocity field, the magnitude of Rev controls the extent to which the maximum
of u(y) moves toward the bottom wall. We perform Taylor dispersion analysis on Eqs. (4a) and (4b)
using two different methods: Brownian dynamics (BD) simulations and perturbation theory. The
BD simulations serve as a validation of our theory.

First, we describe our BD simulations. The stochastic differential equations corresponding to
Eq. (4a) are

dx = Peuu(y)dt +
√

2 dW, (6a)

dy = −Pevdt +
√

2 dW, (6b)

where dW are Gaussian random numbers with mean 0 and variance dt . To analyze the evolution of
the concentration field, many point particles are randomly distributed across the channel at x = 0
at time t = 0 (i.e., a delta function in time and space), and the trajectories of the point particles
are evolved according to Eqs. (6a) and (6b) using the Euler-Maruyama scheme [24]; when Sh = 0,
we simulate 2.5 × 105 particles and use a time step of dt = 10−4, and when Sh �= 0, we simulate
106 particles and use a time step of dt = 10−5. When a particle is detected to have crossed the
top wall at y = 1, it is reflected back into the domain, and when a particle is detected to have
crossed the bottom wall at y = 0, it is reflected back into the domain with probability 1 − Sh

√
πd t

or considered transferred out of the channel otherwise [25]. This procedure corresponds to the
boundary conditions given in Eq. (4b) (also see Ref. [22] for an example of this boundary condition
used to study extravasation of nanoparticles).

To visualize the results of the BD simulations, we analyze the cross-sectionally averaged
concentration field. Let cross-sectionally averaged quantities be denoted by

〈·〉 =
∫ 1

0
· dy. (7)

In Fig. 1(b), the cross-sectionally averaged concentration 〈C〉(x, t ) is plotted for Peu = 10 and Sh =
0 for two cases: Pev = 0 (top) and Pev = 10 (bottom). The numerically determined histograms of
particle concentrations are shown in gray and a best-fit Gaussian is shown as a thin black line; 〈C〉 is
shown at several times, in increments of �t = 2. Not surprisingly, 〈C〉 evolves as a Gaussian when
Pev = 0, the solution to a 1D advection-diffusion equation with a delta function initial condition.
We observe that the same occurs when there is cross flow—albeit translating more slowly with a
seemingly smaller effective diffusion coefficient—suggesting that the effective Taylor dispersion
coefficient DTD, effective velocity 〈u〉eff , and effective Sherwood number Sheff (when Sh �= 0)
depend on the dimensionless numbers in a nontrivial way.

Ultimately, we are interested in describing the evolution of 〈C〉 with a one-dimensional
advection-diffusion-mass-transfer equation,

∂〈C〉
∂t

+ Peu〈u〉eff
∂〈C〉
∂x

=
(

1 + DTD

D

)
∂2〈C〉
∂x2

− Sheff〈C〉, (8)

which has the well-known Green’s function

〈C〉 = 1√
4Defft

exp

[
− (x − 〈u〉eff Peut )2

4Defft
− Shefft

]
, (9)

where Deff = 1 + DTD/D, representing a point release of scalar at x = 0 and t = 0. In order to
make theoretical progress, we recognize that the extent of spreading in the x direction goes like
∼√

DTDt , which at long times is much larger than H . Instead of the nondimensionalizations for x∗
and t∗ presented in Eq. (2), we scale x as x = Lx̄ and t as t = (L2/DTD)t̄ instead, where L is a
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characteristic width of spreading that is �H . With these new scalings, Eq. (4a) is

δ2 DTD

D

∂C

∂ t̄
+ δPeuu(y)

∂C

∂ x̄
− Pev

∂C

∂y
= δ2 ∂2C

∂ x̄2
+ ∂2C

∂y2
, (10)

where δ = H/L is the aspect ratio of the channel height to the extent of spreading, and the boundary
conditions in Eq. (4b) remain unchanged. By taking the cross-sectional average of Eq. (10) and
enforcing the boundary conditions, we have

δ2 DTD

D

∂〈C〉
∂ t̄

+ δPeu
∂〈uC〉

∂ x̄
= δ2 ∂2〈C〉

∂ x̄2
− Sh C(y = 0). (11)

Akin to Taylor’s analysis, we consider the solution at long times, when δ 	 1. We seek to model
the ∂〈uC〉/∂ x̄ term, which will have two components: one which enhances the effective diffusion
coefficient (Taylor dispersion), and one which alters the effective advective velocity. In order to do
so, we expand C as a dual perturbation series:

C = C0 + δCδ
1 + Sh CSh

1 + · · · . (12)

By substituting this expansion in Eqs. (10) and (4b), we can pose the problems at O(1), O(δ), and
O(Sh). At O(1), we have

O(1) :
∂2C0

∂y2
+ Pev

∂C0

∂y
= 0, (13a)

∂C0

∂y
+ PevC0 = 0, at y = 0, 1. (13b)

By enforcing that 〈C〉 = 〈C0〉 (or equivalently, that the cross-sectional average of the higher order
corrections is zero), we have

C0 = 〈C〉P (y), (14)

where for a delta function initial condition, 〈C〉 = 〈C〉(x, t ) is given by Eq. (9), and where

P (y) = Pev exp(−Pevy)

1 − exp(−Pev )
(15)

serves as a weighting function for the concentration field. Immediately, we observe that at this order,
〈C〉 is not simply advected by 〈u〉 since the scalar is not distributed uniformly across the width of
the channel. We define the deviation from this zeroth-order effective velocity as

ũ(y) = u(y) −
∫ 1

0
P (y)u(y) dy. (16)

With the O(1) solution, we now proceed to pose the O(δ) and O(Sh) problems, which are

O(δ) :
∂2Cδ

1

∂y2
+ Pev

∂Cδ
1

∂y
= Peuũ(y)

∂C0

∂ x̄
, (17a)

∂Cδ
1

∂y
+ PevC

δ
1 = 0, at y = 0, 1, (17b)

O(Sh) :
∂2CSh

1

∂y2
+ Pev

∂CSh
1

∂y
= −P (0)C0, (17c)

∂CSh
1

∂y
+ PevC

Sh
1 = {C0, 0}, at y = {0, 1}. (17d)
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FIG. 2. Concentration profiles C/〈C〉 when Peu = 10 and Rev = 1 are shown for (a) Sh = 0, Pev =
{0, 5, 10}, and (b) Pev = 0.1, Sh = {0, 0.2, 0.4}. In BD simulations, concentration profiles at the center of
the traveling Gaussian are averaged over time.

Importantly, while ∂〈C〉/∂x drives the solution for Cδ
1 , 〈C〉 drives the solution for CSh

1 . Based on this,
we expect Cδ

1 to control the Taylor dispersion coefficient and CSh
1 to control the effective Sherwood

number and further alter the effective velocity.

III. RESULTS AND DISCUSSION

A. The concentration field

Using integrating factors, the solution for the concentration is determined to be

C = 〈C〉P (y) + Sh〈C〉P (y)Q(y)

+ ∂〈C〉
∂x

Peu exp(−Pevy)

{∫ y

0
exp(Pevσ )

[∫ σ

0
P (ξ )ũ(ξ )dξ

]
dσ + A(x, t )

}
, (18)

where A(x, t ) is a constant that enforces the condition that
∫ 1

0 CSh
1 dy = 0, but is inconsequential for

our results in this work as we will show in our discussion on the Taylor dispersion coefficient, and

Q(y) = exp(Pev )Pevy − exp(Pevy) + 1

[exp(Pev ) − 1]Pev

+ sinh(Pev ) − Pev

[1 − cosh(Pev )]Pev

(19)

is another weighting function associated with mass transfer. In Figs. 2(a) and 2(b) we show
concentration profiles as a function of y from Eq. (18) and our BD simulations. Specifically, we
show the concentration profile at the center of the Gaussian averaged over time, which is simply
C/〈C〉 = P (y) + ShP (y)Q(y), because ∂〈C〉/∂x = 0 there. In Fig. 2(a), C/〈C〉 is shown for Sh = 0
and Pev = {0, 5, 10}; as the strength of the cross flow increases, the majority of the concentration is
pushed closer to the bottom wall. In Fig. 2(b), C/〈C〉 is shown for Pev = 0.1 and Sh = {0, 0.2, 0.4};
as Sh increases, more and more concentration close to the wall is transferred, leading to a depletion
close to the wall.

B. The Taylor dispersion coefficient

Based on the solution for the concentration given in Eq. (18), we may now examine how the
∂〈uC〉/∂ x̄ term in Eq. (11) affects the effective diffusion coefficient. In particular, by substituting the
portion of the concentration that depends on ∂〈C〉/∂x into this term, we arrive at an extra diffusion
term (DTD/D)∂2〈C〉/∂x2, where the Taylor dispersion coefficient is

DTD

D
= −Pe2

u

∫ 1

0
ũ(y) exp(−Pevy)

{∫ y

0
exp(Pevσ )

[∫ σ

0
P (ξ )ũ(ξ ) dξ

]
dσ

}
dy. (20)
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FIG. 3. Taylor dispersion coefficients DTD/D in the absence of mass transfer, Sh = 0, and when Rev = 1
are shown as functions of (a) Peu, for Pev = {5, 10, 15, 20}, and (b) Pev , for Peu = 10. The inset shows the
asymptotic behavior of the dispersion coefficient when Pev � 1.

The constant A(x, t ) in the concentration field does not affect the dispersion coefficient, since∫ 1
0 ũ(y) exp(−Pevy) dy = 0. We note that in the absence of cross flow, we recover the classical

result for plane Poiseuille flow, DTD/D = Pe2
u/210, and interestingly, DTD/D is not affected by the

O(Sh) perturbation. In Figs. 3(a) and 3(b), we compare this theoretical prediction, determined by
numerical integration, to our BD simulations, where the effective diffusion coefficient is determined
by analyzing the mean-squared displacement of the point particles. In Fig. 3(a), DTD/D is plotted
against Peu for Sh = 0 and Pev = {5, 10, 15, 20}; as expected, we observe that DTD/D ∼ Pe2

u, where
the constant of proportionality depends on Pev . In Fig. 3(b), DTD/D is now plotted against Pev for
Sh = 0 and Peu = 10, highlighting the complex nonmonotonic dependence of DTD/D on Pev . We
note that as Pev becomes large, the time step dt used in our BD simulation must become smaller
and smaller to accurately sample the region near the wall; hence, we do not show simulation results
beyond Pev = 20.

C. The effective velocity

We may now examine how the ∂〈uC〉/∂ x̄ term in Eq. (11) affects the effective advective velocity.
In particular, by substituting the portion of the concentration in Eq. (18) that depends on 〈C〉 into
this term, we arrive at an advection term 〈u〉eff∂〈C〉/∂x, where the effective velocity is

〈u〉eff =
∫ 1

0
u(y)P (y) dy + Sh

∫ 1

0
u(y)P (y)Q(y) dy. (21)

By integrating, we have

〈u〉eff = 6
coth(Pev/2) + coth(Rev/2)

Pev + Rev

− 12

Pev Rev

, Sh = 0, (22)

when Sh = 0. The O(Sh) correction can also be similarly integrated, but we omit the final expression
here due to its length. In Fig. 4(a) we compare this theoretical prediction to our BD simulations;
〈u〉eff is plotted against Pev for Peu = 10. 〈u〉eff is measured in BD simulation by determining the
average velocity of the mean x coordinate of all particles. We only show results for Sh = 0, since
we find that the O(Sh) correction is small. For example, when Rev = 1, we find that the ratio of the
second integral to the first integral in Eq. (21) is O(10−2); since the result is also only formally valid
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C
C ∼ exp(−Pevy)

yPev 1

Pev

∼
Pe −

1v

Pev 1, Sh = 0

u eff

u(y) ≈ γ̇∗y

(a) (b)

FIG. 4. (a) The effective advective velocity 〈u〉eff when Rev = 1 is shown as function of Pev . The inset
shows the asymptotic behavior of the velocity when Pev � 1. (b) Schematic describing the asymptotic analysis
performed when Pev � 1. The velocity profile is approximated as a simple shear flow.

when Sh 	 1, this small quantity is difficult to extract from simulation. As observed in Fig. 2(a),
the concentration profile is pushed closer to the bottom wall as the strength of the cross flow Pev

increases. As a result, the effective velocity 〈u〉eff decreases as slow velocities near the wall are
sampled by the concentration profile.

D. Asymptotic analysis for strong cross flow

The zeroth-order concentration profile is simply C0 ∼ 〈C〉 exp(−Pevy), and as a result, when
Pev � 1, a concentration boundary layer of thickness Pe−1

v forms at the bottom wall. Here we
provide an asymptotic analysis of the effective diffusion coefficient and effective velocity in
the presence of strong cross flow. When Pev � 1, the majority of the scalar is within a layer of
thickness Pe−1

v . As illustrated in Fig. 4(b), within this layer, we can approximate the full velocity
profile given in Eq. (5) as a simple shear flow,

u(y) ≈ γ̇ ∗y, Pev � 1, (23)

where γ̇ ∗ = −12/Rev + 12/[1 − exp(−Rev )] is the dimensionless shear rate at the wall. By
repeating the preceding analysis with this shear flow and allowing integrals in y to extend to ∞
where there is essentially no scalar, we find that when Sh = 0,

DTD

D
≈ 2γ̇ ∗2Pe2

uPe−4
v , Pev � 1, Sh = 0, (24)

〈u〉eff ≈ γ̇ ∗Pe−1
v , Pev � 1, Sh = 0. (25)

In the insets of Figs. 3(b) and 4(a), we show our results for DTD/D and 〈u〉eff on a log scale, and the
asymptotic results shown in Eqs. (24) and (25) are shown as dashed lines. Indeed, when Pev � 1,
these results are accurate approximations of the full theory, where BD simulations are difficult to
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conduct due to the prohibitively small time steps needed. Dimensionally, Eqs. (24) and (25) are

DTD ≈ 2γ̇ 2D3V −4, Pev � 1, Sh = 0, (26)

〈u〉eff ≈ γ̇ DV −1, Pev � 1, Sh = 0. (27)

Interestingly, our results indicate that in this regime of strong cross flow, the Taylor dispersion
coefficient scales dimensionally with the Brownian diffusivity as DTD ∼ D3. This is in contrast to
the classical case with no cross flow, where DTD ∼ D−1.

While we have been able to determine the asymptotic Taylor dispersion coefficient by direct
calculation, we now describe how the scaling in Pev can also be revealed by a simple heuristic
argument. As noted previously, in the absence of cross flow, the dispersion coefficient in plane
Poiseuille flow simply scales with the square of the Péclet number, where velocity and length scales
are U and H , respectively. In the presence of strong cross flow, the dispersion coefficient indeed still
scales with the square of the Péclet number, but with different velocity and length scales; U and H
are no longer the correct scales. In particular,

DTD

D
∼

(
�U �y

D

)2

, Pev � 1, Sh = 0, (28)

where �y is the thickness of the thin concentration layer and �U is the velocity difference across
the concentration layer. We can approximate this velocity difference as �U ≈ B(�y)n, i.e., the
first term in the Taylor series for the velocity difference, with n depending on the location of the
thin layer. In the problem considered here, the dimensional thickness of the concentration layer is
�y = D/V and the local flow is a shear flow with n = 1 and B = γ̇ . Substitution into Eq. (28)
immediately yields DTD/D ∼ γ̇ ∗2Pe2

uPe−4
v , which is the result obtained in Eq. (24). This procedure

reveals the scalings, but the coefficient, “2,” can only be determined by the full analysis above. For
more complex scenarios, such as the case where the cross-flow velocity is spatially nonuniform, this
type of argument is valuable since it quickly uncovers the scaling in Pev for Pev � 1. In Sec. III G,
we will use this argument again in a slightly more complicated situation.

E. The effective Sherwood number

By evaluating the concentration field given in Eq. (18) at the wall, y = 0, we determine the
effective Sherwood number Sheff to be

Sheff = ShP (0) + Sh2P (0)Q(0) (29a)

= Sh

[
Pev

1 − exp(−Pev )

]
− Sh2

[
Pev

1 − exp(−Pev )

]{
Pev − sinh(Pev )

[1 − cosh(Pev )]Pev

}
, (29b)

which has the limiting behavior

Sheff ≈
(

1 + Pev

2

)(
Sh − 1

3
Sh2

)
, Pev 	 1, Sh 	 1, (30a)

Sheff ≈ PevSh − Sh2, Pev � 1, Sh 	 1. (30b)

In Figs. 5(a) and 5(b), Sheff as shown in Eq. (29b) is plotted against Sh for Pev = {0, 1, 2} and
against Pev for Sh = {0.2, 0.4, 0.6, 0.8, 1.0}, respectively. Sheff is measured in BD simulations by
fitting an exponential to the number of particles that have not yet transferred.

As the strength of the cross flow Pev increases, we observe that Sheff increases, due to the fact
that the scalar is pushed closer to the lower wall. In Fig. 5(a), we show our results both with and
without the O(Sh2) correction. At zeroth order, the effective Sherwood number is simply ShP (0).
However, as scalar is transferred out of the channel, the next order correction leads to a decrease in
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0.8, 1.0

Pev

Pev = 0, 1, 2

Sh

Sheff

Sh = 0.2, 0.4, 0.6

(a) (b)

FIG. 5. Effective Sherwood numbers Sheff when Peu = 10 and Rev = 1 are shown as functions of (a) Sh,
for Pev = {0, 1, 2}, and (b) Pev , for Sh = {0.2, 0.4, 0.6, 0.8, 1.0}.

Sheff ; this is consistent with the concentration profiles shown in Fig. 2(b), where an increase in Sh
leads to a depletion of scalar near the wall. Even though our perturbation theory is only formally
valid at Sh 	 1, we observe reasonable agreement with our BD simulations up to Sh = 1. We note
that in order to study the case where Sh � 1, which we do not consider in this work, it would be
important to consider a higher order perturbation in δ to capture details at short time. With very
strong mass transfer, the solute would be removed from the fluid before the long-time Taylor limit
is reached.

F. The effect of the Schmidt number

So far, we have studied the effect of varying Pev while holding Rev = 1 constant. In doing so,
we have implicitly varied the Schmidt number, since Pev = RevSc, and changes in Pev have not
affected the axial velocity profile u(y). We now discuss the effect of explicitly varying Sc. At a
constant Sc, an increase in the cross-flow strength Pev now increases Rev accordingly, pushing the
maximum of u(y) closer to the bottom wall into the concentration boundary layer.

In Fig. 6(a), DTD/D is again plotted against Pev when Peu = 10, but now holding the Schmidt
number constant at Sc = {0.1, 0.3, 1, 3, 10, 30, 100}. At a fixed Sc, we define the maximum
dispersion coefficient measured by numerical integration of Eq. (20) as D∗

TD/D and the Pev

corresponding to this maximum as Pe∗
v . In Figs. 6(b) and 6(c), D∗

TD/D and Pe∗
v are plotted against

Sc, again when Peu = 10. We observe three different regimes of behavior: (1) At large values
of Sc (Sc � 10), we observe that DTD/D first increases with Pev , then decreases. Rev remains
small even as Pev increases, causing the velocity field to closely resemble Poiseuille flow with
the maximum of u(y) close to the center of the channel. As Pev increases slightly, the solute is
pushed closer to the bottom wall, causing larger velocity gradients to be sampled, leading to an
increase in DTD/D. Eventually, as Pev continues to increase, much of the solute is now confined to
a thin layer near y = 0 where the velocity gradient is the highest, however, DTD/D decreases since
the differences in velocities being sampled is small. (2) At moderate values of Sc (Sc ≈ 1), we
observe that DTD/D monotonically decreases with Pev , and DTD/D is maximized when Pev = 0.
At these values of Sc, Rev increases modestly with increasing Pev , causing the maximum of u(y)
to be appreciably pushed towards y = 0. Now, as Pev increases, the solute is again pushed closer
to the bottom wall, but the region of the velocity field where the gradients are small, i.e., close to
where ∂u/∂y = 0, is sampled significantly, leading to this decrease in DTD/D. (3) At small values
of Sc (Sc � 0.1), interestingly, we observe that DTD/D yet again increases as Pev increases slightly,
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DTD

D

Pev Sc

D∗
TD

D

Pe∗v

Sc = 0.1, 0.3, 1, 3
10, 30, 100

(a) (b)

(c)

FIG. 6. (a) Taylor dispersion coefficients DTD/D in the absence of mass transfer, Sh = 0, are shown as
functions of Pev , for Peu = 10 and Sc = {0.1, 0.3, 1, 3, 10, 30, 100}. (b) The maximum DTD/D = D∗

TD/D and
(c) corresponding Pev = Pe∗

v are plotted as a function of Sc.

and then subsequently decreases. As Sc decreases further, we find that this critical Pev becomes
very small; we attribute this nonmonotonic behavior to the complex interactions between the thin
velocity boundary layer immersed within the concentration boundary layer. It is worth noting that
in real systems, however, these small values of Sc are difficult to obtain.

In the limit that Sc = ∞, we must have Rev = 0 for any Pev , and the velocity field is simple
Poiseuille flow. In this limit, we see that the dispersion coefficient approaches D∗

TD/D ≈ 0.7,
corresponding to Pe∗

v ≈ 3.4, a nearly 50% increase from the dispersivity measured when Pev = 0.
This limit of infinite Schmidt number corresponds to the example of sedimenting Brownian particles
considered by Shapiro and Brenner [15], where the driving force for transverse motion does not
affect the axial velocity profile of the solvent. In that work, they report an increase in DTD/D
with increasing Pev (i.e., increasing gravity), up to Pev = 2, but they do not discuss the subsequent
decrease in DTD/D at larger Pev . Clearly, for most values of Pev and Sc the dispersion coefficient
DTD/D decreases from its small Pev value. In general, this limit of infinite Sc represents an applied
external field that drives transverse motion, and these results may be useful in understanding, for
instance, how an applied magnetic field affects the axial dispersion of magnetic nanoparticles in a
blood vessel network.

The asymptotic relations given in Eqs. (24) and (25) still hold here at large fixed Sc, when the
concentration boundary layer is very thin compared to the momentum boundary layer. However, the
scalings in Pev are not as simple: at a fixed Sc, the wall shear rate γ̇ ∗ is now a function of Pev . By
expanding the wall shear rate around Pe−1

v = 0 at a fixed Sc, we have

γ̇ ∗ = 12 − 12 Sc Pe−1
v + O

(
Pe−2

v

)
, Pev � 1. (31)

At a small fixed Sc, we expect our asymptotic analysis to break down however. The velocity field
given in Eq. (5) is maximized at y∗, which is 1/2 when Pev = 0 and goes to 0 as Pev → ∞. At small
values of Sc, y∗ can be even smaller than Pe−1

v ; in other words, the momentum boundary layer can
be even thinner than the concentration boundary layer. Certainly, the approximation that the velocity
field is a simple shear flow is no longer valid here, and as we have seen in Fig. 6, nontrivial behavior
occurs when the momentum boundary layer is much thinner than the concentration boundary layer.
Notably, this nontrivial dependence on the Schmidt number is the result of having a velocity profile
u(y) that has a shear rate that varies in y; in the case of a simple shear flow across the entire width
of the channel, there would be no boundary layer in momentum.
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G. Spatially nonuniform transverse velocity and diffusivity

We have thus far focused on the dispersion of particles in the presence of a spatially uniform
cross flow. In using this simple cross flow, we have elucidated how transverse motion affects
Taylor dispersion. Of course, most transverse flows are not spatially uniform, and in fact, in many
applications the particle velocity up will not necessarily be equal to the fluid velocity u. We have
introduced the subscript “p” (particle) to highlight this distinction. Note that while the velocity
field of an incompressible fluid must be divergence-free, the same is not required of the particle
velocity, since particles can accumulate. Similarly, the diffusion coefficient D, which so far has
been considered to be a constant, could also vary spatially and thus capture more general diffusive
effects [26,27]. In this section, we show how our analysis changes when the transverse particle
velocity is vp = vp(y) and the diffusivity is Dp = Dp(y). We describe various applications where this
situation arises, and we focus on the illustrative phenomenon of the lateral migration of particles in
a viscoelastic flow.

We repeat the Taylor dispersion analysis with vp = vp(y) and Dp = Dp(y) when Sh = 0. Again,
the velocity vp(y) and diffusivity Dp(y) are nondimensionalized with characteristic scales V and
D, so that the Péclet number is Pev = V H/D. At O(1), we still have the concentration field C0 =
〈C〉P (y), except instead of Eq. (15), the weighting function is

P (y) =
exp

[
Pev

∫ y
0

vp(η)
Dp(η) dη

]
∫ 1

0 exp
[
Pev

∫ y
0

vp(η)
Dp(η) dη

]
dy

. (32)

Moreover, instead of Eq. (20), the Taylor dispersion coefficient is

DTD

D
= −Pe2

u

∫ 1

0
ũp(y) exp

[
Pev

∫ y

0

vp(η)

Dp(η)
dη

]

×
{∫ y

0
exp

[
−Pev

∫ σ

0

vp(η)

Dp(η)
dη

][∫ σ

0
P (ξ )ũp(ξ ) dξ

]
dσ

}
dy. (33)

Spatially nonuniform transverse velocities and diffusivities arise in a number of applications. In
the channel flow of blood—a multicomponent suspension mainly comprising deformable red blood
cells and more rigid platelets and white blood cells—it is well known that red blood cells experience
a migration velocity away from the walls due to their deformability. Additionally, hydrodynamic
collisions between the components cause a spatially nonuniform shear-induced diffusivity and
transverse drift velocity [18,28]. A shear-induced diffusivity also arises in a sheared concentrated
hard sphere suspension [29], although with hard spheres, multibody interactions drive this effect,
whereas only pairwise interactions are required for deformable particles. In the pressure-driven
flow through a channel where fluid weakly leaks out of both walls at a specified velocity, a Berman
flow [30], the transverse fluid velocity is expressed as a perturbation series in the leakage Reynolds
number.

We now describe an analytically tractable application that highlights how having vp = vp(y) can
affect Taylor dispersion. In the channel flow of a particle-laden viscoelastic fluid, Li and Xuan
[31] experimentally showed that an external force applied to the particles in the direction of flow
causes particles to drift toward the channel center, while a force opposing the direction of flow
causes particles to drift toward the channel walls. Einarsson and Mehlig [32] investigated this effect
theoretically, and showed that to first order in the Weissenberg number (the product of the polymer
relaxation time and the characteristic shear rate), this drift velocity is proportional to the local shear
rate of the flow. For an Oldroyd-B fluid, the axial velocity profile is the same as the Newtonian
solution u = 6y(1 − y), so that the shear rate is ∂u/∂y ∼ 1 − 2y. Thus, we investigate the Taylor
dispersion of particles in a pressure-driven flow with a transverse velocity given by

vp(y) = ±(1 − 2y), (34)
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y

C/ CC/ C

Pev = 5, 25, 45
Pev = 5, 25, 45

vp(y) = −1 + 2y vp(y) = 1 − 2y(a) (b)

FIG. 7. Concentration profiles C/〈C〉 are shown for Pev = {5, 25, 45} when the transverse particle velocity
is (a) outwards, vp(y) = −1 + 2y, and (b) inwards, vp(y) = 1 − 2y.

where the “+” corresponds to a force causing the particles to drift inwards toward the channel
center, and the “−” corresponds to a force causing the particles to drift outwards toward the
channel walls. Here, while the transverse fluid velocity is v = 0, the transverse particle velocity
vp is given by Eq. (34). Note that a drift dependent on the shear rate occurs in other contexts as
well, such as the deformation-induced wall drift experienced by capsules [33], vesicles [34], and
polymers [35]. In Figs. 7(a) and 7(b), we show concentration profiles induced by the drift velocity
in Eq. (34) as a function of y at the center of the Gaussian by evaluating the weighting function P (y)
given in Eq. (32); this shows that C0 ∼ 〈C〉 exp[±Pev (y − y2)]. Figures 7(a) and 7(b) show C/〈C〉
when the transverse particle velocity is outward and inward, and as expected, as Pev increases, the
concentration either gets pushed closer to the channel walls or to the channel center, respectively.

Based on this solution for the concentration field, we may now examine the Taylor dispersion
coefficient and effective streamwise velocity with these transverse particle velocities. In Fig. 8(a),
we show the Taylor dispersion coefficient DTD/D for Peu = 10 as a function of Pev for both the
outward and inward transverse particle velocities, determined by numerical integration of Eq. (33).
Interestingly, while the outward particle velocity leads to a nonmonotonic dependence of DTD/D

Pev

DTD

D

Pev

∼
Pe −

3v

Pev 1

u eff

(a) (b)

FIG. 8. (a) Taylor dispersion coefficients DTD/D as a function of Pev for Peu = 10 for both the outward and
inward particle velocities. The inset shows the asymptotic behavior of the dispersion coefficient when Pev � 1
for the inward particle velocity. (b) Effective velocity 〈u〉eff as a function of Pev for both the outward and inward
particle velocities.
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on Pev , the Taylor dispersion coefficient in the presence of inward particle velocity decreases
monotonically. In Fig. 8(b), the effective velocity 〈u〉eff is plotted against Pev . As Pev increases,
the outward particle velocity pushes the concentration profile closer to the walls where the velocity
is slow, leading to a reduction in 〈u〉eff . In contrast, an inward transverse particle velocity pushes the
concentration profile toward the channel center, where the velocity is maximum, causing 〈u〉eff to
approach the maximum velocity of 3/2.

In the limit of strong outward transverse particle velocity, we expect the previous asymptotic
analysis [Eqs. (24)–(27)] to hold. As before, we have a concentration boundary layer of thickness
Pe−1

v immersed in a wall shear flow, since the outward velocity is a constant near the wall.
However, the asymptotic analysis for strong inward transverse particle velocity predicts scalings
which are qualitatively different. By switching to a wall-normal coordinate centered in the middle
of the channel, y′ = y − 1/2, we see that the inward velocity field is vp(y′) = −2y′, and thus,
the concentration field is given by C0 ∼ 〈C〉 exp(−Pevy′2). This shows that the thickness of the
concentration layer is Pe−1/2

v . At the center of the channel, where the majority of the particles
are concentrated, the velocity profile is the quadratic profile u = −6y′2 + 3/2, and this must be
considered in the asymptotic analysis. By repeating the Taylor dispersion analysis in the thin center
layer and allowing integrals in y′ to extend to plus and minus infinity, we find that

DTD

D
≈ 9

2
Pe2

uPe−3
v , Pev � 1, Sh = 0, (35)

〈u〉eff ≈ 3

2
− 3Pe−1

v , Pev � 1, Sh = 0. (36)

Notably, the dispersion coefficient now decays as Pe−3
v instead of Pe−4

v as before. In the inset of
Fig. 8(a), the results for dispersion in the presence of inward particle velocity are plotted on a
log scale, and the asymptotic result shown in Eq. (35) is presented as a dashed line. Importantly,
this scaling could have also been revealed using the previous heuristic argument. The dimensional
thickness of the concentration layer is �y = √

DH/V , and since the flow is quadratic at the center,
n = 2. Substitution into Eq. (28) yields DTD/D ∼ Pe2

uPe−3
v , which aside from the 9/2 coefficient, is

the result in Eq. (35). By applying our results to the lateral migration of particles in a viscoelastic
flow, we have thus underscored the mechanism by which different transverse velocities can affect
dispersion behavior.

IV. CONCLUDING REMARKS

In this work, we have used both perturbation theory and Brownian dynamics simulations to study
the effect of cross flow and wall mass transfer on Taylor dispersion. By perturbing the concentration
field to O(δ), we have provided a useful formula for the Taylor dispersion coefficient as a function
of Pev . By perturbing the concentration field to O(Sh), where the dispersion coefficient is not
affected, we have provided useful formulas for the effective velocity of 〈C〉 to O(Sh) and the
effective Sherwood number to O(Sh2). Additionally, we have conducted an asymptotic analysis
of the problem in the regime of strong cross flow, or Pev � 1. Furthermore, we have discussed the
effect of the Schmidt number on the dispersion coefficient. Finally, we described how our results
can be extended to take into account a nonuniform transverse velocity and diffusivity.

In order to illustrate how our results may be used, we conclude with a practical engineering
example. In cross-flow filtration of particles or molecules in fluid, the larger particles that do
not pass through the filter—the retentate—form a thin cake layer on the membrane surface. The
thickness of the cake layer determines the flux of the permeate through the filter, and one may
ultimately be interested in how this flux varies along the filter. In order to evaluate the performance
of this filtration system, the axial dispersion coefficients of both the smaller permeate and larger
retentate as a function of the pressure difference across the filter would be of interest. Typical
Schmidt numbers vary widely. For example, in air, gaseous species have Sc = O(1), while solid
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particles with radii ranging from 0.001 to 10 μm have Sc = O(101) to O(107) [36]. In water, where
typical solutes encountered in cross-flow filtration systems vary from small molecules, such as
salts, to large particles, such as cells, the Brownian diffusion coefficient can vary from O(10−14)
to O(10−9) m2/s [37], leading to typical Schmidt numbers of Sc = O(103) to O(108). By tuning
the pressure difference across the filter to select a cross-flow Péclet number Pev , one could then use
the results of Fig. 6 to estimate the appropriate dispersion coefficient.

While our results are directly applicable to mass-transfer problems such as cross-flow filtration,
it is interesting to note that our results could also extend to problems involving Taylor dispersion
of heat in the presence of cross flow. The equations of mass and heat transfer are equivalent, where
the scalar of interest is now temperature, the Brownian diffusivity is replaced with the thermal
diffusivity, and mass transfer corresponds to convective heat transfer. The Prandtl number Pr, which
replaces the Schmidt number, now represents the relative thicknesses of the momentum and thermal
boundary layers. At room temperature, common gases have Pr = O(1) while common liquids such
as water and oils have Pr = O(1) to O(103). Our results are thus also applicable in problems where
the rate that heat is transported axially in a fluid flowing between two porous insulated plates with a
supplied cross flow is of interest.
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