
PHYSICAL REVIEW FLUIDS 4, 034003 (2019)

Instabilities of nonisothermal nanocatalytic reactive flows in porous media
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Instabilities of reactive miscible flows in homogeneous porous media are investigated
in the presence of nanocatalysts undergoing A + B + n → C + n reaction. The analysis
is conducted under both isothermal and nonisothermal conditions resulting from the heat
of reaction. Ignoring double diffusive effects of the different components, a new set of
conditions is introduced to predict the instability of the isothermal case based on the
species mobility ratios. Validated with nonlinear simulations, these conditions predict well
the instability of the system and how the chemical product develops after the reaction.
Examination of flows that account for the heat of reaction with no effect on the mobility
ratios reveals that these conditions are no longer valid. This result is in contrast with
nanocatalyst-free flows. In these systems the stability condition is unaffected by the heat
of reactions that has neutral effects on mobility ratios. This difference is attributed to the
nanocatalysts transport phenomena and in particular to thermophoretic effects arising from
the temperature gradients in the flow. These effects are analyzed for both exothermic and
endothermic chemical reactions.

DOI: 10.1103/PhysRevFluids.4.034003

I. INTRODUCTION

The interface of two approaching fluids in porous media becomes unstable at strong enough flow
rates if a low viscous fluid displaces a high viscous one. The instabilities grow and develop fingerlike
patterns that result in the mixing of the fluids. This phenomenon, called viscous fingering (VF), may
be triggered or modified as a result of a chemical reaction and its control is important in several
applications such as oil recovery [1,2], chromatographic separation [3], contaminant degradation
[4], and polymerization fronts [5], to name a few. It has been reported that initially unstable systems
become more unstable if the approaching fluids are reactive following autocatalytic reaction in the
absence of chemical traveling wave [6,7]. Specifically, increasing both the mobility ratio of the fluids
and Damköhler number (ratio of the diffusion to reaction time scales) intensifies this instability. An
increase of the mixing zone between the fluids, enhancement of the tip splitting and the formation
of droplets are other features observed in the presence of chemical reaction. However, the droplet
formation and the finger propagation may be modified in the presence of chemical traveling wave
[6,7]. Accounting for heat transfer effects through the temperature dependency of viscosity in
autocatalytic reactive systems further increases the instability if the reaction is exothermic and
mitigates it if it is endothermic. The Lewis number (ratio of the thermal to mass diffusivities),
however, has an opposite effect such that it increases the instability in endothermic reactions while
it suppresses it in exothermic ones [8]. Most existing studies on chemically driven viscous fingering
have focused on a simple A + B → C reaction where the product C may have different viscosity
than the displacing and displaced fluids A and B. In two separate experimental studies in a radial
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Hele-Shaw cell [9,10], the dynamics of the flow in both reactive and non-reactive systems are
investigated at similar unfavorable viscosity ratios. It was shown that the fingering patterns and
the area occupied by the fingers are different in those systems, implying the effect of the reaction on
the dynamics and the instability with unfavorable viscosity ratios. Later through some experiments
in the same geometry it was observed that the initially stable system can even become unstable
as a direct effect of A + B → C reaction [11]. However, although both the invading and displaced
fluids had the same viscosity, the fingering patterns interestingly were different depending on which
fluids are invading the other. Theoretical study of such initially isoviscous systems illustrated that
the asymmetry in the finger patterns after the reaction emerges as a result of unequal concentrated
reactants and/or the difference in their diffusivity [12]. A linear stability analysis (LSA) of systems
involving a bimolecular A + B → C reaction was conducted by Hejazi et al. [13]. Since the rate
of chemical production is time dependent, it was shown that the stability criteria change with the
QSSA freezing time, t0. However, asymptotically, it was found that initially unstable systems remain
unstable after the reaction regardless of the viscosity of the products. In addition, depending on
the viscosity of the chemical products, initially stable systems can become unstable as a result
of the reaction. Nonlinear simulations (NLS) of such generic system were carried out for both
moderate and infinite Damköhler numbers and the fingering patters were analyzed according the
already classified stability conditions introduced by LSA [14,15]. As a result of the increase in use
of nanocatalysts in different applications, particularly those for enhancing reaction rates in porous
media [16–19], miscible VF instabilities of autocatalytic reactive isothermal systems have been
investigated in the presence of dispersed nanocatalysts in the invading fluid [20,21]. It is reported
that the increase in the viscosity of the invading fluid after the addition of nanocatalysts mitigates
the instability of the reactive system. However, the presence of deposition which reduces both the
reaction rate and the viscosity of the displacing fluid may lead to two opposing behaviors over time
in terms of stability and the mixing rate. It is worth stressing that unless otherwise indicated, the
above studies are conducted in a rectilinear geometry.

Although nanocatalysts have important effects on both the properties of the fluids and the reaction
rate, there is still a lack of study on some aspects of the hydrodynamics instabilities in porous media.
The objective of this study is to analyze the VF instabilities of nanocatalytic systems in the presence
of A + B + n → C + n reaction which is more prone to create viscosity mismatch compared to the
autocatalytic reaction. The analysis will first examine the case of isothermal flows and then focus
on non-isothermal conditions that result from the heat of the reaction. This phase of the analysis is
important as shall be seen later, the nanocatalysts are subject in particular to thermophoretic effects
that have the potential to alter the dynamics of the flow.

II. PHYSICAL PROBLEM

A schematic view of the system is illustrated in Fig. 1 representing a homogeneous porous
medium or equivalently a Hele-Shaw cell. The channel is initially occupied by a solution B with
the initial mass fraction (or volume fraction in ideal solutions) of C0 and the viscosity μb0 =
μ(0,C0, 0, 0). Solution A with the same mass fraction of C0 and the viscosity μa0 = μ(C0, 0, 0, 0)
carrying nanocatalysts with initial mass fraction of Cn0 and the viscosity μn0 = μ(0, 0, 0,Cn0 ) is
injected into the channel at a velocity U . As soon as the solutions are in contact, the following
reaction takes place:

A + B + n → C + n. (1)

The viscosity of the chemical product C at the mass fraction of C0 is μc0 = μ(0, 0,C0, 0). Before
the reaction takes place the system is at temperature of T0, which may change after the reaction as a
result of the change in the enthalpy, �H . �H < 0 if the reaction is exothermic and �H > 0 when
it is endothermic. Finally, it is assumed that the fluids are incompressible and the nanocatalysts are
in thermal equilibrium with the medium. Henceforth NP notation may refer to either nanocatalysts
or nanoparticles.
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FIG. 1. Schematic view of the medium.

III. PROBLEM FORMULATION

The problem is governed by the following equations representing the conservation of mass, the
conservation of momentum in the form of Darcy’s law, transport of the components A, B, C, and
NPs and finally the conservation of energy:

�∇ · �VD = 0, (2)

�∇P = −μ

K
�VD, (3)

∂Cj

∂t
+ 1

φ
( �VD · �∇Cj ) = Dj∇2Cj ± rR, (4)

∂Cn

∂t
+ 1

φ
( �VD · �∇Cn) = �∇ ·

(
Dn

�∇Cn + DT

�∇T

T

)
− kdepCn, (5)

∂T

∂t
+ λ

φ
( �VD · �∇T ) = α∇2T − φ�H

(ρcp)m
rR, (6)

where �VD is Darcy’s velocity, P the local pressure, μ the viscosity, and K the intrinsic medium
permeability. In Eq. (4), Cj = (Ca,Cb,Cc) is the mass/volume (in ideal solutions) fraction of the
components, Dj = (Da, Db, Dc) the corresponding diffusion coefficient, φ the porosity and rR is
the rate of reaction. Dj are assumed to be constant while the cross diffusion and Soret effects are
ignored as they are an order of magnitude smaller than the principal diffusion effects. A first-order
dependency on the concentration of the reactants and the NPs is adopted for the rate of reaction,
where rR = kRCaCbCn. Note that the linear dependency of the reaction rate on the nanocatalysts
concentration has been reported in previous experimental studies [22–25]. Moreover, it is assumed
that the heat of the reaction is small enough not to affect the dynamics through kR which will be
considered constant. Dn and DT in Eq. (5) represent the Brownian and thermophoretic diffusion
coefficients of NPs while kdep is the deposition rate following the widely applied colloid filtration
model [26]. Finally, λ = φ(ρcp)n f

(ρcp)m
is the thermal lag coefficient [27] where the subscripts nf and

m refer to the nanofuid and the medium, respectively, α = km
(ρcp)m

thermal diffusivity, ρcp the
volumetric heat capacity and k the thermal conductivity. Brownian and thermophoresis diffusion
coefficients are in general not constant. In particular based on Einstein equation (Dn = kBT

3πμb f dp
)

it is assumed that Dn varies linearly with temperature while following Piazza and Parola [28]
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and Buongiorno [29], DT in Eq. (5) is a linear function of Cn. Assuming Dn = Dn0
T
T0

and

DT = DT 0
Cn
Cn0

[30] and incorporating constant K into the viscosity definition, the equations are

then made dimensionless. Accordingly, the length, time, and pressure are scaled with Daφ

U ,
Daφ

2

U 2 ,
Daφμa, viscosity with μa, velocity with U , Cj with C0, and Cn with Cn0. Finally, the dimensionless
temperature is defined as θ = T −T0

T0HR
, where HR = −φ�HC0

T0(ρcp)m
= �T

T0
. HR, which is assumed to be small

(HR � 1) and does not lead to any fluid phase changes, represents the temperature changes as a
result of the reaction. Finally, the equations are formulated in a reference frame moving with the
velocity U . The equations are then in the following form:

�∇ · �V = 0, (7)

�∇P = −μ(�V +�i), (8)

∂Cj

∂t
+ �V · �∇Cj = δ j∇2Cj ± DaCaCbCn, (9)

∂Cn

∂t
+ �V · �∇Cn = δn

�∇ · [(1 + HRθ )�∇Cn] + δT
�∇ · [Cn

�∇Ln(1 + HRθ )] − DadepCn, (10)

∂θ

∂t
+ (λ − 1)

∂θ

∂x
+ λ(�V · �∇θ ) = Le∇2θ + sgn(HR)DaCaCbCn. (11)

In these equations all the variables are dimensionless, where

δ j = Dj

Da
, δn = Dn0

Da
, δT = DT0

DaCn0

, Le = α

Da

Dadep = kdepDaφ
2

U 2
, Da = kDaφ

2C0Cn0

U 2
, (12)

where δ j , δn, δT are the solute, Brownian, and thermophoretic diffusivities, respectively, Da
Damköhler number, Le Lewis number, and Dadep the dimensionless deposition rate. The positive
sign in Eq. (9) is used for component C, while the negative sign is used for components A and B.
Furthermore, HR > 0 and accordingly sgn(HR) = +1 in the exothermic reaction, while HR < 0 and
sgn(HR) = −1 in the case of endothermic one. With the introduced scalings, the dimensions of the
domain are (− Pe

2 , Pe
2 ) in the x direction and (0, Pe

As
) in the y direction, where Pe = UL

φDa
is the Péclet

number, and As = L
W is the domain aspect ratio. In the moving reference, the concentrations of A,

B, and NPs obey the zero flux condition at the x boundaries, while the velocity, Cc, and θ are zero.
In addition, periodic boundary conditions are used in the y direction. The model is completed by
adopting the following widely used exponential viscosity-concentration-temperature relationship
[27,31]:

μ = exp(RbCb + RcCc + RnCn + Rθ θ ), (13)

where Rb, Rc, Rn, and Rθ are the mobility ratios defined as

Rb = ln

(
μb0

μa0

)
T0

, Rc = ln

(
μc0

μa0

)
T0

, Rn = ln

(
μn0

μa0

)
T0

, Rθ = ln

(
μT0(1+HR )

μT0

)
. (14)

Rb > 0, Rc > 0, and Rn > 0 indicate that the initial viscosities of the solutions made by components
B, C, and NPs are greater than that of A, respectively. Furthermore, Rθ > 0 in endothermic reactions,
while Rθ < 0 in exothermic ones.
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IV. NUMERICAL METHODS

To solve the problem, the pressure is first eliminated from the equations by taking the curl of
Darcy’s law. Expressing the velocities in terms of the stream function and viscosity in terms of the
concentrations and temperature, the equations are defined by vorticity (ω), stream function (ψ ),
concentrations (Cj,Cn), and temperature (θ ). These equations are solved with the pseudospectral
method [32]. In this method all the variable must be periodic at the boundaries. This is satisfied
except for Ca, Cb, and Cn in the x direction. To solve this, the equations are formulated in terms of
a base state Ȳ (x, t ) which satisfies the boundary conditions (BCs) and perturbations Y ′(x, y, t ) that
are periodic at the boundaries. The total variable Y (x, y, t ) is then determined by summation of the
base state and perturbations. The base state equations for Ca, Cb, and Cn are as below, while C̄c, θ̄ ,
V̄ are zero:

∂C̄a

∂t
= ∂2C̄a

∂x2
, (15)

∂C̄b

∂t
= δb

∂2C̄b

∂x2
, (16)

∂C̄n

∂t
= δn

∂2C̄n

∂x2
− DadepC̄n. (17)

Adopting C̄a = H (−x), C̄b = H (x), and C̄n = Cn0H (−x) as the initial condition and
zero flux boundary values, C̄a(x, t ) = 1

2 er f c( x
2
√

t
), C̄b(x, t ) = 1

2 er f c(− x
2
√

δbt
), and C̄n(x, t ) =

Cn0
2 er f c( x

2
√

δnt
). The perturbation equations are simply derived by subtracting the model equations

from the base state equations:

∇2ψ ′ = −ω′, (18)

ω′ = RbNb + RcNc + RnNn + RθNθ , (19)

∂Cj
′

∂t
= Jj + δ j

�∇C′
j ± Da(C̄a + C′

a)(C̄b + C′
b)(C̄n + C′

n), (20)

∂Cn
′

∂t
= Jn + δn

�∇ · [(1 + HRθ ′)�∇(C̄n + C′
n)] + δT

�∇ · [(C̄n + C′
n)�∇Ln(1 + HRθ ′)]

− δn
∂2C̄n

∂x2
− DadepC

′
n, (21)

∂θ ′

∂t
= λJθ + (1 − λ)

∂θ ′

∂x
+ Le∇2θ ′ + sgn(HR)Da(C̄a + C′

a)(C̄b + C′
b)(C̄n + C′

n), (22)

where

Ni = ∂ψ ′

∂x

(
∂X̄i

∂x
+ ∂Xi

′

∂x

)
+

(
1 + ∂ψ ′

∂y

)
∂Xi

′

∂y
, (23)

Ji = ∂ψ ′

∂x

∂Xi
′

∂y
− ∂ψ ′

∂y

(
∂X̄i

∂x
+ ∂Xi

′

∂x

)
, (24)

where Xi = (Cj,Cn, θ ). The perturbation BCs are now periodic in both longitudinal and transverse
directions. Furthermore, ψ ′, ω′, C′

c, θ ′ are initially set to zero, while the random number distributions
are allocated for C′

a, C′
b, and C′

n. More details are found in Ref. [32].
Finally, the numerical convergence has been checked and it was found that a grid of 256 ×

128 is satisfactory for the range of considered parameters. The code has been validated for both
nonreactive and reactive systems in the absence of NPs. First, setting Rc = Rn = Rθ = Da = 0 the
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results are compared with available results for NP-free nonreactive systems. Subsequently, the finger
configurations of a NP-free reactive system reported by Ref. [14] are compared with the results of
the developed code by setting Rn = Rθ = 0 and Cn = 1. In both cases the results were in good
agreement with each other.

V. RESULTS AND DISCUSSION

The considered problem involves a large number of parameters. Therefore, to narrow them, the
reference values of λ = 1, Le = 1, δ j = δn = 1, Da = 1, Dadep = 0, As = 2, and Pe = 1024 are
adopted unless otherwise indicated. Furthermore, to investigate the direct coupled effect of the
presence of NPs and the heat of reaction, Rθ is set to be zero. This choice will be in particular valid
when the heat of the reaction is localized at the interface where the reaction takes place, resulting
in large temperature gradients and in turn strong thermophoretic effects while the overall changes
in the temperature are not strong enough to induce noticeable changes in the fluids viscosities. Note
that in NP-free reactive systems the presence of the heat of reaction has no effects on the instabilities
if Rθ = 0. Therefore, any changes in the dynamics of the system that may arise in the presence of
NPs, will be interesting.

The analysis starts with NP-laden isothermal reactive systems. This analysis will allow to
develop a classification of the reactive systems in terms of the mobility ratios of the different
chemical species. The analysis is then expanded to analyze the effects of the heat of reaction
in each classified NP-laden systems for both exothermic and endothermic reactions. This will be
conducted qualitatively through the contours of Cc and quantitatively through the first moment of
the transversely averaged product concentration as a representative of its center of mass and the
cumulative concentration of the chemical products. The normalized first moment of the transversely
averaged concentration of the products is defined as

xm(t ) = 1

Pe

∫ Pe
2

− Pe
2

xCc,av(x, t )dx, (25)

where

Cc,av = As

Pe

∫ Pe
As

0
Cc(x, y, t )dy. (26)

Positive xm indicates that the products are mostly developed downstream and vice versa. The
normalized cumulated value of the chemical product is further defined as

(Cc)t = As

Pe2

∫ Pe
2

− Pe
2

∫ Pe
As

0
Cc(x, y, t )dydx. (27)

It is expected that in the absence of NP deposition the value of (Cc)t increases monotonically as
a result of the chemical reaction.

A. Isothermal reactions

In the absence of the heat of reaction (HR = 0), θ = 0 in the channel while the NP transport
equation reduces to the simple form of ∂Cn

∂t = δn
∂2Cn
∂x2 − DadepCn. This equation is coupled with the

other governing equations through the rate of reaction and viscosity which distinguishes it from
the NP-free reactive systems. In the NP-free reactive systems involving a A + B → C reaction
with constant diffusivities, it was already reported that if the system is unstable before the reaction
(Rb > 0), it remains unstable after the reaction regardless of the value of Rc. However, in the case of
an initially stable system (Rb � 0), the subsequent instability condition after the occurrence of the
reaction depends on Rc. Specifically, the viscosity distribution is monotonically decreasing if 0 >
Rc
2 > Rb and the system is stable. However, the system is unstable if 0 < Rc

2 < Rb where the viscosity
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(b) Intrinsically stable(a) Intrinsically unstable

FIG. 2. One-dimensional Log-viscosity variation with respect to η = x
2
√

t
at asymptotically large times

(t → ∞) along with insets of corresponding contours of Cc derived from NLS. The contours are represented
at t = 1000 for intrinsically unstable and t = 1300 for intrinsically stable systems.

is monotonically increasing or if Rc(Rb − Rc
2 ) < 0, where the viscosity distribution is nonmonotonic

[13]. We will attempt here to extend these conclusions to NP-laden reactive A + B + n → C + n
systems where NP has a catalytic role. Similarly, two systems are distinguished depending on
whether the NP-laden systems are unstable or stable before the reaction. As reported in Ref. [33],
in the absence of deposition, which is the focus of this study, the NP-laden nonreactive system is
unstable if Rb − Rn > 0 and stable otherwise. Henceforth, we will refer to these two nonreactive
NP-laden systems as intrinsically unstable and intrinsically stable, respectively. Adopting Rb = 3,
Rn = 2 as an intrinsically unstable and Rb = −0.5, Rn = 2 as the intrinsically stable systems, the
variations of the one-dimensional Log-viscosity with respect to the variable η = x

2
√

t
are presented

at an asymptotic large time at Fig. 2. Insets of contours of Cc obtained from nonlinear simulations
are included to illustrate the instability condition and show the finger configurations. The figure
shows that, consistent with the results of the NP-free reactive systems, in the NP-laden reactive
systems, intrinsically unstable systems remain unstable after the reaction as it generates either
monotonically increasing or nonmonotonic viscosity distributions. However, initially stable systems
may become unstable as a result of the nonmonotonicity in the viscosity distribution after the
reaction. Furthermore, similar to the NP-free systems, in both cases the system with Rc = Rb obeys
the one-dimensional viscosity distribution in the form of error-function. This is the less unstable
case after the reaction in the intrinsically unstable system according to the contours of Cc. However,
as |Rc − Rb| increases, both intrinsically stable and unstable systems are prone to more unstable
situation as a result of the chemical reaction.

From Fig. 2 one may note that the viscosity variation may be different for η > 0 or η < 0
henceforth referred to as the leading zone and trailing zone, respectively [13]. Comparing the
viscosity variations and the finger configurations, it is clear that monotonically increasing viscosities
in any zone lead to more finger development in that region. Unlike the NP-free systems, the present
viscosity variation is affected by Rn in addition to Rb and Rc in identical diffusivities.

To determine the exact condition for instability in each zone, the one-dimensional form of the
governing equations in the direction of the flow is adopted to obtain the viscosity distribution μx.
Accordingly, assuming δ j = 1, one concludes that ∂ (Cax+Cbx+2Ccx )

∂t = ∂2(Cax+Cbx+2Ccx )
∂x2 , and so with the

defined boundary and initial conditions, Cax + Cbx + 2Ccx = 1. Furthermore, it can be shown that
Cbx − Cax = er f ( x

2
√

t
). Taking advantage of these results and further assuming δn = 1 to get rid of
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double diffusivity effects and simply denoting Cn0Rn by Rn, Eq. (28) is obtained in the absence of
deposition. Note that in the presence of deposition, NPs are gradually removed from the system and
the effect of Rn decreases with the passage of time. Furthermore, not only does the rate of deposition
diminish the effect of Rn, but it also has a direct effect on the chemical product concentration and
hence on Rc. So, the coupled effect of Dadep on the viscosity of the system and the production rate
may have different effects on the dynamics of the flow. This, however, is not the focus of the present
study and may be the subject of a separate investigation.

2

μx

∂μx

∂x
= (Rc − Rn)

(
−Cax

∂x

)
+ (2Rb − Rc − Rn)

Cbx

∂x
, (28)

where if ∂μx

∂x > 0, then the viscosity distribution is monotonically increasing and the system is
unstable and vice versa. Since Cbx

∂x and (−Cax
∂x ) are positive, one can conclude that for Rn � 0, Rb has

destabilizing and Rn has stabilizing effects, while the effect of Rc on the instability is nonmonotonic.
As expected, this equation allows to distinguish two zones that develop as a result of the reaction; the
leading zone with RL = 2Rb − Rc − Rn and the trailing one with RT = Rc − Rn. Therefore, RL > 0
and RT > 0 indicate unstable zones and vice versa. It is concluded that the viscosity distribution will
be monotonically increasing if RL > 0 and RT > 0 while it is monotonically decreasing if RL < 0
and RT < 0. However, if RLRT < 0 the viscosity distribution may be nonmonotonic where the flow
is unstable. The special case of Rb = Rc reduces the problem to that of a nonreactive NP-laden
displacement while Rc = Rn represents a neutrally stable trailing zone which implies no extremum
in the viscosity distribution in this zone. However, the system with Rb > Rn = Rc is more unstable
than the intrinsically unstable system as the viscosity gradient now is confined in the smaller leading
zone than the total channel. However, with Rb < Rn = Rc the system is stable.

Assuming Rb > Rn that represents an intrinsically unstable system, one can conclude that
2Rb − Rc − Rn > −(Rc − Rn). If 2Rb − Rc − Rn > 0, then Rc − Rn can be positive or negative
while if 2Rb − Rc − Rn � 0, then Rc − Rn can only be positive. Accordingly, as long as Rb > Rn at
least one of the fronts is unstable, indicating that the intrinsically unstable system remains unstable
after the reaction regardless of the value of Rc. Similarly, in the case Rb � Rn corresponding to
an intrinsically stable system, one has 2Rb − Rc − Rn � −(Rc − Rn). If 2Rb − Rc − Rn > 0, then
Rc − Rn can only be negative, while if 2Rb − Rc − Rn � 0, then Rc − Rn can be either positive
or negative. As a result, depending on the value of Rc, the intrinsically stable system will either
remain stable or become unstable as a result of the reaction. These logical expressions further
imply that depending on the particular values of Rb, Rc, and Rn where Rc 	= Rb and Rn six different
classes of systems can be identified in terms of their finger configuration. We will refer to them as
Unstable (intrinsically unstable, both zones unstable after the reaction), IUD (intrinsically unstable,
the leading zone unstable after the reaction where the products are mostly developed downstream),
IUU (intrinsically unstable, the trailing zone unstable after the reaction where the products are
mostly developed upstream), Stable (intrinsically stable, both zones stable after the reaction), ISD
(intrinsically stable, the leading zone unstable after the reaction where the products are mostly
developed downstream), and ISU (intrinsically stable, the trailing zone unstable after the reaction
where the products are mostly developed upstream). Table I summarizes this classification with the
representative mobility ratios for each case. The qualitative viscosity variation along the channel
can be found in Fig. 2 for all the cases discussed.

Figure 3 presents the variation of xm with time for two values of Da and shows where the
products in each classified systems are developed. The representative systems for each class
are Rb = 3, Rn = 2, Rc = 2.5 (Unstable), Rb = 3, Rn = 5, Rc = 4 (Stable), Rb = 3, Rn = 2, Rc = 1
(IUD), Rb = 3, Rn = 2, Rc = 4 (IUU), Rb = −0.5, Rn = 2, Rc = −5 (ISD), and Rb = −0.5, Rn =
2, Rc = 5 (ISU). Note that xm = 0 in the Stable system as the system is diffusion dominant.
However, as predicted, the products are more developed downstream (xm > 0) in the IUD and ISD
systems while they are more developed upstream (xm < 0) in the IUU and ISU cases. Furthermore,
xm > 0 in the Unstable case as RL > RT . One may notice that the increase in xm is monotonic in
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TABLE I. Characteristics of classified isothermal systems.

System Before the reaction Unstable zone after the reaction

Unstable Unstable (Rb > Rn) Both (2Rb − Rc − Rn > 0, Rc > Rn)
IUD Unstable (Rb > Rn) Leading (2Rb − Rc − Rn > 0, Rc < Rn)
IUU Unstable (Rb > Rn) Trailing (2Rb − Rc − Rn � 0, Rc > Rn)
Stable Stable (Rb � Rn) None (2Rb − Rc − Rn � 0, Rc < Rn)
ISD Stable (Rb � Rn) Leading (2Rb − Rc − Rn > 0, Rc < Rn)
ISU Stable (Rb � Rn) Trailing (2Rb − Rc − Rn � 0, Rc > Rn)

both IUD and ISD systems as the direction of bulk flow is aligned with the fact that RL > 0. In the
ISU system, however, xm is decreasing monotonically as the products experience strong resistance
to flow downstream and so reverse to flow upstream instead. However, the behavior of xm in the
IUU and Unstable systems is nonmonotonic, indicating a competition between the bulk flow and
the viscosity contrast effects.

NPs have a catalytic role in the present study and accordingly their transport has an impact on
the total amount of chemical product. To analyze the effects of NPs on production and compare
the trends with those of NP-free reactive systems, the variation in time of the total accumulated
production is plotted in Fig. 4 for both NP-laden intrinsically unstable and stable systems by
varying Rc. Again, Rb = 3, Rn = 2 and Rb = −0.5, Rn = 2 are selected as the mobility ratios of
the NP-laden intrinsically unstable and stable systems, respectively. Note that in these figures as
Rc is increased, the type of systems changes from IUD to Unstable and finally to IUU in the
intrinsically unstable case, and from ISD to Stable and finally to ISU in the intrinsically stable
systems. Figure 4 shows that in the Log-Log scale (Cc)t increases linearly in the diffusive regime
similar to the NP-free reactive systems. Furthermore, in the IUD system increasing Rc leads to
smaller chemical production until the system switches to an Unstable type (Rc = 2.5). The Unstable
system has the lowest amount of the chemical product. Further increase in Rc changes the type of the
system to IUU in which the amount of products starts to increase. Similarly, according to Fig. 4(b),

FIG. 3. Variation of the normalized first moment of the transversely averaged product concentration with
the inset of contours of Cc. Dashed lines represent those systems with Da = 10.
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(a) Intrinsically unstable (b) Intrinsically stable

FIG. 4. The effect of Rc on the total amount of chemical products in the NP-laden isothermal reactive
systems in the Log-Log scale.

as Rc increases the amount of chemical product in the ISD type decreases until the system becomes
Stable (Rc = −0.5), where the amount of chemical product attains a minimum. Further increase of
Rc changes the system to ISU type where the amount of chemical product is increased. These trends
were observed with other choices of the values of the viscosity ratios and with a higher reaction rate
of Da = 10. In the next section the present results will be extended to see the effect of the heat of
reaction in the NP-laden catalytic systems.

B. Nonisothermal reactions

It is known that NP-free thermoviscous fingering instabilities both in the presence and absence
of reaction develops as a result of the change in viscosity through Rθ [8,27,34]. Accordingly, if
Rθ = 0, then heat transfer does not affect the instability in the case of NP-free systems. However,
since the temperature gradient resulting from the heat of reaction affects the transport of NPs, one
may suspect that this effect may change the dynamics and the chemical products even if Rθ = 0. To
analyze this effect the results in the previous section are extended to include the heat of reaction but
still for Rθ = 0. Specifically, the effect of temperature driven NP transport which is represented by
thermophoretic diffusivity δT is investigated in the already introduced representative Unstable, IUD,
IUU, Stable, ISD and ISU systems while HR 	= 0 for both exothermic and endothermic reactions.

1. Exothermic reactions

The objective here is to investigate the coupled effect of HR and δT while the other heat
transfer related properties are fixed. The analysis is first conducted for an exothermic reaction
where the reference value of HR = 0.1 is adopted. Figure 5 shows the variation of xm for different
thermophoretic diffusivities with insets of contours of the chemical product concentration Cc. The
solid curves represent the reference systems at δT = 0 and the dotted ones correspond to higher
thermophoretic diffusivities. It is clear that for the set of adopted parameters, the variation of xm

in the absence of thermophoretic diffusivity is virtually identical to that in the isothermal system.
However, at larger thermophoretic diffusivities the change in the variation of xm is considerable. The
figure shows that as δT increases, the transition time from the diffusion to the convective regime is
reduced for systems with xm � 0 and vice versa. Accordingly, at earlier times of convective regime
thermophoresis leads to a systematic tendency for xm to shift to more absolute values in systems
with xm � 0 and to less absolute values in systems with xm < 0.
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FIG. 5. The variation of xm with time at different thermophoretic diffusivities in both intrinsically unstable
and stable reference systems along with the inset of the contours of Cc. The contours are depicted at identical
times in each systems. The solid lines represent the systems with δT = 0.

At later time, |xm| still systematically increases with δT in IUD (except for a short interval) and
ISD where only the leading zone is unstable. According to the finger configurations, this effect
is attributed to more developed forward fingers or most importantly to the suppression of reverse
fingering at higher δT . The same increasing trend is observed in the Stable case at high enough values
of δT where the system becomes unstable with fingers developing downstream. Similar trends have
been obtained in systems with larger Damköhler number, Da = 10.

In the IUU and ISU systems where only the trailing zone is unstable, a nonmonotonic trend is
observed in the variation of xm. However, at higher δT where thermophoretic effects are stronger, a
general decreasing trend in the absolute value of xm with increasing δT can be reported. According
to finger configurations in both systems, backward fingers are suppressed at higher values of δT ,
which is the main reason for this trend. Further examination of the finger configurations reveals
that for IUU and ISU systems, the products become confined in a narrow region as δT increases.
In these systems the leading zone is locally stable and acts as a barrier to the upcoming flow. The
upcoming flow as a result, returns and feeds the reverse fingers as the trailing front is unfavorable.
However, with the suppression of reverse fingering at higher δT , the products have less possibility
to move backward as well, and so get confined afterwards. The suppression of the forward fingers
in addition to the backward fingers in IUU system is also attributed to this feature. Note that the
backward finger suppression only delays the transport of the products upstream and the absolute
value of xm still increases at later times. Further analysis shows that this trend is virtually similar in
higher reaction rates.

Finally, in the Unstable case the suppressed backward fingers now find the way to develop
downstream as the leading zone is unstable. However, the forward fingers cannot accommodate all
the upcoming flow. Accordingly, one may observe the confined products with few stretched fingers
downstream at high δT . So, the general increasing trend for xm with δT is observed and this trend is
most noticeable at late times.

In summary, it is observed that the thermophoretic effects resulting from the heat of reaction
alter both the finger configurations and the transport of the products. It can cause more developed
or complex finger configurations in systems with unstable leading zone, leads to the suppression of
backward product fingers, make the stable system unstable, and confine the chemical products in
systems with leading stable zones (or even weak unstable zone). This affects the center of mass of
the products as discussed above.
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(a) Intrinsically unstable (b) Intrinsically stable

FIG. 6. The one-dimensional Log-viscosity variation in the reference systems in the presence (δT = 20)
and the absence of thermophoresis.

Figure 6 shows the corresponding one-dimensional viscosity distribution of the reference systems
in the presence and absence of thermophoresis. Analyzing this figure elucidates the underlying
reasons behind the changes in the variation of xm shown in Fig. 5. The coupled effects of the
viscosity increase at x < 0 and its decrease at the center cause the generation or intensification
of locally stable regions in the trailing zone at δ = 20 and result in a stronger resistance to the
transport of the products upstream (in all systems except Stable). This important feature along with
a sharper increase of the viscosity in systems with unfavorable leading zone (Unstable, IUD, ISD)
at x > 0 and the fact that the monotonically decreasing viscosity distribution in the Stable system
becomes nonmonotonic at δT = 20, lead to the reported trends in the variations of xm and the finger
configuration.

One may wonder what triggers these changes in the flow behavior when the viscosities of
the fluids are not changing with temperature variations (Rθ = 0) and what is the role of heat
of reaction? To attempt to answer this question, we examine the one-dimensional NP transport
equation, Eq. (10):

∂Cnx

∂t
= δn(1 + HRθx )

∂2Cnx

∂x2
+ HR

(
δn + δT

1 + HRθx

)
∂θx

∂x

∂Cnx

∂x
+ δT

∂2Ln(1 + HRθx )

∂x2
Cnx. (29)

The first and second terms on the right-hand side represent diffusionlike and convectionlike
contributions, respectively, while the third one is a source/sinklike term. This equation is solved
along with the other coupled one-dimensional heat and concentration equations for different values
of δT and HR with the already-defined reference parameters. Note that since u = 0 in these 1D
equations, the viscosity is decoupled from the equations and the choice of mobility ratios does
not have any effects on the concentrations and temperature distributions. Accordingly with any
arbitrary choice of mobility ratios, Fig. 7 shows the NP concentration distribution along the
channel for different values of δT and HR including the corresponding scaled variation of the
convective term: Conv = HR(δn + δT

1+HRθx
) ∂θx

∂x and the source/sink term: Src = δT
∂2Ln(1+HRθx )

∂x2 . Note
that Conv = Src = 0 at both ends of the domain and clearly everywhere in the case of the isothermal
system. Conv � 0 with a local minimum for x > 0, while Conv � 0 with a local maximum for
x < 0. Positive Conv leads to a negative thermophoretic velocity (NP velocity as a result of
temperature gradient Vt ∝ − ∂θx

∂x ) and vice versa. However, Src experiences a local minimum with a
negative value at the center and two positive local maxima at each side.
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FIG. 7. The one-dimensional NP concentration variation at different δT with constant HR = 0.1, and at two
HR with constant δT = 20, including the scaled convective and source/sink terms variation. The representative
inset of the contours of Cn derived from NLS are attached for δT = 0 and δT = 20.

The figure shows that by increasing δT and HR, there is more accumulation of NPs at x < 0 and
depletion at the center. Following a previous flow analysis [30], this behavior is a direct consequence
of the temperature gradient driven convective transport of the NPs from the center to either sides of
the channel. More specifically, the convected NPs from the center increase the local concentration
of NPs at either side while NP concentration is decreased at the center, in the position of positive
and negative Src, respectively. From the definition, both Conv and Src increase with increasing δT

and HR. This indicates that the two thermal-related terms, δT and HR have synergic effects in the
accumulation of NPs at either side of the channel and their depletion at the center. Accordingly
as Rn > 0, a viscosity decrease at the center and its increases at x < 0 (considerably) and x > 0
(less pronounced) is expected if δT and HR increase. This will affect the transport of the products,
the variation of xm, and the total chemical production. Note that there is not any accumulation or
depletion if δT = 0, although there is a convective velocity driven by the temperature gradient and
Brownian diffusivity. This is because the convected NPs then diffuses according to the diffusive
term δn(1 + HRθx ) ∂2Cnx

∂x2 in the absence of Src.
Now with the change in the transport of NPs discussed above, the question is how the amount

of chemical products is changing in NP-laden reactive systems. We will examine next how the
accumulated amount of chemical products is changing in the presence of thermophoretic effects
with respect to the case in the absence of thermophoresis. Note that since with the set of parameters
used, the total chemical production in the isothermal system is almost identical with that for δT = 0,
one can extend these results to compare it with the isothermal case as well.

Defining (Cc)ri = (Cc )t (δT =i)−(Cc )t (δT =0)
(Cc )t (δT =0) , Fig. 8 shows the variation of (Cc)ri over time in the

representative intrinsically unstable and stable systems, respectively. (Cc)ri > 0 indicates that
chemical production is larger than the case in the absence of thermophoresis and vice versa.
According to Fig. 8(a), the presence of thermophoresis leads in a first stage of the flow to a larger
production in both the IUD and Unstable systems. This trend is, however, subsequently reversed and
(Cc)ri starts actually to decrease becoming later negative, implying that thermophoresis ultimately
leads to smaller chemical production. Further analysis which for brevity is not shown here indicates
that depending on the choice of parameters, the final value of (Cc)ri may not always be negative in
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FIG. 8. Variation of (Cc )ri in the representative systems at different thermophoretic diffusivities.

these systems. Opposite trends are found in the IUU system where the presence of thermophoresis
results first in a decrease and then an increase of the relative chemical production. According to this
figure, depending on the choice of parameters, the final relative production value in this case may
actually lead to positive (Cc)ri indicating ultimate stronger chemical production than in the absence
of thermophoretic effects. Note also that with increasing δT , chemical production is intensified in
all the cases.

In contrast to the intrinsically unstable case, thermophoresis always leads to positive values of
(Cc)ri in the ISD and negative ones in the ISU systems (except for a short interval when δT = 3).
This indicates that thermophoresis increases the chemical production in the ISD and decreases it in
the ISU systems and this trend is intensified by increasing δT . Finally, interestingly large enough
values of δT can lead to larger chemical production even in the representative Stable system as a
direct effect of the developed instabilities. The analysis shows virtually identical trends with higher
reaction rate of Da = 10 in all systems which for brevity are not shown here.

2. Endothermic reactions

In this section the previous analysis is extended to endothermic reactions. To start the analysis,
let us examine the energy equation, Eq. (11). In this equation θ > 0 and sgn(HR) = +1 in the
exothermic reaction while sgn(HR) = −1 and θ < 0 in the endothermic one. Accordingly, it is clear
that with all parameters fixed, θendo(x, y) = −θexo(x, y) if the distribution of Ca, Cb, and Cn are not
changed by changing the type of reaction. In particular, by substituting θ (x, y) → −θ (x, y), the
transport equation of the NPs and other components do not change if HR → −HR. In addition, the
viscosity distribution and the Darcy’s law will not change as long as Rθ → −Rθ or Rθ = 0. So, one
can extend all the conclusion discussed about the exothermic reaction to the endothermic one if
HR → −HR. This conclusion was validated by NLS.

VI. CONCLUSION

The dynamics of nanoparticle-laden miscible reactive flows in homogeneous porous media are
investigated when the nanoparticles (NPs) have catalytic effects and are dispersed in the invading
fluid. The study is conducted in both isothermal and nonisothermal conditions considering the
effect of heat of reaction. In the isothermal case, as long as Rb > Rn the flow is unstable after
the reaction regardless of the value of Rc, while the stability condition is dependent on Rc if
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Rb � Rn. Rb, Rc, and Rn are the Log-viscosity ratios of the displaced fluid B, the chemical products
C, and the nanofluid, respectively, to that of the displacing pure fluid A. Specifically, defining
RT = Rc − Rn and RL = 2Rb − Rc − Rn as the effective viscosity ratios of the trailing and the
leading zones, respectively, the viscosity distribution is monotonically increasing if RT > 0 and
RL > 0, while it is monotonically decreasing when RT < 0 and RL < 0. However, its distribution
may be nonmonotonic if RT RL < 0. The special case of Rb = Rc reduces the problem to that of
a nonreactive NP-laden displacement. The analysis showed that similar to nonreactive NP-laden
systems, Rb and Rn has destabilizing and stabilizing effects, respectively. However, the effect of Rc

on the instability is nonmonotonic. The dynamics of the products then can be categorized based on
the condition of the system before the reaction (whether it is intrinsically stable or unstable) and
the effective viscosity ratios of the trailing and leading zones after the reaction. This allowed to
identify six cases as Unstable (intrinsically unstable, both zones unstable after the reaction), IUD
(intrinsically unstable, the leading zone unstable after the reaction), IUU (intrinsically unstable,
the trailing zone unstable after the reaction), Stable (intrinsically stable, both zones stable after
the reaction), ISD (intrinsically stable, the leading zone unstable after the reaction), and ISU
(intrinsically stable, the trailing zone unstable after the reaction).

The study reveals that in the presence of the heat of the chemical reaction that does not affect the
mobility ratios, these stability conditions are no longer valid. This is in contrast with the NP-free
systems where the dynamics of the flow in nonisothermal conditions are identical to those of
isothermal systems if Rθ = 0. Further analysis shows that this behavior is a result of thermophoretic
effects that interfere with the transport of NPs at large enough values of HR and δT . The synergic
effects of the heat of reaction and thermophoretic diffusivity can lead to an accumulation of NPs
at both zones and their depletion at the center in both exothermic and endothermic reactions. The
NP accumulation is more pronounced at the trailing zone where they are more abundant. Then
with positive Rn the viscosity distribution and accordingly the transport of the chemical products
are changed. Specifically, the viscosity is locally increased and decreased in the regions with
accumulated or depleted NPs, respectively. The new viscosity distribution results in more developed
or complex finger configurations in systems with unstable leading zone, the suppression of the
backward product fingers, making stable system unstable and confining the chemical products in
systems with the leading stable (or weakly unstable) zones. Accordingly, the center of mass of the
products is affected compared to the isothermal case.

Regarding to the chemical products, in intrinsically unstable systems, the heat of reaction-
thermophoretic effects may have a nonmonotonic behavior compared to cases where thermophoretic
effects are not accounted for. Specifically, defining (Cc)ri = (Cc )t (δT =i)−(Cc )t (δT =0)

(Cc )t (δT =0) , in the IUD and
Unstable systems (Cc)ri is first increasing with positive values in the passage of time, but later
decreases and even becomes negative. However, an opposite trend is observed in the IUU systems.
Depending on the choice of parameters the final value of (Cc)ri may not always be negative for the
IUD and Unstable or positive in the IUU systems. Differently, the response of intrinsically stable
systems to the heat of reaction-thermophoretic effects are monotonic. In other words, in the ISD and
Stable systems (Cc)ri � 0, while in the ISU system (Cc)ri � 0.
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