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Diffusion-driven transition between two regimes of viscous fingering
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Viscous fingering patterns can form at the interface between two immiscible fluids
confined in the gap between a pair of flat plates; whenever the fluid with lower viscosity
displaces the one of higher viscosity the interface is unstable. For miscible fluids the
situation is more complicated due to the formation of interfacial structure in the thin
dimension spanning the gap. Here we study the effect of the inherent diffusion between
the two miscible fluids on this structure and on the viscous fingering patterns that emerge.
We discover an unexpected transition separating two distinct regimes where the pattern
morphologies and mode of onset are different. This transition is marked by a regime of
transient stability as the structure of the fingers evolves from having three-dimensional
structure to being quasi-two-dimensional. The presence of diffusion allows an instability
to form where it was otherwise forbidden.
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I. INTRODUCTION

Diffusion normally acts to make a system more uniform. Over time, diffusion smears out and
removes structures that have appeared and increases the length scale on which patterns can form.
Unless there are chemically reactive components as in a Turing instability [1,2], one might naively
expect that diffusion would stabilize a system against instabilities. However, for viscous fingering
we find that while diffusion does make the system more stable initially, it surprisingly allows new
instabilities to appear at a sharp transition when it acts on longer timescales.

The viscous fingering instability occurs when one fluid displaces another of higher viscosity in
a narrow geometry, such as a Hele-Shaw cell illustrated in Fig. 1(a), where the fluid is confined in
a thin gap between two large flat plates. This is an instance of complex structure formation from
benign initial conditions and has been a prototypical example of pattern formation [3,4] since the
work of Saffman and Taylor in 1958 [5]. They derived a most unstable wavelength λc, at which scale
the interface between the fluids should be unstable. Understanding pattern formation instigated by
a dynamic instability remains an ongoing challenge [6].

In the limit that λc → 0, which can be approached by using fluids with low interfacial tensions
or rapidly moving interfaces, it has been predicted that highly ramified patterns emerge and that
singularities should form; the global pattern should be similar to structures seen in diffusion-limited
aggregation [7–11] and the protruding fingers should form cusps at their tips [12]. Experimental
work [13] was able to confirm the fractal geometry but did not observe cusps in fluid systems
although they were observed in granular Hele-Shaw experiments [14]. In this limit of very small
λc, a variety of counterintuitive phenomena have been investigated in experiments using miscible
fluids with ultralow interfacial tensions. In this case, it is no longer possible to treat the flow as
purely two-dimensional in the plane parallel to the plates; rather, structures in the third dimension
spanning the gap play an important role in forming the patterns.

Experimentally no lateral (i.e., two-dimensional as viewed from above) fingers are observed
in miscible fluids when the ratio of the inner-fluid viscosity ηin to that of the outer fluid ηout is
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FIG. 1. (a) Schematic of both a radial and rectilinear Hele-Shaw cell showing two large flat plates, of size
L, separated by a small gap of width b. (b) Fingering patterns for different injection rates. One of the fluids
is dyed and the gray level indicates the local concentration of inner-fluid. Both scale bars are 2.5 cm. For the
radial cell (top row of images) b = 205 μm and for linear cell (bottom row of images) b = 356 μm, both have
ηin/ηout = 0.2. (Note that the images for the linear cell had the outer fluid dyed; here we invert the colors for
comparison.)

sufficiently large but still in a regime where immiscible fluids finger readily: 0.33 < ηin/ηout <

1 [15–17]. In this stable regime of miscible fluids, the inner fluid forms a tongue with a nearly
parabolic profile spanning the gap that gradually tapers down as it approaches its tip. In contrast,
when ηin/ηout < 0.33 the profile is blunt; the inner fluid half fills the gap and only near its tip
does its thickness decrease rapidly to zero. Lajeunesse et al. showed that the transition to lateral
fingering at the cross-over viscosity ratio is marked by the tip shape changing from rounded to blunt
[16]. Despite additional work exploring this thickness profile [17–19] there has been no complete
explanation of why the onset of a blunt tip coincides with the lateral fingering instability. However, if
a blunt interface is indeed a necessary condition for the lateral instability, it suggests that disrupting
the tip structure might lead to stable evolution. In this work, we explore this possibility. When we
slow down the injection rate, so that diffusion has time to blur the interface substantially, the degree
of fingering first decreases and then undergoes a sharp unexpected transition into a new regime.

Figure 1(b) shows images taken at different injection rates for both a radial and a rectilinear
Hele-Shaw experiment with the same pair of miscible fluids. All the images are taken when the
outermost interface of the injected fluid has reached 5 cm from the inlet. At the left, when the
injection rate is the largest, a fringe of stubby fingers is clearly evident at the outer pattern edge. As
the injection rate is decreased, the length of these fingers decreases until in the second image they
completely disappear. At this point, the evolution appears to be completely stable.

The final images of Fig. 1(b) show that as the injection rate is decreased even further the fingers
reemerge and grow longer with decreasing injection rate. The finger morphology is qualitatively
different in this novel, low-injection-rate regime: the fingers have a larger lateral width and appear
more uniformly colored than their counterparts at higher injection rate. As we will show, this
uniform coloration corresponds to the inner invading fluid filling the gap almost entirely. It suggests
that in this regime the three-dimensional structure between the plates has been largely eradicated
and the system has become quasi-two-dimensional.

A sharp transition between two distinct types of patterns provides a particularly effective con-
dition for probing the underlying physics similar to the role that thermodynamic phase transitions
provide in giving a deeper perspective on the phases of matter. The novel transition we observe
occurs when fluid advection is still highly dominant over diffusion. Fingering, albeit of different
forms, occurs on both sides of the transition. The role of diffusion is not so dominant that all
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structure formation is prevented [20,21]. The demonstration that there is an intermediate regime
of transient stability, where diffusion wipes out structure only in the smallest dimension provides
insight into how different features of the miscible Hele-Shaw problem are related.

II. METHODS

The radial Hele-Shaw cell consists of two large, flat glass plates of 1.9-cm thickness and
14-cm radius with a uniform gap b between them. This gap is varied by inserting spacers of varying
thickness: 76 μm < b < 419 μm. There are inlets at the center of both the top and bottom plates,
one for injection of pairs of fluid and the other for the removal of air bubbles; fluids used are
primarily water-glycerol mixtures. Before beginning the experiment we flow the inner fluid into the
waste tube, clearing any residual outer fluid from the inlet. The injection rate is precisely controlled
by a syringe pump (NE-1000 from New Era Pump Systems Inc.); the rates used vary from 0.001 to
10 mL/min. Fluids are dyed with brilliant blue G from Alfa Aesar; concentrations of dye in fluids
are 0.4 mg/mL. Viscosities of fluids are measured using the SVM 3001 viscometer and MCR 301
rheometer from Anton Paar. To measure the gap-averaged concentration, C, of the inner fluid we dye
our fluids and compare the intensity of the pattern to a calibrated cell of known thickness. Figure 2
shows inner-fluid profiles in the high and low injection-rate regimes.

One feature of a radial geometry is that the fluid velocity is inversely proportional to the distance
from the inlet. To check the effect of geometry we also conducted experiments in a rectilinear cell
where the velocity of the fluid interface does not depend on the distance from the inlet. As we will
show, the characteristics of the transition between the two fingering regimes remain in this linear
geometry.

The rectilinear cell is made of two glass plates that are 1.9-cm in thickness and 17.8-cm by
30.5 cm in width and length. The gap of the cell is set by inserting spacers of the desired thickness
and a seal is made on the side using silicone rubber of slightly larger thickness than the final gap

FIG. 2. Profiles of gap-averaged inner fluid concentrations, C, from (a) high and (b) low injection-rate
experiments taken along the lines L and W . Tip-splitting occurs when a fingers width, denoted by w, reaches a
value of 2λc.
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height; clamping the plates compresses the rubber and seals the cell. To achieve a uniform velocity
profile across the cell a reservoir is placed on either end, with an o-ring seal to secure it against the
glass. These reservoirs have air holes that can be sealed on their tops. These allow complete filling
of the reservoir without inducing pressure gradients within the cell. The reservoirs are 1.3 cm in
height, 15.4 cm in length, and 1.3 cm in depth on the interior. There are then two injection points
that are connected to syringe pumps. The purpose of this larger volume is to smooth out the pressure
from the two point injections so as to ensure a uniform front in the cell.

The main challenge with the rectilinear cell is to create a clean initial profile. In an attempt to
accomplish this the heavier outer fluid is filled while the cell is held at a 60◦ angle from horizontal.
When the outer fluid reaches the end of the cell the fluid is left to settle under gravity until a flat
interface forms. At this point the inner fluid reservoir is attached and the lower viscosity fluid is
slowly added until the chamber is full. As the reservoir fills and the inner fluid comes into contact
with the outer fluid, capillary forces draw the two fluids together. This prevents large air bubbles
from forming. There are a few minutes where the two fluids are in contact and can diffuse into
each other at this interface. As we will show, this initial diffusion does not effect the phenomena we
report here. After the inner fluid reservoir is fully filled the cell is lowered to a horizontal position
and the experiment can begin.

An additional complication arising from this loading procedure is that at the small-gap inlet the
fluids can pin or small air bubbles can form. These lead to defects that can disrupt a clean interface.
Fortunately they do not have long-range lateral effects along the interface between the fluids and we
observe the interface where there is a clean section.

To characterize the patterns we measure several parameters. (i) The most unstable wavelength,
λc, is measured either at the onset of the instability or at tip-splitting events (when a single finger
splits into two). At low injection rates a diffusive layer builds up along the edge of the pattern.
To measure the width of fingers in this regime only the thicker region is considered as shown in
Fig. 2(b). (ii) The length of fingers, Lfinger ≡ Lout − Lin, is the difference between an outer length
Lout, and an inner length Lin. For the radial cell Lout is the radius of the smallest circle that encloses
the entire pattern and Lin is the radius of the largest circle that fits within the fully displaced region
on the pattern’s interior [17]. For the linear cell Lout is the furthest distance from the inlet that any
fingers have reached and Lin is the shortest distance from the inlet that reaches the interface of the
pattern. (iii) The instability onset (both onset length Lonset and onset time tonset) is measured by
tracking a finger’s length back in time to determine when it was first formed. This can either be the
radius for the radial cell or a distance from the inlet for the linear cell. (iv) The initial dimensionless
growth rate �init ≡ d (Lfinger/Lin)/d (Lin/b) is the growth rate of the fingers at the moment they form.

The width of the interface is described by a mutual diffusion coefficient that depends on the local
concentration of inner and outer liquids as they mix. In Appendix A we describe how to extract an
effective diffusion constant D that approximates the growth of asymmetric concentration profiles.

The diffusion of the dyes used to enhance the optical contrast between the fluids is typically
slower than that of the fluids themselves; for our dyed water-glycerol mixtures, it is O(102) smaller
than the interdiffusion of the water-glycerol mixtures. To demonstrate that the observed patterns
are not an artifact of using dyes, we also used schlieren optics that exploits the small, natural
index-of-refraction difference between the fluids to measure the location of the interface [22]. Using
this technique as described in Appendix B, we find only a slight difference in the concentration
profiles measured by the dye and by where the schlieren setup images a gradient in the index of
refraction; the diffuse region in the dye extends only a bit further into the pattern showing that
advection is high enough so that the dye and fluid remain well mixed. Moreover, we find consistent
results when the outer (rather than the inner) fluid is dyed.

To be sure that the transition we are seeing is not an effect of gravitational forces we check
to see whether the glycerol-water experiments could be effected by gravity. Specifically we check
if this is the case at onset since this is where we measure different observables. We construct a
dimensionless number F that measures the relative importance of gravity. F is the ratio between
the local interfacial velocity (V ) and a settling velocity, which we take here to scale like the Stoke’s
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(a)

(b)

(c)

FIG. 3. (a) Finger growth rate �init, (b) normalized most unstable wavelength λc/b, and (c) normalized
onset length, Lonset/b are shown versus Peonset. Inset of (b) shows λc/b measured away from onset. At a critical
value, Pe∗ (the dotted line), there is a smooth decrease in �init, and a sharp jump in both λc/b and Lonset/b.

velocity for an object of size b: (�ρgb2/ηout). This gives

F = (�ρgb2)/(ηoutV ). (1)

Calculating the largest observed F for each data set we find values between 10−2 and 10−5. See
Appendix C for a table of experimental values. From this we conclude that viscous forces are
dominant in the experiments we have performed and that gravity can be ignored for the phenomena
observed.

III. EXPERIMENTAL RESULTS

The images in Fig. 1(b) show a striking change in the fingering patterns as the injection rate
is varied. Figures 2(a) and 2(b) show that the patterns formed in the two extremes have different
three-dimensional profiles. At high injection rate, we find profiles in accord with those observed in
previous studies [15–17]: near their tips, fingers are blunt and the inner fluid fills approximately half
the gap. In contrast, at low injection rates the fingers begin to fill the gap more fully out to their tips.

To account for the competition between diffusion and advection in determining the shape of the
interface, we introduce a dimensionless Péclet number defined as Pe = V b/D, where V is the local
fluid velocity at the interface, b is the plate spacing, and D is the effective interfluid diffusivity. We
also define Peonset, which is Pe at the onset of the fingering instability.

Figure 3 shows data as a function of Peonset at fixed viscosity ratio ηin/ηout = 0.2 for a range of b,
and viscosity differences, �η ≡ ηout − ηin. Figure 3(a) shows the finger growth rate at onset �init. At
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(a)

(b)

(c)

FIG. 4. Comparison of data from the radial and linear cells with ηin/ηout = 0.2. (a) �init, (b) λc/b, and
(c) Lonset/b, versus Peonset. The red line denotes the same Pe number as in Fig. 3. This shows quantitative
agreement between the two geometries, except for a slight shift of Pe∗ for the linear cell.

Peonset = Pe∗ ≈ 700 there is a sharp feature where �init approaches zero. As Pe∗ is approached from
either side, the growth rate drops precipitously. At Pe∗ both the normalized finger width λc/b and
normalized onset length Lonset/b, jump discontinuously, as shown in Figs. 3(b) and 3(c). These data
show a sharp transition between separate high- and low-Pe regimes with different morphological
properties. Figure 4 shows data from the linear cell compared to a set from the radial cell. Both
geometries show the same behavior at the transition except that, for the linear cell, Pe∗ appears
slightly shifted.

The inset of Fig. 3(b) shows measurements of λc/b taken not at the point of onset but after the
fingers have had a chance to grow; λc/b does not vary appreciably as long as one remains in one or
the other phase. By measuring λc/b one can tell what regime the system is in. In our radial cell with
constant injection rate, the velocity of the interface decreases with the distance from the inlet. Thus
an experiment that begins on the high-Pe side of the transition, with the smaller wavelength fingers,
will eventually exhibit fingers with characteristics of the low-Pe regime once the interfacial velocity
has dropped sufficiently so that the interface has a Pe number below Pe∗.

Figure 5(a) shows the patterns for experiments with viscosity ratios ranging from 0.001 to 0.2
in both the high- and low-Pe regimes. At low Pe the fingers are broader and more uniform in
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0.55
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FIG. 5. (a) Images from experiments in the high- and low-Pe regimes and corresponding measurements
of λc/b versus Pe for ηin/ηout = 1.1 × 10−3, 3.2 × 10−2, 1.9 × 10−1. Images taken when the outer radius of
inner fluid is 5 cm. In the λc/b data, all but the lowest ηin/ηout show a clear jump in wavelength λc/b. The red
shaded region shows the bounds on the critical Pe number, Pe∗. (b) Pe∗ versus ηin/ηout. Filled and open circles
are the upper and lower bounds for Pe∗ found in λc/b data. Line shows power-law fit with exponent 0.55. Inset:
Magnitude of the jump in the unstable wavelength normalized by the plate spacing, �λ/b, versus ηin/ηout. Line
shows power-law fit with exponent 0.30.

concentration than at high Pe indicating that the inner fluid fully fills the gap out to the broad
interface. The onset length Lonset, for the high-Pe regime decreases with ηin/ηout and becomes
comparable to the injection inlet for ratios smaller than 0.04 below which we are unable to measure
quantities associated with the onset.

Nevertheless, noting that λc/b remains nearly constant within each regime, see plots in Fig. 5(a),
we can still measure the jump in its value, �λc/b, between the two sides of the transition over the
entire range of ηin/ηout tested. The inset of Fig. 5(b), shows �λc/b ∝ (ηin/ηout)0.30±0.02. By taking
the lowest Pe at which we see a tip-splitting event for the high-Pe regime and the highest Pe at which
we see diffusive fingering, we obtain bounds for Pe∗. Figure 5(b) shows Pe∗ ∝ (ηin/ηout)0.55±0.04. We
conclude that these high and low Pe regimes are robust features of the miscible fingering instability.

To gain insight into the re-emergence of fingering after the transient stability, we examine the
instability onset as a function of time. Figure 3(c) shows that at high Peonset, the onset radius is
constant while at low Peonset it is approximately proportional to Peonset. If we plot the times of
onset tonset, instead of Lonset, we find that for fluids with different diffusivities D and gap spacings b,
tonset ∝ b2/D as shown in Figs. 6(a) and 6(b). This suggests that tonset is related to a diffusive length:√

4Dt . We therefore define a dimensionless onset time τonset ≡ 4Dtonset/b2.
The data for ηin/ηout = 0.2, see Fig. 6(c), show that in the high-Pe regime, the onset is

characterized by a constant value of the onset length Lonset/b; in contrast, at low-Pe, the onset
is characterized by a nearly constant value of the onset time τonset. In Appendix D, we describe
additional experiments showing that τonsaet is insensitive to the injection protocols. From this we
conclude that it is the time rather than the length that robustly characterizes the onset in the low-Pe
regime. Again the linear cell shows consistent behavior compared to the radial cell, as shown in the
inset of Fig. 6(c).

Figure 6(d) shows τonset in the low-Pe regime versus viscosity ratio up to ηin/ηout ≈ 1.0, which
is above the cutoff reported for high-Pe fingering [16,17]. The cutoff has been ascribed [16] to
the structure at the front of the inner-fluid tongue changing from a sharp to a rounded profile. In
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-1 2

FIG. 6. (a) τonset versus D at b = 205 μm. Dotted line shows tonset ∝ D−1. (b) τonset versus b with D =
0.90 × 10−6 cm2 s−1. Dotted line shows tonset ∝ b2. (c) τonset versus Lonset/b. High-Pe regime has constant
Lonset/b while low-Pe regime has constant τonset. Legend is the same as Fig. 3. The inset shows a comparison
between linear cell (open squares) and radial cell data. (d) τonset versus ηin/ηout. The red and black lines show
stability thresholds from Ref. [17] and Ref. [16], respectively.

the low-Pe regime, these three-dimensional structures do not form, so that this additional region
of stabilization disappears in accord with our results. For ηin/ηout < 0.3, τonset ∼ O(1) indicates
that the diffusion length is comparable to the gap spacing, b; however, above this threshold the
value of τonset (and therefore the diffusion length) increases rapidly with increasing ηin/ηout. In the
absence of diffusion, this threshold ηin/ηout = 0.3, is the viscosity ratio above which the profile of
the inner-fluid profile no longer has a blunt tip (over a lengthscale ∼b) but becomes progressively
thinner with increasing ηin/ηout. From this we conclude that, for large viscosity ratios, the diffusion
length necessary to destabilize the interface becomes the length of the tapered finger not the distance
between the plates, b. That is, counterintuitively, it is the longitudinal, not the transverse length scale
in the gap which determines the appropriate amount of diffusion.

We now look at how the concentration profiles of the patterns change across the transition at Pe∗.
Figure 7 shows these profiles for experiments in both the radial and linear geometries. In the top
two rows we show profiles from the high-Pe regime. The red curve denotes the profile at the onset
of fingering for that experiment. Note that at onset, the tongue formation has not yet occurred; it
is only after onset that a tongue, a flat protrusion, appears. We note that the high-Pe profiles look
similar to what has been reported in previous work: the profile has a blunt tip and a tongue that
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FIG. 7. Concentration profiles spanning the transition between the two regimes of fingering. Profile on
the left are from a radial geometry while those on the right are from a linear one. In each set of curves the
red (—) curve denotes the profile at the onset of fingering while the blue (- -) curve is the profile at the
average onset length for the high-Pe regime. The labels for the red and blue curves are the Pe numbers for the
corresponding profiles. (a), (b), (f), and (g) have fingers in the high-Pe regime while (c)–(e) and (h)–(j) are in
the low-Pe regime. Radial profiles here are taken with b = 205 μm and �η = 150 cP, linear profiles are taken
with b = 356 μm and �η = 319 cP. All profiles have ηin/ηout = 0.2.

fills roughly half of the gap [15–17,23–25]. There are only slight differences between the radial and
linear geometries that appear at the back of the finger near the inlet; the inner fluid fills the gap more
in the radial cell than it does in the linear one.

For the low-Pe patterns, we see that even before the onset of fingering the inner fluid develops
tongue structures similar to those seen in the high-Pe regime. Due to the increased effect of diffusion
these tongues’ concentration decreases with distance from the inlet. It is important to note that it
is only at the lowest injection rates, after fingers have formed, that the concentration profiles begin
to look like a diffusive front with no additional structure. Thus, it is only in this regime that purely
two-dimensional theories that do not account for gap structure would be applicable [20,21,26,27].
This suggests why our experiments do not show the scaling of λc with Pe that those theories predict.

If one looks at the low-Pe profiles at the same length as where onset occurs in the high-Pe regime,
one sees subtle but very important differences. In the high-Pe regime the profile has a very sharp and
abrupt front. In the low-Pe regime, this profile is rounded, with the degree of rounding increasing
as Pe drops farther from Pe∗. If a blunt profile is indeed necessary for fingering to occur, then when
diffusion rounds out this structure before the pattern can reach the onset length, the fingering would
be prevented. This hints at why diffusion helps to stabilize the patterns against fingering as Pe∗ is
approached.

A final point to be made is that in Fig. 1(b) there is a lighter grey region at the edge of the
low-Pe regime patterns. This is seen in both radial and linear geometries. The evolution of the
concentration profiles reveals that this is not a diffuse mixing region, but instead is the remnants of
a tongue structure that forms at early times during injection. The formation of this tongue is a robust
feature of how the inner fluid structure grows in the gap. Because it also appears in the linear cell,
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it not due to a higher interface velocity near the inlet which would only apply to the radial cell. We
also note that the length of the tongue region in the onset profiles in the low-Pe regime [shown by
the red curves in Figs. 7(c) to 7(e) and Figs. 7(h) to 7(j)], shrinks with lowering the Pe number; the
onset of fingering in the low-Pe regime is independent of the length of the tongue.

IV. DISCUSSION AND CONCLUSION

Our experiments on miscible pairs of fluids demonstrate that (i) at high Peonset, three-dimensional
structure within the gap is crucial for determining the nature of the fingering instability and
(ii) at lower Peonset, diffusion eradicates the three-dimensional structures so that the instability can
profitably be considered as a two-dimensional problem. The most dramatic aspect of these results
is the well-defined transition between two distinct fingering regimes. This transition appears to be
continuous in one observable: the finger growth rate continuously decreases (approaching zero) at
the critical Pe number and then re-emerges, apparently smoothly, at lower Peonset. However, there
are other observables, such as λc and Lonset that appear to jump discontinuously at the transition. The
existence of both smooth and discontinuous features at the transition is atypical and is reminiscent
of a mixed-order phase transition, as has been seen at the jamming transition of spheres [28].

Because diffusion suppresses the miscible-fingering instability at small lengthscales, theories
that treat the system as purely two-dimensional have predicted that λc should depend on Pe
[20,21,26,27]. In seeming contradiction, experiment (in the high-Pe regime) has found that λc

is insensitive to the injection rate or fluid properties and only depends on the gap spacing, b
[15,17,29–32]. However, recent simulations [18,19] that include the three-dimensional profile of
the inner fluid have concluded that λc is insensitive to Pe and viscosity ratio, in agreement with
experiments.

Until now, there has been no comprehensive understanding of how these limiting cases, where
the structure of the inner fluid is either two or three dimensional, are related to one another.
Our results showing a transition at Pe∗ 
 1 (i.e., where advection dominates over diffusion) can
reconcile the conflicting conclusions from experiment, theory and simulation. They show that there
is a regime at very low Pe where the inner fluid completely fills the gap; the two-dimensional
picture is appropriate in this regime. The conclusion that fingering persists for all ηin/ηout < 1
(as for immiscible systems) is corroborated by our experiments in the low-Pe regime. At high Pe,
three-dimensional structure controls the transition; this is the regime that has hitherto been explored
by experiments and simulations. These are two separate regimes separated by a sharp transition;
the system cannot be tuned continuously between them without encountering the transition and an
accompanying disruption to the fingering.

A pronounced delay in the onset of fingering has also been observed in immiscible pairs of fluids
[33] as well as in the miscible fluids in both the high-Pe regime [17] and the low-Pe regime described
here. The cause of the delay in initiating the fingering patterns remains perplexing. A geometrical
argument for an onset radius based on the radial nature of the injection [34,35] estimates the onset
radius to be very much smaller than the onset radii observed. Moreover, these arguments only use
the fact that the velocity near the inlet is larger and would not be able to account for the delayed
onset we have observed in the rectilinear cell. Clearly, further study of the fingering onset in all the
different regimes and geometries is needed.

Our work has demonstrated a novel transition in the viscous fingering instability most notably
marked by the unexpected stability of the interface at Pe∗, a critical value of Peonset. The patterns in
the regimes on the two sides of this transition show different morphologies, including differences
in the most unstable wavelength and the profile structure of the inner fluid within the gap. The
stabilization of the high-Pe regime at the transition is due to diffusion altering the profile of the
fingers. The fingering in the low-Pe regime occurs after the three-dimensional structure is lost; in
this regime, the system is quasi-two-dimensional and no longer has the three-dimensional structure
which had helped to stabilize the lateral patterns. These features highlight the importance of the gap
structure and demonstrate a need for additional work at intermediate Pe to see how the structure
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within the gap dissolves and by what mechanism the inner fluid entirely fills the gap thereby
ushering in the low-Pe regime. There is need for a modeling and theory effort to help provide a
better understanding of these phenomena. These considerations also open up the possibility that, at
even lower Pe, there may be a second transition to stability where diffusion acts not on the small
lengthscale of the gap spacing b, but on the larger scale of λc.

Previous techniques for controlling the viscous fingering instability, which can only work for
immiscible fluids, exploit the stabilizing effect of surface tension [36–39]. However, the discovery
of a stable point in miscible fluids opens the possibility of halting the formation of fingers when no
surface tension forces are present. It provides a novel method for controlling fluid flow in miscible
systems.

Due to the importance of the inner-fluid profile it is tantalizing to speculate if there are other
ways to disrupt this structure and to observe their effects on pattern formation. Such experiments
would allow a deeper understanding of how the onset of fingering occurs in the high-Pe regime.
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APPENDIX A: DIFFUSION IN A BINARY SYSTEM

For fluids that are binary mixtures of molecules, the diffusion is not characterized by a constant,
but rather a coefficient that depends upon the local concentration of its components. In these systems
a mutual diffusion coefficient D12 measures how the macroscopic concentration of the binary
mixture diffuses due to gradients in the local mixture. Because D12 depends on concentration, a
Fick’s law is used to describe the changes in concentration in the following form:

∂φ

∂t
= ∂

∂x

(
D12(φ)

∂φ

∂x

)
, (A1)

where φ denotes the molar fraction of the mixture. At the extremes φ = 0 or φ = 1, D12 should
equal the self-diffusion of the two species. This is shown experimentally in Fig. 2 of D’Errico et al.
[40] in water-glycerol mixtures.

We can calculate an effective diffusion constant for our systems using the measured mutual
diffusion between water-glycerol mixtures [40]. We need a single number D that approximates the
diffusion between two initial concentrations of water and glycerol and that does not change during
the course of a single experiment.

Using the modified Fick’s law, Eq. (A1), an initial step-function concentration profile evolves to
an asymmetric profile as shown in Fig. 8(a). This is in contrast to a system with a constant diffusivity.
Petitjeans and Maxworthy [41] provided a method of approximating an effective diffusion constant,
D, from the evolution of asymmetric profiles. We follow that analysis here. For a given spatial
profile, C(x), that has values of 0 and 1 for the initial concentrations of the two fluids, one can find
the point Xmax, where the slope, d2C/dx2 = 0, is maximum. The difference between the outer-fluid
concentration and the maximal-slope value is �Cg ≡ 1 − C(Xmax); likewise �Cm ≡ C(Xmax) is the
difference between the inner-fluid concentration and the maximal-slope value. One then determines
where the concentration is equal to C(Xmax) + (1 − 1/e)�Cg, and where the concentration is equal
to C(Xmax) − (1 − 1/e)�Cm (see Fig. 4(b) in Ref. [41]). The distance between these two locations
is defined as δ. The effective diffusion constant D is obtained from D = δ2/(6.35t ), where t is the
time taken to diffuse to a given concentration profile and the factor of 6.35 comes from carrying out
this analysis on a system with a constant mutual diffusion coefficient.
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FIG. 8. (a) The profiles of concentration φglycerol at three different points in time from the numerics based
on Eq. (A1). The inset shows the derivative of the concentration profile to highlight the asymmetry in the
shape. (b) Plot of the effective diffusion constant versus the weight fraction of glycerol. The red circles are our
simulated D values and the blue circles are experimental values reported in Ref. [41].

We simulate Eq. (A1) using Euler’s method to obtain values for our effective diffusion constants.
The value of D12 used is taken from Eq. (2) in [40]

D12 × 109 m−2 s1 = (1.024 ± 0.010) − (0.91 ± 0.05)φ

1 + (7.5 ± 0.3)φ
± 0.004. (A2)

Our simulation is run with the concentration given in molar fraction and then the resulting profiles
are converted to percent weight of glycerol. We then calculate δ for these concentrations using the
prescription of Petitjeans and Maxworthy [41].

Petitjeans and Maxworthy took some experimental data on these effective diffusion constants
between different initial concentration water-glycerol mixtures and pure glycerol [41]. Figure 8(b)
compares our numerics to those measurements and find good agreement.

To simulate the diffusion for our experimental fluids we need to know the molar fraction of our
mixtures. The authors of Ref. [42] provided an empirical relation for the viscosity of water-glycerol
mixtures based upon the temperature and weight concentration:

μ = μα
wμ1−α

g , (A3)

where μ, μw, and μg are the viscosities for the mixture, pure water, and pure glycerol respectively.
α is a weighting factor

α = 1 − φm + abφm(1 − φm)

aφm + b(1 − φm)
, (A4)

where φm is the weight concentration of glycerol (1 being pure glycerol and 0 being pure water),
and a and b depend on temperature. Since our experiments are conducted at a single temperature
we take these numbers to be fitting constants. By using our measured values of viscosity at a fixed
temperature we can use this formula to back out the molar fraction of our solutions. To account for
a difference in temperature of our system we scale our results so that in the dilute limit of water as
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the inner solution diffusing into pure glycerol our diffusion constant is equal to the self-diffusion of
water in a bath of glycerol, this scaling factor is about 0.943 for fluids at 22 ◦C. It is slightly less
than one since the values from [40] were measured at 25 ◦C.

APPENDIX B: COMPARISON OF DYED IMAGES TO SCHLIEREN IMAGING

Here we show comparisons between different types of imaging over a range of injection rates
Q. Figure 9 shows images of fingering patterns from a schlieren optics setup and from back-lit
photography of fluids with either dyed inner or outer fluid. There are slight differences between
the schlieren and the dyed inner-fluid images. Schlieren imaging picks up gradients of index of
refraction corresponding to gradients in concentration. At high injection rates the images match
nicely: both show a region with no change in concentration (near the inlet) and then a slow decrease
in concentration out to the tips of fingers. At intermediate injection rates, the schlieren imaging is
not sensitive to the outer most edge of the pattern. However, all techniques show the emergence of
thicker fingers in the interior of the pattern at the same radial distance from the inlet. The size of this
transition region between fully filled and the diffuse boundary is larger in the dyed image. Finally,
the images match well for the lowest injection rate. The schlieren images show no appreciable
signal in the interior of the pattern. This confirms the observation that the inner fluid has a constant
thickness out to the edge of the pattern. Since both methods capture the same essential aspects of the
patterns, it confirms that those observations are not artifacts from using dye in our fluids. Finally,

FIG. 9. The images show different methods of visualizing the fluids in our experiments at different flow
rates. The rows show, from top to bottom, flow rates of 2 ml/min, 0.1 ml/min, 0.01 ml/min. From left to
right, the columns depict final patterns seen with (i) schlieren imaging and standard imaging with (ii) inner and
(iii) outer fluid dyed. The schlieren images have been divided by the background to account for non-uniform
lighting. Dyed images were taken when the outer extent of the dyed patterns reach a radius of 3.5 cm, the
schlieren images were taken so that the total time of injection matches that of the corresponding experiments
with dyed fluids. A final radius is not considered for schlieren since the diffuse boundary is not clearly visible
for lower injection rates. All experiments were done with b = 205 μm, ηin = 24.7 cP, and ηout = 116 cP.

033902-13



THOMAS E. VIDEBÆK AND SIDNEY R. NAGEL

there is no appreciable difference at any of the injection rates between the two types of dyed images
(the middle and right columns of the figure).

APPENDIX C: GRAVITATIONAL EFFECTS

Following the definition of F from the main text, here we compute its largest value for each
set of data from the radial cell. Since we report Pe number instead of V we substitute V = PeD/b.
For each value of b used with each fluid pair and the lowest Pe number we have measured, these
provide values of F found in Table I. From this it is clear that even for the fluids with larger density
differences viscous forces dominate. We also note that across our glycerol-water experiments there
is an order of magnitude change in density differences with no quantitative change in the transition
behavior. This leads us to conclude that gravitational forces can be neglected.

APPENDIX D: ONSET TIME DEPENDENCE ON INJECTION RATE SCHEMES

The low-Pe regime occurs when the inner-fluid profile becomes uniform along the entire length
of a finger and fully fills the gap. However, the inner fluid tongue fully filling the gap cannot be due
to passive diffusion by itself since diffusion would act to spread out the concentration and not act to
increase the local concentration. Thus some advective motion to increase the thickness of the fluid
tongue must be at play.

To show that passive diffusion alone cannot initiate the low-Pe regime, we conduct a series of
experiments in the radial cell where the inner fluid is injected for a time shorter than the measured
onset time and then let the fluid remain at rest for a time twait, after which we resume injection.
Figure 10(a) shows the onset length and the time of onset (neglecting the time spent waiting) remain
unchanged, even for waiting times over ten times longer than the expected onset time. We conclude
that advection and diffusion coupled together are important for filling the gap.

We also vary the injection by first having a low volumetric rate and then, as shown schematically
in the inset to Fig. 10(b), by increasing the injection rate. Figure 10(b) shows that that the onset
time remains constant, while the onset length decreases as the time that is spent injecting at the low

TABLE I. Experimental fluid parameters and highest graviational number. The last line is for the fluid used
in the linear cell experiments.

ηin/ηout �η [cP] �ρ [kgm−3] 10−6 D [cm2 s−1] b [μm] Pelowest 10−4 Fhighest

0.20 3.6 128 6.69 205 100 36.0
0.18 20.2 69.4 2.92 205 49.8 16.4
0.22 56.5 43.3 1.69 419 47.3 54.3

205 4.94 60.9
127 59.6 1.20

0.20 147 35.3 1.09 205 30.5 4.90
0.22 256 28.8 0.773 308 15.6 21.0

205 30 3.22
127 64.1 0.358
76 48.1 0.102

0.22 687 23.1 0.389 205 74.8 0.765
0.097 187 50.8 1.26 205 19.9 8.27
0.032 697 68.6 0.900 205 5.05 17.7
0.0078 546 129 1.69 205 5.81 20.02
0.0031 325 236 3.43 205 1.93 92.4
0.0011 1070 251 2.93 205 3.73 18.0
0.21 319 26.8 0.688 356 16.7 25.6
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L L
L

FIG. 10. Lonset (blue) and tonset (red), are shown for radial cell experiments with different time-varying
injection rates Q(t ), shown schematically in the insets. The average onset time, 〈tonset〉, is taken from
experiments that use a single, nonvarying injection rate. (a) After injection at a constant rate to a radius of
3 cm, injection stops for a time twait before continuing. (b) The injection rate (Q) is low for a time tQ1 before Q
is increased.

rate is varied. When the injection rate is increased linearly with time, the onset time is unchanged
as well. This implies that a constant τonset is a robust feature of the low-Pe regime.

[1] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B 237, 37 (1952).
[2] S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern

formation, Science 329, 1616 (2010).
[3] D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, and C. Tang, Viscous flows in two dimensions,

Rev. Mod. Phys. 58, 977 (1986).
[4] G. M. Homsy, Viscous fingering in porous media, Annu. Rev. Fluid Mech. 19, 271 (1987).
[5] P. G. Saffman and G. I. Taylor, The penetration of a fluid into a porous medium or hele-shaw cell

containing a more viscous liquid, Proc. R. Soc. London Ser. A 245, 312 (1958).
[6] S. R. Nagel, Experimental soft-matter science, Rev. Mod. Phys. 89 (2017).
[7] T.A. Witten, Jr. and L. M. Sander, Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon,

Phys. Rev. Lett. 47, 1400 (1981).
[8] L. Paterson, Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media, Phys. Rev.

Lett. 52, 1621 (1984).
[9] L. M. Sander, P. Ramanlal, and E. Ben-Jacob, Diffusion-limited aggregation as a deterministic growth

process, Phys. Rev. A 32, 3160 (1985).
[10] J. Nittmann, G. Daccord, and H. E. Stanley, Fractal growth viscous fingers: quantitative characterization

of a fluid instability phenomenon, Nature 314, 141 (1985).
[11] L. M. Sander, Fractal growth processes, Nature 322, 789 (1986).
[12] E. Bettelheim, O. Agam, A. Zabrodin, and P. Wiegmann, Singularities of the Hele-Shaw Flow and Shock

Waves in Dispersive Media, Phys. Rev. Lett. 95, 244504 (2005).
[13] O. Praud and H. L. Swinney, Fractal dimension and unscreened angles measured for radial viscous

fingering, Phys. Rev. E 72, 011406 (2005).
[14] X. Cheng, L. Xu, A. Patterson, H. M. Jaeger, and S. R. Nagel, Towards the zero-surface-tension limit in

granular fingering instability, Nat. Phys. 4, 234 (2008).
[15] E. Lajeunesse, J. Martin, N. Rakotomalala, and D. Salin, 3d Instability of Miscible Displacements in a

Hele-Shaw Cell, Phys. Rev. Lett. 79, 5254 (1997).
[16] E. Lajeunesse, J. Martin, N. Rakotomalala, D. Salin, and Y. C. Yortsos, Miscible displacement in a hele-

shaw cell at high rates, J. Fluid Mech. 398, 299 (1999).
[17] I. Bischofberger, R. Ramachandran, and S. R. Nagel, Fingering versus stability in the limit of zero

interfacial tension, Nat. Commun. 5, 5265 (2014).

033902-15

https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1103/RevModPhys.58.977
https://doi.org/10.1103/RevModPhys.58.977
https://doi.org/10.1103/RevModPhys.58.977
https://doi.org/10.1103/RevModPhys.58.977
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1103/PhysRevLett.52.1621
https://doi.org/10.1103/PhysRevLett.52.1621
https://doi.org/10.1103/PhysRevLett.52.1621
https://doi.org/10.1103/PhysRevLett.52.1621
https://doi.org/10.1103/PhysRevA.32.3160
https://doi.org/10.1103/PhysRevA.32.3160
https://doi.org/10.1103/PhysRevA.32.3160
https://doi.org/10.1103/PhysRevA.32.3160
https://doi.org/10.1038/314141a0
https://doi.org/10.1038/314141a0
https://doi.org/10.1038/314141a0
https://doi.org/10.1038/314141a0
https://doi.org/10.1038/322789a0
https://doi.org/10.1038/322789a0
https://doi.org/10.1038/322789a0
https://doi.org/10.1038/322789a0
https://doi.org/10.1103/PhysRevLett.95.244504
https://doi.org/10.1103/PhysRevLett.95.244504
https://doi.org/10.1103/PhysRevLett.95.244504
https://doi.org/10.1103/PhysRevLett.95.244504
https://doi.org/10.1103/PhysRevE.72.011406
https://doi.org/10.1103/PhysRevE.72.011406
https://doi.org/10.1103/PhysRevE.72.011406
https://doi.org/10.1103/PhysRevE.72.011406
https://doi.org/10.1038/nphys834
https://doi.org/10.1038/nphys834
https://doi.org/10.1038/nphys834
https://doi.org/10.1038/nphys834
https://doi.org/10.1103/PhysRevLett.79.5254
https://doi.org/10.1103/PhysRevLett.79.5254
https://doi.org/10.1103/PhysRevLett.79.5254
https://doi.org/10.1103/PhysRevLett.79.5254
https://doi.org/10.1017/S0022112099006357
https://doi.org/10.1017/S0022112099006357
https://doi.org/10.1017/S0022112099006357
https://doi.org/10.1017/S0022112099006357
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265


THOMAS E. VIDEBÆK AND SIDNEY R. NAGEL

[18] N. Goyal and E. Meiburg, Miscible displacements in hele-shaw cells: Two-dimensional base states and
their linear stability, J. Fluid Mech. 558, 329 (2006).

[19] R. M. Oliveira and E. Meiburg, Miscible displacements in hele-shaw cells: three-dimensional navier–
stokes simulations, J. Fluid Mech. 687, 431 (2011).

[20] C. T. Tan and G. M. Homsy, Stability of miscible displacements in porous media: Radial source flow,
Phys. Fluids 30, 1239 (1987).

[21] Y. C. Yortsos, Stability of displacement processes in porous media in radial flow geometries, Phys. Fluids
30, 2928 (1987).

[22] P. Bunton, D. Marin, S. Stewart, E. Meiburg, and A. De Wit, Schlieren imaging of viscous fingering in a
horizontal hele-shaw cell, Exp. Fluids 57, 28 (2016).

[23] Z. Yang and Y. C. Yortsos, Asymptotic solutions of miscible displacements in geometries of large aspect
ratio, Phys. Fluids 9, 286 (1997).

[24] N. Rakotomalala, D. Salin, and P. Watzky, Miscible displacement between two parallel plates: Bgk lattice
gas simulations, J. Fluid Mech. 338, 277 (1997).

[25] L. Talon, N. Goyal, and E. Meiburg, Variable density and viscosity, miscible displacements in horizontal
hele-shaw cells. part 1. linear stability analysis, J. Fluid Mech. 721, 268 (2013).

[26] R. L. Chuoke, P. Van Meurs, and C. Van der Poel, The instability of slow, immiscible, viscous liquid-liquid
displacements in permeable media, Trans. Am. Inst. Min. Metall. Pet. Eng. 216, 188 (1959).

[27] J. W. Gardner and J. G. J. Ypma, An investigation of phase behavior-macroscopic bypassing interaction
in co2 flooding, Soc. Pet. Eng. J. 24, 508 (1984).

[28] A. J. Liu and S. R. Nagel, The jamming transition and the marginally jammed solid, Annu. Rev. Condens.
Matter Phys. 1, 347 (2010).

[29] J. D. Chen, Radial viscous fingering patterns in hele-shaw cells, Exp. Fluids 5, 363 (1987).
[30] J. D. Chen, Growth of radial viscous fingers in a hele-shaw cell, J. Fluid Mech. 201, 223 (1989).
[31] L. Paterson, Fingering with miscible fluids in a hele shaw cell, Phys. Fluids 28, 26 (1985).
[32] A. Aubertin, G. Gauthier, J. Martin, D. Salin, and L. Talon, Miscible viscous fingering in microgravity,

Phys. Fluids 21, 054107 (2009).
[33] R. Ramachandran, Stability and onset of two-dimensional viscous fingering in immiscible fluids,

arXiv:1704.02674.
[34] L. Paterson, Radial fingering in a hele shaw cell, J. Fluid Mech. 113, 513 (1981).
[35] M. Nagel and F. Gallaire, A new prediction of wavelength selection in radial viscous fingering involving

normal and tangential stresses, Phys. Fluids 25, 124107 (2013).
[36] S. Li, J. S. Lowengrub, J. Fontana, and P. Palffy-Muhoray, Control of Viscous Fingering Patterns in a

Radial Hele-Shaw Cell, Phys. Rev. Lett. 102, 174501 (2009).
[37] T. T. Al-Housseiny, P. A. Tsai, and H. A. Stone, Control of interfacial instabilities using flow geometry,

Nat. Phys. 8, 747 (2012).
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