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Instability of precession driven Kelvin modes: Evidence of a detuning effect
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We report an experimental study of the instability of a nearly resonant Kelvin mode
forced by precession in a cylindrical vessel. The instability is detected above a critical
precession ratio via the appearance of peaks in the temporal power spectrum of pressure
fluctuations measured at the end walls of the cylinder. The corresponding frequencies can
be grouped into frequency sets satisfying resonance conditions with the forced Kelvin
mode. We show that one set forms a triad that is associated with a parametric resonance of
Kelvin modes. We observe a significant frequency variation of the unstable modes with the
precession ratio, which can be explained by a detuning mechanism due to the slowdown of
the background flow. By introducing a semianalytical model, we show that the departure
of the flow from the solid body rotation leads to a modification of the dispersion relation
of Kelvin modes and to a detuning of the resonance condition. The second frequency
set includes a very low frequency and does not exhibit the properties of a parametric
resonance between Kelvin modes. Interestingly, this frequency set always emerges before
the occurrence of the triadic resonances, i.e., at a lower precession ratio, which implies
that it may correspond to a different type of instability. We discuss the relevance of an
instability of a geostrophic mode described by Kerswell [Kerswell, J. Fluid Mech. 382,
283 (1999)], although other mechanisms cannot be completely ruled out.

DOI: 10.1103/PhysRevFluids.4.033901

I. INTRODUCTION

Since the original work of Kelvin [1], it has been known that rotating columns of fluid
support helical modes composed of two inertial waves, which nowadays are called Kelvin modes.
Experiments have shown that Kelvin modes can be directly forced in precessing or librating flows
[2] or by emulating tidal forcing [3]. Kelvin modes may also appear via an instability, as observed in
the Lamb-Oseen vortex [4], or in a column of fluid that is elliptically deformed [5]. Global stability
analysis shows that a single directly forced Kelvin mode may become unstable via a parametric
(triadic) resonance with two further free Kelvin modes [6], i.e., two modes that are not present
before the onset of the instability. Whereas the linear mechanisms have been extensively studied, the
experimental investigation of the nonlinear evolution of the instability, which involves the saturation
process, is still an open issue. Two scenarios, which may coexist, have been suggested to explain the
final stage of the instability. First, saturation can be achieved by nonlinear interactions between the
unstable modes and small-scale structures. This leads to an energy transfer from the linearly unstable
modes to small-scale dissipative structures [6]. This mechanism can be intermittent, as observed by
McEwan [2] during the resonant collapse of Kelvin modes. Saturation can also be achieved by a
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secondary mean flow generated directly by the unstable modes. The resulting modification of the
background flow1 leads to a saturation of the amplitude of the unstable mode, via a frequency
detuning or a phase shifting between the unstable modes and the forced mode [8]. This problem
can be decomposed into two parts: the modification of the background flow produced by Kelvin
modes and the feedback of this flow on the Kelvin modes. The first point is a complex problem
because the direct nonlinear interaction between a single Kelvin mode and the background flow is
not permitted at first order for the steady case in the long timescale [9]. However, the emergence
of strong mean flows via nonlinear interactions between inertial modes is allowed for finite Rossby
number (the ratio between nonlinear advection |u · ∇u| over the Coriolis term |2� × u|) or finite
Ekman number (the ratio between viscous forces and the Coriolis force) [10].

In the present study we deal with the second point by examining experimentally and theoretically
the detuning of resonant Kelvin modes caused by the induced modification of the background flow
in a precessing fluid. The experiments utilize a cylinder filled with water which rotates around
its symmetry axis at the rotation rate �c. This cylinder is mounted on a turntable rotating at the
precession rate �p. When the angle between the axes of rotation and precession (the nutation angle
α) is nonzero, the flow deviates from the solid body rotation, due to the acceleration of the rotation
axis. As originally observed by McEwan [2], the primary response of the fluid is a laminar flow
that is composed of Kelvin modes superimposed on a solid body rotation [11–14]. The gyroscopic
force due to precession directly forces a Kelvin mode with azimuthal wave number m = 1 and
angular frequency −�c in the frame of reference of the cylinder. This mode can be resonant if
its eigenfrequency ω is close to the angular frequency of the forcing �c. Out of resonance, the
amplitude of the mode scales like |ω − �c|−1 and increases with the strength of the precession,
quantified by the precession ratio ε = �p/�c. At resonance, viscous and nonlinear effects must be
taken into account to explain the saturation of the forced Kelvin mode [13–16]. It is worth noting
that nonlinear and viscous effects may lead to the generation of a geostrophic mode [13,16] in
the laminar regime before the occurrence of the instability of the forced Kelvin modes [6]. The
instability of the forced Kelvin mode sets in above a critical precession ratio [2,11,12], and the
linear analysis [6] predicts a triggering of a parametric (triadic) resonance which has been confirmed
in experimental and numerical studies [17–22]. The parametric instability can either saturate to a
periodic state [23] or trigger a nonstationary sequence of bifurcations which may account for a
chaotic state called resonant collapse, as it has been observed experimentally [2,11,18]. The weakly
nonlinear analysis of the instability [23] shows that saturation can also be achieved by a detuning of
the forced Kelvin mode due to a modification of the solid body rotation.

This scenario is supported by measurements of the modification of the background flow in
the laminar [13,16] as well as in the nonlinear regime [23,24]. In this regard, simulations and
experiments indicate a fundamental difference between the emerging flow at small and at large
nutation angle α, which can be seen in the transition from laminar to turbulent flow. At small α

different types of the transition into the turbulent regime can be observed, which are usually referred
to as resonant collapse [11]. Recent simulations by Albrecht et al. [22] give evidence that a cascadic
emergence of triadic resonances determines the transient evolution during the resonant collapse. In
contrast, at large α only one type of definite transition is found at a critical precession ratio [20]
which presumably is not related to the first instabilities because it only occurs for a precession
ratio approximately two times larger than the threshold of the parametric instability. Moreover,
measurements from our previous study [20] do not support the scenario of a resonant collapse

1Here the notion of background flow refers to this axisymmetric azimuthal flow component and does not
mean the time-averaged flow which is determined by the forcing. For a precessing fluid the time-averaged
flow essentially consists of the directly forced standing inertial wave (and its harmonics from nonlinear self-
interaction when the forcing is sufficiently strong) superimposed on the azimuthal circulation, which in turn
consists of the solid body rotation and a shear flow which effectively causes a braking of the solid body
rotation [7].
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of Kelvin modes but rather a subcritical transition with sudden and definitive relaminarizations, a
phenomenon frequently observed in shear flows [25]. A strong shear flow is indeed observed in
our experiments and simulations which is reflected in a significant braking of the initial solid body
rotation [7]. The associated strong velocity gradients near the outer walls tend to become unstable,
which may trigger the transition in the turbulent regime at large α by eruptions that originate in the
lateral boundary layers and penetrate into the bulk flow [26].

The generation of mean flows from precessional forcing is a rather complex process strongly
impacted by nonlinearities, and the analytical calculation of the feedback of the instability, i.e.,
how the unstable modes backreact on the background flow, is hardly tractable, although particular
studies have been applied to the laminar case for forced Kelvin modes [13] and to the unstable
regime [23]. In this study we do not focus on this part, but we assume a priori the functional form
of the modified background flow which results from some unspecified mechanism. In particular, we
do not assume that only the instability is responsible for the modification of the background flow,
but that a modified background flow impacts the instabilities by detuning, which finally causes the
saturation of the instability.

To date, the experimental evidence of the saturation via a modification of the background flow
that goes along with the detuning of Kelvin modes is still lacking. The detuning of the frequency of
the forced mode could only be observed indirectly by measuring a decrease of its amplitude, because
its frequency always remains the one of the forcing. In contrast, the detuning of free Kelvin modes
can be measured directly because only the condition of resonance must be maintained, i.e., the
difference or the sum of their frequencies. The present paper aims at demonstrating the detuning of
free Kelvin modes with experimental measurements and complementary analytic calculations that
are based on a perturbation approach. After introducing the experimental setup and the theoretical
background in Secs. II and III, we report our experimental observations in Sec. IV. We briefly
discuss the qualitative behavior of the pattern of the unstable Kelvin mode and study the amplitudes
and the frequencies of the contributing modes. The remainder of the paper aims at an analytical
explanation of the detuning of the frequency as a function of the modification of the background
flow (Sec. V A) followed by a brief sketch of the theoretical background that describes the impact
of shear on the eigenmodes in a rotating fluid (Sec. V). Finally, we discuss the effect of the detuning
on the parametric instability (Sec. VI).

II. MATHEMATICAL PRELIMINARIES

A. Basic equations

We consider a viscous and incompressible fluid with kinematic viscosity ν, which is contained
in a rigid cylindrical cavity of radius R and height H . We apply cylindrical coordinates with
the origin of the reference frame located at the center of the cylinder [Fig. 1(b)] so that the
fluid domain is defined by (r, ϕ, z) ∈ ([0, R] × [0, 2π ] × [−H/2, H/2]). The cylinder rotates at an
angular frequency �c = 2π fc around the axial direction ez. This axis ez in turn rotates around a
second axis, the axis of precession ep, at the angular frequency �p = 2π fp. In the present study
the angle between ez and ep is fixed at α = 90◦. In the following, all computations are performed
in the reference frame of the cylinder, where the walls are at rest. In this system, it is the axis of
precession ep that rotates around the axis ez. The equation describing the velocity field v in the
cylinder reference frame rotating at � = �cez + �pep is

∂t v + v · ∇v + 2[�cez + �pep(t )] × v = − 1

ρ
∇P + F + ν�v, (1)

where v additionally satisfies the mass conservation

∇ · v = 0 (2)
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FIG. 1. (a) Sketch of the experimental setup. (b) Sketch of the reference frame.

and ep(t ) is given by

ep(t ) = sin α cos(�ct + ϕ)r̂ − sin α sin(�ct + ϕ)ϕ̂ + cos αẑ. (3)

In Eq. (1) P denotes the modified pressure that includes the centrifugal contributions. The forcing
term F, also called Poincaré acceleration, corresponds to the gyroscopic force which is responsible
for the departure of the flow from the solid body rotation and is given by

F = −�c�pr cos(�ct + ϕ)ez. (4)

The velocity field v satisfies no-slip conditions at the wall (r = R and z = ±H/2)

v = 0. (5)

The variables are made dimensionless using the timescale �−1
c and the length scale R. The

rescaled coordinates become (r′, z′) = (r/R, z/R) and the time t ′ = t�c. The equation governing
the dynamics of the dimensionless velocity field U = v/R�c and pressure field P′ = P/ρR2�2

c is
then

∂t ′U + U · ∇U + 2(ez + εep) × U = −∇P′ + F′ + Ek�U, (6)

with ε = �p/�c the precession ratio and Ek = ν/�cR2 the Ekman number. The forcing term is
then given by

F′ = −εr cos(t + ϕ)ez. (7)

For the sake of simplicity, we remove the prime index in the remainder of the paper. In the limit
Ek → 0, the viscous effects are essentially localized in the Ekman boundary layers, varying with
δEk ∼ Ek1/2. In this limit, the bulk flow satisfies only a no-outward-flow condition close to the wall,
by omitting the pumping at first order [27],

U · n = 0 at the wall, (8)

with n the unitary vector normal to the wall.

B. Linearized equations

1. General case

In order to establish the dispersion relation of the eigenmodes of a rotating fluid in a cylinder
(the Kelvin modes), we linearize the Navier-Stokes equation (6) by introducing the infinitesimal
velocity perturbation u = U − Uβ , where Uβ (r) is a mean azimuthal circulation that is given by
Uβ = rβ�β (r)eϕ , with �β (r) a continuous function of r characterizing the departure from the solid
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body rotation and β its real amplitude. Note that �β only depends on the radius and is independent
of z (see Sec. V). Note also that all calculations are performed in the cylinder reference frame, i.e.,
the frame corotating with the cylinder wall, so that Uβ does not include the solid body rotation.

We linearize around Uβ (r) and neglect the nonlinear term u · ∇u, the viscous term, the forcing
term F, and the nonstationary component of the Coriolis term εep(t ) × u. The equation thus
simplified describes the linear eigenmodes of a rotating fluid with a modified rotation profile in
the limit of vanishing precession ε → 0 and reads

(∂t + β�β∂ϕ )u − 2β�βuϕer + β�βureϕ + ur∂rUβ + ez × u = −∇P. (9)

We look for infinitesimal perturbations in the form of eigenmodes, characterized by an axial wave
number k, an azimuthal wave number m, and a complex frequency ω,

(u, p) = exp(iωt + imϕ + ikz)

⎛
⎜⎜⎝

ũr (r)
ũϕ (r)
ũz(r)
p̃(r)

⎞
⎟⎟⎠ + c.c., (10)

where (ũr, ũθ , ũz, p̃) are complex functions of r and c.c. refers to the complex conjugate in order
to obtain a real velocity field. The eigenmodes satisfy the boundary condition (8) at the top and the
bottom of the cylinder, z = ±�−1/2, if k = πn� with n an integer. The linearized equation with the
given perturbations (10) leads to the set of equations

i(ω + mβ�β )ũr − 2(1 + β�β )ũϕ + ∂r p̃ = 0,

i(ω + mβ�β )ũϕ + (2 + βζβ )ũr + im

r
p̃ = 0,

i(ω + mβ�β )ũz + ik p̃ = 0,

1

r
∂r (rũr ) + im

r
ũϕ + ikũz = 0, (11)

with ζβ = 2�β + r∂r�β denoting the z component of the vorticity associated with �β . The system
of equations (11) can be rewritten using a four-component formulation for the complex velocity-
pressure field (ũ, p̃) which leads to the compact form

(iωI + L)(ũ, P̃) = 0, (12)

with L = L0 + βLβ , and the operators I, L0, and Lβ given in the Appendix. The operator L0

represents the action of the Coriolis force with the uniform rotation rate �c and the incompressibility
condition, and Lβ characterizes the effect of the modification of the background flow due to �β (r).

2. Kelvin modes with uniform rotation

First, we consider the classical problem of a solid body rotation, i.e., β = 0, which gives

(iω0lI + L0)(ũ, p̃)0l = 0, (13)

where the index 0 is used to denote the eigenmodes and frequencies for β = 0. The index l denotes
a radial eigenmode (ũ, p̃)0l with azimuthal and axial wave numbers m and k and characterizes the
series of solutions of the dispersion relation (see the next paragraph).

The corresponding dispersion relation provides the radial wave numbers δ0l and frequencies ω0l

and consists of two equations given by

ω2
0l = 4k2

δ2
0l + k2

(14)
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and

(2 + ω0l )mJm(δ0l ) − ω0lδ0l Jm+1(δ0l ) = 0, (15)

with m and k given and Jm the Bessel function of order m. Equation (14) is the well-known dispersion
relation of inertial waves. Equation (15) results from the enforcement of the no-outflow condition
ur = 0 at the lateral wall. For m and k fixed, there exists an infinitely countable number of couples
(ω0l , δ0l ) satisfying Eqs. (14) and (15). We distinguish three families of waves: Kelvin modes are
either prograde with ω0l/m < 0, rotating in the azimuthal direction of the background flow, or
retrograde with ω0l/m > 0, rotating in the opposite direction. For the retrograde (prograde) Kelvin
modes, the radial wave numbers δ0l are numbered in ascending (descending) order with l a positive
(negative) integer. The absolute value |l| corresponds to the number of zeros in the radial direction
plus one (associated with the origin). The third family, called geostrophic modes, is characterized
by k = 0 and ω0l = 0, and the radial wave number arises as a solution of Jm(δ0l ) = 0.

Introducing the solution of Eq. (13) in Eq. (10) and imposing free-slip boundary conditions at
the wall, the velocity field satisfying Eq. (9) is given by a sum of Kelvin modes

u(r, t ) =
∑

m

∑
n

∑
l

exp(iω0l t + imϕ)amnl umnl (r, z) + c.c., (16)

with (r, ϕ, z) ∈ ([0, 1] × [0, 2π ] × [−�−1/2, �−1/2]). The complex amplitude of the Kelvin mode
a[m,n,l] with the wave numbers m, n, and l is associated with the velocity components umnl (r, z)
given by

umnl (r, z) =

⎛
⎜⎝

ũr
mnl (r) sin(πn�z)

ũϕ

mnl (r) sin(πn�z)

ũz
mnl (r) cos(πn�z)

⎞
⎟⎠ (17)

and the radial structure of the Kelvin mode reads

ũr
mnl (r) = −i

4 − ω2
0l

(
(2 + ω0l )m

r
Jm(δ0l r) − ω0lδ0l Jm+1(δ0l r)

)
,

ũϕ

mnl (r) = 1

4 − ω2
0l

(
(2 + ω0l )m

r
Jm(δ0l r) − 2δ0l Jm+1(δ0l r)

)
,

ũz
mnl (r) = − k

ω0l
Jm(δ0l r).

(18)

The velocity fields of the Kelvin modes form an orthogonal basis [27] for the scalar product∫ 1

r=0

∫ 2π

ϕ=0

∫ �/2

z=−�/2
[umnl (r, z)eimϕ]∗ · [um′n′l ′ (r, z)eim′ϕ]r dr dϕ dz = π

�
el ′lδn′nδm′m (19)

if they satisfy the boundary condition (8). The elements el ′l (where we omit the indices m
and n for the sake of brevity) on the right-hand side of the definition (19) are given by el ′l =
〈ũ0l ′ , ũ0l〉δl ′l el ′l = 〈ũl ′m′n′ , ũlmn〉, with

〈ũm′n′l ′ , ũmnl〉 =
∫ 1

r=0

[
ũr

m′n′l ′
∗ũr

mnl + ũϕ

m′n′l ′
∗ũϕ

mnl + ũz
m′n′l ′

∗ũz
mnl

]
r dr. (20)

3. Laminar flow driven by precession

We briefly recall the response of a rotating fluid to precessional forcing. Two new terms appear
due to precession: the Coriolis term associated with the axis ep and the Poincaré acceleration caused
by the temporal variation of ez. Only the latter is usually considered at leading order, which leads to
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the equation

∂t u + 2ez × u + ∇P = −εr cos(t + ϕ)ez. (21)

We look for the solution as a sum of Kelvin modes of axial and radial wave numbers n and l forced
at the frequency ω0l = 1 and azimuthal wave number m = 1 [28]. In that case Eq. (16) becomes

u =
⎛
⎝∑

n,l

a1nl u1nl (r, z)eit+iϕ

⎞
⎠ + c.c. (22)

The gyroscopic force on the right-hand side of Eq. (21) is antisymmetric with respect to the
midplane of the cylinder and only forces modes with an axial component with the same parity,
i.e., with an odd axial wave number n. By using Eq. (13) and the properties of orthogonality (19),
the amplitude a1nl is given by

a1nl = − i

1 − ω0l

�

π

∫∫∫
(u1nl e−(it+iϕ) ) · F dV

〈ũmnl , ũmnl〉 , (23)

with ω0l the eigenfrequency of the mode with m = 1, n, l . The forcing term F [given by (7)] that
appears beyond the integral on the right-hand side of (23) implies that the amplitude a is directly
proportional to the precession ratio ε. An explicit calculation of the terms a1nl can be found in
[13,14,28]. The forced mode is retrograde and standing in the turntable reference frame.

For � = 0.5 the eigenfrequency of the mode (m, n, l ) = (1, 1, 1) is ω = 0.996�c, so our
experimental configuration corresponds to a nearly resonant case with a single forced Kelvin mode.
Hence, we consider that the flow is mostly composed of one Kelvin mode plus the background flow
before any instability. Near the resonance ω0l 
 1, the amplitude given by (23) diverges and viscous
and nonlinear effects must be considered for the computation of the amplitude of the Kelvin modes
[13–15].

III. EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 1(a). The vessel is a cylinder of radius R = 163 mm
and height H = 326 mm filled with water. For a qualitative visualization of the flow, a small amount
of air is introduced so that the spatial distribution of small gas bubbles within the rotating vessel
enables a first estimation of the basic structure of the flow. The bubbles are only used to visualize
the flow pattern (reported in Sec. IV A), while all quantitative results presented in Secs. IV B and
IV C have been obtained with a significantly smaller gas fraction. The container rotates around its
symmetry axis with a frequency fc of up to 10 Hz and is mounted on a turntable which can rotate
with a frequency fp of up to 1 Hz. In all experiments discussed here, the rotation axis and the
precession axis are orthogonal [α = π/2, Fig. 1(b)]. A more detailed description of the experiment
can be found in Ref. [20].

In the following, we will refer to angular frequencies defined by �c = 2π fc and �p = 2π fp in
order to match the notation in Sec. V. The precessing system is now determined by three dimension-
less parameters: the aspect ratio � = R/H , which in this study is always fixed at � = 0.5; the Ekman
number Ek = ν(�cR2)−1; and the precession ratio ε = �p/�c. The measured frequencies � (�c

included) will be rescaled by �c so that �′ = �/�c. To simplify the notation, we will omit the prime
symbol in the following sections so that the angular frequency � = 1 corresponds to the angular
frequency of the cylinder. The essential physical parameters that characterize the experimental setup
are summarized in Table I. Note that the reported Ekman numbers are one order of magnitude
smaller than those obtained in previous studies [17,18], which allows us to investigate less viscous
regimes. In addition to the direct visualization of the flow, the pressure is measured at one of the
endcaps close to the motor [Fig. 1(a)]. Two XPM5 miniature pressure sensors with a diameter of
3.6 mm are mounted flush on one endcap at a radius rp = 160 mm with an angle of 180◦ between
them. For these diametrically opposed probes, we define the symmetrical component Ps and the
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TABLE I. Parameters and nondimensional numbers used in this study. The Ekman number is based on a
viscosity of water at 15 ◦C of ν = 1.17 × 10−6 m2/s.

Name Notation Definition Experimental values

cylinder frequency fc 0–10 Hz
precession frequency fp 0–1 Hz
radius R 163 mm
height H 326 mm
Ekman number Ek ν(�cR2)−1 (7 × 10−7)–(7 × 10−6)
precession ratio ε fp/ fc (0)–(6 × 10−2)
aspect ratio � R/H 0.5

antisymmetrical component Pa as the sum and the difference, respectively, of their measurement
values

Ps = [P(rp, ϕ, H/2) + P(rp, ϕ + π, H/2)]/2,

Pa = [P(rp, ϕ, H/2) − P(rp, ϕ + π, H/2)]/2. (24)

The power-spectral density (PSD) of Ps is given by

Es(�) = 1

Tm
P̃s(�)P̃∗

s (�), (25)

with P̃s(�) = ∫ Tm

0 Ps(t )e−i�t dt , Tm the duration of the measurements, and the overline the average
over the realizations. The same procedure defines the power-spectral density Ea of Pa.

IV. EXPERIMENTAL EVIDENCE OF FREQUENCY DETUNING

A. Flow pattern

Before presenting quantitative results on the instability of the precessing flow, we discuss the
qualitative diversity of the flow pattern for increasing precession ratio. We characterize the flow by
analyzing the region of minimal pressure which is visualized by means of small air bubbles that, at
least in the laminar regime, align along the minimum pressure line. Although we do not observe any
measurable changes of the instability thresholds in the experiments that include a small amount of
gas, the air is removed to perform the quantitative measurement of the wall pressure presented
in the remainder of the paper. Figure 2 shows four snapshots of characteristic flow patterns at
Ek = 7 × 10−7 corresponding to fc = 10 Hz. In the laminar regime the superposition of the nearly
resonant Kelvin mode and the solid body rotation yields an S-shaped tube that roughly corresponds

FIG. 2. Photographs of the precessing cylinder in the turntable frame. The bright regions correspond to air
bubbles, where the pressure is minimal. The Ekman number is Ek = 7 × 10−7 ( fc = 10 Hz) and the precession
ratio (a) ε = 0.74 × 10−2, (b) ε = 3 × 10−2, (c) ε = 3.4 × 10−2, and (d) 4.8 × 10−2.
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FIG. 3. Spectra of the pressure components Pa (antisymmetric, gray) and Ps (symmetric, black) for ε =
0.68 × 10−2 and Ek = 1.76 × 10−6 ( fc = 4 Hz, laminar regime).

to the effective rotation axis of the fluid [ε = 0.74 × 10−2, Fig. 2(a)]. The pattern is standing in the
turntable frame, where the pictures are taken, and respects the centrosymmetry of the forcing. When
the laminar flow becomes unstable around ε = 3 × 10−2, we see erratic fluctuations resulting in a
blurring of the S tube [Fig. 2(b)]. Further increasing ε, the apparent width of the tube grows and
we observe a stronger mixing in the vicinity of the tube associated with the spreading of bubbles
[Fig. 2(c)]. Around ε = 4.8 × 10−2, the S tube has dissolved and the bubbles are trapped in the
upper right region close to the endcap [Fig. 2(d)]. This localization of the bubbles close to one side
can be explained by the appearance of one or a few modes breaking the centrosymmetry of the
laminar flow and thus creating a region of lower pressure close to one endcap. At this state, the flow
is chaotic but not yet turbulent. However, it is important to state that we never observe a phenomenon
comparable to the resonant collapse [11] which would lead to an intermittent fine-scale turbulence in
the entire vessel. An abrupt transition to a turbulent state characterized by a homogeneous spreading
of bubbles in the entire vessel only occurs above a critical precession ratio that is approximately
twice as large as that for the onset of the instability. This phenomenon has been characterized in
Ref. [20] (see Fig. 2 in Ref. [20]) and will not be discussed in this study.

B. Pressure measurement at constant Ekman number

Frequencies

In the present section we study the spectral information contained in the pressure measurements.
The measurements are performed for constant Ekman number Ek = 1.76 × 10−6 ( fc = 4 Hz) and
the precession ratio ε is varied in the range [0, 6] × 10−2. Each run lasts at least for 40 min, or
9.6 × 104 periods. In the following, time is measured in units of the rotation time of the cylinder
so that all (angular) frequencies are denoted in units of the angular frequency of the cylinder,
which consistently is set to unity �c = 1. The power spectra of the pressure components Pa

(antisymmetric) and Ps (symmetric), defined by Eq. (24), are shown in Fig. 3 for ε = 0.68 × 10−2.
In this case the flow is laminar and the spectrum is only composed of peaks located at �c and its
multiples. The most intense peak belongs to the antisymmetric component Pa at �c and originates
from the forced Kelvin mode with m = 1. Increasing the precession ratio to ε = 3 × 10−2, the
power spectra exhibit new features [Figs. 4(a) and 4(b)]. An intense peak appears at low frequency
at �1 = 0.021 [Fig. 4(a)]. The smaller peak on the right side of �1 corresponds to the frequency
2�1 and disappears for larger ε. A close inspection of the power spectrum in the vicinity of �c = 1
shows the presence of two further peaks located on both sides of the forced mode �c [Fig. 4(b)].
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FIG. 4. (a) Spectra of the pressure components Pa (antisymmetric, gray) and Ps (symmetric, black) for
ε = 3 × 10−2 above the onset of instability. (b) Close-up of the vicinity of the forced mode �c. Three peaks in
addition to the forced mode are well identified and labeled �1, �4, and �5.

The maxima of these peaks correspond to the frequencies �4 = 0.981 and �5 = 1.025 (the choice
for the indices 4 and 5 is explained in next paragraph). The four frequencies �c, �1, �4, and �5

fulfill the relations

�4 + �1 
 �c = 1,

�5 − �1 
 �c = 1. (26)

The location of the frequencies �1, �4, and �5 depends monotonically on the precession ratio such
that they always fulfill the relations (26).

Further increasing the precession ratio, we find another pair of signals emerging at ε = 3.75 ×
10−2 (Fig. 5). At the lower end of the spectrum we now see two peaks at �1 ≈ 0.064 and �2 ≈
0.187 [Fig. 5(a)] and three peaks in the vicinity of �c with �3 ≈ 0.81, �4 ≈ 0.94, and �5 ≈ 1.06.
Comparable to the already known frequencies �1, �4, and �5, the frequencies �2 and �3 fulfill the
relation

�2 + �3 
 �c = 1. (27)
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FIG. 5. (a) Spectra of the pressure components Pa (antisymmetric, gray) and Ps (symmetric, black) for
ε = 3.75 × 10−2 and Ek = 1.77 × 10−6 past the onset of the instability. (b) Close-up of the vicinity of � = �c.
Besides the forced mode �c, five peaks are well identified, labeled �1, �2, �3, �4, and �5.
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FIG. 6. (a) Frequencies as a function of ε for Ek = 1.76 × 10−6 ( fc = 4 Hz). The frequencies are sorted in
ascending order from the smallest (�1) to the largest (�5). (b) Close-up of the two smallest frequencies �1 and
�2. Below ε∗ = 4.3 × 10−2 the frequency �1 follows a linear curve with �1 = Cf (ε − εc ). The black cross
corresponds to the estimated threshold εc = 2.85 × 10−2.

In total, there are now five frequencies indexed in ascending order from 1 to 5 that can be
grouped into two frequency sets (�1,�4,�5) and (�2,�3) satisfying (26) and (27), respectively.
All frequencies show a systematic dependence on the precession ratio ε shown in Fig. 6, which
presents the frequencies �1 (circles), �2 (diamonds), �3 (triangles), �4 (squares), and �5 (stars) as
a function of ε. The relations (26) and (27) between different pairs of the observed frequencies and
the forcing frequency �c persist for all precession ratios (Fig. 7).

The remaining small differences, mostly smaller than 1%, are of the order of the control accuracy
of the rotation rate of the motors. The individual signals occur only in a limited range of precession
ratios with the frequencies �1, �4, and �5 (�2 and �3) appearing at ε = 2.85 × 10−2 (3.34 × 10−2)
and disappearing at 5.5 × 10−2 (4.2 × 10−2). The systematic study of the power spectra shows
that the frequencies vary monotonically with ε, i.e., the frequencies �1, �3, and �5 increase with
the precession ratio, whereas �2 and �4 decrease. We further observe a qualitative change in the
behavior of the frequency variations. Initially, for ε < ε∗ ≈ 4.3 × 10−2, the frequencies �1, �4,
and �5 exhibit a basically linear variation with ε which, e.g., for �1, can be described by

�1 = Cf (ε − εc), (28)

0.03 0.04 0.05 0.06
0.99

0.995

1

1.005

1.01

1.015
+ 41

5- 1

3+ 2

FIG. 7. Resonance conditions with �1 + �4 (circles), �5 − �1 (crosses), and �2 + �3 (pluses) rescaled
by �c.

033901-11



HERAULT, GIESECKE, GUNDRUM, AND STEFANI

(a)

0.03 0.04 0.05 0.06

0

0.2

0.4

0.6

0.8

1

(b)

Cf( - c)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0

0.2

0.4

0.6

0.8

1

FIG. 8. (a) Evolution of the rescaled frequencies �i as a function of ε for �c = 1 (green), 2 (blue), 4
(black), and 8 Hz (red). (b) Same frequencies with a rescaled abscissa Cf (ε − εc ). In both plots �1 is denoted
by circles, �2 by diamonds, �3 by triangles, and �4 by squares.

with εc = 2.85 × 10−2 and Cf = 5.7 [see the dashed line in Fig. 6(b)]. Similar relations can be given
for �4 and �5, since �4,5 ± �1 
 1. We interpret the coefficient εc as the threshold of the instability,
by assuming that �1 departs from zero at the onset of the instability. For ε > ε∗ 
 4.3 × 10−2, �1,
�4, and �5 abruptly change their slope, which may be associated with a new instability. Note that
the signals corresponding to �2 and �3 approximately vanish close to ε∗. The evolution of the
frequencies suggests that the disappearance of �2 and �3 occurs when the frequencies �1 and �2

are almost equal at ε∗. However, measurements at fc = 1 and 8 Hz show that the frequency �2 only
disappears slightly after the intersection with �1 (see, e.g., red and green symbols in Fig. 8 below).

C. Effect of the Ekman number

We have performed four series of measurements for different Ek = 7 × 10−6, 3.5 × 10−6, 1.76 ×
10−6, and 8.8 × 10−7 that correspond to rotation frequencies fc = 1, 2, 4, and 8 Hz. The results are
shown in Fig. 8(a) with fc = 1 (green),2 2 (blue), 4 (black), and 8 Hz (red). For the sake of clarity,
we omit the frequencies �5. In all cases the power spectra show a behavior similar to the results
presented in the preceding section. Basically, we find up to five different peaks that globally exhibit
the same tendency, but their thresholds of appearance and disappearance and their slope vary with
the Ekman number. Generally, the frequencies appear for lower ε, when Ek is decreased. Moreover,
the frequencies �1, �4, and �5 always appear before �2 and �3.

In search for a common explanation of the underlying physical behavior, we change the variables
(Ek, ε) → Cf (ε − εc), with Cf (Ek) and the critical value εc(Ek) for the onset of the instability. The
frequencies are shown in Fig. 8(b) as a function of Cf (ε − εc), with Cf and εc calculated separately
for each Ekman number. In that case, all curves belonging to the frequencies �1, �2, �3, and �4,
respectively, collapse, which was expected for �1 and �4 because �1 is used for the calculation of
εc. However, it is surprising that the frequencies �2 and �3 scale in the same way. This strongly
suggests that the variation of the frequencies is controlled by the same process, even if the nature of
the instability may differ between both sets (see Secs. IV D and VI). The threshold εc decreases when
Ek decreases, i.e., when �c increases, which goes along with the reduction of dissipative effects

2For the largest Ekman number corresponding to fc = 1 Hz (green), the signal-to-noise ratio is too small to
systematically detect the peak corresponding to the frequency �3, which is generally the peak with the lowest
amplitude. Hence, we did not report the frequency �3 for Ek = 7 × 10−6 [no green triangles in Fig. 8(a)].
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FIG. 9. Evolution of the threshold εc for the appearance of (a) the mode �1 and (b) the coefficient Cf as a
function of the inverse of the Ekman number Ek−1. The coefficient Cf follows a power law Ek−1/4.

[Fig. 9(a)]. The coefficient Cf increases with the inverse of Ek and an empirical fitting indicates a
scaling proportional to Ek−1/4 [Fig. 9(b)] so that for a constant relative precession ratio ε − εc the
detuning becomes stronger when the dissipation is reduced. Hence, we rule out the possibility of
viscous detuning, which should increase with Ek, and imply that the observed modification of all
frequencies is provoked by a change of the base flow. For a constant relative precession ratio ε − εc

we further conclude that the detuning becomes stronger when the dissipation is reduced, which
again rules out viscous detuning, which is expected to be constant for a given Ekman number [29].

D. Preliminary analysis of the experimental results

The first step is to identify the modes from the dispersion relation [18,23]. One cannot expect a
perfect correspondence between the frequencies given by the dispersion relation (14) and (15) and
the experimental frequencies because the experimental ones vary with the precession ratio ε. Here
we assume that at the threshold of appearance the frequencies �2 and �3 are close to exact solutions
of the dispersion relation (14) and (15), i.e., the frequencies ω2 and ω3 of Kelvin modes with solid
body rotation. This relies on the hypothesis that the variation of the frequencies is a consequence of
the nonlinear saturation of the instability [23]. Hence, we expect that the smaller the distance from
the threshold, the weaker the detuning.

Despite the fact that pressure measurements do not give information about the spatial structure of
the modes, it is suggestive to associate the measured frequencies �2 and �3, which at the threshold
have the values �2 = 0.37 and �3 = 0.64, with Kelvin modes with the wave numbers given
by (m2, n2, l2) = (5, 1,−1) and (m3, n3, l3) = (6, 2, 1), respectively. According to the dispersion
relation (14) and (15), the corresponding eigenfrequencies have the values ω2 = −0.34 and ω3 =
0.63, so the mode ω2 is prograde and the mode ω3 is retrograde. These solutions have the simplest
possible geometric structure, i.e., the smallest azimuthal and axial wave numbers that satisfy the
spatial resonance conditions [see Eqs. (38) and (39) below and [13]]. Similar Kelvin modes have also
been identified in experiments conducted by Lagrange et al. [17] even for aspect ratios that do not
fulfill the resonance condition of the forced Kelvin mode (m, n, l ) = (1, 1, 1) and the corresponding
triadic resonance turns out to be the most unstable combination [23].

In contrast, a parametric resonance of free Kelvin modes with the frequencies �1 and �4 or �1

and �5 is not very likely. This can be seen if we tentatively assume that the frequencies �1, �4, and
�5 are associated with Kelvin modes such that their frequencies at their threshold of appearance
are given by the dispersion relation (14) and (15). The frequency �1 is almost equal to zero, with
�1 
 0.025 as the smallest value. Conversely, the frequencies �4 and �5 are almost equal to 1, with
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�4 < 1 and �5 > 1. Certainly such solutions are allowed from the dispersion relation, however,
these “extreme” cases go along with specific requirements for the radial wave number δ and the
axial wave number k. In the limit of a vanishing frequency ω → 0, the dispersion relation (14)
and (15) immediately yields δ � k, whereas on the other side the limit ω → 1 would come along
with δ → √

3k. Additionally, the occurrence of a triadic resonance of two free Kelvin modes with
ω → 0 and ω → 1 involving the directly forced mode further constrains the axial wave number k
by demanding |�k| = |k1 − k4| = π� (which is the axial wave number of the forced mode), which,
if both modes were free Kelvin modes, would end up with δ1 � δ4 as a necessary condition for the
radial wave numbers.3

Consequently, if the modes �1 and �4 were free Kelvin modes, they would have significant
different radial wave numbers with δ1 � δ4 (the same argument works for the mode �5). The
coupling between Kelvin modes with a large difference of radial wave number is in principle
possible, but the efficiency of the coupling is very weak and usually only parametric resonances
with δ1 
 δ4 are observed [6,17]. Moreover, a mode with a large radial number is expected to be
strongly damped by viscous effects, inhibiting the instability. Thus, we conclude that the frequencies
�1, �4, and �5 are very unlikely to be the spectral signature of a triadic resonance between a
forced Kelvin mode and two free Kelvin modes. Instead we propose a different kind of instability
[17–21] where �1 is associated with a geostrophic mode (k = 0) that results from the destabilization
of the (azimuthal) background flow. There are a couple of (experimentally justified) reasons for
our interpretation. In the case of a solid body rotation, a geostrophic mode must be steady in the
cylinder reference frame, i.e., ω = 0. However, when the background flow departs from the solid
body rotation, so that the background vorticity depends on the radius r, geostrophic modes are
expected to be unsteady. The canonic example is a Rossby wave which has an angular frequency
given by ω − kU ∝ β, where β is the shear amplitude. In the same manner, the frequency of a
nonaxisymmetric geostrophic mode in the cylinder reference frame should increase with the shear
amplitude β, as shown in Eq. (35) below.

Kerswell [6] has reported the presence of an instability with a dominant geostrophic component,
which displays some similarities to the features of the frequency set (�1,�4,�5). In his model, the
modes do not emerge from a triad-type instability and the instability of the forced mode involves
three further participants: a dominant geostrophic mode and two subdominant Kelvin modes with
frequencies that are not solutions of the dispersion relation. These modes emerge from nonlinear
interactions between the geostrophic mode and the forced mode and their frequencies result from
the linear combination of those two modes. Hence, the frequencies �4 and �5 belong to modes that
are forced out of resonance, explaining the apparent mismatch between the observed frequency and
their genuine eigenfrequency. Furthermore, Kerswell [6] found that this instability emerges before
the parametric resonance, if the resonant triad is imperfectly tuned and the amplitude of the forced
mode is relatively large. Since both conditions are satisfied in our experiment, this scenario may
explain the presence of the frequency group (�1,�4,�5) before the frequency set associated with
the parametric resonance (�2,�3).

An alternative explanation for the low-frequency mode �1 could be a secondary or tertiary insta-
bility of the triadic parametric resonance as they have been found experimentally in Refs. [17,23]
and numerically in Ref. [30]. In these cases the low-frequency mode results from a slow drift in

3For example, looking for solutions of (14) with ω1 = 0.025 results in modes with δ1 ≈ 80k1. On the other
side, the limit ω4 → 1 corresponds to Kelvin modes with δ4 
 √

3k4. In order to constitute a triadic resonance,
the axial wave numbers of two free Kelvin modes that are supposed to be in resonance with the forced mode
with k = π� must fulfill k4 = k1 ± π�. Hence, the ratio δ1/δ4 is given by δ1

δ4

 80√

3
n1

n1±1 , where we switched
to an integer wave number ni = ki/π�. If the denominator is n1 − 1 with n1 > 1, the ratio δ1/δ4 will decrease
with n1 and will reach the asymptotic limit δ1 
 80/

√
3δ4 for n1 → ∞. If the denominator is n1 + 1 with

n1 � 1, the ratio will increase and the minimum will be δ1 
 80/(2
√

3)δ4, i.e., δ1 
 23δ4, so that in both cases
δ1/δ4 � 1.
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phase space between the forced mode and the two free Kelvin modes with m = 5 and m = 6, thus
reflecting a slow near-heteroclinic cycle. However, these low-frequency modes have only been found
in a narrow region of parameter space so that most probably we can rule out this interpretation
for our measurements, because we always observe �1 in a wide region of the parameter space
(Ek, ε) before (and thus it rules out a secondary instability) and after the occurrence of �2 and
�3 due to the parametric resonances. Recently, Lopez and Marques [31] found a low-frequency
state for a wider range of rotation frequencies (keeping Po fixed). However, due to their small
nutation angle α = 3◦, precession and rotation frequency cannot be independently controlled and
the aspect ratio � = 1.333 used in their study entails quite different resonance frequencies, making
a direct comparison rather difficult. Nevertheless, the presence of a geostrophic mode and the
associated instability remains speculative, and further measurements would be needed to confirm
our hypothesis.

V. THEORETICAL MODEL OF PARAMETRIC RESONANCES IN ROTATING
FLOWS WITH SHEAR

A. Motivation and background flow

In the following, we will discuss the effect of the frequency detuning on the parametric resonance
between Kelvin modes. We focus on the modes with the frequencies �2 and �3, which we
previously associated with Kelvin modes with (m2, n2, l2) = (5, 1,−1) and (m3, n3, l3) = (6, 2, 1),
and we aim at explaining the detuning of �2 and �3 and the disappearance of the resonant triad
in the same framework. We derive a model that gives the variation of the frequencies [i.e., the
solutions of Eqs. (14) and (15)] with the amplitude of the modification of the background shear
flow.

First, we address the form of the modification of the background flow, which we fix a priori
since our measurements give no direct information about this secondary flow. We consider an
axisymmetric stationary azimuthal perturbation βUβ (r) = βr�β (r) in the cylinder frame with
0 < β < 1, the amplitude of the secondary flow. Evidently, this flow cannot satisfy no-slip boundary
conditions at the endcaps. We consider Vβ = 0 at the lateral wall at r = 1 and we assume that
a boundary layer exists between the endcaps and this flow. We choose a quadratic form for �β

given by

�β (r) = r2 − 1, (29)

which corresponds to a retrograde flow for β > 0. This functional form is the first possible
polynomial correction to the rotation rate because any monomials rn with n odd must vanish in
order to satisfy the axisymmetry. It also corresponds to the Chebyshev polynomial of the first kind
T2(r) = r2 − 1 for r ∈ [0, 1]. Interestingly, Meunier et al. [13] have observed a geostrophic mode
[see their Fig. 17(a)] with a similar structure for the laminar regime with a forced Kelvin mode with
m = 1 and l = 1 close its resonance.

The associated z component of the vorticity is given by ζβ = 2�β + r∂r�β = 4r2 − 2. This flow
is stable against centrifugal and shear-induced instabilities [32]. Figure 10 shows three paradigmatic
azimuthal velocity profiles for β = 0, 0.1, and 0.25.

B. Dispersion relation of the Kelvin modes

Gunn and Aldridge [33] have calculated the dispersion relation of Kelvin modes with a
nonuniformly rotating fluid applying a perturbation method. In this section we address this issue
with a spectral decomposition of the solutions of Eq. (12) for small values of β. By using the
orthogonal base formed by the solution obtained with β = 0 (Sec. II B 2) for m and n given, the
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FIG. 10. Radial dependence of the nondimensional total azimuthal velocity Vϕ = r + βUβ = (1 + β�β )r
with β = 0 (gray line), β = 0.1 (black line), and β = 0.25 (dashed line). The inset shows the associated angular
frequencies �(r) = 1 + β�β .

solutions of Eq. (12) are sought with the ansatz

(ũ, p̃) =
N/2∑

l=−N/2

al (ũ, p̃)0l , (30)

with al = a[m,n,l] the amplitude of the Kelvin mode for β = 0 and (ũ, p̃)0l taken as solutions of
Eq. (13) for given azimuthal and axial wave numbers m and n. The sum is over the N modes
(N being even) composed of the N/2 first retrograde modes and N/2 first prograde modes. They
satisfy automatically the mass conservation and the boundary condition at r = 1 and z = ±�−1/2.
Equation (12) becomes ∑

l

al [i(ω − ω0l )I + βLβ ](ũ, p̃)0l = 0. (31)

Here L0(ũ, p̃)0l = −ω0l (ũ, p̃)0l and I is the matrix defined by Eq. (A1). In order to obtain a linear
system coupling the coefficients, the equation is projected on the Kelvin modes (ũ, p̃)0 j via the
scalar product 〈(ũ, p̃)0 j, ·〉. The resulting decomposition consists of N linear equations given by

i(ω − ω0 j )e j ja j − iβ
∑

l

alq jl = 0, (32)

with q jl = i〈(ũ, p̃)0 j,Lβ (ũ, p̃)0l〉 and e j j = 〈(ũ, p̃)0 j, (ũ, p̃)0 j〉. This system can be written as a
general eigenvalue problem

ωEal = (ED0 + βQ)al , (33)

with D0 (E) the diagonal matrix of elements ω0 j (e j j). The elements of the matrices Q are given by
q jl . The solutions of Eq. (33) are the generalized eigenmodes described by the set of eigenvectors
al and the corresponding eigenfrequencies ωl indexed by l .

The modified background flow �β given by (29) can be decomposed into a shear component (the
quadratic term) and a solid body rotation (the constant term). If we only consider the constant term,
the frequency detuning would be ω = ω0 + β(m − ω0) because for this simple case the matrix Q is
diagonal and equal to E (−D0 + mI ). Hence, the off-diagonal terms in Q are only due to the shear
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(a) (b)

FIG. 11. Evolution of the first five eigenfrequencies ωl (black) of (a) the retrograde modes with l ∈ [1, 5]
and (b) the prograde modes with l ∈ [−5, −1] with m = 1 and n = 1 as a function of the shear amplitude β.
Dashed lines correspond to the tangent at the origin. The dotted line corresponds to the line where (a) ωl = β

and (b) ωl = 0.

component. It is worth noting that the dispersion relation for the geostrophic mode (k = 0) becomes

ωlEal = βQal , (34)

because in that case D0 is a null matrix. The frequencies ωl are the eigenfrequencies of E−1Q
multiplied by β. Hence, the shear removes the frequency degeneracy, i.e., all the frequencies depart
from ω0 = 0 and increase linearly with β.

C. Effect of shear on forced Kelvin modes

We now solve Eq. (33) numerically using the method described in the Appendix including
the benchmarking of our results against the ones obtained by a code based on the Chebyshev
pseudospectral method [34]. We start with the frequencies of the Kelvin mode with (m, n) = (1, 1)
and vary β in the range [0,0.5]. We focus on the first five retrograde and prograde modes (|l| < 5).
The evolution of the frequencies is represented in Fig. 11 for the retrograde [Fig. 11(a)] and
prograde [Fig. 11(b)] modes. For the retrograde (prograde) modes, the largest (smallest) frequencies
correspond to the mode with the smallest radial wave number for a given β. Initially, the frequencies
increase linearly as a function of β, implying that the retrograde modes accelerate and the prograde
modes decelerate. This effect can be partially explained by the Doppler effect ω = ω0 + β(m − ω0)
caused by the slowdown of the solid body rotation. The factor m − ω0 being positive for the
considered Kelvin modes yields the increase of the frequency (Doppler shift). An exception is
the first retrograde mode with l = 1, which is only weakly impacted by the modification of the
solid body rotation because ω0 
 m = 1 (it is almost standing in the turntable reference frame).
For increasing β we observe a deviation of the linear detuning, which would correspond to the
tangents at the origin represented by the dashed lines in Fig. 11. The departure of the retrograde and
prograde modes from the linear behavior occurs approximately for β > 0.2. The initial prograde
mode may even become retrograde as, e.g., the prograde mode with l = −5 for β > 0.4. For large
β, the frequencies ωl of the retrograde modes become tangent to β (dotted line).

D. Effect of shear on free Kelvin modes

We focus on the modes (m, n) = (6, 2) and (5,1) which we assigned to the unstable Kelvin
modes with the frequencies �2 and �3 observed in the experiment. We recall that the mode (6,2)
is retrograde whereas the mode (5,1) is prograde. The dependence of the first five retrograde modes
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FIG. 12. Dependence of the first five eigenfrequencies ωl (solid black line) of (a) the retrograde modes
with (m, n) = (6, 2) and (b) the prograde modes with (m, n) = (5, 1) on the shear amplitude β. Dashed lines
correspond to the tangent at the origin. The dotted line in (a) corresponds to the critical line where ωl = 6β.

with (m = 6, n = 2) and prograde modes with (m = 5, n = 1) on β is shown in Figs. 12(a) and
12(b). A visible departure from the tangent at the origin occurs for β � 0.07 for the retrograde
mode [Fig. 12(a)] and for β � 0.05 for the prograde mode [Fig. 12(b)]. Hence, the linear detuning
is only valid for small values of β. This property is important for the conditions of the parametric
resonance, as we will see below. The frequencies of the retrograde modes approach ωl = 6β for
large β. In the following we concentrate on the behavior of the first prograde and the first retrograde
mode. Figure 13(a) shows the absolute value of the frequencies of the first prograde mode (5, 1,−1)
(ω2), the first retrograde mode (6, 2, 1) (ω3), and their difference ω3 − ω2. The frequencies follow a
similar behavior as the observed frequencies �2 and �3 in Fig. 6. At β = 0, the difference is equal
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FIG. 13. (a) Frequencies ω3 and ω2 of free Kelvin modes, corresponding to (m, n, l ) = (6, 2, 1) and
(5, 1, −1), as a function of β. The dashed line represents the difference ω3 − ω2 such that its intersection
with the dotted gray line corresponds to an exact resonance. The thick gray curve (below the dashed
line) corresponds to the polynomial expansion of ω3 − ω2 given by (35). (b) The black curves show the
frequencies ω3 of the first four retrograde modes with (m, n) = (6, 2). The dashed lines correspond to the
shifted frequencies ω2 + 1 of the first four prograde modes with (m, n) = (5, 1). The circles indicate the exact
resonance between the modes where ω3 − ω2 = 1.
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to ω3 − ω2 = 0.97 and the exact resonance, i.e., ω3 − ω2 = 1, occurs at β = 0.044. In the range
β ∈ [0, 0.2], the difference ω3 − ω2 is well approximated by a polynomial expansion [gray curve in
Fig. 13(a)]

ω3 − ω2 
 δω(0) + βδω(1) + β2δω(2) + �, (35)

with δω(0) = 0.97, δω(1) = 0.172, δω(2) = 10.8, and a residual � of order |�| 
 3 × 10−3. The
quadratic term becomes significant for β = δω(1)/δω(2) = 0.017, i.e., already before the exact
resonance at β = 0.044. This expansion shows that the quadratic detuning is required in the vicinity
of the exact resonance, since the linear detuning underestimates the departure from the resonance
even for small amplitudes of β. We point out that the exact resonant interaction at β = 0.044 of
the first prograde [(m, n, l ) = (5, 1,−1)] and the first retrograde [(m, n, l ) = (6, 2, 1)] modes with
the forced mode occurs well before a sequence of possible exact resonances between higher radial
wave numbers. Figure 13(b) shows the frequencies ω3 (black curves) and 1 + ω2 (dashed curves) for
the first four retrograde and prograde modes such that their intersection corresponds to a resonance
(black circles). We see that for β > 0.1, a large number of resonances occurs between modes with
larger radial wave number. These resonances could trigger instabilities, which would be an efficient
mechanism to transfer energy from large (m = 1) to small scales like observed in the resonance
collapse. This phenomenon suggests that the shear of the background flow could play an important
role during the resonant collapse. A similar idea was proposed by Gunn and Aldridge [33].

VI. EFFECT OF THE SHEAR ON THE PARAMETRIC RESONANCE OF KELVIN MODES

A. Formulation of the parametric resonance of Kelvin modes

In this section we study the effect of the detuning on the condition of parametric resonance.
We consider a parametric instability of a single forced Kelvin mode γ u0 of amplitude γ and
wave numbers (m, n, l ) = (1, 1, 1), via wave interactions with two infinitesimal perturbations
(ξu(a), ξu(b) ), with ξ � 1 with the azimuthal and axial wave numbers (ma, na) and (mb, nb).
According to [6], we assume that the total velocity field u can be decomposed into

u = γ u0(r, t ) + ξu(a)(r, t ) + ξu(b)(r, t ), (36)

with

u0 = u111(r, z)ei(ϕ+t ) + c.c.,

u(a) =
∑

j

a j (t )umana j (r, z)eimaϕ+c.c.,

u(b) =
∑

l

bl (t )umbnbl (r, z)eimbϕ + c.c.

(37)

The modes u(a) and u(b) are decomposed as sums of Kelvin modes with different radial wave number
indexed, respectively, by j and l , and associated with the complex amplitudes aj and bl . The velocity
components umnl (r, z) are given by Eq. (17) and satisfy the boundary conditions (8). For β = 0, the
amplitude of the modes aj and bl are associated with their eigenfrequencies ω

(a)
0 j and ω

(b)
0l (see

Sec. V B). Following the approach of Kerswell [6], we now consider two Kelvin modes satisfying
the spatial resonance conditions so that their azimuthal and axial wave numbers fulfill the relations

ma − mb = 1,

|na − nb| = 1.
(38)

There is no restriction for the resonance in terms of radial wave numbers. An exact resonance
between two modes indexed by j and l occurs if their frequencies satisfy the temporal resonance
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condition

ω
(a)
0 j − ω

(b)
0l = 1. (39)

However, the relations (38) and (39) require particular conditions in terms of a suitable aspect ratio
in order to be fulfilled simultaneously for all contributing modes. In the following, we assume that
the frequency condition (39) can be relaxed in order to achieve near resonance. The azimuthal wave
number and the index of the axial wave number must be integers (if n is not an integer, it violates
the boundary condition at the endcaps). Thus, only the condition on the frequency can be changed
into a near-resonance condition by introducing the parameter

�ω0 = 1
2

(
ω

(a)
0 j − ω

(b)
0l − 1

)
. (40)

We now consider the dimensionless inviscid Navier-Stokes equation expressed in the cylinder
reference frame including the nonlinear terms but with β = 0,

∂t u = −2ez × u − ∇p + u × (∇ × u). (41)

Inserting the ansatz (37) in Eq. (41) and projecting respectively onto the modes u(a) and u(b), we
obtain two equations for the amplitudes aj and bl given by

ȧ j = iω(a)
0 j a j + c(a)

jl γ ble
it ,

ḃl = iω(b)
0l bl + c(b)

l j γ ∗a je
−it , (42)

with c(a)
jl and c(b)

l j denoting coupling terms given by [6]

c(a)
jl = 1

e(a)
j j

2π�

(
ω

(b)
0l − nb

ω
(b)
0l

)〈
u(a)

0 j · (
u(b)

0l × u0
)〉
,

c(b)
l j = 1

e(b)
ll

2π�

(
ω

(a)
0 j − na

ω
(a)
0 j

)〈
u(b)

0l · (
u(a)

0 j × u∗
0

)〉
, (43)

where u(a)
0 j (u(b)

0l ) is the unperturbed eigenfunction given by (17) and (18) with the indices j (l)
representing the jth (lth) solution of the dispersion relation and the indices m and n being suppressed
for the sake of clarity (they have to be fixed a priori). Furthermore, we applied the relation between
velocity and vorticity for inertial waves, ∇ × u = (2πn�/ω)u [6]. The system (42) reduces to a
linear system with constant coefficients via the change of variables (a j, bl ) = (ã jeit/2, b̃l e−it/2)eiσ t ,
with (ã j, b̃l ) two constants and σ the eigenvalue of system (42), with σr its real component and σi

the imaginary component. After some algebra, we obtain the solution

σ = ω
(a)
0 j + ω

(b)
0l

2
±

√
(�ω0)2 − C|γ |2, (44)

with the product C = c(a)
l j c(b)

jl given by

C = 4(π�)2

e(a)
j j e(b)

ll

(
ω

(b)
0l − nb + 2�ω0

)(
ω

(b)
0l − nb

)
−ω

(b)
0l ω

(a)
0 j

∣∣〈u(a)
0 j · (

u(b)
0l × u0

)〉∣∣2
. (45)

Note that for perfectly tuned resonance the relations (43) and (45) giving the growth rate of the
instability are equivalent to Eqs. (5.5) and (5.6) in Ref. [6]. If C is negative, the imaginary part of σ

always vanishes and the solution remains stable. Hence, the minimum requirement for the instability
is C > 0. For an exact resonance, i.e., �ω0 = 0, the coefficient C is positive if the product ω

(b)
0l ω

(a)
0 j

is negative, which is always fulfilled when one mode is prograde (ω(b)
0l < 0) and the other one is

retrograde (ω(a)
0 j > 0). In that case, each mode has a positive feedback on the other mode, thus
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FIG. 14. (a) Frequencies σr and (b) growth rates σi of the eigenmodes given by Eq. (44).

enforcing the instability. The growth rate is then given by σi = ±√|C||γ |, i.e., the flow is unstable
for all γ in the inviscid case. Out of resonance �ω0 �= 0, the growth rate becomes imaginary if
�ω2

0 − C|γ |2 becomes negative. This requires that the coefficient C must be positive, so that

2�ω0 > − (
ω

(b)
0l − nb

)
if

(
ω

(b)
0l − nb

)
> 0,

2�ω0 < − (
ω

(b)
0l − nb

)
if

(
ω

(b)
0l − nb

)
< 0. (46)

The parametric resonance occurs if the eigenvalue σ has a nonvanishing imaginary contribution,
i.e., when the amplitude of |γ | is larger than γc = |�ω0|/

√|C|.
We now consider the mode a given by (ma, ka, l ) = (6, 2, 1) and the mode b given by

(mb, kb, j) = (5, 1,−1) where �ω0 = −1.5 × 10−2. The frequencies of the modes are given by
ω(a) = σ+

r + 0.5 and ω(b) = σ−
r − 0.5, while the growth rate is −σi: The mode is stable if σi � 0

and it is unstable otherwise. Initially, the frequencies are given by ω(a) = ω
(a)
0 j and ω(b) = ω

(b)
0l for

γ = 0.
The behavior of the eigenvalues σ dependent on the amplitude γ of the unstable mode is shown

in Figs. 14(a) and 14(b). Below the critical amplitude γc = 2.3 × 10−3, the growth rate σi vanishes
and we have two solutions with frequencies such that the resonance condition σ+

r − σ−
r = ω(a) −

ω(b) − 1 is not equal to zero. Both frequencies converge, eventually merging at the onset of the
instability at γc. Exactly at the critical amplitude, σ+

r and σ−
r collapse. Past this bifurcation we have

two solutions for σi and the solution becomes unstable with the two frequencies of the modes being
locked with a difference equal to 1, so ω(a) = 0.645 and ω(b) = −0.355. This simple model explains
the basic properties of the parametric instability but does not reproduce the frequency drifting and
the disappearance of the instability for large ε, which requires the formalism introduced in Sec. V A.

B. Effect of the shear on the parametric instability

Now we consider the effect of shear with β �= 0. Unlike in the preceding section, the eigenmodes
are no longer the original Kelvin modes because the shear couples different Kelvin modes
(Sec. V A). The velocity decomposition (36) is now extended to

u = γ u0(r, t ) + ξu(a)(r, t ) + ξu(b)(r, t ) + βr�β (r)eϕ, (47)

with u0, u(a), and u(b) again given by the decomposition (37) and the last term on the right-hand side
corresponding to the modification of the background flow. After some algebra, the linear system
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coupling the N amplitudes of a j and bl becomes(
E (a) 0

0 E (b)

)
dx
dt

=
(

iN (a) γ eitC (a)

γ ∗e−itC (b) iN (b)

)
x, (48)

with xT = (a1, . . . , aN , b1, . . . , bN ) and N (i) = (ED0 + βQ)(i), where C (a) (C (b)) is the matrix with
the elements c(a)

jl e(a)
j j (c(b)

l j e(b)
ll ) given by (20) and (43). When the matrices C (a) and C (b) are set to zero,

we recover the linear dispersion of Kelvin modes given in Sec. V A, and when the elements of Q are
set to zero, i.e., N = ED0, we obtain 2N equations describing the parametric resonance for Kelvin
modes with β = 0. The system (48) reduces to a linear system with constant coefficients with the
change of variables

x =
(
Ieit/2 0

0 Ie−it/2

)
x̃eiσ t (49)

and the eigenvalue σ is the solution of the general eigenvalue problem

σ

(
E (a) 0

0 E (b)

)
x̃ =

(
− 1

2E (a) + N (a) −iγ C (a)

−iγ ∗C (b) 1
2E (b) + N (b)

)
x̃. (50)

This system is solved with the same procedure as described in Sec. V A.

C. Application to the modes (m, n) = (5, 1) and (6,2)

Finally, we give a brief outline of an application of the theoretical framework developed in the
preceding section and a possibility to confirm the theory from our experimental measurements. We
calculate the growth rates of free Kelvin modes dependent on the amplitude of the modification
of the background flow. Assuming that �1 is a geostrophic mode, we can linearly relate the shear
amplitude β to the precession ratio ε, which is at least qualitatively confirmed in our measurements.

The matrices E , N , and C are calculated for prograde modes with (m2, n2) = (5, 1) and
retrograde modes with (m3, n3) = (6, 2). Since we do not know the amplitude of the forced mode,
we consider γ as a free control parameter in addition to the parameter β, the amplitude of the
perturbation of the solid body rotation.

We calculate the eigenvalues σ = σr + iσi of the system (50) for three values γ = [3, 5, 7] ×
10−3 which are above the critical value γc required for the onset of the instability. The parameter β

is varied in the interval β ∈ [0, 0.15]. The results yield one unstable mode dependent on β and γ ,
which for β = 0 is formed by the Kelvin modes (6,2,1) and (5, 1,−1). The corresponding growth
rates rescaled by γ are shown in Fig. 15(a).

The positive growth rate −σi has a maximum at the exact resonance β = 0.044 (see Sec. V D),
which increases linearly with γ so that max(−σi ) = 5.3 × 10−3γ . The growth rate becomes zero
when the background flow is strong enough to detune the parametric resonance. Qualitatively, the
regime with resonance becomes broader (i.e., allows larger β, i.e., stronger detuning) for increasing
γ . The eigenfrequencies σr in the reference frame of the cylinder are shown in Fig. 15(b). The
frequencies vary almost linearly with β and the amplitude of γ only modifies the maximum β

at which the parametric resonance vanishes and the frequency locking ceases. The circles (γ =
3 × 10−3), squares (γ = 5 × 10−3), and diamonds (γ = 7 × 10−3) denote the exact locations at
which unlocking of the frequencies occurs, i.e., when σi vanishes. The marginal stability curves are
shown in Fig. 16(a) as a function of γ and β (gray for the stable region and white for the unstable
one). The unstable region describes a resonance tongue [35], which for large β gives a threshold
γc ∼ β. This can be explained by a heuristic model when assuming that the coupling term C, given
by Eq. (45), increases linearly with �ω. Setting σi = 0, the threshold γc varies with �ω/

√|C|
[Eq. (44)] and we obtain γc ∼ √

�ω. On the other hand, we have shown in Sec. V D that �ω ∼ β2

for large β, thus we obtain γc ∼ β.
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FIG. 15. (a) Rescaled growth rates −σi/γ of the eigenmodes given by the system (48) as a function of
β for an amplitude of the forced mode γ equal to 3 × 10−3 (black line), 5 × 10−3 (gray line), and 7 × 10−3

(black dashed line). (b) Corresponding frequencies σr ± 1
2 in the cylinder reference frame. The symbols denote

the frequencies of marginal stability where σi = 0, i.e., the parametric resonance switches off (circles, squares,
and diamonds correspond to γ = 3 × 10−3, 5 × 10−3, and 7 × 10−3, respectively).

To compare numerical and experimental data, the parameters γ and β of the dispersion relation
(50), quantifying, respectively, the amplitude of the forced mode and the amplitude of the shear, have
to be expressed as a function of the precession ratio ε and the Ekman number Ek. However, both
parameters cannot be determined directly by the local wall-pressure measurements. To overcome
this limitation we assume that the instability saturates via frequency detuning of the unstable modes
[8,23]. In our model, the saturation occurs when the shear amplitude β reaches the marginal stability
curves for a given amplitude γ . Consequently, we reduce the number of parameters to one, by only
considering the parameter β as a function of γ all along the marginal stability curve [thick line
in Fig. 16(a)]. Figure 16(b) shows the curves of the theoretical frequencies ω2 (dashed curve) and
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FIG. 16. (a) Parameter space (β, γ ) with the domain of existence of the parametric instability (white
region) separated by the marginal stability curve with σi = 0 (black curves). (b) Frequencies corresponding
to the marginal stability curve. The diamonds correspond to the experimental frequencies �2 and the triangles
correspond to �3 for Ek = 8.8 × 10−7 as a function of β = αCf (ε − εc ), with Cf = 6.23, εc = 2.5 × 10−2,
and α = 1.43.
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ω3 (thick curve) obtained from the dispersion relation (50) as a function of β along the marginal
stability curve. In Sec. IV B we showed that the experimental frequencies �2 and �3 vary with
Cf (ε − εc) for all Ekman numbers and precession ratios ε, with a relatively small scatter. Since the
frequencies are functions of β (from theory) and Cf (ε − εc) (from experiment), it is suggestive
to express the shear amplitude β as a function of Cf (ε − εc). The frequencies −�2 (�3) are
monotonically decreasing (increasing) functions of β(γc) and/or Cf (ε − εc), so we conclude that
the shear amplitude β is an increasing function of Cf (ε − εc). Hence, the coefficient Cf quantifies
the amplitude of the shear for a given distance from the onset of instability ε − εc. We emphasize
that the coefficient Cf increases with Ek−1/4 [Fig. 9(b)], i.e., the shear increases when the Ekman
number decreases, a feature in agreement with previous observations [13,17]. The functional form
of β finally may be deduced by assuming that the mode associated with the frequency �1 is a
geostrophic mode, as suggested in Sec. IV D. From the dispersion relation of the geostrophic modes
given by Eq. (34), the frequency �1 can be written as

�1 = β/α. (51)

The coefficient α−1 corresponds to one of the eigenfrequencies of the matrix E−1Q (see Sec. V B)
and is independent of Ek and ε by construction. Using Eq. (28), the shear amplitude β can be written
in the form

β = αCf (ε − εc). (52)

Once the parameter α is estimated, we are able to evaluate the shear amplitude β for any Ekman
number and precession ratios so that all sets are equivalent when expressed as a function of
Cf (ε − εc) (Fig. 8). As an example we choose the frequencies from the set of measurements at the
smallest Ekman number examined within the present study (Ek = 8.8 × 10−7) for which we have
εc = 2.5 × 10−2 and Cf = 6.23. The coefficient α is determined empirically so that the distance
between experimental and numerical data is minimized. The results are shown in Fig. 16(b), with
�2 (diamonds) and �3 (triangles) plotted as a function β given by (52) with α = 1.43. We observe
good agreement, even if close to the threshold the experimental frequencies differ slightly from the
theoretical solutions (difference of 12%).

Of course, this application is based on a simple hypothesis and the model essentially relies only
on two parameters. Whereas the frequency of the (hypothetic) geostrophic mode (the inverse of the
eigenvalue α−1) can be computed from experimental data, it remains impossible to determine the
amplitude γ of the forced mode from our pressure measurements without elaborate measurements
of the flow (particle image velocimetry and ultrasonic Doppler velocimetry), which could confirm
our scenario.

VII. CONCLUSION

In the present study we have investigated experimentally and theoretically the stability of a
Kelvin mode driven by precession. The instability is detected experimentally above a critical
precession ratio via the appearance of peaks in the temporal power spectrum of pressure fluctuations
measured at the end walls of a precessing cylinder. All frequencies satisfy resonance conditions so
that the sum or the difference of the frequencies is equal to the frequency of the forced Kelvin
mode. Two sets have been identified: a triad with the frequencies (�c,�2,�3) and a second set
consisting of four modes (�c,�1,�4,�5). All frequencies vary with the precession ratio, while
they continue to fulfill the temporal resonance condition with the forced mode. The frequency
variations are significant and cannot be explained by a viscous detuning, since the observed detuning
increases when the Ekman number decreases. Similar to observations by Lin et al. [18], each set of
frequencies disappears for larger precession ratio.

The first set corresponds to two free Kelvin modes characterized by (ω2, m2, n2, l2) =
(−0.34, 5, 1,−1) and (ω3, m3, n3, l3) = (0.64, 6, 2, 1) which result from a parametric instability
of the forced mode. Comparable free Kelvin modes were found in different experiments and
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simulations. These modes constitute the most unstable modes in the precessing system with
aspect ratio � = R/H = 0.5, which is close to the exact (m = 1, n = 1, l = 1) resonance at � =
0.502 559, and there are nearly no doubts about this interpretation. The behavior may be different
for another aspect ratio, where other free Kelvin modes emerge [21] and where the forced mode is
no longer resonant, which would result in a weaker amplitude and a different location in the stability
diagram shown in Fig. 16(a).

We developed a consistent framework to explain the behavior of the frequencies �2 and �3 and
we showed that the parametric resonance is able to lock the frequencies to maintain the resonant
condition, despite the detuning due to background shear flow. However, the instability is suppressed
when the amplitude of the forced mode is not sufficiently large to allow the frequency locking. We
have investigated theoretically the modification of the dispersion relation due to a nonuniformly
rotating background flow. Our numerical results are in good agreement with the experimental
observations: The frequency of a retrograde (prograde) Kelvin mode increases (decreases) with
the coefficient β that parametrizes the slowdown of the background flow. We show that a slight
modification of the background solid body rotation (β = 0.044) is sufficient to trigger an exact
resonance between the Kelvin modes. Furthermore, we have studied the effect of the detuning on
the condition of parametric resonance. The frequency difference ω3 − ω2 increases quadratically
with β and a small perturbation of the solid body rotation (β 
 0.15) is sufficient to unlock the
frequencies so that the parametric resonance is suppressed. This feature explains the disappearance
of the frequencies �2 and �3, above a critical precession ratio. At the critical point, the amplitude
of the forced mode is no longer strong enough to lock the frequencies of the unstable Kelvin modes.

The identification of the modes of the second set and the nature of this instability are more
speculative. At the threshold of appearance, the frequency �1 is close to zero and the frequencies
�4 and �5 are close to �c = 1. This frequency set always appears at a lower critical precession
ratio than required for the triadic resonances discussed above. With almost certainty we can rule out
the possibility that these modes form a resonant triad, and we suggest that �4 and �5 correspond to
Kelvin modes resulting from the interaction of the directly forced mode and a geostrophic mode �1.
In that case, the nonvanishing frequency of the geostrophic mode results from a background shear
flow that removes the frequency degeneracy at ω0 = 0 in the case of the background flow being an
unperturbed solid body rotation. Following this hypothesis, the second set could be an experimental
hint of the instability involving a geostrophic mode, predicted numerically in Ref. [6].

The ad hoc parametrization of the shear amplitude β as a function of the precession ratio ε

is based on the hypothesis that the mode associated with the frequency �1 is a geostrophic mode.
From the dispersion relation, we know that the frequency of the geostrophic mode increases linearly
with β. Assuming �1 ∝ β, we observe good agreement between numerical prediction and the
experimental results. However, without experimental confirmation of the spatial structure of the
instability, the presence of a geostrophic mode remains speculative, although we find similarities
between our observations and the frequency variation of the instability of a geostrophic mode
described by Kerswell [6].

Our experimental and theoretical results point out that the saturation mechanism of the instability
of a Kelvin mode is related to a modification of the background flow, which changes the dispersion
relation of the Kelvin modes. The conditions of resonance are particularly sensitive to the amplitude
of the background flow: A slight modification can tune or detune a resonance. Moreover, our calcu-
lations suggest that a sequence of small-scale unstable modes could emerge after the disappearance
of the first resonant triad. We did not detect these modes in the pressure measurements, since the
power spectrum becomes flat for moderate precession ratio (see also [18]). This regime is not yet
turbulent [20], although the flow cannot be described by a superimposition of free Kelvin modes.
The nature of this regime remains enigmatic, and further numerical and experimental studies are
required to characterize the features of this nonlinear regime. At the current stage, we presume that
the instability of small-scale modes may be inhibited by the viscous dissipation.

The development of the azimuthal shear is of relevance for the large precession dynamo experi-
ment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf, where a precession-
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driven flow of liquid sodium is expected to generate a magnetic field [36]. Simulations have shown
that the modification of the azimuthal shear profile is accompanied by further instabilities, which
are of great importance for the dynamo process [7]. A deeper understanding of these processes
and especially a robust detection of the azimuthal flow profile in an opaque medium like a liquid
metal are therefore of great importance for this experiment. The kind of “spectroscopy” of Kelvin
modes as developed for this study could be applied using the measured detuning of the parametric
resonance as the starting point to deduce a model of the radial profile of the azimuthal shear, which
of course will require a more sophisticated approach than the simple (quadratic) form for the rotation
law, as assumed in Eq. (29).

So far the ultimate confirmation of the emergence of a geostrophic mode by directly resolving
the flow structure is lacking and other possibilities for explaining our observations might be
possible. For example, an alternative explanation may interpret the frequency �1 as a beat frequency
indicative of a near-commensurate quasiperiodic response, which, however, would require different
assumptions, e.g., about the origin of this near-commensurate quasiperiodic frequency. At this stage,
we are not able to give a final answer to this question so, although the scenario connected with a
geostrophic mode is quite plausible, the presence and the origin of the modes �1, �4, and �5 must
remain an unresolved issue.

ACKNOWLEDGMENTS

This study was conducted in the framework of the project DRESDYN (DREsden Sodium facility
for DYNamo and thermohydraulic studies), which provides a platform for experiments dedicated to
geophysical and astrophysical problems at Helmholtz-Zentrum Dresden-Rossendorf. The authors
would like to thank Bernd Wustmann for the mechanical design of the precession experiment.
Discussions with R. Kerswell are gratefully acknowledged.

APPENDIX: OPERATORS AND SOLUTIONS

1. Linear operators

The operators used in Eq. (12) read

I =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠, (A1)

L0 =

⎛
⎜⎜⎜⎝

0 −2 0 ∂r

2 0 0 i m
r

0 0 0 ik
1
r + ∂r i m

r ik 0

⎞
⎟⎟⎟⎠, (A2)

Lβ =

⎛
⎜⎜⎜⎝

im� −2� 0 0

ζ im� 0 0

0 0 im� 0

0 0 0 0

⎞
⎟⎟⎟⎠. (A3)

2. Numerical convergence

Equation (33) is solved via a MATLAB code. The number of involved Kelvin modes is set equal to
N = 100, i.e., the first 50 prograde and retrograde modes. We have checked the convergence by also
using N = 200. The roots of the dispersion relations (14) and (15) are solved with a residual smaller
than 10−10. The scalar products mjl and ell are calculated via a Gauss-Legendre quadrature rule,
which is based on a collocation method using the Legendre polynomials as weighting functions.
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FIG. 17. Difference between the eigenfrequencies calculated by a Chebyshev code and our code. The
differences are calculated with the three first retrograde modes with m = 1 and n = 1.

We used 103 collocation points for the integration of the Bessel functions, which corresponds to
20 points per lobe for the Kelvin modes with l = ±50. The generalized eigenvalue problem (33) is
solved by using the routine eig, which calculates the eigenvalues ωl and eigenvectors al . We have
checked that the residual for the first Kelvin modes, i.e., |l| < 5, is smaller than 10−10. Another way
to verify the convergence is to validate that the imaginary part of ωl is zero without dissipation (the
mode remains stable).

We have verified our code by comparing our result with a code developed by Antkowiak and
Brancher [34] based on the Chebyshev pseudospectral method [37]. Unlike our code, the Chebyshev
code respects no-slip boundary conditions. We have used a sufficient number of collocation points
(typically 50) to converge the results without resolving the boundary layer in order to mimic a
free-slip condition. We set a small Ekman number (Ek < 10−3) in order to neglect the viscous
dissipation in the bulk flow. The difference between the eigenfrequency of our method and the
Chebyshev code for m = 1, n = 1, and l = (1, 2, 3), with ω0l = (0.99, 0.51, 0.34), is shown in
Fig. 17. We have checked that the relative difference is small, with values of order 10−4.

We point out that our code allows us to follow continuously all Kelvin modes by varying β,
whereas spurious modes arise in the Chebyshev code when the resolution is increased.
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