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Orientation dynamics of nonspherical particles under surface gravity waves
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Experiments were conducted with three-dimensional printed disks and rods to study the
orientation dynamics of nonspherical particles under surface gravity waves. Trials were run
with both neutrally buoyant and slightly negatively buoyant particles, which were large
enough that inertia due to their finite size was important. Although the particles had a
broad distribution of initial orientations, over time the waves were observed to focus these
orientations toward a preferred angle that agreed with theory. Negatively buoyant particles
additionally exhibited a tendency to adopt an orientation that maximized vertical drag. The
overall orientation can be described as the result of a competition between the orientation
favored by waves and the orientation favored by settling. The spread about the mean
orientation was also observed to increase with wave strength. Finally, the stabilization of
out-of-plane orientations of disk-shaped particles was observed due to their finite size.
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I. INTRODUCTION

Many natural and industrial flows contain transported particles that are not spherical. The shape
and rotation of nonspherical particles can complicate the prediction of their dynamics and have
been an active topic of recent study. However, much of this work has focused on particles in
the two limits of microscale Stokes flows [1–3] or isotropic turbulence [4], despite the wide range
of relevant situations between these cases. In particular, there has been little investigation of the
dynamics of nonspherical particles in flows driven by surface gravity waves. Waves are a dominant
characteristic of flows near the ocean surface, in estuaries, and along coastlines. Such environmental
flows routinely carry microplastics, algae, sediment, ice, and small organisms, all of which are small
particles that are generically nonspherical. Understanding how waves influence and control the
orientation of these particles is a key question, since the particle orientation determines the lift and
drag forces on the particle. These forces in turn control the settling velocity, an essential parameter
for modeling their transport and position in the water column. Additionally, for active particles such
as zooplankton, the effects of the flow on orientation can control their ability to navigate and explore
their environment [5].

Although some research has been done on pointlike, noninertial spheroids under waves, the
results are not yet fully in agreement. Motivated by understanding the rheology of grease ice, a
theoretical study of small noninertial disks moving under linear deep-water surface gravity waves
argued that the particles will align with the strain field of the waves and tumble at the wave
frequency [6]. More recently, we argued instead that noninertial point particles will adopt a preferred
orientation with an oscillation at the wave frequency, not a tumble; we proved this analytically [7] for
any linear gravity waves and showed that the effect remains when small particle inertia is included
in a numerical study [8]. All of this work, however, treated the particles as pointlike and neglected
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any effects of flow inertia around the particle. But many particles of interest in the ocean fall within
an intermediate size regime where the effects of finite size and inertia become relevant. In particular,
microplastics—that is, plastic particles that are defined to be up to 5 mm in length scale—are large
enough that the point particle approximation may not be fully valid.

When finite particle mass is included, the particles will also tend to sediment. The settling
velocity of a particle controls its time in the water column, directly influencing its transport and
dispersion. The effects of inertia on sedimenting spherical particles has been studied [9], as well
as the interaction between particle inertia and turbulence [10,11]. Less is known, however, about
settling nonspherical inertial particles. It has been argued that they should adopt a preferred settling
orientation that is a function of shape and Reynolds number; but turbulence can diffuse the particle
orientation about this preferred value [12]. This diffusive effect is also a function of the particle
shape and the turbulence [13]. These results suggest the possibility of competition between the
tendency of the settling of a particle to set a preferred orientation and the tendency of the turbulence
to scramble the orientation. Given that we have shown that waves can also set a preferred orientation
[7,8], the orientational behavior of settling nonspherical inertial particles in wavy flows is very
difficult to predict.

In this paper we present experimental results on the orientation of such particles under surface
gravity waves. We consider both negatively buoyant (i.e., settling) and nearly neutrally buoyant
(but still finite-sized) particles. When particles are introduced into the flow with a distribution of
orientations, we confirm that the waves can over time focus this distribution toward the preferred
orientation we previously found theoretically [7,8]. As this orientation is not the same as what would
be set by settling alone, we thus show that even without turbulence, waves are sufficient to scramble
the orientations of settling particles. However, we also find evidence for competition between the
effects of settling and waves. Finally, we also find that inertia due to finite particle size stabilizes the
out-of-plane orientation in waves, even though it is unstable for noninertial point particles.

We begin below by further discussing the context of our work in Sec. II. We then describe our
experimental methods in Sec. III, including the wave facility, the measurement technique, and the
fabrication of our particles. Our results are discussed in Sec. IV. Finally, we summarize and discuss
our findings in Sec. V.

II. BACKGROUND

Although the orientation dynamics of infinitesimal, noninertial particles is completely described
by Jeffery’s equation [14], less is known analytically for particles that have inertia relative to the
flow. Such inertia can be due to both size and density. Most of the work on nonspherical inertial
particles has considered the effects of density [15–17], since that is easier to introduce as a small
parameter. There are still many open questions, however, about particles that are inertial due to their
finite size [4,18,19].

Finite-size inertia has typically been studied in turbulent flows via laboratory experiments, as
it is difficult to capture faithfully in numerical models. Some experiments have been conducted
with large, near neutrally buoyant particles in homogenous isotropic turbulence to assess the effects
of finite size on rotation statistics [20,21]. In these isotropic flows, the orientation statistics of
the particles remain isotropic as well. Settling experiments have been conducted of finite-sized,
nonspherical particles, but mainly in quiescent flows [22–25] or turbulence [26,27]. Particle inertia
has also been experimentally investigated with fibers in turbulence, and it was shown that it can
have a non-negligible effect on particle rotation statistics [28]. Therefore, this experiment expands
on the current body of research by analyzing the orientation of inertial nonspherical particles in an
anisotropic, unsteady flow.

For small, noninertial spheroids in flows driven by surface gravity waves, we previously found
that particles tend to a set of stable orientations. Using both theoretical analysis and numerical
simulations, we showed that particles settle onto a stable oscillation in the plane of the waves about
a preferred orientation that is only a function of the shape of the particle [7,8]. Going forward, we
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FIG. 1. Coordinate system and geometry of the 3D-printed particles. Elongated and flattened cylinders
were used to approximate rods and disks, respectively. Their orientation is described by a unit vector p directed
along the symmetry axis. The azimuthal angle θ captures the orientation of the particles out of the plane of the
wave motion, and the polar angle φ is the angle measured from the vertical (z) axis.

will call this orientation the wave-preferred orientation. For settling (that is, negatively buoyant)
nonspherical particles in quiescent flow, studies have shown that settling particles with intermediate
particle Reynolds numbers in the range 5.5 < Rep < 200 adopt stable orientations that maximize
their drag [25,29]. In this case, maximizing drag corresponds to the particles horizontally aligning
their longest length scale. We will call this orientation the settling-preferred orientation.

We describe the particle’s orientation by a unit vector p pointing along its axis of symmetry,
as shown in Fig. 1. For both the wave-dominated case and the settling-dominated case, the polar
angle φ is sufficient to characterize the preferred orientation; we denote the wave-preferred angle as
φ∗

w and the settling-preferred angle as φ∗
s . Settling disks (that is, oblate particles) have φ∗

s = 0, and
settling rods (that is, prolate particles) have φ∗

s = π/2. These orientations correspond to maximized
vertical particle drag, which agrees with theory [30] and preliminary experiments conducted with
the particles falling in quiescent flow. Theoretically, the azimuthal angle θ∗

s can take any value in
these cases.

In the limit of vanishing particle inertia, the wave-preferred angle is only a function of shape and
is given by tan φ∗

w = � where � is the particle aspect ratio [7,8]. Assuming that the waves lie in the
x-z plane as shown in Fig. 1, θ∗

w = 0. This orientation is solely a function of the particle’s shape, but
the waves also drive an oscillation about this orientation with an amplitude that is both a function
of the particle’s shape and the wave characteristics [7].

Finally, in both waves and steady shear flows, the log-rolling mode (that is, where the particle’s
axis of symmetry is perpendicular to the shear plane) is expected to be unstable for noninertial
particles. However, theoretical [16,31] and numerical [32,33] work has suggested that both weak
particle and fluid inertia can in fact stabilize this mode for oblate particles.

III. METHODS

A. Flow facility

Laboratory experiments were conducted in the Bob and Norma Street Environmental Fluid
Mechanics Laboratory at Stanford University. The experimental setup consisted of an enclosed
rectangular tank measuring 488 cm long, 60 cm deep, and 30 cm wide. A vertically oscillating
triangular wavemaker was positioned at one end of the tank; the opposite end had a horse-hair beach
to dissipate energy and prevent wave reflections from the back wall. A schematic of the experiment
is shown in Fig. 2. The tank was filled with deionized water, and the density was then adjusted using
salt and measured using an Anton-Paar density meter (model DMA4500).

The right-angled wavemaker plunger was 40 cm tall, 30 cm wide, and 25 cm long so that
its aspect ratio was 1.6, which falls within the parameter range investigated for wave making in
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FIG. 2. Schematic (not to scale) of the experimental setup. Waves are generated on the left side of the tank
by a plunging wave maker and are dissipated on the right side by the horse-hair beach. A laser is directed
upward through the bottom of the tank to illuminate tracer particles. Bright LEDs provide illumination for the
nonspherical particles through the side of the tank. The horse-hair beach is arranged to maximize the amount
of horsehair at the top of the water column where the waves are strongest but minimize its lateral extent into
the tank.

Ref. [34]. A train of progressive waves could be generated with varying amplitudes and wavelengths
by changing the wavemaker stroke amplitude and frequency. The wave amplitude was measured
using a wave gauge downstream of the field of view.

B. Particles

To allow maximal control over the shape and size of the nonspherical particles, the particles
were manufactured by Sculpteo and Protolabs using Selective-Laser-Sintering three-dimensional
(SLS 3D) printing. This 3D printing technique was used because of its sub-millimeter accuracy
and compatibility with nylon 12, which has a specific gravity (SG) of 1.01 and thus allows us to
manufacture particles denser than fresh water. This SG allowed us to conduct experiments with
either negatively and neutrally buoyant particles easily by manipulating the density of the water in
the wave tank using NaCl; we denote the ratio of the particle density ρp to the fluid density ρ by β.
However, the density of the printed particles was not always identical and equal to that of the source
material due to the manufacturing process, and so we measured the particle density after printing to
ensure accurate experimental conditions. To measure the particle densities, we placed the particles
in a standard solution of specific gravity 1.01. The solution density was then was altered until most
of the particles were neutrally buoyant and therefore in suspension. The precision (captured by the
error bars reported in Table I) is reported as the range between the density where all of the particles
were negatively buoyant to the density where none of them were.

Nylon is also a convenient material choice because it absorbs very little water. The equilibrium
water absorption for nylon 12 is only 1%, so the particle size varied negligibly when soaked in water
(unlike, say, particles made of hydrogel). Nevertheless, we stored the particles in water when not in

TABLE I. Particle sizes and shapes, settling velocities, and particle Reynolds numbers. 95% confidence
intervals are reported for the particle length scales and settling velocities.

Particle � h (mm) d (mm) ws (cm/s) ρp (kg/m3) Rep

Large disk 0.16 1.15 ± 0.01 7.0 ± 0.01 0.93 ± 0.002 1.005 ± 0.001 66
Small disk 0.22 1.1 ± 0.01 5.0 ± 0.01 0.91 ± 0.002 1.005 ± 0.001 46
Short rod 4.1 6.2 ± 0.01 1.5 ± 0.01 0.70 ± 0.002 1.005 ± 0.001 46
Long rod 7.8 6.75 ± 0.04 0.86 ± 0.02 0.90 ± 0.006 1.01 ± 0.002 60
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FIG. 3. Photo of the particles used in the experiments after having been dyed with Rhodamine. Clockwise
from the top left are small disks, large disks, long rods, and short rods. The ruler provides a scale in centimeters.

use to ensure that they maintained their maximum water absorption. Finally, to make the particles
easier to illuminate, we cooked them in a solution of Rhodamine 6G to make them fluorescent [35].

A set of 20–25 particles was printed in each of four different shapes, which we label long rods
(aspect ratio � = 7.8), short rods (� = 4.1), small disks (� = 0.22), and large disks (� = 0.16).
The aspect ratio � was defined to be the ratio of the length of the particle along its axis of symmetry
to the length of the particle along the perpendicular axis. The (measured) properties of the particles
are shown in Table I. The lengths reported in Table I are averages of all the manufactured particles;
the 95% confidence interval for all of the particles was on the order of 0.01 mm. A sample image of
the particles used in the experiment is shown in Fig. 3.

Particle settling velocities ws were measured by letting the particles fall in quiescent fresh water
in the same tank in which the experiments were conducted. The particle Reynolds number Rep =
lws/ν is based on ws, their largest length scale l , and the kinematic viscosity of water ν. In fresh
water, all of the particles have transitional Reynolds numbers; thus, Stokes-flow approximations do
not necessarily hold for calculating the forces on the particles.

The particles were released into the wave field from a small suspended swing. Particles were
placed on the swing, which sat above the quiescent water level in the center of the tank. When
the waves were initiated, the particles were pushed off the swing by the passing waves. After the
particles were released, the swing was lifted out of the water. This process allowed a repeatable
particle release with minimal disturbance to the flow.

C. Image processing and data analysis

Both the flow velocity and the printed particle velocities were measured using optical particle
tracking. To measure the flow, we used small (45–53 μm diameter), neutrally buoyant fluorescent
orange polyethylene microspheres purchased from Cospheric. These particles were small enough
that they accurately follow the flow in our experiments [with Stokes numbers of St ∼ O(10−6)]. The
tracers were illuminated by a vertical laser sheet made using a cylindrical lens and an Nd:YAG laser
(frequency-doubled to operate at 532 nm) positioned below the tank, while the 3D-printed particles
were illuminated with high-power green (530 nm) LEDs. Particles were imaged with a Photron
FASTCAM SA5 CMOS camera at 60 or 125 frames per second (depending on the flow speed)
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TABLE II. Wave cases and nondimensional parameters, including the wave frequency ω, amplitude A,
wave number k, wave steepness kA, relative depth kH , and reflection coefficient Rw .

Wave case ω (rad/sec) A (cm) k (1/m) kA kH Rw

WC2 2π 3.5 4.3 0.15 1.8 0.03
WC3 3π 3.3 8.8 0.29 3.7 0.02
WC4 4π 2.3 14.1 0.32 5.8 0.01

with a resolution of 1024 × 1024 pixels. The camera was equipped with a Sigma 30 mm f/1.4
EX DC HSM lens and an orange bandpass filter (560–600 nm).

Image processing was more challenging than in many cases due to the surface gravity waves,
which focus light from both the laser sheet and the LEDs in a time-varying manner. To lessen this
effect, separate background images were created for each wave phase. These background images
were computed by taking the median of multiple images (between 10 and 50, depending on the wave
frequency and frame rate) at a given wave phase. The images were also calibrated to remove lens
distortion using photos of a regular checkerboard pattern. This phase-resolved background-image
approach allowed us to accurately track particles below the surface; however, particles at or near
the surface could not be tracked due to reflections and shimmering effects. Finally, images were
processed to acquire particle tracks and velocities using a predictive tracking algorithm [36,37]. A
Gaussian fit to the pixel brightnesses was used for subpixel accuracy for the tracer particles; for the
larger nonspherical particles, the particle centroid was used.

We first performed a set of flow characterization experiments to determine the velocity field in
the flow using tracer particles. Once we had established that the flow fields were well behaved and
consistently produced the same velocity fields, we repeated the experiments with only the large
nonspherical particles of interest. We were careful to ensure that the setup was identical so that the
mean wave characteristics measured from the tracer particles could be applied to the analysis of the
large nontracer particles.

From both theoretical arguments and empirical evidence, we expected the large, nonspherical
particles to orient themselves in the plane of the waves [8]. Thus, we assumed that the particles with
imaged aspect ratios approaching their physical � had their axes of symmetry aligned into the plane
of the waves and thus in the plane of the field of view. This assumption allowed us to relate the angle
of the particles in the image to the particle’s polar angle φ, as shown in Fig. 1. Note that due to the
symmetries of the problem, we report only values of φ between 0 and π/2.

D. Wave cases and flow characterization

Our flow facility was capable of making small-amplitude deep water waves as well intermediate-
depth waves. For all experiments, we maintained a fixed water depth of H = 41.5 cm. The wave
frequency ω was set by the frequency of the wave plunger, and the wave amplitude A was measured
at the surface with a wave gauge. The wave number k was calculated via ω2 = gk tanh kH (where
g is the acceleration due to gravity), the dispersion relation for linear surface gravity waves. This
calculation was confirmed a posteriori from measurements of the velocity gradients.

We consider three wave cases here, which we label by their wave frequency as shown in Table II.
Each case had a different frequency and therefore a different relative depth kH . WC2 approaches
the shallow water limit (kH < π/2), WC4 approaches the deep water limit (kH > 2π ), and WC3
is an intermediate-depth case. The wave steepness at the surface is given by the nondimensional
parameter kA. WC2 has a low steepness, whereas WC3 and WC4 are both very steep at the surface.
For each wave case, data were collected and averaged over an ensemble of three 90 s runs.

We characterized the wave velocity fields using particle-tracking velocimetry, as described above.
To construct velocity fields, we interpolated the tracer data onto a 0.3 × 0.3 cm grid and phase-
averaged over the two-dimensional field of view. These measurements were then compared to the
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predictions from linear wave theory. Under this assumption, the velocity components for an arbitrary
water depth H are given by

u(x, z, t ) = Aω
cosh[k(z + H )]

sinh(kH )
cos(kx − ωt ) (1)

and

w(x, z, t ) = Aω
sinh[k(z + H )]

sinh(kH )
sin(kx − ωt ). (2)

For these equations, the origin (z = 0) lies at the free surface. To compare with theory, the gridded
velocity data was fit to a sinusoid in time at each point in space. The mean value and amplitude of
the sinusoid were then determined. The wave phase is a function of x and t , but the amplitude of the
velocity signals is only a function of z. Thus, the amplitudes of the measured velocities (U,W ) were
found as a function of depth. We note that due to the closed nature of the tank, a reverse current
set up near the bottom to balance the Stokes-drift mass transport at the surface. Thus, the mean
horizontal velocities do not vanish. We account for this reverse current by adding a mean drift u to
the horizontal velocity, so that we have

u(x, z, t ) = U (z) cos(kx − ωt ) + u (3)

and

w(x, z, t ) = W (z) sin(kx − ωt ). (4)

We plot the measured U and W values versus the predictions from linear wave theory in Figs. 4(a)
and 4(b). The agreement is very good, except very near the free surface where the imaging is noisy.
Finally, we also note that the horse-hair beach at the end of the tank minimized wave reflections.
This was quantified using the approach for colocated horizontal and vertical velocity measurements
developed in Ref. [38]. The reflection coefficient Rw reported in Table II is given by Ar/A, the ratio
of the reflected wave amplitude to the incident wave amplitude. The small values of Rw for all of
our experimental cases indicate that wave reflection is negligible in our facility.

Stokes drift velocities were measured directly from particle tracks. Tracks longer than two wave
periods were used to calculate mean displacements. These particle tracks were then binned by
depth and averaged over the data records. In Fig. 4(c), these data are plotted and compared to the
theoretical prediction for the Stokes drift velocity us given by

us(z) = A2ωk
cosh[2k(z + H )]

2 sinh2(kH )
. (5)

Note that there are non-negligible Stokes drift velocities at the bottom of the tank. These arise due
to the wave streaming [39] induced by the interaction of the bottom boundary layer with the waves.
The streaming is confined to the bottom 2 cm of the tank and thus can be ignored in our analysis,
since we consider only the upper portions of the water column.

Finally, we note that since the wave strength decays with depth in our experiments, we can
examine particles at different depths in the water column to expand our range of wave cases studied.
To do so, we define a depth-dependent nondimensional wave shear ka(z). First, we can define a
depth-dependent shear based on the analytical wave equations (1) and (2). The equations for du/dz
and dw/dx are identical oscillations:

du

dz
= dw

dx
= kAω

sinh[k(z + H )]

sinh(kH )
cos(kx − ωt ). (6)

Normalizing by the wave frequency ω and removing the oscillation, we have

ka(z) = kA
sinh[k(z + H )]

sinh(kH )
. (7)
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FIG. 4. Mean flow characteristics. Measured average wave amplitudes (a) U and (b) W as a function of
depth for the three wave cases (symbols) are plotted along with the predictions from linear wave theory (solid
lines). (c) Measured Stokes drift us velocities (symbols) as a function of depth along with the theoretical
predictions (solid lines). (d) Measured mean Eulerian flow velocities u as a function of depth. For all panels,
case WC2 is shown with circles, case WC3 is shown with triangles, and case WC4 is shown with squares.

We can use this to formulate a shear particle Reynolds number, Res = γ l2/ν defined by the shear
rate γ , the longest length scale of the particle l , and the kinematic viscosity of water ν. In this case,
γ = ka(z)ω. The value of Res represents the effect of fluid inertia on the particle’s orientation, while
the effect of particle inertia is typically represented with the product βRes [17]. In this case, both
numbers are approximately equal as β ≈ 1.

IV. RESULTS

Here we describe the measured effects of waves on both negatively buoyant and nearly neutrally
buoyant nonspherical particles. Our results are largely consistent with our previous theoretical
work on idealized particles [7,8]. We find that particles tend toward a (wave-averaged) preferred
orientation, but that this effect is weaker when the particles are also settling. Indeed, we observe
a competition between the (differing) wave-driven and settling-driven preferred orientations. We
also show that the finite inertia of the particles in this experimental study can stabilize the out-of-
plane log-rolling position, even though this position is unstable for noninertial particles, and β is
close to 1.
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FIG. 5. Time series of the polar angle φ for several neutrally buoyant (β = 1) long rods in WC2 waves.
Though their initial φ values were uncontrolled, the particles all settle onto an oscillatory limit cycle at the
wave frequency about a similar angle. The wave-preferred angle φ∗

w expected from theory is marked with a
dashed line.

A. Temporal effects of waves: Orientation focusing

As described above, in our previous theoretical and numerical work we found that waves drive
nonspherical particles to oscillate about a preferred polar angle φ∗

w. Experimentally, we find that this
result indeed holds for the finite-sized particles we consider here. An example of this behavior is
shown in Fig. 5, where the polar angle φ of several neutrally buoyant long rods in wave case WC2
is plotted over time. In each case, φ approaches φ∗

w with a superimposed oscillation at the wave
frequency. Even though each rod had a different initial orientation, they all oscillate about a similar
angle after approximately 12 wave periods. The stability of this orientation can also be seen in Fig. 5
by the perturbation away from this preferred orientation around t/T = 20 that is quickly damped.

This temporal angular focusing is also apparent statistically. We computed the probability density
functions (PDFs) of φ for long rods at each instant in time, as shown in Fig. 6. Data in this case were
taken only from particles in the top part of the water column, where ka(z) � 0.05, since particles
that are lower in the water column may not actually feel the waves. Figure 6(a) shows the evolution
of these PDFs with time for neutrally buoyant particles, and the development of a peak in the PDF
at φ∗

w is clearly visible as time advances. However, there is also a second peak at φ = π/2, which in
this case is φ∗

s , the preferred angle for settling rods. This peak is even more prominent for negatively
buoyant rods, as shown in Fig. 6(b). In both of these cases, we observe bimodal PDFs of φ with
peaks at both φ∗

w and φ∗
s , suggesting that there is a competition between waves and settling in

determining the orientation of these particles. When settling is stronger than the wave action, the
peak at φ∗

s is more prominent, and vice versa.
The statistical moments tell a similar story. The mean φ and standard deviation σφ are shown for

neutrally buoyant long rods in Fig. 7 and for negatively buoyant short rods in Fig. 8. These plots
show that when the particles are first released into the flow, they have nearly random orientations. As
the particles spend more time in the waves, however, the distribution of particle orientations becomes
less uniform: the standard deviation of the particle orientations decreases, and the mean tends toward
a preferred value close to φ∗

w. We also, though, observe some dependence of the timescale over
which this orientation focusing occurs on the particular characteristics of the waves, leading us to
consider the effects of wave strength below.
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FIG. 6. PDFs of the polar angle φ of long rods in waves with (a) β = 1.01 and (b) β = 1 at different
times, as indicated by the shading. The dotted line shows the theoretical wave-preferred angle φ∗

w; the settling-
preferred angle is φ∗

s = π/2. Data are combined from all three wave cases but only for particles in regions
where ka(z) � 0.05.

Thus, our measurements show that nonspherical particles in waves do not randomly sample all
angles (as would be expected for tumbling particles), but rather that over time the distributions of
their orientations sharpen. However, we observe not unimodal PDFs, as would be expected if a sin-
gle physical mechanism were setting the preferred alignment, but rather bimodal PDFs, suggesting
competing effects—in this case between waves and gravitational settling. This interpretation in turn
suggests that by varying the strength of the waves, we ought to see the orientation PDFs change:
once the waves are weak enough, settling alone should dominate the particle dynamics. We can
test this hypothesis by considering the particles at different depths in the water column, since the
nondimensional wave strength ka(z) is a function of depth.
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t / T
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/10

/5
(b)

0 10 20 3 0 400 40
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/4

3 /8

/2
(a)

FIG. 7. Evolution of the (a) mean and (b) standard deviation of the polar angle φ of neutrally buoyant
(β = 1) long rods in waves as a function time. Data from WC2, WC3, and WC4 are shown by •, �, and �,
respectively. For all cases, data are included only for particles in regions with ka(z) � 0.05.
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FIG. 8. Evolution of the (a) mean and (b) standard deviation of the polar angle φ of negatively buoyant
(β = 1.005) short rods in waves as a function time. Data from WC2, WC3, and WC4 are shown by •, �, and
�, respectively. For all cases, data are included only for particles in regions with ka(z) � 0.05.

B. Effects of wave strength

To isolate the effects of the wave strength on the particle orientations, we considered only data
from particles after they had evolved in the wave field for more than 10 wave periods; we found
empirically that after this amount of time had elapsed, particle statistics were stationary in time.
To additionally remove any residual effects of wave-driven oscillations and the phase dependence
they may introduce, we also averaged the data over wave periods so that we could study the mean
particle orientations as opposed to the transient wobble.

In Fig. 9 we plot PDFs of φ for these data for negatively buoyant large disks and long rods at
different depths in the water column. As quantified by the depth-dependent wave shear ka(z) defined
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FIG. 9. PDFs of the polar angle φ for (a) large disks (β = 1.005) and (b) long rods (β = 1.01) for different
values of the nondimensional wave shear ka(z), as indicated by the shading. The dotted lines show the
theoretical wave-preferred angle φ∗

w . The preferred settling angle is φ∗
s = 0 for the disks and φ∗

s = π/2 for
the rods. Data are combined from all three wave cases, but only for particles that had evolved in the waves for
at least 10 wave periods.
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FIG. 10. Standard deviation of the wave-period-averaged polar angle φ as a function of nondimensional
wave shear ka(z) for different particle shapes: long rods (closed triangles), short rods (open triangles), large
disks (closed circles), and small disks (open circles). The data come from β = 1.005 for all shapes except long
rods which have β = 1.01, and data are included only for particles that had evolved in the waves for at least
10 wave periods.

above, particles lower in the water column feel the effects of the waves less strongly. For large ka(z),
both disks and rods show a strong tendency to be oriented at the wave-preferred angle φ∗

w. But as
ka(z) decreases, the peak in the PDFs moves toward the settling-preferred angle φ∗

s . This behavior
supports our interpretation that the particle orientation is controlled by a competition between wave
motion and settling.

However, even though the PDFs show peaks at φ∗
w and φ∗

s , they are not δ functions: we always
observe spread in the PDFs. To quantify this spread and quantify how it depends on the wave
strength, we plot σφ for all particle shapes as a function of ka(z) in Fig. 10. For all particle shapes,
we observe an overall increase of σφ with ka(z), meaning that as the effective strength of the waves
grows, so does the variability in the particle orientation. In Fig. 10 there is a slight difference in
the relationship between the angle standard deviation and the nondimensional wave shear for the
long rods. However, they are heavier than the rest of the particles, which we expect to be the
cause of this difference seen in the data. Thus, while waves can focus particle orientations over
time, the competition between waves and settling—and therefore the existence of two preferred
orientations, φ∗

w and φ∗
s —means that the presence of waves can also have a scrambling effect on

particle orientation.

C. Out-of-plane orientations

We have previously shown theoretically that there are fixed points in the dynamics of noninertial,
infinitesimal spheroids for both θ = 0 and θ = π/2; that is, for spheroids that lie in the plane of
the wave motion and orthogonal to it [7]. In the noninertial case, the θ = π/2 case is unstable,
and so the particles will naturally orient themselves to lie in the plane of the waves. However,
when inertia is introduced (as it is in these experiments), the stability of these orientations may
change.

The out-of-plane orientation of spheroids is known in the literature on particles in shear flows as
log rolling, in part because particles are observed to rotate about their symmetry axis which, in this
orientation, is aligned with the vorticity axis. Shear flows are, however, rotational, whereas surface
gravity waves are not; thus, we may expect to see different behavior here. To check for log rolling,
we marked our disks with a cross that could be seen in our images. However, unlike in the shear
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FIG. 11. PDFs of the apparent aspect ratio �obs of large disks with (a) β = 1.005 and (b) β = 1 for different
values of the nondimensional wave shear ka(z), as indicated by the shading. Data are combined from all
three waves cases over the entire experimental record. The dashed line indicates the actual aspect ratio of the
particles.

flow case, we did not observe evidence of log rolling: over the course of the experiments, only a
small drift in the orientation of the cross was observed on timescales much longer than the wave
period.

Just because the particles did not rotate about their symmetry axis, however, does not mean that
they did not sometimes orient orthogonal to the plane of the waves. To quantify this effect, we
measured the apparent particle aspect ratio �obs as observed in the images. �obs = 1 corresponds
to a particle aligned orthogonal to the wave plane, since both the rods and disks had circular cross
sections. �obs values closer to the actual aspect ratio of the particle �, however, mean that the particle
is aligned in the plane of the waves.

We show PDFs of �obs for large disks in Fig. 11 and for small disks in Fig. 12. In both cases,
we include data for both negatively buoyant and neutrally buoyant particles, as well as for particles
with different values of the wave shear ka(z). Neutrally buoyant disks have a strong tendency to
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FIG. 12. PDFs of the apparent aspect ratio �obs of small disks with (a) β = 1.005 and (b) β = 1 for different
values of the nondimensional wave shear ka(z), as indicated by the shading. Data are combined from all
three waves cases over the entire experimental record. The dashed line indicates the actual aspect ratio of the
particles.
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align orthogonal to the wave plane for all values of ka(z). There is more variation with the wave
strength for negatively buoyant disks; both large and small negatively buoyant disks are more likely
to orient out of plane for higher values of ka(z). These results suggest that waves stabilize the
out-of-plane orientation for these particles, and that settling destabilizes it. It appears that it is
the finite size of the particles that leads to this effect, since in the neutrally buoyant case, finite
size is the only difference between the experimental conditions and the theory that predicts that
this position is unstable. Finally, we note that while we show data here only for disks, we also
observed examples of rods oriented out of plane. However, as they are more difficult to measure
in this orientation due to their small cross-sectional area, our data for out-of-plane rods are quite
noisy.

We also observe that transitions occur in the data in Figs. 11(a) and 11(b) and Fig. 12(a) between
particles aligned out of plane and in the plane of the waves. As we described in Sec. III D, we can
interpret ka(z) to form a shear particle Reynolds number Res which can then be related to similar
transitions to log rolling seen in oblate particles in shear flow. The majority of particles are in the
log-rolling orientation in our experiments for Res � 30 for neutrally buoyant large disks, Res � 100
for negatively buoyant large disks, and Res � 45 for negatively buoyant small disks. It should be
noted that these values of Res are not directly comparable to values in the shear flow literature
because in this case the particles feel an oscillating shear flow. However, the overall trends agree
with the work of Rosén et al. [17] who found that small oblate particles were stabilized in their
log-rolling mode in steady shear flow with intermediate Res values, and that the effect of both small
particle and fluid inertia acted to stabilize the log-rolling mode.

These data show that waves can stabilize negatively buoyant, settling disks in the log-rolling
orientation. The log-rolling orientation presents the particle’s minimum surface area in the vertical
direction. In the absence of flow, these particles tend to maximize their vertical drag, but the waves
can instead orient them such that their vertical drag is minimized. This is an important result in the
context of predicting in situ settling velocities of particles in the ocean.

V. CONCLUSIONS

Our experimental findings both confirm and expand on our previous theoretical results for the
behavior of noninertial particles under surface gravity waves. We find that finite-sized particles
that are nearly neutrally buoyant tend to adopt either their wave-preferred angle or their settling-
preferred angle; which of these angles dominates the dynamics is controlled by the wave strength
and the particle density. We also find, though, that increased wave strength leads to a larger angular
spread about this preferential orientation. Finally, we show that waves can stabilize out-of-plane
orientations for finite-sized disks, contrary to theoretical results for noninertial spheroids. However,
this orientation is destabilized by settling.

Our results have potentially significant results for predicting the transport of nonspherical
particles in wave-dominated flows, such as those in the upper ocean, since particle orientation is
coupled to translation through drag and lift forces. Accurately accounting for the dynamical biases
we have found in the particle orientations is therefore essential for predicting the residence time of
a particle in the water column and thus the horizontal distance it can be transported. We anticipate
that these effects will have important ramifications for the future modeling of, for example, the
dispersion of marine microplastics.
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