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Probability density functions (PDFs) give well-rounded statistical descriptions of
stochastic quantities and therefore are fundamental to turbulence. Wall-bounded turbulent
flows are of particular interest given their prevalence in a vast array of applications,
but for these flows the scaling of velocity probability distribution is still far from
being well founded. By exploiting the self-similarity in wall-bounded turbulent flows
and modeling velocity fluctuations as results of self-repeating processes, we present a
theoretical argument, supported by empirical evidence, for a universal velocity PDF scaling
in high-Reynolds-number wall turbulence.
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I. INTRODUCTION

Wall-bounded turbulent flows [1] are prevalent in a vast array of applications, from environmental
flows, such as their role in gas exchange at the air-sea interface through the atmospheric surface
layer, to engineering, where these flows account for over 50% of the drag through skin friction
on aircraft and over 95% of the energy losses in long pipe transport networks. As quantities
including velocity and pressure in a wall-bounded turbulent flow are generally stochastic (although
the Navier-Stokes equation is deterministic), probability distributions are a useful tool for describing
turbulence. A notable example is the use of the probability density function (PDF) method in
turbulence combustion where a set of transport equations for the velocity-composition PDFs is
solved [2,3].

The study of velocity PDFs in wall-bounded flows dates back to the 1950s [4]. The focus was
on the logarithmic layer within which the flow is self-similar. Dinavahi et al. [5] concluded that
the streamwise velocity PDF, i.e., P(u), is independent of both the Reynolds number and the
wall-normal distance in the logarithmic region. The proposed self-similarity was later refined by
Lindgren et al. [6], who postulated a different universal velocity PDF scaling, i.e., P(u/urms),
where urms is the root mean square of the streamwise velocity fluctuation. These early works
are, by and large, focused on the streamwise velocity component. The arguments are usually
heuristic and the postulated scalings are compared to data at only low and moderate Reynolds
numbers, where the extent of the logarithmic range is limited [7]. Due to the developments in
experimental measurement techniques and high performance computing, data at high and extreme
Reynolds numbers have become available from both laboratory experiments [8–10] and high-fidelity
direct numerical simulations (DNSs) [11–13]. Figure 1(a) shows the streamwise velocity PDFs in
boundary layer flows at friction Reynolds numbers from Reτ ≈ 2800 to Reτ ≈ 13 000 and Fig. 1(b)
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FIG. 1. (a) Streamwise velocity PDF in the logarithmic layer, i.e., 3
√

Reτ < z+, z/δ < 0.2, where Reτ is
the friction Reynolds number, z is the wall-normal coordinate, and δ is the boundary layer height. Details of this
data set are presented later. Data at different Reynolds numbers are color coded. For data at a given Reynolds
number, darker colors are used for velocities closer to the wall. (b) Same as (a) but plotted as a function of
u/urms, where urms is the root mean square of the streamwise velocity fluctuation.

shows the same PDFs but as a function of u/urms. While a better data collapse is found for P(u/urms),
it is probably clear from Fig. 1 that neither P(u) nor P(u/urms) is universal. It is therefore timely to
revisit the scaling of velocity PDFs in wall-bounded turbulent flows.

The rest of the paper is organized as follows. In Sec. II we use Townsend’s attached-eddy model
[14–16], the hierarchical random additive model [17–20], and the large-deviation theory to make
predictions of the scaling of velocity PDFs in high-Reynolds-number wall-bounded flows. The
discussion focuses on the scaling of the tails of velocity PDFs. Details of the data sets are presented
in Sec. III. The predicted scalings are compared to experimental measurements and numerical
simulation data in Sec. IV. Concluding remarks are given in Sec. V.

II. THEORY

Invoking Townsend’s attached-eddy hypothesis [14,16–18] and using data up to Reτ ≈ 13 000,
in this work we will show that the tails of the velocity PDF in wall-bounded flows follow the
scaling exp[−Nz fi(ui/Nz )] in the logarithmic range at both moderate and high Reynolds numbers,
where the scaling factor Nz ∼ ln(δ/z) ∼ 〈u2

i 〉 ∼ ln{〈exp[q0ui(z)]〉} (i = 1, 2), u1 and u2 are velocity
fluctuations in the streamwise and the spanwise directions, respectively, fi (i = 1, 2) is a generic
function, z is the wall-normal distance, 〈·〉 is the ensemble average of the bracketed quantity, and q0

is a fixed real number.
According to Townsend’s attached-eddy hypothesis, high-Reynolds-number wall-bounded flows

may be modeled as collections of wall-attached eddies [14,15]. A primitive flow quantity, e.g.,
velocity, in the logarithmic region can be computed by adding up incremental contributions from all
wall-attached eddies, which may be modeled as random addends, i.e., ai and bi [18,21],

u =
Nz∑

i=1

ai, v =
Nz∑

i=1

bi, (1)

where the number of addends is

Nz =
∫ δ

z
ρ(z)dz ∼ ln(δ/z). (2)

A self-repeating process similar to the one in Eq. (1) was previously used to generate fractals and
intermittent turbulent dissipation signals [22,23], and depending on the statistical properties of ai

and bi, the resulting streamwise and spanwise velocity signals can have very different statistical
properties. Here ρ(z) is the eddy population density, and because the eddies are wall attached and
space filling, ρ(z) scales as ∼1/z and δ is the boundary layer height. Since the attached eddies are
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TABLE I. Details of the hot-wire measurements. Here T is
the time of the measurement, dt is the temporal resolution, the
superscript + indicates normalization by wall units, and U∞ is the
freestream velocity.

Reτ TU∞/δ dt+ U∞ (m/s) uτ (m/s)

2700 2.13 × 104 0.542 20.0 0.733
4200 1.79 × 104 0.508 20.0 0.710
5800 1.56 × 104 0.476 22.0 0.687
7800 1.38 × 104 0.466 20.1 0.683
10 000 1.59 × 104 0.444 20.0 0.659
13 000 1.16 × 104 0.410 20.0 0.639

self-similar and noninteracting, both ai and bi are independent and identically distributed random
addends. The last modeling assumption conveniently lends u and v to the large-deviation theory
(LDT). According to the LDT [24], for a reasonably large Nz, the far tail of the streamwise velocity
PDF P(u) is

P(u/Nz ) ∼ exp[−Nz f (u/Nz )], (3)

where the function f is

f = L[τ (q)], (4)

with

τ (q) = ln[〈exp(qa)〉] = ln[〈exp(qu)〉]/Nz. (5)

Here L[·] is the Legendre transformation of the bracketed function.
The number of addends, i.e., the scaling factor Nz, is ∼ ln(δ/z) [Eq. (2)], but it could also be a

statistic that follows a ln(δ/z) scaling. It follows from Eq. (1) that both

〈u2〉 =
〈(

Nz∑
i=1

ai

)2〉
= Nz〈a2〉 +

∑
i �= j

〈aia j〉 = Nz〈a2〉 ∼ ln(δ/z) (6)

and

ln〈exp(q0u)〉 = ln[〈exp(q0a)〉Nz ] ∼ ln(δ/z) (7)

are viable scale factors. Here 〈aia j〉 = 0 (i �= j) because the addends are statistically independent
and 〈a2

i 〉 = 〈a2
j 〉 because the addends are statistically identical. Hence

Nz ∼ ln(δ/z) ∼ 〈u2〉 ∼ ln[〈exp(q0u)〉]. (8)

Because the boundary layer thickness is not locally defined, i.e., one would have to measure the
whole boundary layer to determine the boundary layer height, depending on the data availability,
it may be more convenient to use a locally defined scale factor like 〈u2〉 or the moment generating
function. Conclusions of the LDT are formally valid only when N is very large. A brief discussion
of how large N has to be may be found in, e.g., [23], and N = log2(212) is usually a good number.
For a Reτ = 10 000 boundary layer, the number N = log2(10 000) ≈ log2(213), which is not bad.
The number N is certainly not large at moderate Reynolds numbers, but we will show that our model
works reasonably well at Reτ ≈ 1000.

To briefly summarize, the scaled velocity PDF

ln[P(u/Nz )]/Nz
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TABLE II. Details of the cross-wire measurements. The
streamwise and the spanwise velocity fluctuations are measured.

Reτ TU∞/δ dt+ U∞ (m/s) uτ (m/s)

10 000 3.8 × 104 0.377 14.79 0.484

is universal. The above equation summarizes the main conclusion of this work. The proposed
universality is that the velocity PDFs, if scaled as ln[P(u/Nz )]/Nz, do not depend on the Reynolds
number or the wall-normal distance. The spanwise counterparts of Eqs. (3)–(8) can be obtained by
replacing u with v in Eq. (3) and a with b in Eq. (5). It is worth noting that, depending on the flow
quantity, the predicted asymptotic scaling may emerge at different Reynolds numbers.

Equation (3) is a direct result of the attached-eddy hypothesis. Hence the validity of the model
depends on the validity of Townsend’s attached-eddy hypothesis. The hypothesis is generally
supported by data [16], but one inadequacy of the hypothesis is that it assumes eddies are
noninteracting. Recent evidence shows that eddies in boundary layers can interact [25,26] and that
may limit the applicability of our model.

III. DATA SETS

To verify the above velocity PDF scaling, we will use both hot-wire measurements and DNS
data. The details of the data sets are summarized in Tables I–III. The hot-wire measurements were
taken from the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) [8,10] and
cover a range of Reynolds numbers from Reτ ≈ 2800 to Reτ ≈ 13 000. The DNS is a channel flow
at Reτ ≈ 1000 [11]. Four thousand snapshots of time-resolved velocity and pressure in the entire
channel are publicly available at the Johns Hopkins Turbulence Database (JHTDB).

The convergence of a probability distribution is usually limited by the amount of data and
therefore the data at JHTDB and the hot-wire measurements from the HRNBLWT are particularly
useful. A few snapshots of channel flow DNS at higher Reynolds numbers are available [12,27], but
because of the limited data size, these data will not be very useful here. Unless otherwise noted,
all quantities are normalized using wall units, i.e., friction velocity uτ = √

τw/ρ and viscous length
scale ν/uτ , where τw is the mean wall-shear stress and ρ is the fluid density.

At high Reynolds numbers, because of amplitude modulation [28], the flow is only self-similar
above z+ ≈ 3

√
Reτ and therefore we examine Eq. (3) above z+ ≈ 3

√
Reτ . At moderate Reynolds

numbers, however, amplitude modulation is not prominent [29] and we expect Eq. (3) to work
beyond the logarithmic range.

IV. RESULTS

In Fig. 1(a) we have already shown the streamwise velocity PDF in the logarithmic layer
3
√

Reτ < z+, z < 0.2δ [7] for hot-wire measurements of boundary layers at Reτ ≈ 2800–13 000.
The data are not Gaussian [30,31]. Since velocity signals are more intermittent near the wall than

TABLE III. Details of the DNS channel. The two numbers in
parentheses are the wall-normal grid spacing at the wall and at the
channel center. The superscript + indicates normalization by the
wall units, i.e., uτ and ν/uτ .

Reτ Lx × Ly × Lz (δ) �x+ × �z+ × �y+

1000 8π × 2 × 3π 12.3 × (0.0165, 6.16) × 6.13
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FIG. 2. (a) Scaled streamwise velocity PDF [the scale factor Nz ∼ ln〈exp(±q0u)〉, where u < 0 corre-
sponds to q0 = −1.5 and u > 0 corresponds to q0 = 1.5]. (b) Logarithm of the unscaled streamwise velocity
PDF at wall-normal distances from z+ ≈ 60 to z/δ ≈ 0.4 in a DNS channel flow at Reτ = 1000. Darker
colors are for data closer to the wall. The wall-normal distances are logarithmically spaced from z+ ≈ 60,
and z/δ ≈ 0.4. (c) Logarithm of scaled velocity PDF P/〈u2〉.

they are away from the wall, no data collapse can possibly be found. Figure 2(a) shows the scaled
velocity PDF. The data collapse. The wiggles at the tips are probably due to a lack of statistical
convergence. The scale factor Nz is ln[〈exp(∓q0u)〉] for u ≶ 0, respectively. The moment generating
function 〈exp(q0u)〉 emphasizes velocity fluctuations that have the same sign as q0. Considering the
asymmetry of the streamwise velocity PDF, we have used positive q0 to scale the positive side of the
velocity PDF and vice versa. The value q0 = 1.5 is arbitrary, and using q0 = 1.0, 2.0 leads to very
similar results (see Fig. 3). The scaled velocity PDF is discontinuous at u = 0 because q0 abruptly
changes value from −1.5 to 1.5 across u = 0. Figures 2(b) and 2(c) show the unscaled and scaled
streamwise velocity PDF at wall-normal distances from z+ ≈ 60 to z/δ ≈ 0.4 in a Reτ ≈ 1000
channel. The scale factor is Nz ∼ 〈u2〉. The same observation as for Figs. 1(a) and 2(a) can be made.
The theory promises that the scaled velocity PDFs collapse as long as they are scaled using one of
the scale factors in Eq. (8). The fact that the velocity PDFs collapse for different scale factors shows
the strong predictive power of our theory.

The same exercise can be done for the spanwise velocity and using the scale factors Nz ∼
ln(δ/z). Figures 4(a)–4(d) show the scaled and unscaled spanwise velocity PDFs at Reτ ≈ 10 000
(hot-wire boundary layer) and Reτ = 1000 (DNS channel), respectively. The scale factors are
Nz ∼ ln[〈exp(v)〉] and ln(δ/z), respectively. Cross-wire measurements of the spanwise velocity
component are not available at other Reynolds numbers. For the spanwise velocity, 〈exp(−v)〉 =
〈exp(v)〉 and therefore we have used Nz ∼ ln[〈exp(v)〉] to scale both v and −v. Both scale factors
are able to collapse the data.

FIG. 3. (a) Same as Fig. 2(a) but using a different q0 = 1. (b) Same as Fig. 2(a) but using a different q0 = 2.
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FIG. 4. (a) Spanwise velocity PDF within 3
√

Reτ < z+, z < 0.2δ. Data at Reτ ≈ 10 000 are shown. Darker
colors are used for data closer to the wall. (b) Scaled spanwise velocity PDF [the scale factor Nz ∼ ln〈exp(v)〉].
(c) Unscaled spanwise velocity PDF in a channel at Reτ ≈ 1000. The legends are the same as in Fig. 2(c).
(d) Same as (c) but for the scaled velocity PDF.

The above analysis confirms the proposed universality, lending support to the Townsend attached-
eddy hypothesis, which models the velocity fluctuations as results of self-repeating processes. Next
we compare the scaled PDF to f = L[τ (q)]. The spanwise velocity is more intermittent than its
streamwise counterpart and therefore presents a more challenging case. Figure 5(a) shows the
measured exponent τ (q). The spanwise moment generating function 〈exp(qv)〉 is a power-law
function of the wall-normal distance and τ (q) is the corresponding power-law exponent, which
can be directly measured following Refs. [21,32]. We compare −c′ + f to ln(P)/c ln(δ/z) in
Fig. 5(b), where c and c′ are constants [note that Eqs. (4) and (8) give only the scaling and there are
undetermined constants]. The data are seen to follow f closely. The above exercise may be done for
the streamwise velocity and the results are very similar (not shown). It is worth noting that Eq. (4)

FIG. 5. (a) Measured τ (q) as a function of q. (b) Plot of ln(P)/c ln(δ/z) and c′ − f1. The two constants are
c = 1.26 and c′ = 0.45.
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is only useful if the knowledge of the function behavior of the single-point moment generating
function is available.

V. CONCLUDING REMARKS

In conclusion, the velocity PDF tails collapse if scaled according to Eqs. (3) and (8). Because
Eq. (3) is a direct consequence of the attached-eddy hypothesis and the LDT, the work lends strong
support to the attached-eddy hypothesis and therefore Eq. (1). While not formally shown here,
the theory holds as long as the quantity in question results from a self-repeating process and can
therefore be leveraged to predict the sizes of rocks and the lengths of twigs, both of which are
results of self-repeating processes.
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