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Using direct numerical simulation (DNS), we investigate how gravity modifies the
multiscale dispersion of bidisperse inertial particles in isotropic turbulence. The DNS has
a Taylor Reynolds number Rλ = 398, and we simulate Stokes numbers (based on the
Kolmogorov timescale) in the range St � 3 and consider Froude numbers Fr = 0.052
and ∞, corresponding to strong gravity and no gravity, respectively. The degree of
bidispersity is quantified by the difference in the Stokes number of the particles, |�St|.
We first consider the mean-square separation of bidisperse particle pairs and find that,
without gravity (i.e., Fr = ∞), bidispersity leads to an enhancement of the the mean-square
separation over a significant range of scales. When |�St| � O(1), the relative dispersion
is further enhanced by gravity due to the large difference in the settling velocities of the
two particles. However, when |�St| � 1, gravity suppresses the relative dispersion as the
settling velocity contribution is small, and gravity suppresses the nonlocal contribution to
the particle dynamics. In order to gain further insights, we consider separately the relative
dispersion in the vertical (parallel to gravity) and horizontal directions. As expected, the
vertical relative dispersion can be strongly enhanced by gravity due to differences in the
settling velocities of the two particles. However, a key finding of our study is that gravity
can also significantly enhance the horizontal relative dispersion. This nontrivial effect
occurs because fast settling particles experience rapid fluctuations in the fluid velocity field
along their trajectory, leading to enhanced particle accelerations and relative velocities. For
sufficiently large initial particle separations, however, gravity can lead to a suppression of
the horizontal relative dispersion. We also compute the probability density function (PDF)
of the particle-pair dispersion. Our results for these PDFs show that even when Fr � 1 and
|�St| � O(1), the vertical relative dispersion of the particles can be strongly affected by
turbulence. This occurs because although the settling velocity contribution to the relative
motion is much larger than the “typical” velocities of the turbulence when Fr � 1 and
|�St| � O(1), due to intermittency, there are significant regions of the flow where the
turbulent velocities are of the same order as the settling velocity. These findings imply
that in many applications where Rλ ≫ 1 the effect of turbulence on the vertical relative
dispersion of settling bidisperse particles may never be ignored, even if the particles are
settling rapidly.

DOI: 10.1103/PhysRevFluids.4.034302

I. INTRODUCTION

Particle dispersion in turbulent flows is important for numerous industrial and environmental
applications such as drug delivery [1], spray combustion [2], plankton distribution in aquatic
environments [3], dispersion of pollutants in the atmosphere [4], and droplet growth in warm
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clouds [5]. The relative dispersion of particles as a function of time is of particular importance as it
provides a way to quantify multiscale processes such as particle mixing [6], and it is also intimately
connected to understanding particle collision velocities in turbulence; e.g., see [7].

Since the pioneering studies of [8,9], the relative dispersion of fluid particles in turbulence has
been extensively investigated. Nevertheless, many open questions remain [10], and it continues to
be a very active area of numerical, experimental, and theoretical research; e.g., see [6,10–21].

In many applications, the dispersing particles have non-negligible inertia. The effect of this
inertia on the relative dispersion of the particles in turbulence has only recently started receiving
attention [14–16,21,22], and these studies have revealed that particle inertia can have striking effects
on the relative dispersion. However, these studies focused on monodisperse particles in the absence
of gravity; yet in most real systems the particles are polydisperse and are also settling under the
effect of gravity. Since relative dispersion is typically studied by analyzing two-particle motion [10],
in order to obtain a better understanding of more realistic systems the relative dispersion of settling
bidisperse particle-pairs should be considered.

The importance of gravity compared with turbulence for particle motion can be quantified by
the Froude number, Fr ≡ ε3/4/(ν1/4g), where ε is the mean fluid kinetic energy dissipation rate,
ν is the kinematic viscosity, and g is the magnitude of the gravitational acceleration vector g.
In atmospheric clouds, typical ranges are 0.05 � Fr � 0.3 [23,24]. In a recent study [25], we
considered the relative motion of settling, bidisperse particles in isotropic turbulence. In agreement
with other studies [26–28], we found that bidispersity alone enhances the particle relative velocities,
and these relative velocities are further enhanced by gravity. Furthermore, we also found that gravity
can enhance relative velocities not only in the “vertical” (in the direction of gravity), but in the
“horizontal” (in the plane normal to gravity) directions as well. Our results also showed that, when
Fr � 1, turbulence plays an important role, not only on the horizontal motion but also on the vertical
motion of particles, since, due to intermittency, there a significant regions of the flow where the local
fluid acceleration is O(g). These findings could have significant implications for understanding the
horizontal and vertical relative dispersion of settling, bidisperse particles in turbulence.

Despite the significant practical importance, the relative dispersion of settling, bidisperse inertial
particles in turbulence has scarcely been addressed. The only study that we are aware of attempting
to address this problem is [29]. The results from their direct numerical simulations (DNS) showed
that, for particles having initial separations in the dissipation range, bidisperse particles separate
faster in the presence of gravity due to the different settling velocities of the two particles. They
also observed that bidisperse particles with and without gravity separate ballistically at short times,
but that, in the presence of gravity, the relative dispersion can follow a ballistic growth even beyond
the short-time regime. However, their study did not comprehensively explore the effects of varying
the level of bidispersity, and also focused on weakly inertial particles. Further, they did not consider
how gravity affects the dispersion in the vertical and horizontal directions separately. Therefore,
motivated by our recent findings in [25] and the current knowledge gaps, we consider the effect
of gravity on the vertical and horizontal relative dispersion of inertial particles in turbulence with
Stokes numbers up to St = 3.

The organization of the paper is as follows. In Sec. II, we consider theoretically the effect of
bidispersity and gravity on the relative dispersion of particle pairs at the small scales of turbulence.
In Sec. III, we explain the numerical methods and parameters for our simulations. In Sec. IV, we
present the results of our simulations, exploring how bidispersity and Fr impact the particle relative
dispersion. Finally, in Sec. V, we draw conclusions and highlight open issues that remain to be
explored.

II. THEORETICAL CONSIDERATIONS

In this paper we are considering the relative dispersion of settling, bidisperse inertial particles
whose density is much greater than that of the fluid in which they are suspended (i.e., “heavy
particles”, ρp/ρ � 1, where ρp is the particle density and ρ is the fluid density). This is relevant
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to understanding various kinds of heavy particle dispersion in the atmosphere, and droplet mixing
in clouds [30,31]. We consider the particle loading to be sufficiently small so that the feedback
of particles on the flow can be ignored (i.e., the system is “one-way” coupled) and the particles
are assumed to be small (i.e., d/η � 1, where d is the particle diameter and η is the Kolmogorov
length scale). Under these conditions, each particle is treated as a point particle whose motion obeys
a simplified version of the equation by Maxey and Riley [32],

ẋp(t ) ≡ vvvp(t ), (1)

ẍp(t ) ≡ v̇vvp(t ) = u(xp(t ), t ) − vvvp(t )

τp
+ g, (2)

where xp(t ) and vvvp(t ) are the particle position and velocity, respectively, u(xp(t ), t ) is the fluid
velocity at the particle position, τp ≡ ρpd2/18μ is the particle response time (μ is the fluid dynamic
viscosity), and g is the gravitational acceleration. In this study, we will assume that particles are
subjected to linear drag force, which is a valid assumption for settling particles with St � O(1) [24],
and this is the range we restrict our attention to in this study.

To explore the relative motion of particles in turbulence, we consider the motion of a “satellite”
particle relative to a “primary” particle, where the kinematic equation governing their separation
vector rp(t ) is

ṙp(t ) ≡ wwwp(t ), (3)

with solution

rp(t ) = rp(0) +
∫ t

0
wwwp(s) ds, (4)

where wwwp(t ) is the particle-pair relative velocity. The relative dispersion of the particle pair may
be quantified through the statistical evolution of rp(t ), which depends upon the behavior of wwwp(t ).
In order to consider how bidispersity and gravity affect the relative dispersion of inertial particles
in turbulence, we now summarize our recent study [25] concerning the effects of bidispersity and
gravity on wwwp(t ).

A. Relative velocities

The equation of relative motion can be obtained by subtracting (2) for the primary particle from
that for the satellite particle. In [25], we derived the following result for wwwp(t ) in nondimensional
form (non-dimensionalized with Kolmogorov scale quantities) and assuming t � St2:

wwwp(t ) = 1

St2

∫ t

0
e−(t−s)/St2�up(s) ds − �St Fr−1eg + �St

St2

∫ t

0
e−(t−s)/St2 ap(s) ds, (5)

where �up(s) is the difference in the fluid velocity at the two particle positions, St2 ≡ τp/τη is
the Stokes number of the satellite particle based on the Kolmogorov time scale τη, �St ≡ St1 − St2,
where St1 is the Stokes number of the primary particle, eg is the unit vector in the direction of gravity,
and ap(s) is the primary particle acceleration. In the following, consistent with (5), we consider the
case where t � St2, which corresponds to the thermalized state where the particles have reached
a statistical equilibrium with the flow, and the initial conditions have no effect. However, later, we
will consider the nonthermalized case where the initial conditions for the particles play an important
role for t � O(St2).

In the monodisperse case, �St = 0, only the first term on the right-hand side (rhs) of (5) survives.
This term depends upon the particle-pair separation rp through �up, and through the integral wwwp(t )
depends upon �up along the path history of the particle pair over the time span t − s � O(τp).
Since the statistics of �up depend upon scale, this leads to a nonlocal effect whereby the statistics
of wwwp(t ) at a given scale are affected not only by the characteristics of �u at that scale but also by
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the characteristics of �u at larger scales, and this allows for ‖wwwp‖ > ‖�u‖ (statistically). For St �
O(1), this path-history/nonlocal effect dominates the particle relative velocities in the dissipation
range and gives rise to the formation of “caustics” [33]. Its effect weakens at larger scales, and
precisely vanishes at scales larger than the integral length scale of the flow since at these scales
the statistics of �u are independent of separation. For monodisperse particles, gravity only affects
wwwp(t ) implicitly through its effect on �up, as it modifies how the particles interact with the turbulent
flow. Gravity reduces the correlation timescale of �up as it causes the particles to fall through the
flow, and, as a result, it reduces the path-history effect (by shrinking the temporal correlation radius
over which the particles are affected by their past interaction with the flow), resulting in a reduction
of the relative velocities for monodisperse particles [24].

For bidisperse particles without gravity, i.e., |�St| > 0 and Fr = ∞, bidispersity affects wwwp(t )
explicitly through the third integral (“acceleration term”) and implicitly through the first integral on
the rhs of (5). The particle relative velocity at a given separation will depend upon the competition
between the separation-dependent first integral and separation-independent third integral, and as
�up decreases, on average, with decreasing separation, there will be a scale below which the
third integral will be greater than the first one. This acceleration contribution will lead to relative
velocities of bidisperse particles that exceed those of monodisperse particles at small separations.
Bec et al. [34] also studied the relative motion of bidisperse inertial particles in the absence of
gravity. Similar to (5), their governing equation for wwwp(t ) consisted of two terms: The first term,
depends on the fluid velocity difference at the particle positions, and the second term is proportional
to the degree of bidispersity. In their analysis, they also considered a characteristic length scale,
below which the bidisperse term dominates and the particle motion is uncorrelated. For particle
separations greater than this characteristic length scale, the �up term dominates and the motion of
the two particles is correlated.

To state the effects of gravity on the relative velocity of bidisperse particles, we must first
introduce some notation. We define the gravitational force to act in the x3 direction, so that
eg = (0, 0, 1). This will be referred to as the “vertical” direction, whereas, x1 and x2 will be referred
to as the “horizontal” directions. (Since we are considering isotropic turbulence, the statistics of
the particle motion are axisymmetric about eg when Fr < ∞). When |�St| > 0 and Fr < ∞, the
effect of gravity on the first term on the rhs of (5) is qualitatively the same as in the monodisperse
case, described earlier. The second term on the rhs of (5) describes the explicit effect of gravity and
it increases as Fr decreases and/or |�St| increases. This term, however, only acts in the vertical
direction, implying that gravity only plays an implicit role in the horizontal directions. Third term
involving the primary particle acceleration is implicitly affected by gravity. In [24], we showed that
gravity can enhance ap, since settling particles experience fluid velocities along their trajectories
that fluctuate more rapidly than they would if they were not settling, resulting in larger particle
accelerations. The enhancements of the accelerations in the vertical direction were found to be
smaller than those in the horizontal directions due to differences in the longitudinal and transverse
integral length scales of the flow [24].

Finally, consider the limit Fr → 0, for which the relative velocities in the vertical direction are
deterministic and given by

w
p
3 (t ) = −�St/Fr, (6)

which is simply the differential settling velocity, in dimensionless form, and applies to quiescent
and turbulent flows. However, for the horizontal direction, in a quiescent flow w

p
1 (t ) = 0 ∀ Fr, but

in a turbulent flow w
p
1 (t ) 	= 0 in the limit Fr → 0 and is given by

w
p
1 (t ) = 1

St2

∫ t

0
e−(t−s)/St2�up

1 (s) ds + �St

St2

∫ t

0
e−(t−s)/St2 ap

1 (s) ds. (7)

As a consequence of this, limFr→0 wwwp(t ) 	→ −�St Fr−1eg; turbulence always makes a contribution
to the horizontal motion and this has important implications.
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B. Relative dispersion

We now consider the implications of these results on wwwp(t ) for the relative dispersion of inertial
particles in turbulence, focusing attention on the case where the initial separation rp(0) = ξ lies in
the dissipation range, where the effects of inertia are the strongest. Note that here t = 0 is simply the
labeling/conditioning time, that is, the time at which their separation satisfies rp(0) = ξ. It does not
necessarily correspond to the time at which the particles are actually introduced to the system. The
main focus of this paper is on the case where at time t = 0 the particles are already in a statistical
equilibrium with the flow (i.e., the particles were introduced to the flow at time t = −∞). However,
at the end of this section we also discuss the case where t = 0 corresponds to the time when the
particles are introduced to the flow, for which the initial conditions play a key role.

For monodisperse particles with St2 � O(1) and Fr = ∞, the particles will initially separate (on
average) very fast due to caustics in the particle relative velocity distributions. As t increases, the
particles go to larger separations where the effects of particle inertia become weaker, and eventually
they will separate like fluid particles. This behavior was observed in [14,22]. When St2 � O(1)
and Fr � O(1), we expect that monodisperse inertial particles will separate slower than the fluid
particles because gravity suppresses the path-history effect, and the dominant effect of inertia will
be to simply filter out the fluctuations of the underlying flow.

For bidisperse particles (|�St| > 0) with Fr = ∞, the acceleration term dominates their relative
velocities at small separations and they will separate faster than the monodisperse particles.
As t increases, the particle pairs will move to scales where the first term on the right-hand
side of (5) dominates their relative velocity, and their dispersion behavior will approach that of
monodisperse particles. At sufficiently long times, the effect of their inertia will disappear and
they will disperse as fluid particles. The strongest effects of bidispersity will therefore occur in the
regime where the acceleration term in (5) makes a strong contribution to the bidisperse particle-pair
motion, and the duration of time for which this term will be important will depend upon their initial
separation and |�St|. For example, for pairs with |�St| � 1 and initial separation in the dissipation
range, the acceleration term will play a dominant role in the relative dispersion process up until
times for which the pair separation is well into the inertial range.

When Fr � O(1), gravity can affect the relative dispersion of bidisperse particles in both the
horizontal and vertical directions. Clearly, the vertical dispersion will be affected explicitly by
gravity due to the contribution of the differential settling velocity. However, the relative dispersion
in the horizontal direction can also be strongly affected due to the implicit effect of gravity on
ap. As summarized earlier, [24] found that, when Fr � 1, gravity can significantly enhance both
the vertical and horizontal components of ap. Therefore, for bidisperse particles with small initial
separations, gravity can enhance both the vertical and horizontal relative dispersion, in contrast to
the monodisperse case, where gravity is expected to always lead to a suppression of the relative
dispersion, in both the vertical and horizontal directions.

However, for weakly bidisperse particles with |�St| � 1, and/or for bidisperse particles with
sufficiently large initial separations, the acceleration contribution to their relative velocities will
be subdominant, and as a result, in these regimes, gravity may also lead to a suppression of the
relative dispersion, especially in the horizontal direction (even in these regimes, the vertical relative
dispersion may still be enhanced by gravity due to the contribution from the differential settling
velocity).

Chang et al. [29] used DNS to study the dispersion of bidisperse particles with and without
gravity. In their study, they considered pairs with initial separations in the dissipation range and
St2 � 1, |�St| � 1, and Fr = 0.1,∞. They found that the differential settling velocities of the
particles leads to faster relative dispersion of bidisperse particles as compared to those dispersing
in the absence of gravity. They also observed that bidisperse particles with and without gravity
separate ballistically at short times, but that in the presence of gravity the relative dispersion can
follow a ballistic growth even beyond the short-time regime. They also developed a semiempricial
formula for the second-order structure function 〈‖wwwp(t )‖2〉r, where 〈·〉r denotes an ensemble average
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TABLE I. Flow parameters in DNS of isotropic turbulence
(arbitrary units). N is the number of grid points in each di-
rection, Rλ ≡ u′λ/ν is the Taylor microscale Reynolds number,
L is the domain size, ν is the fluid kinematic viscosity, ε ≡
2ν

∫ κmax

0 κ2E (κ )dκ is the mean turbulent kinetic energy dissipation
rate, l ≡ 3π/(2k)

∫ κmax

0 E (κ )/κ dκ is the integral length scale, η ≡
ν3/4/ε1/4 is the Kolmogorov length scale, u′ ≡ √

(2k/3) is the
fluid r.m.s. fluctuating velocity, k is the turbulent kinetic energy,
uη is the Kolmogorov velocity scale, TL ≡ l/u′ is the large-eddy
turnover time, τη ≡ √

(ν/ε) is the Kolmogorov timescale, κmax is
the maximum resolved wave number, and Np is the number of
particles per Stokes number.

Parameter DNS

N 1024
Rλ 398
L 2π

ν 0.0003
ε 0.223
l 1.45
l/η 436
u′ 0.915
u′/uη 10.1
TL 1.58
TL/τη 43.0
κmaxη 1.60
Np 2 097 152

conditioned on rp(t ) = r. By comparing their results with DNS data for Fr = 0.1, they found good
agreement between their prediction and the DNS data even when St2 = O(1) (with |�St| � 1).
However, this is mainly because in their data with Fr = 0.1, 〈‖wwwp(t )‖2〉r ≈ (�St)2Fr−2 for small
r/η, i.e., the turbulent contribution is negligible, and this gravitational settling contribution is in
exact, closed form for arbitrary St2, �St.

In closing this section we briefly discuss the case where at time t = 0 the particles are not in
statistical equilibrium with the flow, but are introduced to the flow at t = 0 with the same local
velocity as the fluid. The behavior for this situation will only differ from the thermalized case
considered earlier in the “short-time regime” t � St2, and in this regime the leading order behavior
of wwwp(t ) for the case where the particles are introduced with the same local velocity as the fluid is

wwwp(t ) = �up(0) − eg
�St

Fr St2
t . (8)

In this case, the relative velocity, and therefore the relative dispersion in the horizontal direction, is
unaffected by gravity, since the implicit effect of gravity plays no role. This makes sense, since in
order for the inertial particles to be affected by the implicit role of gravity they must have begun to
interact with the turbulent flow field. Thus, the nontrivial effect of gravity on the particle relative
dispersion is only important when the particles have been in the flow for a time �O(St2). However,
gravity still plays a role in the vertical direction, causing relative dispersion in that direction due to
differential sedimentation when the particles are bidisperse. Compared to its contribution in (5), the
contribution from differential sedimentation in (8) is suppressed by the factor t/St2, which is �1 in
the short-time regime. This is simply a reflection of the fact that it takes a time t = O(St2) before
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FIG. 1. 〈‖wwwp(0)‖2〉ξ /u2
η as a function of ξ/η for St1 = 1 and various St2. Solid and dashed lines correspond

to the results with Fr = 0.052 and ∞, respectively.

an inertial particle acquires its terminal velocity in a quiescent fluid, since in a quiescent fluid the
solution is wwwp(t ) = −eg�St Fr−1(1 − e−t/St2 ).

III. COMPUTATIONAL DETAILS

We perform DNS of statistically stationary, isotropic turbulence using a pseudospectral method
on a three-dimensional periodic cubic domain of length L . The computational domain is uniformly
discretized using N3 grid points and the fluid velocity field u(x, t ) is obtained by solving the
incompressible Navier-Stokes equation

∂t u + ω × u + ∇
(

p

ρ f
+ ‖u‖2

2

)
= ν∇2u + f , (9)

where ω ≡ ∇ × u is the vorticity, ρ f is the fluid density, p is the pressure (determined using
∇ · u = 0), ν is the kinematic viscosity, and f is the external forcing applied to generate statistically
stationary turbulence. A deterministic forcing scheme is used for f [35], where the energy dissipated
during one time step is resupplied to the wave numbers with magnitude κ ∈ (0,

√
2]. Time

integration is performed through a second-order, explicit Runge-Kutta scheme with aliasing errors
removed by means of a combination of spherical truncation and phase-shifting.

Particles are tracked in the flow field using (2) for their equation of motion, using a “one-way”
coupled assumption, which is justified in the cloud context, for example, because of the low particle
loading. Fifteen particle classes are simulated with Stokes number St ranging from 0 to 3, with
(N/8)3 particles per St. The particles are introduced to the domain once the underlying fluid has
achieved statistically stationary state, with initial particle velocities equal to the fluid velocity at the
particle position. The particles are allowed to evolve for nearly five large eddy turnover times before
we start collecting statistics, so that the particles are in a thermalized state during the dispersion
process. The particle positions and velocities are stored every 0.1τη for a duration of 100τη.

In (2), u(xp(t ), t ) is the fluid velocity at the particle position, and this must be evaluated by
interpolating the fluid velocity at the surrounding grid points to xp(t ). In this study we use an eighth-
order, B-spline interpolation method, which provides a good balance between high accuracy and
efficiency (see [36]). Further details on all aspects of the computational methods can be found
in [36].
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FIG. 2. FIT and BIT mean-square separation results (with ξ 2 subtracted) for St1 = 1 and various St2:
(a) and (b) ξ ∈ (0η, 1η], (c) and (d) ξ ∈ [3η, 4η]. Solid and dashed lines correspond to the results with
Fr = 0.052 and ∞, respectively.

Since we want to explore the role of gravity on the relative dispersion of bidisperse particles,
we must consider the choice of Fr for the DNS. Observations have shown that ε can vary by orders
of magnitude in clouds [37], with corresponding variations in Fr. Therefore, in addition to the zero
gravity case Fr = ∞, we follow [24] and consider Fr = 0.052, which may be considered to be
representative of weakly turbulent stratiform clouds [38].

In our recent studies [24,25] we highlighted that the use of periodic boundary conditions in
the DNS, while simulating very small values of Fr, can artificially influence the motion of inertial
particles if the DNS box length L is too small. The use of periodic boundary conditions is
problematic if the time it takes the settling particles to traverse the distance L is �O(TL ), where
TL is the large -eddy turnover time. This issue was explored in detail in [24] and it was found
that box sizes much larger than the standard L = 2π can be required when Fr is very small. For
example, in [24] it was found that, for Rλ ≈ 90, L = 16π was necessary, which, with the resolution
constraints for accurately resolving the smallscales, requires N = 1024. Such requirements place
significant limitations on the value of Rλ that can be simulated. The box size issue is even more
crucial when considering relative dispersion since the relative dispersion can only be tracked for
times for which the pair separation is smaller than the box size, and this may not be very long when
|�St|/Fr � 1.

In this study we consider Rλ ≈ 398, and, for Fr � 0.052 and St � 3, a box size of length L = 2π

is sufficient to satisfy the aforementioned constraint on the use of periodic boundaries for settling
particles (see [24]). Details of the DNS are summarized in Table I.
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FIG. 3. FIT and BIT mean-square separation results (with ξ 2 subtracted) for St1 = 1 and various St2:
(a) and (b) ξ ∈ [9η, 10η], (c) and (d) ξ ∈ [19η, 20η]. Solid and dashed lines correspond to the results with
Fr = 0.052 and ∞, respectively.

IV. RESULTS AND DISCUSSION

In this section we discuss our DNS results for the relative dispersion of bidisperse inertial
particles with and without gravity. We consider particle pairs (St1, St2 combination) with varying
degree of bidispersity, namely, weak, moderate, and strong bidispersity, corresponding to |�St| =
0.1, 0.5, and 2, respectively. With Fr � 1 and for |�St| = 2, the particle separation quickly
approaches the size of the computational domain, beyond which the relative dispersion results are
artificially influenced by the periodic boundary conditions. Consequently, for those cases, the results
are only shown up to the times at which the separations are affected by the domain size.

Before presenting the results, we first summarize the expected behavior of the relative dispersion
based on the detailed discussion in Sec. II, highlighting the expected behavior as St2, |�St|, Fr are
varied. First, in the monodisperse case (|�St| = 0), and below a certain scale (which depends on
St2), the relative dispersion will become faster as St2 is increased, due to the dominant role of
caustics in their relative velocities. Above this scale, the relative dispersion will become slower as
St2 is increased, due to the dominant role of the filtering mechanism that suppresses their relative
velocities at these scales. However, at any scale and for any St2, as Fr is decreased the relative dis-
persion will become slower than the corresponding case with Fr = ∞. This is because gravity sup-
presses the role of the caustics, and enhances the filtering effect. For the bidisperse case (|�St| > 0),
and above a certain scale (which depends on St2 and |�St|), the effects of the bidispersity will be
weak, and the relative dispersion will be close to the monodisperse case with the same St2. However,
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FIG. 4. FIT and BIT results for 〈R2(t )〉 ≡ 〈‖rp(t )‖2〉ξ − ξ 2, divided by the ballistic prediction
t2〈‖wwwp(0)‖2〉ξ for St1 = 1 and various St2 combinations: (a) and (b) ξ ∈ (0η, 1η], (c) and (d) ξ ∈ [3η, 4η].
Solid and dashed lines correspond to the results with Fr = 0.052 and ∞, respectively.

below this scale, as |�St| is increased, the relative dispersion is increased since the motion of the
two particles becomes increasingly uncorrelated at the small scales. At the same scales and for
the same |�St|, as Fr is decreased, the relative dispersion will become faster. This is due to the
explicit effect of gravity through the particle-pair differential sedimentation, and the implicit effect
of gravity that causes the particle accelerations to increase. This latter effect can enable gravity to
enhance the relative dispersion even in the horizontal direction.

We begin by considering the DNS data for particle relative velocity 〈‖wwwp(0)‖2〉ξ (where 〈·〉ξ
denotes an ensemble average conditioned on ‖rp(0)‖ = ξ ), as this statistic will be helpful in
understanding the relative dispersion results, especially in the short-time regime. Figure 1 shows the
variation of 〈‖wwwp(0)‖2〉ξ as a function of ξ for bidisperse particles, with Fr = ∞ and Fr = 0.052.
It can be seen that the bidisperse data, with and without gravity, are bounded from below by the
monodisperse values. This observation is in agreement with previous numerical and theoretical
studies considering the relative velocities of bidisperse particles in turbulence [7,25,26,39–41]. It
can also be noticed that at sufficiently small separations the relative velocities become independent
of ξ . Both of these effects are due to the contribution of the acceleration term to the bidisperse
particle motion, as discussed in Sec. II. The relative velocities of bidisperse particles at small
scales increase with |�St| and are further enhanced by gravity (as Fr is decreased). The effect
of bidispersity reduces as the pair separation increases, and at sufficiently large ξ the relative
velocities of bidisperse particles approach those of monodisperse particles. This is because at large
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FIG. 5. FIT mean-square separation results in the vertical and horizontal directions from DNS for St1 = 1,
different St2, and with ξ ∈ [0η, 1η]. The red line corresponds to the vertical separations and the blue line
corresponds to the horizontal separations. The dashed black line corresponds to the results without gravity. The
solid black line corresponds to (12) for Fr = 0.052.

separations the first term on the right-hand side of (5) becomes dominant as compared to the third
term (acceleration term).

We now turn to consider the mean-square separation results, both forward in Time (FIT),
〈‖rp(t )‖2〉ξ , and backward in time (BIT), 〈‖rp(−t )‖2〉ξ . The results are shown in Fig. 2 for
ξ/η ∈ (0, 1], ξ/η ∈ [3, 4], for both monodisperse and bidisperse particles. In general, the results
show that both FIT and BIT relative dispersion are enhanced with increasing |�St|, and are further
enhanced by gravity. However, for monodisperse and weakly bidisperse particles, gravity leads to
a suppression of the relative dispersion, as anticipated in our discussion in Sec. II B. The results
also show that FIT and BIT dispersion are qualitatively and quantitatively different, indicating
irreversibility in the relative dispersion process. The physical mechanisms responsible for this
irreversibility are quite subtle, and we therefore refer the reader to [14–16]. In Fig. 3 we show
results for larger ξ and observe that, without gravity, bidispersity has a weak effect on the dispersion
at these separations. Also, for monodisperse and weakly bidisperse particles, gravity suppresses the
relative dispersion at all times for these larger ξ values. In Fig. 4, we plot 〈‖rp(t )‖2〉ξ − ξ 2 and
〈‖rp(−t )‖2〉ξ − ξ 2, normalized by the short-time (t � τp) ballistic predictions, e.g., [14]

〈‖rp(t )‖2〉ξ − ξ 2 ≈ 〈‖rp(−t )‖2〉ξ − ξ 2 = t2〈‖wwwp(0)‖2〉ξ + O(t3), (10)

The results in Figs. 4(a) and 4(c) show that the mean-square separation grows ballistically for
short times in the absence of gravity. However, for Fr = 0.052, (10) can be satisfied even for
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FIG. 6. FIT mean-square separation results in the vertical and horizontal directions from DNS for St1 = 1,
different St2, and with ξ ∈ [3η, 4η]. The red line corresponds to the vertical separations and the blue line
corresponds to the horizontal separations. The dashed black line corresponds to the results without gravity. The
solid black line corresponds to (12) for Fr = 0.052.

relatively long times in the dispersion process. This is explained by the fact that in view of (5),
in the regime |�St|Fr−1 � 1, the differential settling of the particle-pair dominates their relative
dispersion and we have (in dimensional form)

〈‖rp(t )‖2〉ξ − ξ 2 = 〈‖rp(−t )‖2〉ξ − ξ 2 ≈ (uη�St/Fr)2t2, (11)

which applies for as long as the differential sedimentation dominates wwwp.

A. Horizontal and vertical separations

In order to untangle the explicit and implicit effects of gravity on the statistics of 〈‖rp(t )‖2〉ξ and
gain further insight, we consider the mean-square separations based on the Cartesian components of
rp(t ). That is, we consider 〈|rp

3 (t )|2〉ξ and 〈|rp
1 (t )|2〉ξ , corresponding to the separations in the vertical

and horizontal directions, respectively (recall also that 〈|rp
1 (t )|2〉ξ = 〈|rp

2 (t )|2〉ξ due to axisymmetry
of the statistics).

The FIT results for ξ ∈ [0η, 1η] and ξ ∈ [3η, 4η] are shown in Figs. 5 and 6, where we also show
the Fr → 0 prediction for the vertical dispersion,

〈∣∣rp
3 (t )

∣∣2〉
ξ
− 〈∣∣rp

3 (0)
∣∣2〉

ξ
= (uη�St/Fr)2t2. (12)
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FIG. 7. BIT mean-square separation results in the vertical and horizontal directions from DNS for St1 = 1,
different St2, and with ξ ∈ [0η, 1η]. The red line corresponds to the vertical separations and the blue line
corresponds to the horizontal separations. The dashed black line corresponds to the results without gravity. The
solid black line corresponds to (12) for Fr = 0.052.

For Fr = 0.052, (12) is in almost perfect agreement with the data for all the St1, St2 combi-
nations having |�St| � 0.5. The results show that both the horizontal and vertical dispersion
are enhanced as Fr is reduced. As discussed in Sec. II, while the enhancement of the vertical
relative dispersion is mainly due to the differential sedimentation of the particles, the enhancement
of the horizontal relative dispersion occurs only through the the implicit effect of gravity that
enhances the particle accelerations, and through this the relative velocities. The results also show
that the gravity-driven enhancement of 〈[rp

1 (t )]2〉ξ can persists up to long times in the dispersion
process. Indeed, the enhancement will persist for as long as the particle-pair remains at scales
where the acceleration contribution to w

p
1 continues to be significant. For weakly bidisperse

particle pairs (|�St| � 1), gravity suppresses 〈[rp
1 (t )]2〉ξ by suppressing w

p
1 . As explained in

Sec. II, this is because when |�St| � 1, w
p
1 is dominated by the path integral involving �up

1
rather than the acceleration term, and the statistics of this path integral are reduced by gravity,
since gravity reduces the correlation timescales of �up

1 [24,25]. We note, however, that for
sufficiently large Rλ, and irrespective of |�St|, the particles will eventually disperse to scales
that are large enough for the effects of bidispersity to be weak (i.e., the acceleration contribution
to w

p
1 would be small), at which point the effect of gravity would be to suppress the relative

dispersion.

034302-13



ROHIT DHARIWAL AND ANDREW D. BRAGG

10 -1 10 0 10 1 10 2
10 -2

10 0

10 2

10 4

10 6

r
3

r
1

t/τη

|rp 1
,3

(−
t)
|2

ξ
|rp 1

,3
(0

)|2
ξ

/
η
2

(a)

10 -1 10 0 10 1 10 2
10 -2

10 0

10 2

10 4

10 6

r
3

r
1

t/τη

|rp 1
,3

(−
t)
|2

ξ
|rp 1

,3
(0

)|2
ξ

/
η
2

(b)

10 -1 10 0 10 1 10 2
10 -2

10 0

10 2

10 4

10 6

r
3

r
1

t/τη

|rp 1
,3

(−
t)
|2

ξ
|rp 1

,3
(0

)|2
ξ

/
η
2

(c)

10 -1 10 0 10 1
10 -2

10 0

10 2

10 4

10 6

r
3

r
1

t/τη

|rp 1
,3

(−
t )
|2

ξ
|rp 1

,3
(0

)|2
ξ

/
η
2

(d)

FIG. 8. BIT mean-square separation results in the vertical and horizontal directions from DNS for St1 = 1,
different St2, and with ξ ∈ [3η, 4η]. The red line corresponds to the vertical separations and the blue line
corresponds to the horizontal separations. The dashed black line corresponds to the results without gravity. The
solid black line corresponds to (12) for Fr = 0.052.

The results for BIT horizontal and vertical dispersion are shown in Figs. 7 and 8, and they also
show that gravity has the same qualitative effect as in the FIT case, enhancing and suppressing the
relative dispersion in different regimes.

B. PDFs of horizontal and vertical pair separations

We now consider the FIT and BIT probability density functions (PDFs) of the horizontal and
vertical separations, defined as

PF
1 (r, t |ξ ) ≡ 〈

δ
(∣∣rp

1 (t )
∣∣ − r

)〉
ξ
, (13)

PF
3 (r, t |ξ ) ≡ 〈

δ
(∣∣rp

3 (t )
∣∣ − r

)〉
ξ
, (14)

and similarly for the BIT PDFs PB
1 and PB

3 . Figures 9–11 show the results for these PDFs with initial
separation ξ ∈ [3η, 4η], and for different times. As expected, the results show that gravity affects
PF,B

1 and PF,B
3 in different ways, since gravity only plays an explicit role in the vertical direction.

Consistent with the horizontal and vertical mean-square separations results and the arguments of
Sec. II, gravity shifts the horizontal and vertical separation PDFs towards larger values for pairs
with |�St| � 0.5, and suppresses them for the weakly bidisperse pair (|�St| = 0.1) for the value of
ξ considered.
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FIG. 9. DNS results for PF
1,3(r, t |ξ ) [plots (a), (c), (e)], PB

1,3(r,−t |ξ ) [plots (b), (d), (f)] for St1 = 1, St2 =
0.5 with ξ ∈ [3η, 4η] and (a), (b) t = 0.5τη, (c), (d) t = 2.5τη, (e), (f) t = 20τη. The red line corresponds to
the vertical separations, the blue line corresponds to the horizontal separations, and the black line corresponds
to the results without gravity.

When gravity dominates the vertical dispersion, the following result holds:

lim
Fr→0

PF
3 (r, t |ξ ) = δ(|ξ − uη�St Fr−1t | − r), (15)
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FIG. 10. DNS results for PF
1,3(r, t |ξ ) [plots (a), (c), (e)], PB

1,3(r,−t |ξ ) [plots (b), (d), (f)] for St1 = 1, St2 =
0.9 with ξ ∈ [3η, 4η] and (a), (b) t = 0.5τη, (c,d) t = 2.5τη, (e), (f) t = 20τη. The red line corresponds to the
vertical separations, the blue line corresponds to the horizontal separations, and the black line corresponds to
the results without gravity.

and similarly for PB
3 . Figure 11 shows the results for |�St| = 2 and Fr = 0.052. According to the

nondimensionalized equation for wwwp, namely (5), the differential sedimentation contribution to wwwp

is much larger (an estimate is nearly forty times larger) than the contributions associated with the
turbulence when |�St| = 2 and Fr = 0.052.
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FIG. 11. DNS results for PF
1,3(r, t |ξ ) [plots (a), (c), (e)], PB

1,3(r,−t |ξ ) [plots (b), (d), (f)] for St1 = 1,

St2 = 3 with ξ ∈ [3η, 4η] and (a), (b) t = 0.5τη, (c), (d) t = 2.5τη, (e), (f) t = 10τη. The red line corresponds to
the vertical separations, the blue line corresponds to the horizontal separations, and the black line corresponds
to the results without gravity.

As a result, we might expect that PF
3 (r, t |ξ ) should be close to the delta function prediction

in (15). However, the results in Fig. 11 show that even for this case, PF
3 (r, t |ξ ) shows significant

deviations from a delta function. This occurs because although the settling velocity contribution
for |�St| = 2 and Fr = 0.052 is much larger than the “typical” velocities of the turbulence, due to
intermittency, there are significant regions of the flow where the turbulent velocities are of the same
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order as the settling velocity. This highlights the limitations of using scaling analysis in turbulence,
namely that because it only considers the mean-field behavior of the system, it cannot faithfully
describe how the system behaves during fluctuations of the system about its mean-field behavior. In
order to observe the asymptotic behavior of (15), we would need extremely large values of |�St|/Fr,
and these values would need to be larger as Rλ increases due to the increased intermittency of the
flow with increasing Rλ. In most practical applications of particle mixing and transport in turbulence,
such values may never be obtained, implying that turbulence will always play an important role in
the vertical mixing of settling, bidisperse particles, and its effect cannot be ignored (unless one is
only interested in low-order moments of the dispersion process).

V. CONCLUSIONS

In this paper, we have used DNS to investigate the relative dispersion of settling, bidisperse
inertial particles in isotropic turbulence. We also considered differences in the way gravity and
turbulence affect the particle relative dispersion in the vertical (parallel to gravity) and horizontal
directions. A key motivation for this work stems from the findings of our recent study [25], where
we observed a number of nontrivial effects of the combined influence of turbulence and gravity on
the vertical and horizontal relative velocities of settling bidisperse particles.

We found that for particles with |�St| � 0.5, gravity enhances the mean-square separations
of the particles both forward in time (FIT) and backward in time (BIT), whereas it suppresses
the relative dispersion of weakly bidisperse particles with |�St| = 0.1. We also observed that the
duration over which the particles separate ballistically is much larger when they are subjected to
gravity as compared to the case without gravity, as was also observed in [29] for weakly inertial
particles. For Froude number Fr = 0.052, the vertical relative dispersion is enhanced for the range of
Stokes numbers considered, and the enhancement is primarily due to the differential sedimentation
of the particles. On the other hand, gravity has a nontrivial effect on horizontal relative dispersion,
enhancing the relative dispersion for particles with |�St| � 0.5 and suppressing it for weakly
bidisperse particle pairs (i.e., |�St| � 1). This differing behavior arises from the fundamental
differences in the mechanisms governing the small-scale relative velocities of bidisperse and
monodisperse (and weakly bidisperse) particle pairs, and how these are affected by gravity. We note,
however, that we only considered particles with initial separations �O(10) Kolmogorov lengths. For
larger initial separations, the range of |�St| for which one would observe either the enhancing or
suppressing effect of gravity on the relative dispersion would be different. Nevertheless, the effect
would still occur, just in different portions of the parameter space.

Finally, we considered the FIT and BIT PDFs of the horizontal and vertical separations.
When |�St| = 2 and Fr = 0.052, the PDFs of the vertical dispersion show a substantial effect
of turbulence on the relative dispersion, despite the fact that the differential sedimentation speed
is large. This indicates that even when |�St| � O(1) and Fr � 1, the effect of turbulence on
the vertical dispersion cannot be simply based on the differential settling of the particle pair, as
intermittency allows the turbulence to continue to affect the higher-order moments of the statistics
characterizing the dispersion process. Indeed, in order to observe the asymptotic behavior of vertical
dispersion based purely on the differential settling, one would require extremely large values of
|�St|/Fr, such that, given the parameter regimes in many applications, the effect of turbulence
on the vertical mixing of settling, bidisperse particles may never be ignored (unless one is only
interested in the low-order statistics of the dispersion process).
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